

Astra™ SL1640 Embedded IoT Processor
Functional Specification
PN: 505-001416-01 Rev.B

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Contents

List of Tables . 7

List of Figures . 9

1. Architecture Overview .11
1.1. Key Components and Sub-systems .12

1.1.1. Global Unit .12
1.1.2. System Manager (SM) .12
1.1.3. CPU (Arm Cortex A55 DSU Sub-system) .12
1.1.4. Boot ROM .12
1.1.5. Security Island Subsystem .12
1.1.6. SoC Connectivity and Access Control .12
1.1.7. Peripheral Subsystem .12
1.1.8. Memory Controller (DDR) .12
1.1.9. Graphics and Neural Network Engines .12
1.1.10. Audio and Video Processing .12
1.1.11. JTAG and Debugging Interfaces .12

2. Global Unit .13
2.1. Overview .13
2.2. Functional Description .14

2.2.1. Reset Module .14
2.2.2. Reset Sources .14
2.2.3. Software Reset Scheme .14
2.2.4. External Reset Sequence .15
2.2.5. Clock Module .16
2.2.6. PLL and Oscillator .16
2.2.7. Clock Dividers and Switches .17
2.2.8. Clock Switching Procedure .20
2.2.9. Boot Strap Module .20

3. System Manager (SM) .21
3.1. Overview .21
3.2. Power Domain and Power Sequence .22

3.2.1. Power Sequence .23
3.2.2. Initial Power-up Sequence (Cold Boot) .23
3.2.3. Power-down Sequence (Entering Standby) .23
3.2.4. Standby Power-up Sequence (Exiting Standby; Warm Boot) .23

3.3. Functional Description .24
3.3.1. System Manager CPU .25
3.3.2. Clock and Reset Generation .25
3.3.3. System Manager Address Map .25
3.3.4. System Manager Hardware Devices .26

4. CPU .31
4.1. CortexA55 DSU Sub-system .31
4.2. Reference Documents .32
4.3. Module Revision .33
4.4. CPU Clock .33
2 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
5. Boot ROM .34
5.1. Overview .34
5.2. SL1640 ROM Code Flow .34
5.3. Flash Layout .36

5.3.1. SPI Flash for SPI-Secure Boot .36
5.3.2. eMMC Layout .37
5.3.3. Boot Operation Mode in eMMC .37
5.3.4. eMMC Boot in SL1640 Device .38
5.3.5. eMMC Boot Mode .39

6. JTAG .40
6.1. Overview .40
6.2. JTAG Debug Port Configurations .40
6.3. Boundary Scan Support .41

7. SoC Connectivity and Access Control .42
7.1. Connection Table .43

7.1.1. Address Map .44

8. DDR Memory Controller .47
8.1. Introduction .47
8.2. Memory Controller Feature List .47
8.3. DDR Memory Controller Overview .48
8.4. Functional Description .49
8.5. DDRPHY Overview .50

9. Security Island Subsystem .51
9.1. Overview .51
9.2. BCM .51

9.2.1. Feature List .51
9.2.2. Configuration Options .51
9.2.3. Block Diagram .51

9.3. TSP .53
9.4. Kilopass OTP .53

10. Transport Stream Processor .55
10.1. Overview .55

10.1.1. Standards .56
10.1.2. Functionalities .56
10.1.3. Interfaces .56

10.2. Function Description .57
10.2.1. FIGO System .57
10.2.2. Transport Stream Input (TSI) .58
10.2.3. Transport Stream Output (TSO) .66
10.2.4. Section Filter .67
10.2.5. Crypto Engine .74
10.2.6. Command Dispatcher .82
10.2.7. Crypto Blocks .82

10.3. Sync Word Detection (SWD) .93
10.3.1. Operation Model .93
10.3.2. SWD Command Definition .94
10.3.3. SWD Context Definition .95
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 3

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11. Graphics Engine .97
11.1. GPU Features and Supported Standards .97

11.1.1. GPU Key Features .97
11.1.2. Unified Shading Cluster Features .98
11.1.3. 3D Graphics Features .98
11.1.4. Compute Features .99
11.1.5. FBCDC Features .99

11.2. GPU Integration Overview .100
11.3. GPU Bus Interface .101

11.3.1. AXI Host Interface .101
11.3.2. AXI SoC Interface .102

11.4. Performance Characteristics .103
11.5. GPU Architecture Overview .104

11.5.1. 3D Graphics Workload Outline .106
11.5.2. Compute Workload Outline .107

11.6. GPU Control Streams .108
11.6.1. Workload Control Streams .108
11.6.2. Internal Control Streams .108

12. Neural Network Engine .109
12.1. Overview .109
12.2. Interface .110

13. Video Post Processing (VPP) .111
13.1. Overview .111
13.2. VPP Functional Description .114

13.2.1. Main Video Plane .114
13.2.2. Graphics Planes .115
13.2.3. 1D Scaler (Video Scalar) .116
13.2.4. Graphics Scalar .117
13.2.5. Offline Downscale/OVP Scalar .118
13.2.6. CPCB (Overlay and Timing Generator) .119
13.2.7. 3D-HDMI Formatter .123
13.2.8. Video Output Stage (VOP) .123

13.3. HDMI Transmitter .124
13.4. HDCP .125
13.5. Offline Downscale/OVP Pipe .125

13.5.1. Feature List .125
13.6. Pipeline Control .125

13.6.1. Register Interface .125
13.6.2. DRAM Interface .125
13.6.3. Interrupt Scheme .126

13.7. AVPLL .126

14. Dual Audio DSP .127
14.1. Overview .127
14.2. Interrupt .127
14.3. Audio DSP Sub System Block Diagram .127
14.4. Versions .128
4 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15. Audio Input Output .129
15.1. Overview .129
15.2. Audio Clock Scheme .132

15.2.1. Sampling Rate and Bit Clock .132
15.3. Data Formats .133

15.3.1. I2S Mode .133
15.3.2. Left-Justified Mode .133
15.3.3. Right-Justified Mode .134
15.3.4. Time Division Multiplexed (TDM) Mode .134

15.4. PCM Mono mode .136
15.5. Pulse Density Modulation (PDM) Mode .136
15.6. S/P-DIF (IEC60958) Mode .137

15.6.1. SPDIF Internal Sub-frame Format .137

16. Video Codec .139
16.1. Video Decoder .139

16.1.1. Supported Video Decode Formats .140
16.2. Video Encoder .141

16.2.1. Supported Video Encode Formats .141

17. Peripheral Subsystem .142
17.1. Introduction .142
17.2. Description .142

18. APB Components of Peripheral Interface .145
18.1. General Purpose Input/Output (GPIO) .145

18.1.1. GPIO as I/O Pins .145
18.2. Two-Wire Serial Interface (TWSI) .148

18.2.1. Overview .148
18.2.2. TWSI Protocols .149
18.2.3. START BYTE Transfer Protocol .152
18.2.4. Multiple Host Arbitration and Clock Synchronization .152
18.2.5. Operation Model .153

18.3. Timers .153
18.4. Watchdog Timers (WDT) .154

18.4.1. Counter .154
18.4.2. Interrupts .155
18.4.3. System Resets .155

18.5. Serial Peripheral Interface .156
18.5.1. Overview .156
18.5.2. Clock Ratios .157
18.5.3. Transmit and Receive FIFO Buffers .157
18.5.4. SPI Interrupts .158
18.5.5. Transfer Modes .158
18.5.6. Operation Modes .159
18.5.7. Data Transfers .160
18.5.8. Serial Peripheral Interface (SPI) Protocol .161

19. SDIO .162
19.1. SDIO Host Controller Features .162
19.2. SDIO PHY Features .163

20. eMMC .164
20.1. eMMC Host Controller Features .164
20.2. eMMC PHY Features .165
20.3. DigiLogic-Specific Features .165
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 5

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
21. Pulse Width Modulator (PWM) .166
21.1. Overview .166

22. USB 2.0 Host .167
22.1. USB Controller Features .167
22.2. USB PHY Features .168

23. 10/100 Mbps Ethernet .169
23.1. Functional Overview .169
23.2. Features .169

24. PCI-e 2.0 .171
24.1. Overview .171
24.2. Functional Overview .171

24.2.1. Features .171

25. USB 3.0 Host .172
25.1. Overview .172

25.1.1. Features .172

26. Smart Cards .173
26.1. Overview .173

26.1.1. Features .173

27. References .174

28. Revision History .175
6 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
List of Tables

Table 1. PLLs and Output Frequency . 16
Table 2. SL1640 Clocks . 17
Table 3. SM Memory Map . 25
Table 4. System Manager I/O Device Address Map . 26
Table 5. Interrupt Sources Connected to Interrupt Controller . 26
Table 6. Function Enable. 28
Table 7. Arm CortexA55 DSU Configuration Options . 32
Table 8. ARM IP Revision. 33
Table 9. SoC Boot Source . 36
Table 10. SL1640 Debug Port Configuration . 41
Table 11. SL1640 Supported Instructions . 41
Table 12. Host and Target Pair Connection Levels . 44
Table 13. System Memory Map. 44
Table 14. Low-Speed Register Memory Map . 45
Table 15. Fast-Access Register Memory Map . 46
Table 16. TSP_HBO_FIFO_ID. 57
Table 17. TSI Packet Information Entry Definitions . 61
Table 18. PID Table Entry Definitions . 63
Table 19. Section Command Entry Definitions . 68
Table 20. Section Filter Entry Definitions . 70
Table 21. Section Rule Entry Definitions . 72
Table 22. Section Table Entry Definitions. 74
Table 23. Crypto Command Entry Definitions . 75
Table 24. Crypto Return Entry Definitions . 77
Table 25. Differences of FIGO, Crypto Engine and SWD Address Mapping . 79
Table 26. TSP Key Entry Definitions . 80
Table 27. Crypto Engine Key Table Address Mapping . 81
Table 28. TSP Key Table for Crypto Engine . 82
Table 29. CRC Parameter Entry Definitions . 82
Table 30. ARIB-MULTI2 Parameter Entry Definitions. 83
Table 31. AES Parameter Entry Definitions . 84
Table 32. TDES Parameter Entry Definitions . 86
Table 33. C2 Parameter Entry Definitions . 87
Table 34. WMMAC Parameter Entry Definitions . 88
Table 35. RC4 Parameter Entry Definitions . 88
Table 36. HMAC . 90
Table 37. HMAC Parameter Entry Definitions . 91
Table 38. HMAC Parameter 1 Entry Definitions . 92
Table 39. GHASH Parameter Entry Definitions . 92
Table 40. SWD Command Entry Definitions. 94
Table 41. SWD Context Entry Definitions . 95
Table 42. SWD Return Entry Definitions. 96
Table 43. Features of GPU AXI Host Interface . 101
Table 44. Features of GPU AXI SoC Interface. 102
Table 45. GPU Core Performance Characteristics . 103
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 7

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Table 46. 3D Graphics Workload Outline . 106
Table 47. Compute Workload Outline. 107
Table 48. Interface . 110
Table 49. VPP Supported Plane Inputs with Format Support . 113
Table 50. HDR and SDR Conversions . 115
Table 51. Source of Different CPCB0 Planes . 122
Table 52. HiFi4 Versions . 128
Table 53. Audio Output paths/ports in SL1640. 129
Table 54. Audio Input paths/ports in SL1640 . 130
Table 55. Sampling Rate and Bit Clock Relationship (I2S/LJ/RJ) . 132
Table 56. Sampling Rate and Bit Clock Relationship (TDM) . 132
Table 57. Encoding for Preambles . 138
Table 58. Supported Video Decode Formats . 140
Table 59. Supported Video Encode Formats . 141
Table 60. TWSI Definition of Bits in the First Byte . 150
8 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
List of Figures

Figure 1. SL1640 architecture block diagram .11
Figure 2. Block Diagram of Global Unit .13
Figure 3. SL1640 Device Reset Structure. .14
Figure 4. SL1640 Power-up Sequence .15
Figure 5. SL1640 Clock Generation Structure .19
Figure 6. SL1640 Power Domain Partitions .22
Figure 7. SM Block Diagram .24
Figure 8. Arm CortexA55 DSU Block Diagram. .31
Figure 9. ROM Code Flow .35
Figure 10. SPI Flash Layout for SPI-Secure Boot. .36
Figure 11. State Diagram of Boot Mode .37
Figure 12. State Diagram of Alternative Boot Mode .38
Figure 13. Layout of eMMC Device .38
Figure 14. JTAG Chain and Boundary Scan diagram .40
Figure 15. ICE Debugger Interface .41
Figure 16. SL1640 Bus Hosts and Targets .42
Figure 17. SL1640 DDRPHY diagram .50
Figure 18. BCM Block Diagram. .52
Figure 19. TSP Block Diagram .55
Figure 20. TSI Block Diagram .59
Figure 21. Input/Output packet format .60
Figure 22. Transport Stream Output (TSO) Flow .66
Figure 23. TS Packet Format .67
Figure 24. Section Filter Rule Descriptor .69
Figure 25. Crypto Engine. .74
Figure 26. Bombo core in SoC .100
Figure 27. GPU High-Level Architecture .104
Figure 28. Example Workload Control Stream .108
Figure 29. NPU block diagram .110
Figure 30. High-level Block Diagram of the SL1640 VPP Engine. .112
Figure 31. Detailed Block Diagram of CPCB0 .120
Figure 32. Block Diagram of Overlay Engine which is part of CPCB0 .121
Figure 33. Audio DSP subsystem block diagram. .127
Figure 34. Functional Block Diagram of AIO Module .131
Figure 35. I²S Mode. .133
Figure 36. Left-Justified Mode .133
Figure 37. Right-Justified Mode .134
Figure 38. 8-Channel TDM Mode Data .135
Figure 39. 6-Channel TDM Mode Data .135
Figure 40. 4-Channel TDM Mode Data .135
Figure 41. 2-Channel TDM Mode Data .135
Figure 42. PCM Mono Mode Data .136
Figure 43. Half-Cycle PDM .136
Figure 44. SPDIF Frame Format .137
Figure 45. SPDIF Internal Frame Format .137
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 9

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 46. Video Decoder Subsystem in a Video Playback System. .139
Figure 47. Top Level Interfaces to Video Decoder Subsystem. .140
Figure 48. Peripheral Subsystem Block Diagram .143
Figure 49. GPIO Block Diagram .145
Figure 50. GPIO Interrupt Block Diagram. .147
Figure 51. TWSI Start and Stop Condition .148
Figure 52. START and STOP Condition. .149
Figure 53. 7-Bit Address Format. .150
Figure 54. 10-Bit Address Format .150
Figure 55. Host-Transmitter Protocol .151
Figure 56. Host-Receive Protocol .151
Figure 57. Start Byte Transfer. .152
Figure 58. Example Watchdog Timer .154
Figure 59. Interrupt Generation .155
Figure 60. Counter Restart and System Restart .155
Figure 61. Hardware Target Selection .156
Figure 62. Maximum SCLK_OUT/SPI_CLK Ratio. .157
Figure 63. SPI Host Device .160
Figure 64. SPI Serial Format (SCPH = 0) .161
Figure 65. PWM Block Diagram .166
Figure 66. Waveform. .166
10 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

11

f the Synaptics Astra™ SL1640
eir designs, providing detailed

IC

Global

SYS
PLL X2

Boot
Strap

NIC-400 AXI Interconnect
DXBAR (64bit @sysClk)

IC-400 AXI Interconnect
CXBAR (32bit @sysClk)

AHB Bus
Monitor

sissSysClk
sysClk

BSCAN
2AHB

Bo
ot

 V
ec

Slow AHBFast AHB

Sl
ow

 A
H

B

Fa
st

 A
H

B

sysClk

SO
C2

D
DR

JT
AG

sysClk

PE
RI

F2
SO

C

C
S2

SO
C

SI
SS

2S
O

C

SO
C2

PC
IE

sysClk

Fast AHB
(@ sysClk)

SOC SZC

AHB
DEC

Slow AHB
(@ cfgClk)

TOP PP

HB

m0 m1
m2

m3

s0

s1

m1

m2

s1

s2 s3

sysClk

sy
sC

lk

sy
sC

lk

S nS S nS S nS

S
nS

SM_SS

1x ADC

SM
REG

r

B

x
DT

16x
Timer 3x PIC

x
RT
TS/

TS)

1x SPI
（4CS)

2x I2C
(STD/
FAST)

00 AHB Interconnect
AR (32bit @refClk)

e

SM PP

PVT
SEN

Clock&
Reset
Gen

s4

fClk refClk refClk

3

HDP/
CEC

refClkrefClk

s1s2 s1s0

FE
PHY From

MAC

M
ID

M
ID

MID

s1

SI PLL
X1

Reset
Gen

Clock
Gen
Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

1. Architecture Overview

This document provides an in-depth description of the architecture, sub-systems, and operational characteristics o
embedded IoT processor. This specification is crucial for engineers and developers integrating the SL1640 into th
information on each sub-system and their interactions.

Figure 1. SL1640 architecture block diagram

DSP_SS

GV_SS

SI_SS

 siSS_mini

MC_WRAP

SOC FABR

NIC-400 AXI Interconnect
TXBAR (64bit @sisssysClk)

cfgClk

BCM

MBX
ARM
RNG

PERIF_SS

FE
MAC

APBPERIF
(@apbCoreClk)

CPU_WRAP

TSP

40KB
DTCM0

CA55 Macro

NIC-400 AXI Interconnect VNXBAR
(128bit@vnsysClk)

4x
PWM

1x
Smart
Card

SPI
Handler PBridge

SIE-200 AHB Interconnect
PCXBAR

(32bit @cfgClk)

16x Timer 3x WDT

2x I2C
(STD/
FAST/
HIGH)

1x
SPI

（4CS)

96x
GPIO

1x
UART
(RTS/
CTS)

1x
eMMC

5.1

1x
SDIO
3.0

eMMC
5.1

PHY

SDIO
3.0

(1.8V)
PHY

NIC-400 AXI Interconnect
PXBAR (64bit @sysClk)

sy
sC

lk

sy
sC

lk

sy
sC

lk

sy
sC

lk

sy
sC

lk

cfgClk sysClk

FIGO0

AES TDES
KeyTbl

N

sy
sC

lk

GIC-400

A5
5

4
co

re
s

BC
M

 M
3

DDR
PHY

DDR
Scrambler

Arm Cortex A55
32 KB I$
32 KB D$
64KB L2$

Arm Cortex A55
32 KB I$
32 KB D$
64KB L2$

Arm Cortex A55
32 KB I$
32 KB D$
64KB L2$

Arm Cortex A55
32 KB I$
32 KB D$
64KB L2$

Coherent Fabric

L3 Cache (512KB)

CPU
Clock
GEN

CPU
Reset
GEN

32-bit DDR4/LPDDR4/LPDDR4x-3733
Memory Controller (dClk)

MPT
(128KB)

NIC-400 AXI Interconnect
CPXBAR (128bit @dClk)

MEM
PLL

aviosysClkgfxsysClk dClk

P0P1P2

aviosysClkgfxsysClk

VN2DDR

GEO2DDR Slow AHB

cf
gC

lk

Slow AHB

sysClkSlow AHB

PERIF2SOC

sysClk

SOC2DDR

sysClk

C
PU

2S
O

C

CPU2SOC
SOC2PCIE

sisssysClk c fgClk

sysClk

JT
AG

C
S2

SO
C

CPU
REG

Slow AHB

Access
Filter

SISS
REG

Slow AHB

Arm
Cortex

M3

256KB
ROM

128KB
TCM

AES RSA SHA ECC

Access
Filter

OTP
32Kb

128KB
Shared
ITCM

FIGO1 40KB
DTCM1

CSA3

8x TSI

SISS2SOC

NPU

1MB RAM

Fast AHB AVIO2DDR

Slow AHB

cfgClk

CPU_WRAP Macro PP

TOP PP

TOP PP

SISS PP
NPU PP

TOP PP

si
ss

sy
sC

lk

Slow A

CPU
PLL

IMTEST
@dClk CoreSight

Slow AHB

BC

si
ss

sy
sC

lk

m1

m0
s0

s1

m0 m1 m2 m3 m4

s0

m0 m1 m2

s0

m0

s0

m0 m1 m2
m3 m4

s0 m5

s1m0

s0

m6

APB2AHB
bcmClk

sisssysClk bcmClk

gfxsysClk vnsysCl k

sysClk

cfgClk pBridgeCoreClk

apbCoreClk

S nS S nS

m2

AHB merge

S-AHB D-AHB I-AH
Arm Cortex M3

SMAPB
(@refClk) 3

W

32x
GPIO

2
UA

1 (R
C

SIE-2
SXB

4KB
Secur
SRAM

re
fC

lk 96KB
TCMre

fC
lk

m0

m2 m1

re

s

cfgClk

pBridgeCoreClk

CPU Core PP CPU Core PP CPU Core PP CPU Core PP

AVIO_SS

NIC-400 AXI Interconnect
AXBAR (128bit @avioSysClk)

64-bit aDHUB

B
C
M

128-bit vDHUB

GFX
1 MP

Overlays

A-PLL x2
V-PLL x1

AVIO PP

HDCP 2.2

DSI-HC

D-PHY
4D1C

m1m0

s0
H

D
C

P
I2

C

E DDC I2C

TM
D

S

aioSysClk
avioSysClk

cfgClk

m2

s1

HDMI Tx 2.1

PHY

video

audio

others

DMA

esmClk

dC
lk

USB
3.0

MAC

USB
3.0

PHY

m5

cfg

32
-b

it
D

D
R

USB
OTG
2.0

OTG
2.0

PHY

PCIe 2.0
MAC

PCIe 2.0
PHY 1L

PRI

4x2ch
I2S /

2x4ch
TDM/
1x8ch
TDM

m1

FE
 P

HY

PVT SEN

MIDMIDMIDMID

MID MID MID MID MID

MIDMID MID

MID

M
ID

MID

M
ID

MID MID

HIFI4

64KB I$/
64KB D$

HIFI4

64KB I$/
64KB D$

NIC-400 AXI Interconnect
DSPX BAR (128bit@dspSysCl k)

m0 m1

s0

DSP2DDR Slow AHB

cfgClk

m3

dspSysCl k

DSP2DDR

JT
AG

S nS

MID MID
dsp0Cl k dsp1Cl k

dspSysClk

S P
DI
F

RX

SP
DI
F

TX

BTo

1x2ch
I2S/

1x8ch
TDM

MIC1

4x2ch
I2S /

2x2ch
I2S /

2x4ch
TDM/
1x8ch

TDM

P DM

2x2ch
P DM

w/
P DM 2
P CM
Dec

BTi

1x2ch
I2S /

1x8ch

TDM

HBR/I
2S

7.1CH

cfgClk

s1

S IE-200
DCXB AR

cfgClk

us
b3

C
or

e
C

lk

MID

NIC-400 AXI Interconnect GEOXBAR
(128bit@gfxsysClk)

GEO2DDR Fast AHB

sy
sC

lk

Slow AHB

cfgClk

m1

s0

m0

ovpCoreClk v4gCl k

OVP
(MADI)

MID

ENC

m2
MID

ENC PP

encoderClk

DDR
Secure
Zone

Controller
(SZC)

DDR SZC DDR SZC DDR SZC

vnsysClk

VN2DDR
S nS

P3

veosysClk

GPU
GE9608 V4G

V4G PP

MID

GFX PP

cfg

ARM
RNG KeyGen GKL

mux

offlin
eScl

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
1.1. Key Components and Sub-systems

1.1.1. Global Unit
The Global Unit manages critical system functions, including clocking, reset signals, and bootstrapping. It
includes modules like the Clock Module, Reset Module, and Boot Strap Module, which work together to ensure
the processor's stable operation from power-up to runtime.

1.1.2. System Manager (SM)
The SM handles power management and front panel control in media player devices. It includes a Arm® Cortex®
M3 CPU, power domain management, and I/O controllers, ensuring the system operates efficiently in both
normal and standby modes.

1.1.3. CPU (Arm Cortex A55 DSU Sub-system)
The core processing unit of the SL1640 is a quad-core Arm Cortex A55 DSU subsystem. This subsystem
includes the DSU (DynamIQ Shared Unit) that maintains coherency between the cores and handles L3 cache
management. The CPU subsystem also integrates various interfaces for debugging and interrupt management.

1.1.4. Boot ROM
The Boot ROM is responsible for the initial system boot process. It includes code flow control, flash layout
management, and boot operation modes, which are crucial for secure and efficient startup.

1.1.5. Security Island Subsystem
This subsystem handles security functions, including cryptographic operations and secure key management,
ensuring that the SL1640 device can operate in environments where security is a priority.

1.1.6. SoC Connectivity and Access Control
This section details the SL1640’s connectivity features, including a variety of interfaces like PCIe, USB,
Ethernet, and more. It also covers the access control mechanisms that regulate data flow between different
subsystems.

1.1.7. Peripheral Subsystem
The peripheral subsystem includes general-purpose input/output (GPIO) controllers, timers, serial interfaces,
and other low-speed peripherals that are essential for interacting with external devices.

1.1.8. Memory Controller (DDR)
The DDR memory controller manages data flow between the CPU and external memory, ensuring high-speed
data access and memory efficiency.

1.1.9. Graphics and Neural Network Engines
The SL1640 includes a powerful GPU for graphics processing and a neural network engine for AI tasks, making
it suitable for applications that require high-performance visual and AI capabilities.

1.1.10. Audio and Video Processing
The document details the audio DSP and video processing units, which are designed to handle high-definition
audio and video streams, making the SL1640 ideal for media-rich applications.

1.1.11. JTAG and Debugging Interfaces
The JTAG interface provides a means for debugging the processor, offering insight into the internal state of the
CPU and other components during development and troubleshooting.
12 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
2. Global Unit

2.1. Overview
The SL1640 device relies on the Global Unit to provide on-chip clocking and reset signals. The Global Unit also
handles all the chip and system-level control. The Global Unit includes a clock module, reset module, boot strap
module, and CPU Programmable Registers. Figure 2 depicts the relationships among these modules.

The Reset Module takes the system reset signal from System Manager/POR pad and resets from CPU-
controlled registers to create individual resets to each subsystem. The Boot Strap Module latches the strapping
values from the pads 320 ns (8 cycles of 25 MHz clock) after SM to SoC reset, or POR changes from low to high.
The strap values are kept in registers for the CPU to read and the same registers are also used directly to
configure the SL1640 device. In this way, the boot strap register values and the actual configuration are always
consistent. The bootstraps are used to select SL1640 clock generation and CPU boot options. The strap
description is found in the SL1640 Datasheet (PN: 505-001415-01). The Clock Module includes 3 PLLs that
generate required frequencies, and clock divider/switching logic for all the subsystems of the SL1640 device.
The clock parameters are controlled by CPU programmable registers.

Figure 2. Block Diagram of Global Unit

Clock Module

Reset Module

Boot Strap Module

CPU Programmable
Registers

Boot Strap Pads

Strap
Values

Strap
Latching
Signal

PLL
Resets

Resets

Clocks

Clock
Straps

Clock Parameters

SW Resets

25MHz refClk from SM

Register Values /
Strap Values

SM2SOC_RSTn
/POR Reset

Config Bus
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 13

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
2.2. Functional Description

2.2.1. Reset Module
Separate reset signals are generated for each clock domain on which a particular sub-system operates.

2.2.2. Reset Sources
There are 10 sources to trigger each individual reset:

 Reset from SM
 Reset from POR_VDD (monitor CORE VDD)
 Reset from POR_VDD (monitor SM CORE VDD)
 Reset from POR_VDD in CPU domain (monitor VDD_CPU)
 Reset from POR_AVDD18 (monitor 1.8V power supply on VDDIO)
 Reset from POR_AVDD18 (monitor 1.8V power supply on SM VDDIO)
 Reset from POR_AVDD33 (monitor 3.3V power supply on AVDD33_USB2)
 Watchdog reset
 Reset from POR_AVDD33 (monitor 3.3V power supply on AVDD33_EPHY)
 Register controlled module reset

2.2.3. Software Reset Scheme
The SL1640 device uses a pair of reset registers (reset trigger register and reset status register) to facilitate the
software reset. When software writes 1 to a reset trigger register bit, it results in the assertion of the
corresponding reset for 16 reference clock cycles (25 MHz). The corresponding reset status bit is set to 1 until
cleared by software. The CPU can access both the reset trigger register and reset status register.

Figure 3. SL1640 Device Reset Structure

SoC CPUSS

SM

Extend X Cycles

Extend Y Cycles

Sync &
Test MUX

POR_VDD_CPU

CPUx Reset
WD Reset

For Test

For Test

For Test

CPUx Clock

WD Reset
SW Module 1 Reset

Module 1 Clock

WD Reset
SW Module 2 Reset

Module 2 Clock

Note: 25 MHz Cycle
X Cycles = (Y + 32) Cycles.

RSTIn

RSTIn

SM_RSTIn

Sync &
Test MUX

Sync &
Test MUX

Reset
CKT

POR_VDD
POR_AVDD
POR_AVDD33

SM2SOC_Rstn

POR_VDD
POR_AVDD18
POR_AVDD33

Reset
CKT
14 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
2.2.4. External Reset Sequence
During the hardware reset, the SL1640 device prevents the CPU from booting up earlier than the remainder of
the SoC by de-asserting the CPU reset after all other resets are de-asserted.

The power-up reset sequence is as follows:

1. External Reset pin is asserted, hardware reset occurs. The full SL1640 device is reset immediately.
2. External Reset is de-asserted. The SL1640 device reset state machine initiates.
3. SL1640 internal reset state machine de-asserts PLL reset. PLL starts to oscillate and lock.
4. SL1640 device latches power-on setting from strap pins.
5. PLLs are locked and stable clocks are driven to the modules after 1 ms.
6. Global reset is de-asserted to all modules (except both CM3 CPU and CA55 CPU) after 1ms.
7. De-assert CPU resets after 32 cycles (25 MHz).

Figure 4 shows the SL1640 power-up sequence.

Figure 4. SL1640 Power-up Sequence
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 15

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
2.2.5. Clock Module
The clock module generates the clocks to each sub-system in the SL1640 device using PLLs and dividers.

2.2.6. PLL and Oscillator
The clock module has an internal oscillator to generate a stable reference clock to the PLLs using external 25
MHz crystal.

Table 1 lists the PLLs which are present in the clock modules and their corresponding frequency outputs.

Table 1. PLLs and Output Frequency

PLL
Frequency Output

Range
Output Frequency

formula
Notes

1
Memory
PLL

20 MHz - 934 MHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

Users can change the Feedback divider DIVFI
values and VCO divider DIVQ value to obtain the
preferred PLL frequency.
The following block clock is provided by this PLL
during reset default:
• DDR Memory Controller

2 CPU PLL 20 MHz - 1.8 GHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

User can change the Feedback divider DIVFI
values and VCO divider DIVQ value to obtain the
preferred PLL frequency.
CPU clock are provided by this PLL during reset
default.

3
System
PLL

20 MHz - 800 MHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

There are 2 SYSPLL provided. Users can change
the Feedback divider DIVFI values and VCO
divider DIVQ value to obtain the preferred PLL
frequency.
The following block clocks are provided by this
PLL during reset default:
• Video encoder/decoder
• Peripheral sub-system
• Video post-processor
• GPU
• NPU
• Digital Signal Processing Subsystem

4
SISS
PLL

20 MHz - 700 MHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

There is one SIPLL provided. Users can change
the Feedback divider DIVFI values and VCO
divider DIVQ value to obtain the preferred PLL
frequency.
The following block clocks are provided by this
PLL during reset default:
• Security Subsystem

5 AVPLL 20 MHz - 1200 MHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

There are 2 independent Audio PLL and one
Video PLL PLLs (APLL_0/1 and VPLL). User can
change Feedback divider DIVFI values to obtain
the preferred PLL frequency for Audio and Video
PLL respectively. The final clock output is also
determined by its corresponding interpreter
frequency offset and PPM offset setting.
For detailed audio video clocks, see the AVPLL
section of Video Post Processing (VPP) in this
datasheet. Audio and video pixel clocks are
provided by this PLL during reset default.
16 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
PLL frequencies can be adjusted without affecting the normal SoC operation with the following programming
sequence:

 Switch clock source to reference clock by setting the clock into bypass mode.
Note: Using PLL-generated clock registers to change PLL parameters is prohibited.

 Set the PLL Bypass register bit.
 Assert the PLL Reset.
 Program PLL to the new preferred frequency by changing its corresponding parameters.
 De-assert the PLL Reset after 2 s and have PLL re-LOCK with the new setting.
 Wait for the PLL to lock (>= 120 µs).
 Remove PLL Bypass.
 Switch clock source back to PLL clock output.

2.2.7. Clock Dividers and Switches
The SL1640 device clock divider creates divide-by-1, divide-by-2, divide-by-3, divide-by-4, divide- by-6, divide-by-
8, and divide-by-12 clocks for each individual module. To provide more flexibility of clock sources, the SL1640
device also allows most of the clocks selected from two SYSPLL_0/1 outputs as their clock divider source clock.
Table 2 lists the main clocks in SL1640 device and corresponding options available to select the clock sources.

Table 2. SL1640 Clocks (Sheet 1 of 2)

Clock Clock Source Options Clock Divider Options
Maximum
Frequency

(MHz)

1 Memory Controller Clock Memory PLL Divide by 1 934

2 Arm Cortex CA55 CPU Clock CPU PLL Divide by 1/2/3/4/6/8/12 1800

3 System Bus Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 300

4
Register Configuration Bus
Clock

2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 100

5 Video Decoder Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 800

6 Video Encoder Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 300

7 GPU Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 800

8 NPU Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 700

9
Digital Signal Processing
Subsystem Core Clock

2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 800

10 AVIO VPP System Clock SIPLL “PLLOUT and PLLOUTF” Divide by 1/2/3/4/6/8/12 600

11 TSP Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 700

12 EMMC Controller Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 200

13 SDIO0 Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 200

14 RGMII Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 300
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 17

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15 USB3 Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 400

16 OVP Core Clock
2x SYSPLL “PLLOUT and
PLLOUTF”

Divide by 1/2/3/4/6/8/12 400

17
Arm Cortex M3 BCM CPU
Clock

SIPLL “PLLOUT and PLLOUTF” Divide by 1/2/3/4/6/8/12 200

Table 2. SL1640 Clocks (Sheet 2 of 2)

Clock Clock Source Options Clock Divider Options
Maximum
Frequency

(MHz)
18 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The SL1640 device’s individual clock divider and clock multiplexer settings could be changed dynamically
during the operation. For the clock generation structure, see Figure 5.

Figure 5. SL1640 Clock Generation Structure

Clock Generation Logic

SYSPLL
OUT

RCLKO XTAL

OUTF

pllPwrDownStrap

refClk (25Mhz)

PLL Bypass

XTL_CLK

sysPllClkf

sysPllClk

CG

CG

Analog
refClk

(25 Mhz)

1

0

1

0

PLL Bypass

OCC refClk
RCLKI

clkD3Switch
ClkPllSel

3

0

1

2

4

0

1

clkPllSwitch

Divider

2

4

6

8

12

3

ClkSel clkSwitch clkEn

OCC

1

0

0

1

1

2

3

4
5

Clock Generation Logic

CG
Clock Tree Root

apbPerifapbCoreClkClock Generation Logic CG

clkEn

NPU
npuCoreClk

clkEn
avioSysClk/vppSysClk/aioSysClk/
ovpSysClk/hpiClk/avioBiuClk/
avioFpll400_clk/avioOvpClk

clkEn

AVIO

atbClk

clkEn

CoreSight

SYSPLL0_CLKOUTF

SYSPLL0_CLKOUT

SIPLL_CLKOUT

SYSPLL1_CLKOUT

sd0Clk/
sd1Clk SDIO0/

SDIO1

eMMC

SYSPLL1_CLKOUTF

SIPLL_CLKOUT
SYSPLL1_CLKOUT

APLL0_CLKOUT
SYSPLL1_CLKOUTF

Clock Generation Logic CG

clkEn

cpu_clkcpufastRefClk

Clock Generation Logic CG

clkEn

memClkmemfastRefClk

Clock Generation Logic CG
USB

usb2TestClk480mGroup0/usb2TestClk480mGroup1/usb2TestClk480mGroup2/
usb2TestClk100mGroup0/usb2TestClk100mGroup1/usb2TestClk100mGroup2/
usb2TestClk100mGroup3/perifTestClk125mGroup0/perifTestClk200mGroup0/
perifTestClk200mGroup1/perifTestClk250mGroup0/perifTestClk500mGroup0

clkEn

Clock Generation Logic CG

clkEn

emmcClk

Clock Generation Logic

Clock Generation Logic

CG

CG

CG

Clock Generation Logic CG

clkEn

SYSPLL0_CLKOUTF

SYSPLL0_CLKOUT

Clock Generation Logic CG

clkEn

clkEn

EMMC PCIE

GE

USIMusimClk

Clock Generation Logic CG

clkEn

GPU
gfx3DCoreClk

Clock Generation Logic CG

clkEn

VXG
decoderClk

Clock Generation Logic CG

clkEn

NPU/GPU
gfxSysClk

USB30

Clock Generation Logic CG

clkEn

ENC
encoderClk

STS1_CLK
STS6_CLK

APLL0_CLKOUT
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 19

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
2.2.8. Clock Switching Procedure
The clock generation scheme provides dynamic clock switching capability. Here is the programming pseudo
code to illustrate the dynamic clock frequency change sequence using clock switching circuit shown in Figure 5.

If (desired clock frequency is divided by 3 clock) {

Turn on divide by 3 clock switch (ClkD3Switch = 1);
 Clock selection done;
}
else if (desired clock frequency is 1x clock)
{
Turn off divided clock switch (ClkSwitch = 0);
Turn off divide by 3 clock switch (ClkD3Switch = 0);
 Clock selection done;
}
 else {
Select desired divided clock (/2, /4, /6, /8, or /12 by setting ClkSel);
 Turn on divided clock switch (ClkSwitch = 1);
 Turn off divide by 3 clock switch (ClkD3Switch = 0);
Clock selection done;
}

2.2.9. Boot Strap Module
The SL1640 device boot strap pins are shared with functional output pins. The SL1640 device is the only driver
of those pins in the system. During boot-up, the SL1640 device sets those pins to input mode and external pull-
up/pull-down resistors pull the boot strap pins to required levels. After boot strap latching window, those pins
can be driven by the SoC to any level without affecting the bootstraps. The strapping information, which can be
read by the CPU, is used to configure the SL1640 device. For detailed definitions of boot strap pin assignments
and functions, see the SL1640 Datasheet (PN: 505-001415-01).
20 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3. System Manager (SM)

3.1. Overview
The SL1640 device System Manager (SM) is designed for front panel control and power management functions
in a media player device. The SM core and I/O power supply are isolated from the remainder of the SL1640
device (SoC). In standby mode, all the power rails of the SoC are shut down while the SM is powered up. This
action enables the SM to drive the front panel, receive wake-up events from the remote control or front panel
buttons, and initiate the SoC power-up sequence. By shutting down the SoC power, standby mode power
consumption is less than 10mW.

The SM includes a low-power CPU (Arm® Cortex® M3) with on-chip instruction SRAM, ITCM, I/O controllers, such
as TWSI, SPI, UART and GPIOs. The SM also has an integrated A/D converter and PVT sensor. In addition to
direct access by SM CPU, these SM I/O devices can also be accessed by the SoC CPU through the internal AHB
bus interface. Also, SM hosts Fast Ethernet transceiver referred as FE-PHY.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 21

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.2. Power Domain and Power Sequence
The SL1640 device has three power domains: System Manager as the always on power domain and the other
two SOC and CPU are controlled domains. CPU and SOC are controlled power domains and they both together
can be either ON (normal mode) or OFF (standby mode). As shown in Figure 6, there are multiple ways to control
the power domain; refer the Key Factors below.

Key Factors:
1. Having separate control for CPU power allows flexibility in system design with power budget (DVFS) at

the expense of PMIC cost.

2. Whether to use on-board switch or PMIC internal switch control is up to system design.

Figure 6. SL1640 Power Domain Partitions

SM

SOC

CPU

PMIC

CPU_VDD

SOC_VDD

SM_VDD

SM

SOC

CPU

PMIC

SM_VDD

SOC_VDD

GPIO GPIO SM

SOC

CPU

PMIC

SOC_VDD

GPIO
SM

SOC

CPU

PMIC

SOC_VDD

GPIO

CPU_VDD

Plan 1 Plan 2 Plan 3 Plan 4
22 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.2.1. Power Sequence
A specific power-up/-down sequence is required to power down the SoC block and to effectively and safely
power up the system again later. SM supports three scenarios for power sequence:

 Initial power-up sequence (cold boot)
 Power-down sequence (entering standby mode from normal operation mode)
 Standby power-up sequence (exiting standby mode to normal mode; Warm Boot)

In each scenario, a specific power sequence must be followed by a combination of hardware and software.

3.2.2. Initial Power-up Sequence (Cold Boot)
1. System power supply applies power to SM.

2. System power supply provides power to SoC.
3. System de-asserts SM reset (SM_RSTIn). SM CPU is kept in reset state by default after SM reset is de-

asserted.
4. System de-asserts SoC reset (RSTIn), SoC boots up from the SoC boot ROM.
5. SoC downloads SM firmware to the SM ITCM.
6. SoC programs SM internal register to de-assert the SM CPU reset.
7. SM boots from the ITCM.
8. SM notifies SoC about the boot-complete state.

3.2.3. Power-down Sequence (Entering Standby)
1. SoC sends power-down request to SM.

2. SM asserts SM2SOC_RSTn to assert SoC reset (RSTIn).
3. SM notifies system power supply to shut down the SoC power.
4. SM de-asserts SM2SOC_RSTn to de-assert SoC reset.
5. System enters standby mode. Only SM block is active.

3.2.4. Standby Power-up Sequence (Exiting Standby; Warm Boot)
1. SM receives power-up command from front panel control through the GPIO or UART/IR receiver.

2. SM asserts SM2SOC_RSTn to assert SoC reset.
3. SM notifies system power supply to turn on the SoC power.
4. SM de-asserts SM2SOC_RSTn to de-assert SoC reset.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 23

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.3. Functional Description
The System Manager (SM) includes the following main functional blocks; Figure 7 is the SM block diagram.

 Arm® Cortex® M3
 SXBAR SIE-200 to route AHB transactions between 2 host and 5 targets
 Clock/Reset generation
 Interrupt controller, GPIOs, Watchdog timer, SPI controller, TWSI controller, UART, CEC
 ADC (A/D converter) and PVT (process voltage temperature) sensor
 Fast Ethernet Transceiver (FE PHY)

Figure 7. SM Block Diagram

Slow AHB

SM_SS

1x ADC

SM
REG

AHB merger

S-AHB D-AHB I-AHB
Cortex M3

SMAPB
(@refClk) 3x

WDT
16x

Timer

32x
GPIO

3x PIC

2x
UART

1 (RTS/
CTS)

1x SPI
（4CS)

2x I2C
(STD/
FAST)

SIE-200 AHB Interconnect
SXBAR (32bit @refClk)

4KB
Secure
SRAM

re
fC

lk

SM PP

PVT
SEN

96KB
TCMre

fC
lk

Clock&
Reset
Gen

m0

m2 s4m1

refClk refClk refClk

s3

HDP/
CEC

refClkrefClk

s1s2 s1s0

cfgClk

FE
PHY From

MAC
24 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.3.1. System Manager CPU
The System Manager CPU is Arm Cortex M3. The SM CPU is configured to support 96 Kbyte instruction SRAM
(ITCM). To save system power consumption, this CPU runs up to 25 MHz.

The SM CPU is kept in reset state after power-up. The SoC CPU boots first and then downloads the firmware
image to the ITCM in SM. After the image is downloaded, it de-asserts the SM CPU reset for it to boot up.

The SM CPU supports JTAG-based ICE debugging. The SM CPU's debug can be accessed through CoreSight™ in
SoC. SoC must be in power-on state to connect to SM CPU’s debug port.

For detailed information on ICE debug support, see Section 6., JTAG.

3.3.2. Clock and Reset Generation
The SL1640 SM has its dedicated on-chip oscillator to provide clocks for the subsystem. An external crystal of
up to 25 MHz is required. This clock is the only one used throughout the SM subsystem.

The SM can be reset by:
 External system level reset generation circuit
 Watchdog timer (WDT)
 Software programmable register
 Reset from Security Control Logic (in SoC)

In addition to these reset sources, the SM CPU has its own software-programmable reset register control bit. By
default, the reset register bit maintains the SM CPU in reset state until the SoC finishes downloading the SM
CPU binary code to ITCM and then clears this bit.

SM also has a reset output, SM2SOC_RSTn. It resets the SL1640 SoC and other system-level components. The
SM CPU can set this reset output. The reset output is also driven to active level.

3.3.3. System Manager Address Map
The hardware devices in the SL1640 SM can be accessed by both SM CPU and SoC CPU0 or CPU1. Table 3 and
Table 4 show the address map of these devices from both SM CPU and SoC CPU. Note that the memory map
refers to the starting address of each module.

The 4KB security SRAM is designed to store security information when the SoC is powered off and can be
retrieved after SoC is powered on again. This memory space is not accessible by the SM CPU and is securely
controlled by the SoC interconnect during boot-up. Only secure hosts can access this SRAM. For more
information on secure access, see Section 7., SoC Connectivity and Access Control.

Table 3. SM Memory Map

Items SM Address Range SoC Address Range

ITCM Memory 0x0000_0000 0x0001_8000 0xF7F8_0000 0xF7F9_7FFF

APB Components 0x4000_0000 0x4000_FFFF 0xF7FC_0000 0xF7FC_FFFF

Security Memory 0x1000_0000 0x1000_FFFF 0xF7FD_0000 0xF7FD_FFFF

CEC Registers 0x4001_0000 0x4001_07FF 0xF7FE_1000 0xF7FE_17FF

SM Ctrl Registers (biusmSysCtl) 0x4001_1000 0x4001_13FF 0xF7FE_2000 0xF7FE_23FF
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 25

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

3.3.4. System Manager Hardware Devices
This section briefly describes the peripheral devices integrated in the SL1640 SM sub-system. For detailed
information of these devices, including interrupt controller, Timer, WDT, SPI, TWSI, UART, and GPIO controller,
see Section 17., Peripheral Subsystem for low speed peripheral devices.

3.3.4.1. Interrupt Controller
The SM has three interrupt controllers. Each controller merges 35 interrupt inputs to generate a single IRQ
request to SM CPU directly or to SoC interrupt controllers. All the interrupts are level triggered. The SM interrupt
controller supports software interrupts, priority filtering, and vectorized interrupts which are not supported by
SL1640 CPUs. The SM interrupt controller supports configurable input and output polarity.

The output of ICTL0 is connected to SM CPU, and the output of ICTL1, ICTL2 are connected to two SoC interrupt
controller inputs (see Table 5 for details).

Table 5 shows the interrupt sources connected to the interrupt controller.

Table 4. System Manager I/O Device Address Map

Components Address Range Base Address SoC Base Address

ICTL_0 0x1000 0x1000_0000 0xF7FC_0000

ICTL_1 0x1000 0x1000_1000 0xF7FC_1000

ICTL_2 0x1000 0x1000_2000 0xF7FC_2000

WDT_0 0x1000 0x1000_3000 0xF7FC_3000

WDT_1 0x1000 0x1000_4000 0xF7FC_4000

WDT_2 0x1000 0x1000_5000 0xF7FC_5000

Timer_0 0x1000 0x1000_6000 0xF7FC_6000

Timer_1 0x1000 0x1000_7000 0xF7FC_7000

GPIO_0 0x1000 0x1000_8000 0xF7FC_8000

SSI 0x1000 0x1000_A000 0xF7FC_A000

I2C_0 0x1000 0x1000_B000 0xF7FC_B000

I2C_1 0x1000 0x1000_C000 0xF7FC_C000

UART_0 0x1000 0x1000_D000 0xF7FC_D000

UART_1 0x1000 0x1000_E000 0xF7FC_E000

Table 5. Interrupt Sources Connected to Interrupt Controller

Interrupt
Number

Interrupt Type Interrupt Source

0 WDT_0 Watchdog Timer 0

1 WDT_1 Watchdog Timer 1

2 WDT_2 Watchdog Timer 2

3 Unused NA

4 GPIO_1 GPIO 1

5 SSI SPI Host

6 I2C_0 TWSI 0 Host

7 I2C_1 TWSI 1 Host
26 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.3.4.2. Timers
This SM timer includes two timer modules with eight counters in each module that are individually
programmable. These times are driven by the SM clock. For each timer, software can program a 32-bit initial
value. After it is kicked off, the timer counts down from this initial value. When the value reaches zero, the timer
generates an interrupt and reloads the initial value and starts countdown again.

8 UART_0 UART 0

9 UART_1 UART 1

10 ADC_TEST_FAIL ADC

11 GPIO_0 GPIO 0

12 ADC ADC

13 SOC2SMSWInt SW Programmable Register Bit

14 TSEN Temperature Sensor

15 Unused NA

16 CEC CEC Interrupt

17 FIFO_intr_en FIFO Status Interrupt from CEC

18 Unused NA

19 HPD HPD Interrupt

20 ~HPD Inverted HPD Interrupt

21 Timer0_Intr_0 Timer0 Interrupt Bit 0

22 Timer1_Intr_0 Timer0 Interrupt Bit 1

23 Timer1_Intr_1 Timer0 Interrupt Bit 2

24 Timer1_Intr_2 Timer0 Interrupt Bit 3

25 Timer1_Intr_3 Timer0 Interrupt Bit 4

26 Timer1_Intr_4 Timer0 Interrupt Bit 5

27 Timer1_Intr_5 Timer0 Interrupt Bit 6

28 Timer1_Intr_6 Timer0 Interrupt Bit 7

29 Timer1_Intr_7 Timer1 Interrupt Bit 0

30 INT_SMI_INT_N FE PHY

31 INT_SMI_MGP_INT_N FE PHY

32 INT_SMI_EXMGP_INT_N FE PHY

Table 5. Interrupt Sources Connected to Interrupt Controller (Continued)

Interrupt
Number

Interrupt Type Interrupt Source
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 27

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.3.4.3. Watchdog Timer
The SL1640 SM provides a watchdog timer (WDT) to detect system hang from software or hardware issues.

The WDT counts down from a 32-bit preset timeout value. When the counter reaches zero, a system reset or
CPU interrupt is generated, depending on the software setting of the WDT mask register. After the WDT reaches
zero, it reloads the preset timeout value and restarts the countdown.

Software can restart from the preset timeout value at any time.

There are three WDTs in the SL1640 SM, each of which can be separately enabled or disabled to trigger SM and
SoC resets through the mask register. As shown in Figure 7, when any of the WDTs has timed out, and if its
corresponding SM mask bit is disabled, the full SM module is reset. SM2SOC_RSTn is also asserted to reset the
SL1640 SoC partition. On the other hand, if the corresponding SoC mask bit is disabled, the SM module is not
reset; only the SM2SOC_RSTn pin is asserted to reset the SL1640 SoC portion.

3.3.4.4. SPI Host
SPI Host supports multiple serial protocols:

 Serial Peripheral Interface (SPI)—A four-wire, full-duplex serial protocol. There are four possible
combinations for the serial clock phase and polarity. The serial transfer can begin at the falling edge of
the target select signal or at the first edge of the serial clock (depending on the register setting).

 Serial Protocol (SSP)—A four-wire, full-duplex serial protocol. The target-select line used for SPI and
Microwire protocols doubles as the frame indicator for the SSP protocol.

 Microwire—A half-duplex serial protocol, which uses a control word transmitted from the serial host to
the target serial target.

3.3.4.5. TWSI Host
Two TWSI hosts are implemented to support fast transfer mode and 10-bit addressing.

3.3.4.6. UART
Two UARTs are selected for the SM design. UART0 and UART1 support IrDA functions.

3.3.4.7. GPIO
This block provides a total of 64 generic input/output controls.

3.3.4.8. PVT Sensor
The SL1640 SM PVT sensor measures the silicon process, voltage, and temperature inside the package. By
reading the TSEN output registers, software can monitor the silicon PVT and take necessary actions. The range
of the SM temperature sensor is from -40 degC (degree Celsius) to 125 degC, with accuracy of ±6 degC
(untrimmed) and ±1 degC (trimmed).

The sequence mentioned below is basically from Datasheet for Process Translation method. The same
sequence is valid for Temperature and Voltage sampling.

Table 6. Function Enable

VSAMPLE PSAMPLE0 PSAMPLE1 ENA Description

X X X 0 Reset

0 0 0 1 Temperature evaluation

1 X X 1 Voltage evaluation

0 1 0 1 Process evaluation (LVT)

0 0 1 1 Process evaluation (ULVT)

0 1 1 1 Process evaluation (SVT)
28 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Register Values:
 Default register value of tsen_clk_en = 0
 Default register value of tsen_en = 0

Test sequence:
1. Reset de-assertion

2. Set first 3 columns from above table to select Temperature evaluation
3. Tsen_en ->1,
4. tsen_clk_en ->1
5. Sample(poll) data_rdy
6. Sample Data
7. Clear Data_rdy and Tsen_en ->0
8. Optional step tsen_clk_en ->0
9. Set first 3 columns from above table to select Voltage evaluation
10. Repeat 3 to 8
11. Set first 3 columns from above table to select LVT evaluation
12. Repeat 3 to 8
13. Repeat above steps for remaining functions evaluation

3.3.4.9. ADC
The SL1640 ADC block is a successive approximation analog-to-digital converter having the resolution
selectable between 12-/10-/8- and 6-bit. This cell is suitable to serve as an auxiliary ADC of a microprocessor,
as a house-keeping converter for digital applications and broadband wireless communications. The ADC
provides the following features:

 Selectable 12-/10-/8-/6-bit Resolution
 5 MHz Conversion Rate
 Single-Ended or Differential Input
 8:1 Multiplexed Inputs
 1.8V Analog Power Supply
 0.8V Digital Power Supply

3.3.4.10. CEC
The CEC interface consists of a set of programmable registers, status registers, Initiator and Follower logic, and
two FIFOs of depth 16 for Initiator and Follower. The programmable registers can be addressed, and data
written to or read from, by a Host Interface Bus (referred to as M-bus in the block diagram). These registers
serve to control the CEC Initiator and Follower logic. The status registers indicate status of interrupts and FIFO
status, and may be read by the controller (in CPU subsystem) along the same bus. The Follower and Initiator
logic take in cec_line_in as an input to sense the activity on the common CEC line while the cec_line_out_en
output from the Initiator logic serves to affect the status (low/high impedance) of the CEC line.

The CEC block is added in the SM block and provides interrupts which are mapped on the ICTL for SM CPU and
Main CPU.

3.3.4.11. Low Dropout (LDO)
LDO generates core voltage for the System Manager from an external power supply. Selecting the core voltage
from an external source as well as using a pin selection are available options. Chip reset is asserted when
power is unstable or when voltage drops below a certain threshold.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 29

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
3.3.4.12. Fast Ethernet Transceiver (FE PHY)
FE-PHY is a single-port DSP-based Fast Ethernet Transceiver. It contains all the active circuitry required to
convert data stream to and from a Media Access Control (MAC) and from and to the physical media. It
incorporates IEEE 802.3u auto-negotiation and supports 100Base-TX and 10BASE-T networks over twisted-pair
cable in full-duplex or half-duplex mode. Both the Media Independent Interface (MII) and Reduced Media
Independent Interface (RMII) are supported. It supports Auto Crossover function to simplify Plug-n-Play to IA
relative products.

FE-PHY supports following features:

 TSMC 12nm CMOS Logic FinFET Compact
 Power Supply: 0.8V, 1.8V and 3.3V
 Metal Stack Option:1P8M (2xa1xd3xe vhv 1z) with RDL
 Operating Temperature: -40_C_125_C
 Fully IEEE 802.3 10/100 Base-TX compliant and supports EEE
 Capable to support length up to 120m in 100Base-TX for UTP CAT 5 cables
 Integrated MDI termination resistors
 Auto negotiation and parallel detection capability for automatic speed and duplex selection
 Supports MII and RMII interfaces
 Auto polarity correction in 10Base-T
 Design for Testability with extensive testability feature and 95% fault coverage
 Supports Auto-MDIX function for Plug-n-Play
 Programmable loopback mode for diagnostic
 Supports programmable LED output for different applications and power on LED Self-Test
 Supports 24M/25M/27M/50M REFCLK clock sources
 Supports WOL (Wake-On-LAN) functionality
30 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
4. CPU

The SL1640 device integrates an Arm® Cortex®A55 DSU sub-system as the SoC CPU.

4.1. CortexA55 DSU Sub-system
Figure 8 is a CPU block diagram.

The CortexA55 DSU subsystem integrates Arm DynamIQ Shared Unit (DSU) with Quad-Core Arm CortexA55 CPU,
GIC, and the CoreSight™ components needed to debug the CPU.

The CortexA55 DSU subsystem consists of the following:

 Four Arm® Cortex®-A55 processors
 DSU that maintains coherency between the processors and arbitrates L3 requests from the processors
 One ACE host interface
 An APB Target interface for debug

Figure 8. Arm CortexA55 DSU Block Diagram

DynamIQ Shared Unit (DSU)

ACP*

Host
Interface

Power
Management

Test

Core 3*
Core 2*

Core 1*
Core 0

Timer

Interrupt

Core

Trace

Debug

APB Debug
Clocks
Resets

Configuration

Counter
ICDT*, nIRQ, nFIQ

Timer events

ICCT*, nVCPUMNTIRQ

PMU

ATB

Debug

AXI target interface

ACE or CHI
host interface

Power control

DFT

MBIST

* Optional
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 31

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The configuration options used for the implementation of the Arm CortexA55 DSU subsystem are shown in
Table 7.

4.2. Reference Documents
CPU users should be familiar with Arm documentation for these modules. Arm documentation is located at the
Arm website: http://infocenter.arm.com.

Contact Arm support via email at: Support-cores@arm.com.

Table 7. Arm CortexA55 DSU Configuration Options

Feature Option

Number of CA55 Processors 4

Number of Interrupts 0

Integrated Generic Interrupt Controller No

L2 Cache Controller Yes

L1 Instruction Cache Size 32 KB

L1 Data Cache Size 32 KB

L2 Cache Size 64 KB

L2 Data RAM Input Cycle Latency 1 cycle

L2 Data RAM Output Cycle Latency 2 cycles

L3 Cache Yes

L3 Cache Size 512KB

L3 Data RAM Input Cycle Latency 1 cycle

L3 Data RAM Output Cycle Latency 2 cycles

Trace For Each Processor Yes

ROM APB Base Address 22'h00_0000

CPU0 APB Debug Base Address 22'h01_0000

CPU1 APB Debug Base Address 22'h11_0000

CPU2 APB Debug Base Address 22'h21_0000

CPU3 APB Debug Base Address 22'h31_0000

Core 0 FPU Yes

Core 1 FPU Yes

Core 2 FPU Yes

Core 3 FPU Yes

Core 0 NEON™ Yes

Core 1 NEON™ Yes

Core 2 NEON™ Yes

Core 3 NEON™ Yes
32 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
4.3. Module Revision
Table 8 lists Arm revisions of modules used.

4.4. CPU Clock
The PLL provides the Arm CortexA55 DSU subsystem clock. The PLL can be programmed to a stable clock
frequency from 9 MHz to 3 GHz. A specific sequence is required to change the PLL frequency.

Table 8. ARM IP Revision

Module Revision

DSU r2p0-00rel0

Arm CortexA55 r4p0-00rel0

CoreSight r1p0
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 33

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
5. Boot ROM

5.1. Overview
The SL1640 device ROM boot flow, the layout of the flash image, and secure boot scheme are described in this
chapter.

The related hardware modules are as follows:
 BCM
 Boot strap
 SoC CPU
 eMMC Controller
 SPI Controller
 USB Controller

5.2. SL1640 ROM Code Flow
The SL1640 device can boot in the following different scenarios depending on the boot strap options:

 SPI-Secure—The SoC boots from iROM and loads an encrypted image from SPI flash; upon decryption
and security verification, the decrypted image takes control of CPU for the remainder of boot up.

 eMMC-Secure—The SoC boots from iROM and loads an encrypted image from eMMC flash; upon
decryption and security verification, the decrypted image takes control of the CPU for the remainder of
boot-up.

 USB-Secure—Conditionally supported based on OTP field. The SoC boots from iROM and loads an
encrypted signed image from the USB host; upon decryption and security verification, the decrypted
image takes control of the CPU for the remainder of boot up.

The same ROM code is used for SPI-Secure, and eMMC-Secure boot options; the iROM code is executed in the
Secure Processor (SCPU; the Arm® Cortex®-M3) domain in the BCM. The iROM code loads the next stage
extension of iROM (eROM) book image; the eROM is also executed in the SCPU and loads the Applications
Processor (APCU. Arm Cortex55) boot image (IM2) from one of the boot sources; decrypt and verify the IM2;
then eROM starts the ACPU to execute IM2.

Figure 9 illustrates the iROM code flow.
34 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
After boot up from iROM and eROM, the ACPU continues the boot flow with IM2 SPI or eMMC, or USB host. The
boot flow of Image-2 is completely flexible and independent of the SL1640 device; therefore, it is not covered as
part of this document.

Figure 9. ROM Code Flow

Disable_USB_Boot ||
Disable_Blank_Media?

Panic
(reset/halt)

USB Boot
Yes

Yes

USB Boot
No

BCM Reset

Run USB eROM
OK

Run Flash eROM
OK

Fail

Run USB eROM
OK

Fail

Flash Media Boot
(SPI/eMMC)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 35

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The source of the eROM and the IM2 is determined by boot strap pins.

5.3. Flash Layout
The flash has different layouts when the SoC boots from different sources.

5.3.1. SPI Flash for SPI-Secure Boot
The layout for SPI flash is shown in Figure 10. ROM code only reads Image-2 from the start of SPI flash
(0xF0000000) to FIGO SRAM. Figure 10 provides an example layout. The layout of another bootstrap image and
related data is determined by IM2 and other designs (in other words, it can be changed and is not addressed in
this document).

Table 9. SoC Boot Source

Boot Up SW Strap0
Boot Source

Strap[2]
Description

SPI-Secure 0 00 Boot from iROM and load eROM and IM2 from SPI flash.

Invalid boot source 0 01 SoC will be in reset loop.

eMMC-Secure 0 10 Boot from iROM and load eROM and IM2 from eMMC.

USB-Secure 1 Xx Boot from iROM and load eROM and IM2 from USB.

Figure 10. SPI Flash Layout for SPI-Secure Boot

eROM

IM2

Other bootstrap image and related data

fixed address
36 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
5.3.2. eMMC Layout

5.3.2.1. Partition Management in eMMC Device
The default area of the memory device consists of a User Data Area to store data, two possible boot area
partitions for booting, and the Replay Protected Memory Block Area Partition to manage data in an
authenticated and replay protected manner.

 Two Boot Area Partitions, whose size is multiple of 128 KB and from which booting from eMMC can be
performed.

 Other user data area.

For other details about the eMMC partition management, refer to Section 7.2 and 7.3 in the JEDEC STANDARD
DESD84-A441.

5.3.3. Boot Operation Mode in eMMC
Based on eMMC standard, two boot operations are introduced.

 Normal Boot operation (see section 7.3.3 in JEDEC STANDARD DESD84-A441)
If the CMD line is held Low for 74 clock cycles and more after power-up or reset operation (either
through CMD0 with the argument of 0xF0F0F0F0 or assertion of hardware reset for eMMC, if it is
enabled in Extended CSD register byte [162], bits [1:0]) before the first command is issued, the target
recognizes that boot mode is being initiated and starts preparing boot data internally. The partition
from which the host will read the boot data can be selected in advance using EXT_CSD byte [179], bits
[5:3].

The host can terminate boot mode with the CMD line High.

Figure 11 is the state diagram of boot mode.

 Alternative boot operation (see section 7.3.4 in JEDEC STANDARD DESD84-A441)
This boot function is mandatory for device from v4.4 standard. After power-up or reset operation (either
assertion of CMD0 with the argument of 0xF0F0F0F0 or hardware reset if it is enabled), if the host
issues CMD0 with the argument of 0xFFFFFFFA after 74 clock cycles, before CMD1 is issued or the
CMD line goes Low, the target recognizes that boot mode is being initiated and starts preparing boot
data internally. The partition from which the host reads the boot data can be selected in advance using
EXT_CSD byte [179], bits [5:3].

The host can terminate boot mode by issuing CMD0 (Reset).

Figure 12 is the state diagram of alternative boot mode.

Figure 11. State Diagram of Boot Mode

Boot terminated
Min 8 clocks + 48 clocks = 56 clocks required
from CMD signal high to next MMC command.

CMD1 RESP CMD2 RESP CMD3 RESP

CLK

CMD

DAT[0]

1 sec. max

50ms
max

S 010 E S E512bytes
+ CR

S E512bytes
+ CR
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 37

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

5.3.4. eMMC Boot in SL1640 Device
The SL1640 device supports alternative boot operation from the eMMC device (see Figure 13).

Figure 12. State Diagram of Alternative Boot Mode

Boot terminated
Min 74
clocks
required
after
power is
stable to
start boot
command

NOTE 1. CMD0 with argument 0xFFFFFFFA

CMD1 RESP CMD2 RESP CMD3 RESP

CLK

CMD

DAT[0]

1 sec. max

50ms
max

S 010 E S E512bytes
+ CR

S E512bytes
+ CR

CMD0/ResetCMD01

Figure 13. Layout of eMMC Device

ARM Boot Codes

Ping-Pong copy of boot area
partition 1

EXT3 Partitions

Linux image, system config image

Copy of Linux image
and system config image

User area

RSA Keys, eROM, IM2
and related data

Boot area partition 1

Boot area partition 2

0x00000000

Maximum boot partition size

0x00000000

Maximum boot partition size
38 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Following are some inputs for the layout of eMMC boot:
 Two boot area partitions are defined as ping-pong copies; this ensures the system can boot if online

upgrade fails.
 The iROM always tries to read eROM from the first boot area partition; if that attempt is not successful,

the iROM reads eROM from the second boot area partition.

5.3.5. eMMC Boot Mode
The SL1640 device does not support the primary boot mode but supports alternative boot mode. Therefore, the
SL1640 cannot support the eMMC device which is compliant only with eMMC standard version 4.4.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 39

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
6. JTAG

6.1. Overview
The SL1640 device implements a standard IEEE 1149.1-compliant JTAG interface to support debugging of
SOC_CPU (HIFIs and ARM) through In-Circuit Emulation (ICE). Additionally, this JTAG interface is also used to
control boundary scan (BSCAN) TAP controller, using which Memory Built-In Self Test (MBIST) and IJTAG paths
are controlled.

6.2. JTAG Debug Port Configurations
Figure 14 shows SL1640 JTAG chain connections for both ICE debugger and BSCAN mode. Both the BSCAN TAP
controller and the ICE debugger share the same JTAG interface. JTAG access protection level is provided by the
OTP.

Figure 15 shows the connection for CPU (CA55) and two DSPs in the SL1640 ICE debugger interface.

Figure 14. JTAG Chain and Boundary Scan diagram

ICE Debugger
Interface

BSCAN_TAP

MBIST

JTAG_SEL

SOCJTAG_TDI

BSJTAG_TDI

SOCJTAG_TDI

BSJTAG_TDI

TDO

BSJTAG_TDO

TDI

TMS

TRSTn

TCK

TDO
TDO

BCELLS

JTAG_SEL Security

1 0
40 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
JTAG_SEL is used to select the BSCAN or ICE debugger path. JTAG_SEL is from pad. For a secure ICE debugger,
secure debug enable signal for the CPU and DSPs (drmCpu1IceEn, drmZspDbgEn, drmCpuOIceEn) are
generated by the security engine from siSS (BCM). Table 10 shows the different configurations of debug ports in
the SL1640 device.

6.3. Boundary Scan Support
The SL1640 device supports the IEEE 1149.1-compliant boundary scan (BSCAN) interface. Table 11 is a list of
instructions supported.

Table 10. SL1640 Debug Port Configuration

{JTAG_SEL, drmCpu1IceEn,
drmZspDbgEn, drmCpu0IceEn}

ENG_EN BSCAN TAP DSP0/HIFI0 DSP1/HIFI1
ARM

(CoreSight™)

011x 1 No Yes Yes Yes

0111 0 No Yes Yes Yes

000x 1 No No No Yes

0000 0 No No No No

0010 0 No No Yes No

0100 0 No Yes No No

1xxx x Yes No No No

Table 11. SL1640 Supported Instructions

Instruction Code

BYPASS 4'b1111

EXTEST 4'b0001

INTEST 4'b0100

SAMPLE/PRELOAD 4'b0101

IDCODE 4'b1100

HIGHZ 4'b0110

CLAMP 4'b0000

Reserved All others

Security

HiFi 0
HiFi 1

ARM

0

1
0

1
0

1

drmCpu1IceEn drmZspDbgEn

SOCJTAG_TDI

drmCpu0IceEn

Figure 15. ICE Debugger Interface
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 41

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
7. SoC Connectivity and Access Control

The main function of SoC subsystem is to link CPU and hardware engines with various targets, including DRAM,
memory-mapped external Flash device, and an internal configuration bus. The destination of each transaction is
decided solely on the transaction address. The SL1640 SoC sub-system handles 32-bit address space. Three
targets are shared among the bus hosts, such as hardware DMA engines and CPUs. Simultaneous access to the
same target from different hosts are arbitrated and sent to the addressed target in sequence. Accesses to
different targets are independent and can be served concurrently. In addition to address-based routing, the SoC
subsystem is also capable of protecting sensitive data content by rejecting untrusted transactions to DDR
SDRAM or register spaces, including low-speed and fast-access registers.

Figure 16 shows the bus hosts and targets in the SL1640 device.

Figure 16. SL1640 Bus Hosts and Targets

SoC Subsystem

External SDRAM

Low-speed Device
Registers

Fast-Access Device
Registers

AV D
M

A

C
PU

Video Encoder

Video D
ecoder

G
PU

N
PU

O
VP

D
SP
42 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
7.1. Connection Table
There are three transaction target regions in SL1640:

 DDR SDRAM memory
○ System memory

 Low-speed registers
○ Normal device registers running at 100 MHz

 Fast-access registers
○ Latency-sensitive device registers running at system clock frequency

Possible hosts for these three targets are:
 CPU

○ Quad Arm CortexA55 core sub-system
 AV DMA

○ Direct-Memory Access engine fetching display video and audio output data and storing the video
and audio input data.

 Peripheral DMAs
○ Direct Memory Access engines for storing received data or loading transmitted data through

various interfaces including PCI-e, USB, Ethernet, and SDIO.
 Security Island Sub-System DMA

○ BCM
○ TSP

 Video Decoder
 Video Encoder
 GPU Engine

○ Storing or fetching graphic data
 Neural Processing Unit
 Digital Signal Processing Unit
 OVP

○ Offline Video Processing converts interlace video into progressive video. It works in a memory- to-
memory fashion, which means both the input and output are stored in memories.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 43

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Table 12 shows the connection levels of various host and target pairs.

Full means the host can access full range of target without constraint.

No Access means there is no logical connection for the host/target pair.

7.1.1. Address Map

Table 12. Host and Target Pair Connection Levels

Targets
DDR SDRAM Fast-Access Registers Low-Speed Registers

Hosts

CPU Full Full Full

AV DMA engine Full No Access No Access

Perif DMA Full Full Full

Security Island DMA Full Full Full

Video Decoder Full No Access No Access

Video Encoder Full No Access No Access

OVP Full No Access No Access

GPU Full No Access No Access

NPU Full No Access No Access

DSP Full No Access No Access

Table 13. System Memory Map

Address Range Host CPU
TSP/BCM/USB/PCI-e

/GE/eMMC/SDIO
All Other DMAs

0x0000000000 ~
0x0DFFFFFFF

DDR
(0~3.5GB)

DDR
(0~3.5GB)

DDR
(0~4GB)

0x0E0000000 ~
0x0EFFFFFFF

PCI-e PCI-e

0x0F0000000 ~
0x0F1FFFFFF

SPI SPI

0x0F2000000 ~
0x0FFFFFFFF

Register Register

0x100000000 ~
0x1FFFFFFFF

DDR
(0~4GB)

N/A N/A
44 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Table 14. Low-Speed Register Memory Map

Address Range in Hexadecimal Size

SPI Flash 0xF000_0000 ~ 0xF1FF_FFFF 32MByte

CoreSight Registers 0xF680_0000 ~ 0xF6FF_FFFF 8MByte

Encoder Registers 0xF700_0000 ~ 0xF700_0FFF 4KByte

AVIO Registers 0xF740_0000 ~ 0xF75F_FFFF 2MByte

OVP Registers 0xF78C_0000 ~ 0xF78C_FFFF 64KByte

Decoder Registers 0xF760_0000 ~ 0xF76F_FFFF 1MByte

GIC400 Registers 0xF790_0000 ~ 0xF790_7FFF 32KByte

CPU Registers 0xF792_0000 ~ 0xF792_FFFF 64KByte

BCM Registers 0xF793_0000 ~ 0xF793_FFFF 64KByte

MCtrl Subsystem Registers 0xF794_0000 ~ 0xF794_FFFF 64Kbyte

AHB Bus Monitor Registers 0xF796_0000 ~ 0xF796_FFFF 64Kbyte

USB3.0 Controller Registers 0xF7A2_0000 ~ 0xF7A2_FFFF 64Kbyte

GPU Registers 0xF798_0000 ~ 0xF79F_FFFF 512Kbytes

TSP Registers 0xF7A4_0000 ~ 0xF7A7_FFFF 256Kbyte

EMMC Registers 0xF7AA_0000 ~ 0xF7AA_0FFF 4Kbyte

SDIO3.0 Controller Registers 0xF7AB_0000 ~ 0xF7AB_0FFF 4Kbyte

PBRIDGE Registers 0xF7B3_0000 ~ 0xF7B3_FFFF 64Kbyte

MTEST Registers 0xF7B4_0000 ~ 0xF7B4_FFFF 64Kbyte

Gigabit Ethernet Registers 0xF7B6_0000 ~ 0xF7B6_FFFF 64Kbyte

NPU Registers 0xF7BC_0000 ~ 0xF7BF_FFFF 256Kbyte

USB2.0 OTG Controller Registers 0xF7C0_0000 ~ 0xF7C7_FFFF 512Kbyte

SoC Registers 0xF7CA_0000 ~ 0xF7CA_FFFF 64Kbyte

Memory Controller Registers 0xF7CB_0000 ~ 0xF7CB_3FFF 16Kbyte

TSI Registers 0xF7CC_0000 ~ 0xF7CF_FFFF 256Kbyte

USB3 Phy Registers 0xF7D0_0000 ~ 0xF7DF_FFFF 1MB

PCI-E Phy Registers 0xF7E4_0000 ~ 0xF7E4_FFFF 64Kbyte

ApbPerif Registers 0xF7E8_0000 ~ 0xF7E8_FFFF 64Kbyte

Chip Control Registers 0xF7EA_0000 ~ 0xF7EA_FFFF 64Kbyte

Pulse Width Modulator Registers 0xF7F2_0000 ~ 0xF7F2_FFFF 64Kbyte

System Manager Registers 0xF7F8_0000 ~ 0xF7FF_FFFF 512Kbyte

MC DFI0 Control Registers 0xF800_0000 ~ 0xF800_0FFF 4KB

MPT Registers 0xF900_0000 ~ 0xF903_FFFF 256Kbyte

DSP0 Registers 0xF904_0000 ~ 0xF904_FFFF 64KB

DSP1 Registers 0xF905_0000 ~ 0xF905_FFFF 64KB
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 45

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Table 15. Fast-Access Register Memory Map

Address Range in Hexadecimal Address Space Size

Boot-Vector 0xFFFF_0000 ~ 0xFFFF_FFFF 64 Kbyte
46 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
8. DDR Memory Controller

8.1. Introduction
The SL1640 memory controller receives transactions from the SoC core. These transactions are queued
internally and scheduled for access in order to the SDRAM while satisfying the SDRAM protocol timing
requirements, transaction priorities, and dependencies between the transactions. The memory controller in turn
issues commands on the DFI interface to the PHY module, which launches and captures data to and from the
SDRAM.

The SL1640 memory controller is designed for ARM AXI bus protocols. It has 4 generic ports for different hosts
in the SoC. Along with built in arbitration schemes, it also acts as a bus fabric and reduces the size and latency
of the AXI fabric.

8.2. Memory Controller Feature List
 DDR PHY Interface (DFI) support for easy integration with industry standard DFI 3.1-compliant PHYs
 X32 DRAM Bus Width support
 DDR3, DDR3L, DDR4 Support
 Direct software request control or programmable internal control for ZQ short calibration cycles
 Support for ZQ long calibration after self-refresh exit
 Dynamic scheduling to optimize bandwidth and latency
 Read and write buffers in fully associative CAMs, configurable in powers of two, from 16 up to 64 reads

and 64 writes
 Delayed writes for optimum performance on SDRAM data bus
 For maximum SDRAM efficiency, commands are executed out-of-order:

○ Read requests accompanied by a unique token (tag) from HIF
○ Read data returned with token (tag) for SoC core to associate read data with correct read request

 Hardware configurable and software programmable Quality of Service (QoS) support:
○ For three traffic classes on read commands—high priority reads, variable priority reads, and low

priority reads
○ For two traffic classes on write commands—normal priority writes and variable priority writes
○ For port urgent and port throttling control

 If QOS support is not configured in the hardware:
○ Two traffic classes on read commands—high priority reads and low priority reads
○ One traffic class on write commands—normal priority writes

 Programmable SDRAM parameters
 Configurable maximum SDRAM data-bus width (denoted as “full data-bus width” below)
 Programmable support for all of the following SDRAM data-bus widths:

○ Full data-bus width or
○ Half of the full data-bus width

 Guaranteed coherency for write-after-read (WAR) and read-after-write (RAW) hazards
 Write combine to allow multiple writes to the same address to be combined into a single write to

SDRAM; supported for same starting address
 Paging policy selectable by configuration registers as any of the following:

○ Leave pages open after accesses, or
○ Close page when there are no further accesses available in the controller for that page, or
○ Auto-precharge with each access, with an optimization for page-close mode which leaves the page

open after a flush for read-write and write-read collision cases
 Supports automatic SDRAM power-down entry and exit caused by lack of transaction arrival for a

programmable time
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 47

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
 Supports self-refresh entry and exit
 Support for dynamically changing clock frequency while in self-refresh
 Leverages out of order requests with CAM to maximize throughput
 APB interface for the memory controller software accessible registers
 Compatibility with the AMBA 4 AXI4 and AMBA 3 AXI protocols
 Read reorder buffer with reduced latency options

8.3. DDR Memory Controller Overview
The memory controller contains the following main architectural components:

 The AXI Port Interface (XPI) block: This block provides the interface to the application ports. It provides
bus protocol handling, data buffering and reordering for read data, data bus size conversion (upsizing
or downsizing), and memory burst address alignment. Read data is stored in a SRAM, read re-order
buffer and returned in order, to the AXI ports. The SRAM may be instantiated as embedded memory
external to the memory controller or implemented as flops within the memory controller

 The Port Arbiter (PA) block: This block provides latency sensitive, priority-based arbitration between the
addresses issued by the XPIs (by the ports).

 The DDR Controller (DDRC) block: This block contains a logical CAM (Content Addressable Memory),
which can be synthesized using standard cells. This holds information on the commands, which is used
by the scheduling algorithms to optimally schedule commands to be sent to the PHY, based on priority,
bank/rank status and DDR timing constraints. A bypass path is also provided

 The APB Register Block: This block contains the software accessible registers.
48 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
8.4. Functional Description
The memory controller performs the following functions:

 Accepts requests from the SoC core with system addresses and associated data for writes.
 Performs address mapping from system addresses to SDRAM addresses (rank, bank, bank group, row).
 Prioritizes requests to minimize the latency of reads (especially high priority reads) and maximize page

hits.
 Ensures that the SDRAM is properly initialized.
 Ensures that all requests made to the SDRAM are legal (accounting for associated SDRAM constraints).
 Ensures that refreshes and other SDRAM and PHY maintenance requests are inserted as required.
 Controls when the SDRAM enters and exits the various power-saving modes appropriately.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 49

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
8.5. DDRPHY Overview
DDRPHY is an implementation of DFI4.0 specification that describes the inter-operation between a DDR
memory controller and the physical interface (PHY).

DDR Memory Controller PHY

Register Interface DDR SDRAM

dfi_address
dfi_bank

df i_cas_n
df i_cke

dfi_ca_n
dfi_odt

df i_ras_n
dfi_we_n

df i_wrdata_en
dfi_wrdata

dfi_wrdata_mask

dfi_rddata_en
dfi_rddata
dfi_rddata_valid

df i_ctrlupd_req
dfi_ctrlupd_ack
dfi_phyupd_req
dfi_phyupd_type

df i_phyupd_ack

dfi_init_complete
df i_dram_clk_disable

ip_dq
ip_dqa

op_dq
op_dqa
op_dm

op_dq_oen
op_dqs_oen

op_mclk
op_ma
op_ba

op_ras_n
op_cas_n

op_cs_n
op_we_n

op_cke
op_odt

hclk
haddr

hwdata
hwrbe

hreadyout

hrdata
htrans

hsel_phy_reg_intfc
hready

Figure 17. SL1640 DDRPHY diagram
50 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
9. Security Island Subsystem

9.1. Overview
Secure Island SubSystem (SISS) has the following main blocks:

 BCM
 TSP
 Kilopass OTP

9.2. BCM

9.2.1. Feature List
The BCM unit can be instantiated either in FIPS 140-2/3 compliant mode, or in Non-FIPS (accelerator-only)
mode. The FIPS mode uses a Hardware-Root-Of-Trust authorization scheme for authenticating the use of keys
and provides the basis for secure, trusted operations. The FIPS mode contains intelligence in the form of
firmware and behavior documented here. The Non-FIPS mode permits access to the crypto engines to
accelerate cryptographic algorithms, but no key management or implication of trust is provided. Switching from
FIPS to Non-FIPS mode requires no-overlapping internal plaintext BCM key structures. In addition to a slightly
different memory map, the functionality provided by the trusted firmware within the FIPS mode of the BCM must
be provided by a software stack exterior to the BCM, which is the BCM Client.

The BCM primitive instructions perform the following types of security operations:
 Key authorization, loading and wrapping
 Symmetric encryption and decryption
 Asymmetric encryption and decryption
 Digital Signature signing / verification
 Hashing and HMAC verification of messages
 High-quality random number generation
 Reading and writing of One-time Programmable (OTP) memory cells

9.2.2. Configuration Options
The BCM allows for several interface configuration options:

 The target interface can be either a 64-bit AXI interface or a 32-bit AHB interface.
 The host interface can be either a 64-bit AXI interface or a 64-bit read/32-bit write AHB interface.
 The debug port can be either a DAP interface or a JTAG interface.

9.2.3. Block Diagram
The BCM interface is made up mostly of two AXI interfaces. The AXI Host interface belongs to the DMA engine
that moves bulk data in and out of DMA from the system memory area. The AXI Target interface belongs to the
AXI2APB module, which is the agent for the main CPU to communicate with the BCM.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 51

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 18. BCM Block Diagram

FUSE Module

SECURE
PROCESSOR

Arm
Cortex M3

DMA AXI2APB

BIU

ACCEL_TOP

Power Monitor & Other Side-Channel Attack Detectors

AXI Host

OUT
FIFO

IN
FIFO

IN
FIFO

APB Host

APB Target

APB Target

APB Host

AH
B Target

Mail Box
FIFO

JTAG TAP CTRL

AHB
Host

AHB
Host

BOOT
ROM

CODE/
DATA
RAM

AHB Target

APB Target

OTP
FUSE
BANK

ABUS
CNTLR

APB Target

Crypto
Accelerator

#1

APB Target

ABUS I/F

Crypto
Accelerator

#N

APB Target

ABUS I/F

SCRATCH
PAD

APB Target

ABUS I/F

ABUS

APB BUS
CNTLR

APB Bus

AXI Bus AXI Bus

ABUS I/F

Memory
Ctrl

SoC
CPU

AXI Host

AXI Target

LCS
bits
52 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
9.3. TSP
For more information, please see Section 10., Transport Stream Processor.

9.4. Kilopass OTP
Functions included in this core are:

 32K bits OTP
 Un-programmed value of OTP bit is zero, programmed value is zero/one
 Double redundancy, each OTP bit is internally implemented with two cells, as long as one of the cells

can be successfully programmed, output of the OTP bit = 1
 Built-in charge pump to provide programming power
 Built-in programming sequencer with (SMART programming algorithm)
 Synchronous OCP interface (x16 bit for read, x1 bit for program)
 Simplified interface for reading, programming and manufacturing test operations
 BIST (built-in self test) to cover:

○ Bit and word line integrity (TESTDEC) of memory array
○ Gate oxide integrity (Blank Check) of memory array
○ Test programming (WRTEST) of spare memory
○ Map failing Blank Check bits for 100% Blank Check manufacturing yield

The Kilopass OTP provides a synchronous, 16-bit-wide read-bus interface reading and a synchronous, 1-bit wide
bus interface for programming. The Kilopass OTP data sheet defines the signals and protocol of these
interfaces.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 53

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
54 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10. Transport Stream Processor

10.1. Overview
The transport steam processor (TSP) in SL1640 is designed for streaming and personal video recording (PVR)
applications. It can capture, de-multiplex, descramble multiple transport streams (TS) from different tuners, and
output the elementary streams (ES) ready for decoding into different buffers in DDR. It can also generate re-
scrambled partial transport streams for recording on a hard disc, and play back the data being saved earlier.

TSP is based on Synaptics FIGO RISC processors and several functional hardware blocks. FIGO controls the
main data flow, de-multiplex the TS, parses the ES, manages all the input/output/intermediary buffers and
drives the hardware blocks. With different preloaded FIGO macrocode, TSP can support different applications.
The hardware blocks exchange data with FIGO through the DTCM. TSI captures the incoming transport streams
and saves the TS packets (after PID filtering) into DTCM. TSO read data from DTCM and send them to the
transport stream output. Section Filter helps to find useful information from the PSI. Crypto engine provides
hardware support for the descrambling and scrambling functions. Sync word detection (SWD) helps to search
for sync word in the elementary streams.

TSP consists of two symmetric FIGO processors. Each FIGO has its own ITCM, DTCM, data streamer and HBO. All
the other hardware blocks (Crypto Engine, SWD, section filter TSIs and TSOs) are shared between these two
FIGOs.

Figure 19. TSP Block Diagram

INT

32-bit AHB

ITCMFIGO

Data
Streamer DTCM

Sec-
tion

Filter

Crypto
Engine

Rule
Table

TSP
Key

Table SWD

TSI

TSO
2 TS Outputs

ITCMFIGO

Data
Streamer DTCM

64-bit AXI

TS
 B

uf
fe

r

2 STC clocks

9 TS Inputs
32-bit APB

Other Key Tables
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 55

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.1.1. Standards
 ISO/IEC 13818-1 MPEG2 Systems MPEG2 transport stream
 DVB
 ATSC
 ARIB
 OpenCable
 WMDRM

10.1.2. Functionalities
 Transport stream input buffering
 STC capturing
 PID filtering
 Transport stream de-multiplexing
 TS packet descrambling
 Section filtering
 PES parsing
 ES indexing
 TS packet re-scrambling
 Transport stream output

10.1.3. Interfaces
 Nine transport stream input interfaces (serial or 8-bit parallel)
 Two transport stream output interface (serial or 8-bit parallel)
 32-bit AHB target interface for register accessing
 64-bit AXI host interface for DMA
 32-bit APB target interface for key table programming
 Two different reference clocks for STC capturing
 Interrupts to Host processor
56 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2. Function Description

10.2.1. FIGO System
TSP consists of two symmetric FIGO processors.

10.2.1.1. ITCM
Each FIGO has 16K instruction ITCM.

10.2.1.2. DTCM
Each FIGO has 32KB DTCM.

10.2.1.3. Data Streamer
Data streamer is the bridge between FIGO DTCM and FIGO AXI host interface. Each FIFO has its own data
streamer and its own AXI host interface. The two AXI interfaces are multiplexed into one in TSP top level.

10.2.1.4. HBO FIFO Mapping
HBO provides FIFO interfaces between hardware blocks and DTCM. Each hardware block exchanges data with
FIGO through one or more HBO FIFOs. Each FIFO has its own HBO and the two FIGO shares the same HBO
configuration. Table 16 shows the list of HBO FIFOs of one FIGO.

Table 16. TSP_HBO_FIFO_ID

FIFO Name
FIFO

ID
Direction

Consumer/

Producer
Description

DS_CMD 0 From DTCM
Data
streamer

Used by data streamer to load commands from DTCM

TSI0_PKT 1 To DTCM TSI0 Used by TSI0 to save TS packets into DTCM

TSI1_PKT 2 To DTCM TSI1 Used by TSI1 to save TS packets into DTCM

TSI2_PKT 3 To DTCM TSI2 Used by TSI2 to save TS packets into DTCM

TSI3_PKT 4 To DTCM TSI3 Used by TSI3 to save TS packets into DTCM

TSI4_PKT 5 To DTCM TSI4 Used by TSI4 to save TS packets into DTCM

TSO0_PKT 6 From DTCM TSO0 Used by TSO0 to load TS packets from DTCM

TSO1_PKT 7 From DTCM TSO1 Used by TSO1 to load TS packets from DTCM

SF_INPUT 8 From DTCM Section filter Used by data section filter to load input data from DTCM

SF_OUTPUT 9 To DTCM Section filter Used by data section filter to save output data into DTCM

CRYPTO_CMD 10 From DTCM Crypto engine
Used by crypto engine to load commands queue 0 from
DTCM

CRYPTO_CMD_1 11 From DTCM Crypto engine
Used by crypto engine to load commands queue 1 from
DTCM

CRYPTO_CMD_2 12 From DTCM Crypto engine
Used by crypto engine to load commands queue 2 from
DTCM

TSI5_PKT 13 To DTCM TSI5 Used by TSI5 to save TS packets into DTCM

TSI6_PKT 14 To DTCM TSI6 Used by TSI6 to save TS packets into DTCM

TSI7_PKT 15 To DTCM TSI7 Used by TSI7 to save TS packets into DTCM

TSI8_PKT 16 To DTCM TSI8 Used by TSI8 to save TS packets into DTCM
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 57

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.1.5. Hardware Accelerators Sharing Between FIGOs
Crypto Engine and section filter are shared by the two FIGOs dynamically. Each FIGO can send commands to
these accelerators through its own HBO FIFO, independently from the other FIGO. Each accelerator is capable of
getting commands from HBO FIFOs of both FIGO. In case both FIGOs send commands to the same accelerator
at the same time, the accelerator will serve one of them and then the other. The arbitration is dynamically done
in hardware and transparent to FIGO firmware.

There are two SWDs in TSP, one for each FIGO. Both of the FIGOs use their own SWD without interfering each
other.

10.2.1.6. TS Input/Output Sharing Between FIGOs
Each TS port (input or output) is connect to a HBO FIFO of one of the FIGOs. The connection is statically
configured through registers. FIGO must set up the registers before it enables the TS port. Once started, FIGO
should not change the connection until it stops the TS port and flushes all the pipeline.

10.2.2. Transport Stream Input (TSI)
The TSI module has the following functions:

 Interface synchronization
 Sync byte detection
 Error detection for incomplete packet and wrong sync byte value
 PID filtering
 Incoming packet time stamping with local STC counter for video output clock tracking
 Generate packet information include captured STC, PID filter result and error flags
 Pack packet data together with packet information and send them into HBO FIFO

SWD_CMD 17 From DTCM
Sync Word
Detection

Used by sync word detection to load command from
DTCM

SWD_RETURN 18 To DTCM
Sync Word
Detection

Used by sync word detection to write return data into
DTCM

TSI9_PKT 19 To DTCM TSI9 Used by TSI8 to save TS packets into DTCM

TSI10_PKT 20 To DTCM TSI10 Used by TSI8 to save TS packets into DTCM

TSI11_PKT 21 To DTCM TSI11 Used by TSI8 to save TS packets into DTCM

TSI12_PKT 22 To DTCM TSI12 Used by TSI8 to save TS packets into DTCM

Table 16. TSP_HBO_FIFO_ID (Continued)

FIFO Name
FIFO

ID
Direction

Consumer/

Producer
Description
58 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

10.2.2.1. Operation Model
After power on, TSI will stay in reset mode. Firmware needs to program the configuration registers and the PID
table. After that, it can start TSI by clearing the reset register.

Once started, TSI will keep on pushing the packets received from either TS ports or TSO to TSI loopback path
into the TS packet FIFO. Firmware needs to read packets from the FIFO. In loopback mode, the data integrity is
guaranteed by hardware. The entire data path will be stalled if TS packet FIFO is full. In case the TS packets are
coming in from TS ports, hardware cannot guarantee the data integrity. Firmware should try to avoid TS packet
FIFO being full and be ready to handle the situation once it does happen. For further details, refer to
Section 10.2.2.9., Output Buffer and Overflow Handling.

Firmware can stop TSI by set the reset register to one at anytime. All the internal pipelines will be cleared and all
hardware states will go to idle immediately. Stopping TSI through the reset register does not affect other
configuration registers. Old value will be kept and firmware can set new value to them when TSI is stopped. It is
possible that there are partial TS packet left in the TS packet FIFO. Firmware needs to flush the TS packet FIFO
before restart TSI.

Firmware can restart TSI by clearing the reset register.

10.2.2.2. Input/Output Packet Format
Structure of the input packet from TS ports can be different from that of the TS packet saved into TS packet
FIFO. Firmware can set the desired offset and size of the packet body in the input packet. The packet body will
transferred into the TS packet FIFO. TSI will append 8-byte TSI packet info at the end of the output packet.
Firmware can set the total size (must be multiple of 8) of the packet in TS packet FIFO. Padding bytes will be
inserted between packet body and packet info to make the packet size match. Position of the sync byte is not
necessarily at the begging of the input TS packet. Firmware can configure the sync byte position relative to the
start of the packet and this parameter is independent from the offset of packet body.

Figure 20. TSI Block Diagram

Register
Programming

Output
Buffer

De-
serializerPacket

formatting

Config Reg

TS Packet
FIFO

TS input
ports

From PID Table

Async
FIFO

STC
Capture

Internal loop back
path from TSO

PID
Filter

STC clocks

Sync byte
detection

Error
detection
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 59

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 21. Input/Output packet format

Input packet from TS ports

packet body to be captured packet header
to be dropped

Fi
rs

t b
yt

e

La
st

 b
yt

e

Sync byte
position

output packet to TS packet FIFO

TSI Packet
Info

at the tail

packet tail
to be dropped

Sy
nc

 B
yt

e

Padding

8 bytes
60 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.2.3. TSI Packet Info Structure
The TSI packet info appended at the output packet tail includes a 42-bit STC value, some error flags and an 8-
bit pid_id. The pid_id is set by firmware for each entry of the PID Table. TSI will copy the pid_id of the matching
entry into packet info. In case firmware needs more pre-configured parameters associated with a certain PID, it
should build up another table in DTCM and look up the table with the pid_id from TSI packet info.

Table 17. TSI Packet Information Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspTsiPktInfo module

%unsigned 32 stc_lower

%unsigned 10 stc_upper

* Value of the captured STC
counter value

%unsigned 6 reserved_0

%unsigned 8 pid_id

*
Copied from pid_id field of
the matching entry in the
PID table

%unsigned 1 reserved_1

%unsigned 1 error_async_fifo

*

Asynchronous FIFO error.
This bit indicates that
there is hardware errors
related to TSI interface
timing.

%unsigned 1 error_on_port

* Port tsError is asserted for
this packet.

%unsigned 1 error_sync_byte

* Sync byte of the packet does
not match the defined value.

%unsigned 1 error_under_sized

*
The packet from TS ports
does not content enough
bytes as defined.

%unsigned 1 error_data_dropped

*
TS data are dropped before
this packet because of
broken packet structure.

%unsigned 1 error_data_lost

*

Overflow happened during the
capturing of this packet and
some bytes are lost and
stuffed with zeros.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 61

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.2.4. Clocks and Synchronization
The stream processing logics in TSI work in two independent clock domains: the TS input clock and the TSP core
clock.

The input TS control and data signals are sampled with either the rising edge or the falling edge (programmable)
of the TS input clock: The sampled signals are synchronized into TSP core clock domain through asynchronous
FIFO. All other logics work in the TSP core clock domain.

Any relationship between clocks must meet these constraints:
 In serial mode, the TSP core clock must be no slower than the TS input clock.
 In parallel mode, the TSP core clock must be no slower than 8 times the TS input clock.

10.2.2.5. Packet Boundary Generation and Sync Byte Detection
Depending on the availability and meaning of tsSync and tsValid signals, the boundary between TS packets can
be generated in four modes.

 Mode 0 is used when tsSync is available and it indicates the start of a packet.
 Mode 1 is used when tsSync is available and it indicates the sync byte of a packet.
 Mode 2 is used when tsSync is not available and transition of tsValid from inactive to active can be

used to indicate the start of a packet
 Mode 3 is used when no TS control signal can indicate either the sync byte or the start of a packet, and

the internal sync byte detection logic is activated.

When the internal sync byte detection is enabled, it will match the incoming stream with the specified sync byte
value. Once a match is found, it will mark that byte as sync byte and skip matching for all the next n bytes, where
n is the input packet size minus one. After that, it will start matching for the next sync byte.

In parallel mode, sync byte value is compared with every valid incoming byte, while in serial mode comparison
happens at every valid bit position.

When sync byte always starts at the first cycle after tsValid change from inactive to active, the detection logic
can be programmed to only match at those boundaries instead of at every point. Turning on this option may
increase the accuracy of the searching but the detection logic still works without it.

In serial mode, TSI can handle both MSB first mode and LSB first mode.

%unsigned 1 error_packet_dropped

*

Overflow happened before the
capturing of this packet and
some packets are entirely
dropped.

$ENDOFINTERFACE

Table 17. TSI Packet Information Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
62 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.2.6. Error Detection and Error Handling
The error detection block checks every packet received for errors. The errors it checks include oversized packet,
undersized packet, and wrong sync-byte value.

Oversized errors occur when there are additional bits between two sync bytes. In this case, TSI drops all
additional bits and set the error_data_dropped flag in the packet info of the second packet.

Undersized errors occur when there are not sufficient bits between two sync bytes. In this case, TSI combines
the two TS packets into one and sets the error_under_sized flag in the packet info.

Wrong sync-byte error occurs when the sync byte of a TS packet is different from the value set by firmware. TSI
sets the error_sync_byte flag in packet info but does not change the packet itself.

When multiple errors occur for the same packet, all the error flags are set.

10.2.2.7. De-serialization
All the blocks before the de-sterilization block work in bit-stream mode. This block coverts the bit stream into
byte stream. The input of this block is error free, guaranteed by the error-detection block. The start of packet is
clearly signified, and the packet size is always the same as specified. Every eight consecutive bits received are
put onto the 8-bit wide output bus. If the input stream is LSB first, the bits are swapped before output.

10.2.2.8. PID Filter
For each incoming TS packet, PID filter compares its PID and/or LTSID (if available) with all the valid entries in
the PID table in order. Once it matches an entry, PID filter stops matching and saves the pid_id of the matching
entry into packet info. The packet is saved together with the packet info into the TS packet FIFO. If it does not
match with any entry, the packet is dropped.

Each TSI has its own PID table, but all the PID tables share the same physical RAM. In each TSI, a register
communicates the starting address (physical address of the RAM) of its PID table. Once it receives a new TS
packet, PID filter reads the first entry from that address. In each entry of the PID table, there is a last bit and a
next field. The last bit informs the PID filter to finish, and the next field tells PID filter the address of the next
entry. PID filter goes through the entire PID table following the next field until it reaches an entry with the last bit
set to one. Firmware must set up the PID table before starting a TSI, but it can add/remove entries on the fly
without stopping the TSI. The PID RAM sharing between different TSIs is also flexible. Firmware can re-allocate
RAM entries between TSIs without stopping any of them. The only constraint is that the total entries of all the
PID tables cannot exceed 256. The limitation is a result of the physical size of the RAM; therefore, it is very easy
to expand.

Each entry of the PID table (Table 18) is mapped into two 32-bit words and firmware accesses them through the
register programming interface.

Table 18 lists the definition of each PID table entry.

Table 18. PID Table Entry Definitions (Sheet 1 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspPidTbl module

%unsigned 1 last

*

0: jump to next entry of
PID table after finishing
this one.
1: this is the last entry
of the PID table
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 63

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
%unsigned 1 match_enable

*

0: Disable matching; this
entry will not match any
packet. Last and next
field are still valid, PID
filter will go to next
entry if last bit is not
set.
1: Enable pid and/or ltsid
matching for this entry.

%unsigned 1 match_ltsid

%unsigned 1 match_pid

*

When match_ltsid is one
and match_pid is zero,
all packets with matching
LTSID will be captured,
regardless of their PID
value.
When match_ltsid is zero
and match_pid is one, all
packets with matching PID
will be captured,
regardless of their LTSID
value.
When both match_ltsid and
match_pid are one, only
packets that match both
ltsid and pid will be
captured.
When both match_ltsid and
match_pid are zero, all
packets will be captured
regardless of their PID
and LTSID value.

%unsigned 1 stc_select

*

0: capture STC counter
driven by stcClk0
1: capture STC counter
driven by stcClk1

%unsigned 1 reserved

*
0:compare 13bit PID
1: compare 12 bit pid

%unsigned 2 reserved_0

%unsigned 8 ltsid

* ltsid value

Table 18. PID Table Entry Definitions (Sheet 2 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
64 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.2.9. Output Buffer and Overflow Handling
This output buffer serves three major functions: (1) buffering all the bytes in front of the PID, (2) matching the
latency of the PID filter, and (30 tolerating the jitter on the TS packet FIFO interface. The depth of this buffer is
designed to meet the requirements of these three functions. Therefore, as long as the TS packet FIFO in the
HBO is not full, this buffer never overflows.

An overflow of this buffer indicates that the speed of the de-multiplexing cannot catch up with the TS input
speed. This error is a critical one and firmware must to avoid it, even by dropping less important packets
voluntarily on the TS packet FIFO consuming side. Should overflow occur, an error_data_lost flag and/or
error_packet_dropped flag is set in the packet info. The format of TS packet is maintained, but the payload of
the packet may be corrupted.

10.2.2.10. STC Time Stamping
There are two 42-bit STC counters driven by two independent STC clocks. Upon receiving the first byte of a TS
packet, TSI captures the value of one of the STC counters and saves it into the packet info. Firmware can select
different counters for packets with different PID. In each entry of the PID table, the stc_sellect bit specifies
the STC counter to be used for the corresponding PID.

10.2.2.11. Internal Loopback from TSO to TSI
A pair of TSI and TSO can be used together to form a loopback path from one TS packet FIFO to another. The
purpose of this option is to use the PID filter inside TSI.

To set up such a path, firmware programs all related registers in TSI and TSO, sets TSI to work in loop- back
mode, releases the TSI reset and then releases the TSO reset. After that, firmware can push TS packets into the
FIFO connected to TSO and read out from the FIFO on TSI the side.

To break the loopback, firmware stops pushing packets to TSO, continues reading from TSI until it receives all
the packets, sets the TSO reset and sets the TSI reset.

Most of the front-end logic is not used in loopback mode, so only part of the registers must be programmed.
Those include packet_format and global registers on the TSO side and packet_format, pid_filter and global
registers on the TSI side.

Two such loopback paths are provided in TSP, from TSO0 to TSI0 and from TSO1 to TSI1. When a loop back path
is set up, the related TSI and TSO ports can no longer be used.

%unsigned 13 pid

* PID value

%unsigned 3 reserved_1

%unsigned 8 next

* Address of the next PID
table entry

%unsigned 8 pid_id

*

In case a packet match
with this entry, TSI will
save the value in this
field into the packet
info.

%unsigned 16 reserved_2

$ENDOFINTERFACE

Table 18. PID Table Entry Definitions (Sheet 3 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 65

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.3. Transport Stream Output (TSO)
The TSO block reads TS packets from the DTCM through the HBO FIFO interface, strips the optional header
padding and/or tail padding, generates the TS SYNC signal, synchronizes the byte stream into TS clock domain,
serializes (in serial mode), and sends the data to the TS output ports.

10.2.3.1. Operation Model
After power on, TSO remains in reset mode. Firmware must program the configuration registers and then start
TSO by clearing the reset register.

During run time, firmware must only push packets into the FIFO. To keep the integrity of the TS packet on the
output ports, firmware pushes data into the TS packet FIFO packet-by-packet instead of beat-by-beat. It is
possible that the FIFO goes empty. Once that occurs, there are bubbles between TS packets on TS output ports
(tsoValid is 0).

Firmware can stop TSO by setting the reset register to one. The value of the reset register does not affect other
configuration registers. The old value will is kept and firmware can set a new value to them. Synaptics suggests
that firmware follow these steps to stop TSO cleanly:

1. Stop pushing packet into TS packet FIFO.

2. Wait until TS packet FIFO is empty.

3. Wait until TSO status registers indicate that internal pipeline in cleared.

4. Set the reset register to one.

If firmware resets the TSO in the middle of transferring, partial TS packets may be observed on the TS output
port and there may be unfinished data remaining in the TS packet FIFO. Firmware must flush the TS packet FIFO
before restarting TSO.

Firmware can restart TSO by clearing the reset register.

10.2.3.2. Input Buffer
This 32-byte local buffer is used to reduce the impact of jitters on the TS packet FIFO interface. TSO starts
transferring a packet only after this buffer is full to improve the consecutiveness of data transferring on the TS
output ports within a packet.

Figure 22. Transport Stream Output (TSO) Flow

Internal loop back
path to TSI

Input
Buffer

Register Programming

SerializerPacket
formatting

Config Reg

TS Packet FIFO

TS clock

TS data/control

reference clock

Asynchronous
FIFO

TS Clock
generation
66 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.3.3. TS Packet Format
The TS packet from the TS packet FIFO can be different from the TS packet sent out through TS ports. There can
be optional header padding and tail padding. The size of TS packet in DTCM must be a multiple of eight. The size
of padding and output packet can be any number. TSO Sync signal is generated for the first byte of the output
packet.

10.2.3.4. TS Clock Generation
The TS output clock is generated from the TS reference clock with a programmable clock divider. Available
divisors are 1, 2, 3, 4, 5 …, 254, 255 and 256. When the divisor is an odd number, the duty cycle is (n-1) (n+1).
The output data/control signals are synchronized to either positive edge or negative edge (configurable through
register) of the TS output clock. For an invalid byte, the TS clock can be optionally gated.

10.2.4. Section Filter
The hardware section filter is designed to offload the CPU from searching and matching section table headers in
the transport streams. Up to 128 section filter rules can be programmed by software. The section filter
hardware matches the incoming section data headers against these filter rules one by one. If a match is found
the section filter copies the input data to the output FIFO, with the matched section ID field updated with the
filtering result. If no match is found, the input data is ignored. When the output FIFO reaches to a
preprogrammed threshold, an interrupt is generated to the CPU.

Each of the individual section filter rules support up to a 32-bit range filtering or 1-to-256-bit exact pattern
match filtering. Simple filtering rules can be cascaded to build rules that are more complicated.

10.2.4.1. Input and Output Packet Format
The input to data to section filters include section filter commands, the output data are section filter events
packets. The input/ output data is from 64-bit wide FIFO, they can be read by the CPU through 32-bit register
access. The depth of the command and event FIFO can be configured during initialization, by default they are all
16 entries. Each entry is 8 bytes. The command and event packets share the same format, with the only
difference being in event packets the match bit and filter ID field are updated.

The total size of packet is 5 x 64 bits. The first 64-bit control word and the next 4 x 64 bits are section- header
data to be matched.

The control word includes the following information:
 13-bit PID
 3-bit TS port ID
 8-bit Table ID
 1-bit match result
 7-bit matched section filter ID

Figure 23. TS Packet Format

original packet from DTCM

TS
 S

yn
c

output packet to TS ports header padding

Fi
rs

t b
yt

e

La
st

 b
yt

e

tail padding
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 67

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Each of the section filter rules can be configured to match PID, TS port ID, and Table ID first before searching
through the section headers.

The second part of the input data is the section data, the length of the input data is 4 x 8 bytes, the earlier FIFO
entry contains the earlier bytes received in a packet, and the sequence of all the bytes in one FIFO entry is as
follows:

 fifoEntry0 = {packetB7, … packetB0};
 fifoEntry0 = {packetB15, … packetB8};
 fifoEntry0 = {packetB23, … packetB16};
 fifoEntry0 = {packetB31, … packetB24};

After filtering, the section filter outputs one 8-byte result through the output OCP FIFO. The format is exactly the
same as TSCmdF, the TSCmdF.MATCH and TSCMD. The FLTID bit field is set according to the filtering result. The
section data is always returned by the section filter after the TSCmdF.

The default depth of the section filter I/O FIFO is 16x8 bytes each. These resources are shared with the
demultiplexer internal and interface memory in a 16KB SRAM.

10.2.4.2. Section Filter Control
Software can control the section filter to perform the following rule-management functions:

 Global enable and disable of all section filter rules.
 Individual enable and disable per section filter rule.
 Mechanism to initialize and reset the filter engine.
 Mechanism to add and remove a rule.
 Status to show the filter engine activity, through a status register, the software can get information

which rule the section filtering is currently matching with, and what SRAM Address it is reading the rule
from, and what state the section filter main state machine is in.

The changes of the rules can only be made when the section filter input FIFO is empty and the main state
machine is in idle state.

Table 19. Section Command Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSecCmd module

@ %unsigned 13 PID 0

%unsigned 3 TSID 0

%unsigned 8 TID 0

%unsigned 1 MATCH 0

* Not used in TSC, will be
set by section filter

%unsigned 7 FLTID 0

* Indicates the ID of
matched section filter ID

$ENDOFINTERFACE
68 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.4.3. Section Filter Rule Descriptor
All the section filtering rules can be programmed into the section filter rule SRAM by ARM. For each rule, there is
a DW filter rule descriptor and rule data. The rule data can be 3DW to 9DW in size; each DW is 4 bytes in size.

The total rule SRAM is 2K DW. Since the rule data have variable sizes, each of the rule descriptors has a field
pointer to the start address of its associated rule data in the rule SRAM. All the rule descriptors have a fixed
length of 2DW and are stored sequentially from address 0x0 of the rule SRAM.

The rule descriptor includes the following information:
 If the rule is a one-shot rule, it is disabled once a match is found unless the software turns it on again

through the enable-register bit
 If a match of the PID and TSID is necessary before the rule is applied, in this case, the target PID, TS

port ID, and Table ID are included in the rule descriptor
 Rule SRAM address pointer to the associated rule data

Figure 24. Section Filter Rule Descriptor

Rule Dscp 0
Rule Dscp 1

Rule Dscp 127

Rule Data 0

Rule Data 1

Rule Data 127

Addr=0x0
Addr=0x8

Addr=0x400

Variable Addr

Variable Addr 2KB
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 69

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Table 20. Section Filter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSecFilter module

@ HDR0 (P)

%unsigned 1 ONESHOT 0

* Enable one shot
filtering

%unsigned 1 PIDCHECKEN 0

* Match PID before section
filter

%unsigned 1 TIDCHECKEN 0

* Match PID before section
filter

%unsigned 11 RULEID 0

* Pointer to the next RULE

@ HDR1 (P)

%unsigned 16 EXTPID 0

*

This bit field is used
to match with the
incoming TSCmdTSC {TSID,
PID}, section filter
will only be active when
EXTPID matches

%unsigned 8 TID 0

* Table ID to be matched

$ENDOFINTERFACE
70 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.4.4. Section Filter Rule Data
Section filter rule data has the following data fields:

 MODE-indicates one of the following modes for section filtering: inRange, outRange, positiveMatch, and
negative Match

 BYTEOFFSET—byte offset to selection up to 4 double words from 8 double word section table header
 BITOFFSET—offset within a byte for section header match, only used in positive/negative Match modes
 LAST—indicates a rule is the last rule of a cascaded section filter rule
 NXT—address pointer to the next rule in rule SRAM
 LEN—in positive/negative Match mode, this field specifies the length of a match pattern, from 1 to 4

double words, if MODE is in/outRange, length of the filter is always 1 double word
 PATTERN—2DW to 8DW pattern and mask data

○ In in/outRange mode, the PATTERN is 2 double words long, with minimum value PATTERN(MIN)
and maximum value PATTERN(MAX)

○ In positive match or negative match mode, the PATTERN can be a variable (even) number of double
words. The first half of the double words specifies the pattern to match PATTERN(COEFF), and
second half of the double words specifies the mask bits PATTERN(MASK)

The MODE field specifies the 4 modes supported by each rule:
 In range mode-In range match, up to 32 bits of the section data can be selected to compare with a

range. Since the input section data is 32 bytes, the BYTEOFFSET and BITOFFSET fields are combined to
select this 32-bit data from any bit boundary for range comparison. The filtering result is a match if the
selected section header data is greater than or equal to minimum AND less than or equal to maximum
specified by 2DW pattern:
○ PATTERN(MAX) >= (SectionHeader >> (BYTEOFFSET*8+ BITOFFSET)) >= PATTERN(MIN);
○ Out range mode-the filter result is a match if the selected section header data is less than

minimum OR greater than maximum specified by a 2 DW pattern.
 (SectionHeader>>(BYTEOFFSET*8 +BITOFFSET)) > PATTERN(MAX) or
 (SectionHeader>>(BYTEOFFSET*8+ BITOFFSET)) < PATTERN(MIN)

○ Positive match mode-in positive/negative Match mode, up to 16 bytes of section header data,
selected by BYTEOFFSET, are compared against pattern with mask bits specified in the rule data.
In exact match mode, the length of the selected section header data can vary from 1DW to 8DW.
This length is specified by the LEN field in the rule data.

○ All selected bits in section header data are equal to the non-masked pattern, while the masked
pattern bits are ignored.
 (SectionHeader>>(BYTEOFFSET*8)) & PATTERN(MASK) ==PATTERN(COEFF) &

PATTERN(MASK)
○ Negative match mode-at least one bit of the selected bits in the section header data does not

equal the specified pattern, while the masked pattern bits are ignored.
 (SectionHeader>>(BYTEOFFSET*8)) & PATTERN(MASK) !=PATTERN(COEFF) &

PATTERN(MASK)

The NXT field is a rule SRAM address pointer used to cascade multiple rules into a filter chain. The LAST field is
used to indicate it is the last rule of a chain. During the filtering, if any of the cascaded rules has a mismatch,
the entire filter chain is considered no match and the filter engine moves on to the next rule chain.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 71

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Table 21. Section Rule Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSecRule module

@ CTRL (P)

%unsigned 5 BYTEOFFSET

*
Byte offset into the
section data the exact and
range match is applied to

%unsigned 3 BITOFFSET

*

Bit offset within first
byte the range comparison
is applied, this field is
ignored when MODE!=RANGE

%unsigned 1 STOPONMISS

*

Obsolete;
The filtering stops
whenever there is a miss,
regardless of the value of
this field.

%unsigned 1 LAST

%unsigned 11 NXT

%unsigned 2 MODE

: INRANGE 0x0

Section header is within
(inclusive) the min and
max range

: OUTRANGE 0x1

Section header is out
(exclusive) of the min and
max range

: PMATCH 0x2

* Section data are direct
used to match with pattern

: NMATCH 0x3

* Section data are negated
before match

%unsigned 4 LEN

*

If mode = RANGE, this
field is ignored; else, it
indicates length of the
match filter in DW
72 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
@ MINMASK (P)

%unsigned 32 VALUE

@ MAXCOEFF1DW (P)

%unsigned 32 VALUE

@ MAXCOEFF2DW (P)

%unsigned 32 VALUE

@ MAXCOEFF3DW (P)

%unsigned 32 VALUE

@ MAXCOEFF4DW (P)

%unsigned 32 VALUE

@ MAXCOEFF5DW (P)

%unsigned 32 VALUE

@ MAXCOEFF6DW (P)

%unsigned 32 VALUE

@ MAXCOEFF7DW (P)

%unsigned 32 VALUE

MAXCOEFF8DW (P)

%unsigned 32 VALUE

@ MAXCOEFF9DW (P)

%unsigned 32 VALUE

@ MAXCOEFF10DW (P)

%unsigned 32 VALUE

@ MAXCOEFF11DW (P)

%unsigned 32 VALUE

@ MAXCOEFF12DW (P)

%unsigned 32 VALUE

@ MAXCOEFF13DW (P)

%unsigned 32 VALUE

@ MAXCOEFF14DW (P)

%unsigned 32 VALUE

@ MAXCOEFF15DW (P)

%unsigned 32 VALUE

$ENDOFINTERFACE

Table 21. Section Rule Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 73

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.4.5. Section Filter Resource
The section filter SRAM size is 2K DW.

The maximum number of section filters is 128 which occupy 256 DW in the SRAM. The software is fully in
control of the SRAM allocation reset. When fewer than 128 section filters are instantiated, some of the 256 DW
(begins from high address) can be used to store section filtering rules as well.

10.2.5. Crypto Engine
The Crypto engine provides hardware acceleration of TS payload descrambling/scrambling. It has four
interfaces, a register programming interface, six input HBO FIFOs to load commands (three for each FIGO), two
DTCM random access interfaces (one for each FIGO) to access input/output data, and a 32-bit APB target
interface for key programming.

Table 22. Section Table Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSecTbl

@ %unsigned 32 Word

$ENDOFINTERFACE

Figure 25. Crypto Engine

Command
Dispatcher

DVB-CSA-1 1.0/2.0

DTCM 0

Register Programming

ARIB-Multi2/
ARIB-Multi2-1

AES/AES-1

DES/DES-1

CRC 8/16/32/64

RC4

Config
Reg

Command FIFO 0

Key
Table

32-bit APB target

DVB-CSA-1 3.0

WMMAC

DTCM to DTCM Copy

Command
Dispatcher

Command FIFO 1

Command
Dispatcher

Command FIFO 2

Command
Dispatcher

Command FIFO 3

Command
Dispatcher

Command FIFO 4

Command
Dispatcher

Command FIFO 5
DTCM 1

C2/C2-1

CSS
74 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.5.1. Operation Model
The Crypto engine is driven by Crypto commands from firmware. Content of a Crypto command includes the type
of Crypto function, parameters of Crypto function, the addresses/size of the source data, and addresses of the
destination buffer. Once firmware prepares the input data, output buffer, and Crypto function key, it writes the
command into the one of the command FIFOs. The Crypto engine loads the command from the command FIFO
and based on the content of the command, it activates one of the Crypto blocks. The activated Crypto block then
reads the input data and key, applies the Crypto function and writes back the output data. All the data/key
accessing during the execution of a command goes through the DTCM interface. Once the Crypto engine
finishes the execution of a command, it writes a 64-bit return value into the return address.

There are three independent command FIFOs for each FIGO. The Crypto engine reads commands from these
FIFOs in parallel. If the commands from different FIFOs are targeting different Crypto blocks, they are executed
immediately in parallel without blocking one another. If commands from different FIFOs are targeting the same
Crypto block, they are executed sequentially in round-robin fashion.

All of the commands posted to the same command FIFO are executed in order. Data coherence is guaranteed
by hardware. Firmware can keep posting commands as long as the command FIFO is not full. However, there is
no guaranteed execution order between commands from different command FIFOs. Firmware ensures there is
no data dependency for commands being posted to different FIFOs. Otherwise, there may be unexpected result.

The return address is used to confirm the execution of a command. The Crypto engine writes a 64-bit word into
the return address after the execution of a command. The return address is 16-bit configuration register set by
firmware.

The return data is a counter that counts all the commands been executed from that command FIFO. Each
command FIFO has its own return address and command counter.

10.2.5.2. Crypto Command Definition
Each Crypto command is 128 bits long. Commands for all the Crypto functions share the same structure, but
some fields are interpreted differently by different functions and some fields are only applicable to certain
functions.

Table 23. Crypto Command Entry Definitions (Sheet 1 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspCryCmd module

@ %unsigned 5 type

* Crypto function type

: Copy 0

: CRC 1

: INVDVBCSA2 2

: INVDVBCSA3 3

: AES 4

: INVAES 5

: TDES 6

: INVTDES 7

: C2 8

: INVC2 9

: WMMAC 10
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 75

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
: INVWMMAC 11

: ARIBMULTI2 12

: INVARIBMULTI2 13

: RC4 14

: CSS 15

: ASA 16

: HMAC 17

: GHASH 18

%unsigned 2 Usage

:

2'b00: TS stream
2'b01: M2M stream
2'b10: PVR stream
2'b11: Any

: TS 0

: M2M 1

: PVR 2

: Any 3

%unsigned 1 write_back_iv

*

0: Crypto engine will not
overwrite the iv_address
1: Crypto engine will
overwrite the iv_address with
the iv for next block after
the execution of the command

%unsigned 8 parameter

*

Parameters of the Crypto
function
For details, refer to the
description of each Crypto
block.

%unsigned 16 source_address

* Address of the input data in
byte

%unsigned 16 input_size

Table 23. Crypto Command Entry Definitions (Sheet 2 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
76 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.5.3. Crypto Return Definition
Crypto Engine writes a 64-bit return word to the return address after it finishes the execution a Crypto
command.

*

size of input data in byte;
If input_size is 0, Crypto
engine will not process any
data. It will still increase
the command counter and write
out the return word.

%unsigned 16 destination_address

* Address of the output buffer
in byte;

%unsigned 16 key_address

* address of the key

%unsigned 16 iv_address

* Address of the initial vector

%unsigned 16 key_address_2

* Address for the second key

%unsigned 8 parameter_1

*

Additional parameters of the
Crypto function;
For details, refer to the
description of each Crypto
block.

%unsigned 8 reserved_1

$ENDOFINTERFACE

Table 24. Crypto Return Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspCryRtn module

%unsigned 16 command_count

*

Number of commands being
executed.
The counter will wrap back to
0 once it reaches 65536.
Firmware can set the initial
value through register
programming interface.

Table 23. Crypto Command Entry Definitions (Sheet 3 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 77

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
%unsigned 16 reserved_0

* This field will be filled with
all zeros

%unsigned 16 error_command_count

* command_count of the last
error command.

%unsigned 15 reserved_1

* This field will be filled with
all zeros

%unsigned 1 error_command_flag

Hardware will set this flag
bit to one when key mismatch
is detected for a Crypto
command. The flag can only be
cleared by firmware. The flag
is not reset to zero by
hardware after power on, so
firmware should clear the flag
before it sends the first
Crypto command.

$ENDOFINTERFACE

Table 24. Crypto Return Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
78 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.5.4. Address Mapping
Crypto engine uses a 16-bit address to access the two FIGO DTCM and key tables.

DTCM is mapped to address 0 to 0x7fff and key tables are mapped to address 0x8000 to 0xffff. This mapping is
different from the FIGO address mapping. For FIGO, DTCM is also mapped to address 0 to 0x7fff, but address
0x8000 to 0xffff is used for configuration registers.

Each FIGO has its own DTCM and the commands from one FIGO can only access the DTCM associated with it.
For the same address between 0 and 0x7fff, commands from queue 0, 1 and 2 point to DTCM of FIGO0 and
commands from queue 3, 4 and 5 point to DTCM of FIGO1. The key tables are shared between the two FIGOs.
Commands from all the queues refer to the same key tables.

Table 25 lists the differences among FIGO, Crypto engine and SWD address mapping.

Source data and destination data can only be stored in DTCM. Therefore, specifying source_address or
destination_address to be bigger than 0x8000 causes the data accessing to be denied and yields unpredictable
results.

Key and initial vector can be stored either in DTCM or in key tables. Hardware determines where to get the data
based on the key_address and iv_address. For data in the key table, the accessibility is limited by the control
word for each 64-bit entry. For data in DTCM, there is no such limitation.

10.2.5.5. Key Tables
Key tables are a set of register arrays to store the secret keys used for scrambling/descrambling. The keys
stored in different tables are generated from different sources and used for different purposes. These tables
include:

 TSP key table: Keys in this table are generated by security processor in the SOC and used for general
purpose scrambling/descrambling functions.

For the Crypto engine, address 0x8000~0xffff are used for all the key tables.

TSP Key Table
TSP key table is programmed by external DRM system through the 32-bit APB target interface. In TSP, only
crypto engine can access table. FIGO and other hardware have no access to it.

Each entry of the key table stores 8 bytes of key data and some control fields. The control fields restrict the
accessibility of the key data in that entry. Access to a certain entry will be granted only when the type and
parameter fields of the crypto command match with those fields of the key table. Encryption and decryption of
the same crypto are treated as the same the type, although they are labeled with different crypto_type values.
For example, if TspCryCmd.type is AES and TspKeyEntry.crypto_type is INVAES, the access will be granted. The
type of data being requested also needs to match the data_type field in the key table. Only key, initial vector and
second key are allowed data type. Input and output data of a crypto function cannot points to the key table.

In case an invalid request is detected, the crypto command will not be executed. The command_count in crypto
return address will still be increased and the error_command_flag in crypto return address will be set. Once
error_command_flag is set, it is firmware's responsibility to clear it. Hardware will not clear the
error_command_flag after executing a valid command. The error_command_count field in crypto return address
will log the command_count of the last command that issues invalid key request.

Table 25. Differences of FIGO, Crypto Engine and SWD Address Mapping

Hosts Address 0~0x7fff Address 0x8000~0xffff

FIGO 0 DTCM 0 Configuration Register

Command from Crypto Engine Queue 0 1 2 DTCM 0 Key Tables

Command from SWD Queue 0 DTCM 0 Not Mapped

FIGO 1 DTCM 1 Configuration Register

Command from Crypto Engine Queue 3 4 5 DTCM 1 Key Tables

Command from SWD Queue 1 DTCM 1 Not Mapped
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 79

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Crypto engine can write the initial vector back to the key table only when the write_enable bit in the key table is
set to one, and this is the only way that crypto engine can write to the key table.

Table 26. TSP Key Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspKeyEntry module

%unsigned 32 key_lower

%unsigned 32 key_upper

* 64 bits key data of this
entry

%unsigned 5 crypto_type

* Type of Crypto function

: Copy 0

: CRC 1

: INVDVBCSA2 2

: INVDVBCSA3 3

: AES 4

: INVAES 5

: TDES 6

INVTDES 7

C2 8

INVC2 9

WMMAC 10

INVWMMAC 11

ARIBMULTI2 12

INVARIBMULTI2 13

RC4 14

CSS 15

HMAC 16

GHASH 17

%unsigned 1 write_enable

*
0: disable write
1: enable Crypto engine to
write to this entry
80 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The key table control fields are mapped only to the 32-bit APB interface. Therefore, the key table address
mapping of the Crypto engine is different from that of the 32-bit APB interface.

%unsigned 2 data_type

*

Type of data requested by
the Crypto function
0: key of Crypto function
1: initial vector of Crypto
function
2: second key of Crypto
function (multi 2 only)
3: reserved

: KEY 0

: IV 1

: KEY2 2

%unsigned 8 crypto_param

*

Parameter of the Crypto
function;
Only effective bits are used
for matching, reserved bits
are ignored.

%unsigned 16 reserved_0

%unsigned 32 reserved_1

$ENDOFINTERFACE

Table 27. Crypto Engine Key Table Address Mapping

Key Table Entry
Offset Address on

32-bit APB Interface
Offset Address of Crypto Engine

key data 0 0 0

control 0 8 N/A

key data 1 16 8

control 1 24 N/A

… … …

key data n 16*n 8*n

control n 16*n+8 N/A

Table 26. TSP Key Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 81

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
There are a total of 256 entries in the TSP key table.

10.2.6. Command Dispatcher
When the command FIFO is not empty, the command dispatcher will read the Crypto command. Based on the
content of the command, it will activate one of the Crypto blocks and forward the command to that block.

10.2.7. Crypto Blocks
The Crypto blocks are the hardware that actually descramble/scramble the payload data. There is one
dedicated Crypto block for each supported Crypto functions. Once a block is activated by the dispatcher, it will
load the input (input date, key, initial vector) of the command from DTCM/Key table, do the data processing and
then save the output data back to DTCM.

10.2.7.1. DTCM to DTCM Copy
This block is used to copy data from one address to another address in DTCM. Applicable fields in the Crypto
command include type, source_address, source_length, and destination_address.

10.2.7.2. CRC 8/16/32/64
This block is used to calculate the CRC value of the input data.

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, key_address, and iv_address.

The value of polynomial (with MSB omitted) is stored at key_address. Hardware fills the MSB with one.

Results are written to destination_address and iv_address (if write_back_iv is set to one).

Table 28. TSP Key Table for Crypto Engine

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspKeyTbl module

$TspKeyEntry key_entry MEM [256]

$ENDOFINTERFACE

Table 29. CRC Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspCrcParam

%unsigned 2 size

* Size of polynomial

: CRC8 0

: CRC16 1

: CRC32 2

: CRC64 3

%unsigned 6 reserved_0

$ENDOFINTERFACE
82 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.3. DVB-CSA-1 1.0/2.0
This block is used to descramble the input data following the DVB-CSA 1.0/2.0 standard. Applicable fields in the
Crypto command include type, parameter, source_address, source_length, destination_address, and
key_address.

For DVB-CSA 1.0, firmware turns on the conformance mechanism by setting the Conformance bit to one. For
DVB-CSA 2.0, the Conformance bit is set to zero.

10.2.7.4. DVB-CSA-1 3.0
This block is used to descramble the input data following the DVB-CSA 3.0 standard. Applicable fields in the
Crypto command include type, parameter, parameter1, source_address, source_length,
destination_address, and key_address.

10.2.7.5. ARIB-MULTI2/ARIB-MULTI2-1

This block is used to scramble or descramble the input data following the ARIB MULTI2 standard.

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, key_address, iv_address, and key_address_2.

The 64-bit data key is stored in key_address and the 256-bit system key is stored in key_address_2.

For ECB and CBC modes, input data size must be multiple of 8. For OFB and CTR modes, input can be any
number of bytes.

For CTR mode, the last four bytes in IV are the counter and increase by one for each input word (8-byte). The
remainder of the IV (the nonce) is kept the same for all input data.

Table 30. ARIB-MULTI2 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspMulti2Param

%unsigned 3 mode

* Mode of the Crypto
function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

* All other values are
reserved

%unsigned 5 round

*

Round number divided by
4;
0 is mapped to 32.
For MULTI2 with round
number of 32, this field
should be set to 8.

$ENDOFINTERFACE
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 83

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.6. AES/AES-1

This block is used to descramble or scramble the input data with AES.

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, key_address and iv_address.

For ECB and CBC modes, input data size must be a multiple of 16. For OFB and CTR modes, input can be any
number of bytes.

Table 31. AES Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspAesParam

%unsigned 3 Mode

* Mode of the Crypto function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

*

The last four bytes in IV are
the counter and increase by one
for each input word (16-byte).
The rest of the IV (the nonce)
is kept the same for all input
data.

: RCBC 4

* RCBC mode as defined in DVB-
CPCM part 5

: CTR64 5

*

The last eight bytes in IV are
the counter and increase by one
for each input word (16-byte).
The rest of the IV (the nonce)
is kept the same for all input
data.

: CTR128 6

*
The entire 16 bytes in IV are
the counter and increase by one
for each input word (16-byte).

* All other values are reserved

%unsigned 2 key_length

* Length of the Key

: AES128 0

: AES192 1

: AES256 2
84 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
* All other values are reserved

%unsigned 1 ATIS 0

* ATIS mode

%unsigned 2 Usage

*

2'b00: TS stream
2'b01: M2M stream
2'b10: PVR stream
2'b11: Any

: TS 0

: M2M 1

: PVR 2

: Any 3

$ENDOFINTERFACE

Table 31. AES Parameter Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 85

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
TDES/TDES-1

This block is used to descramble/scramble the input data with TDES.

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, key_address and iv_address.

For ECB and CBC modes, input data size must be a multiple of 8. For OFB and CTR modes, input can be any
number of bytes.

For CTR mode, the last four bytes in IV are the counter and increase by one for each input word (8-byte). The
remainder of the IV (the nonce) is kept same for all input data.

Table 32. TDES Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspTdesParam

%unsigned 3 Mode

* Mode of the Crypto
function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

* All other values are
reserved

%unsigned 2 key_length

* Length of the key

: DES 0

* 64-bit key

: TDES 1

* 192-bit key

: TDES128 2

*
TDES with 128-bit key;
key1 and key3 are the
same

* All other values are
reserved

%unsigned 1 reserved_0

%unsigned 2 Usage

*

2'b00: TS stream
2'b01: M2M stream
2'b10: PVR stream
2'b11: Any

: TS 0

: M2M 1
86 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.7. C2/C2-1

This block is used to descramble/scramble the input data with C2.

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, and iv_address.

The 56-bit C2 key is passed as the IV. Hardware loads it from iv_address. For CBC mode and when
write_back_iv is set, hardware writes the updated 56-bit key back to the iv_address. If the 56-bit key is stored
in the key table, firmware ensures the TspKeyEntry.data_type is set to IV.

Input data size for C2 must be a multiple of 8.

: PVR 2

: Any 3

$ENDOFINTERFACE

Table 33. C2 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspC2Param

%unsigned 1 mode

* Mode of the Crypto
function

: ECB 0

: CBC 1

%unsigned 7 reserved_0

$ENDOFINTERFACE

Table 32. TDES Parameter Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 87

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.8. WMMAC
This block is used to calculate the CBC MAC based on an algorithm defined in Microsoft's Windows Media Digital
Rights Management (WM DRM).

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address,
source_length, destination_address, key_address and iv_address.

The input size must be a multiple of eight. If the load_state in parameter is set to one, hardware initializes the
8-byte state with data in the iv_address; otherwise, it resets the state to zero. After the MAC calculation
finishes, the 8-byte output is saved to the destination_address. If the write_back_iv is set to one, hardware
also saves the output into iv_address. The 48-byte CBC key is loaded from the key_address.

When the command type is set to INVWMMAC, hardware first calculates the partial MAC value of the first
(source_length - 8) bytes in the source buffer, and then uses the partial MAC and the last 8 bytes (full MAC) in
the source buffer to regenerate the last 8 byte of the content. Firmware places the 48-byte MAC key into
key_address and hardware calculates the inverse MAC key.

RC4
This block is used to scramble the input data with RC4. Applicable fields in the Crypto command include type,
write_back_iv, parameter, source_address, source_length, destination_address, key_address, and
iv_address.

The 258-byte RC4 states (256 bytes of S plus two bytes of indexes, i and j) can be generated in two modes. In
the first mode, firmware prepares the RC4 key in key_address and hardware generates the state with KSA. In
this mode, the maximum key length supported is 32 byte. In the second mode, firmware prepares the state in
iv_address and hardware loads it. For both modes, hardware stores the state back to iv_address if
writeback_iv is set to 1.

Table 34. WMMAC Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspWmmacParam

%unsigned 1 load_state

*
0: reset the state to 0
1: load state from iv_address

%unsigned 7 reserved_0

$ENDOFINTERFACE

Table 35. RC4 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspRc4Param

%unsigned 1 init

*

0: load the state from
iv_address
1: load key from key_address
and run KSA to generate the
state

%unsigned 5 key_length
88 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.9. CSS
This block is used to decrypt the stream data in DVD with CSS.

Applicable fields in the Crypto command include type, source_address, source_length,
destination_address, key_address, and key2_address.

Firmware prepares the 5-byte sector key in key_address and the 5-byte title key in key2_address. The
source_address points to the fist byte to be decrypted, not the beginning of a sector.

*

Number of bytes in the key;
0 is mapped to 32;
Valid only when init bit is
one.

%unsigned 2 reserved_0

$ENDOFINTERFACE

Table 35. RC4 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 89

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.2.7.10. HMAC
This block is used to generate message authentication codes following the HMAC(FIPS 198) standard. The hash
kernel support MD5, SHA1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/224, SHA2-512/256.

Applicable fields in the Crypto command include type, parameter, parameter1, source_address, source_length,
destination_address, key_address, key2_address, IV_address.

Parameters in this command are used to define the HASH kernel algorithm type, key length, init, final,
loadContext and hwPadding flag.

While handing huge message, we need split the whole message into several segments and issue several
commands to perform a completed HMAC/HASH calculation. In this case, all those segments can be clarified
into three types, first segment, following segment and final segment. For short message, one first-and-final
segment command can be issued to process whole message.

Following table list the parameter and command settings for all four types of segments.

In the table, key_address should point to 1 to 256 byte space to save keys, which will be used in first segment.
Key2_address should point to a 16 byte space to save the number of total message bits, which will be used for
final segment. Iv_addr should reserve 64 byte space to save hash context. Source_address point to the
message and the message size should be integer times of hash block size (except final segment).

Table 36. HMAC

First

Segment

Following

Segment

Final

Segment

First & Final

Segment

PARAM

Alg valid Valid valid Valid

Init 1 0 0 1

Final 0 1 0 1

LoadContext 0 1 1 0

HWPadding N/A N/A
1: if need HW padding
0: if SW padding

1: if need HW padding
0: if SW padding

KeyLength valid N/A Valid Valid

CMD

Type 17 17 17 17

Write_IV 1 1 N/A N/A

sourceAddr valid Valid valid Valid

InputSize1

1. Input size should be integer times of hash kernel block size.

valid Valid valid Valid

destAddr2

2. destAddr point to the result buffer(16x64=1024bit) to save final result.

valid Valid valid Valid

keyAddr valid N/A Valid Valid

Key2Addr3

3. key2 point to the buffer to save 128bit total message length.

N/A N/A Valid Valid

IVAddr4

4. IV point to the context buffer (8x64=512bit) to save hash context.

valid Valid valid Valid
90 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Table 37. HMAC Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspHmacParam

%unsigned 1 init 0

%unsigned 1 final 0

%unsigned 1 loadContext 0

*

Whether load context
0: not loading context.
HW
1: load context from

%unsigned 1 hwPadding 0

*

HW padding
0: No hardware padding.
SW generate padded
messages
1: HW padding

%unsigned 3 Algorithm 0

* Hash algorithm

: MD5 0

: SHA1 1

: SHA224 2

: SHA256 3

: SHA384 4

: SHA512 5

: SHA512_224 6

: SHA512_256 7

%unsigned 1 hmac 0

* 1: hmac enable
0: hash only

$ENDOFINTERFACE
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 91

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

10.2.7.11. GHASH
This block is used to get GHASH result.

Applicable fields in the crypto command include type, parameter, source_address, source_length,
destination_address, key_address, key2_address and IV_address.

 Xn = GHASH(H, M, Xn-1)

The 128bit H is pointed by key_address. The message M is pointed by source_address, and the size should be
times of 128bit. The M is concatenated by A(additional authenticated data) and C(plaintext or ciphertext). If
length of A or C is not times of 128 bits, please fill 0 to extend them. The source_length should be extended
128bits aligned size. The 128 bit length information {len(A)64, len(C)64}128 is pointed by key2_address. When
the message is split into several packages, 128bit context Xn-1 is pointed by IV_address.

Parameters in this command are used to define first package, last package and byte swapping.

Table 38. HMAC Parameter 1 Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspHmacParam1

%unsigned 8 keyLength 0

*
Key length in byte.
0 mapping to 256

$ENDOFINTERFACE

Table 39. GHASH Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspGhashParam

%unsigned 1 fstpkg 0

%unsigned 1 lstpkg 0

%unsigned 1 swapHash 0

*

%unsigned 1 swapWcntx 0

*

%unsigned 1 swapKey 0

* Hash algorithm

%unsigned 1 swapMessage 0

*

%unsigned 1 swapLen 0

*

%unsigned 1 swapRcntx 0

$ENDOFINTERFACE
92 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.3. Sync Word Detection (SWD)

10.3.1. Operation Model
FIGO firmware sends commands to SWD through the HBO FIFO. Based on the address specified in the
command, SWD loads context data and inputs packet data from DTCM. Context data is concatenated with input
data to form a signal stream. SWD matches the stream with sync word at each byte position. Once it finds a
match, it stops matching and saves the index (offset to the source_address) of the last byte of the sync word
into return FIFO. If no sync word is found in the packet, SWD indicates in the return data that no sync word was
found.

The context_address is used to store the last several bytes in the previous packet. It is required because sync
words may cross two packets. Although context is defined as a four-byte value, hardware needs only the last (n-
1, n = sync word length) bytes for the sync word matching. If the save_context bit in the SWD command is set,
SWD overwrites the context_address with the new context value. If the sync word is found, SWD updates the
last n bytes of context with sync word; otherwise (no sync word found), SWD updates the last (n-1) bytes of
context with the last (n-1) bytes of the input stream (old context plus the input packet). If the input is the first
packet and there is no context, firmware writes a default value into context_address to avoid a false match.

Firmware can use the default sync word ({three bytes of 0x00, 0x00 and 0x01}) or specify another sync word. If
firmware uses a sync word other than default one, it must set the use_specified_sync_word bit in SWD
command to one and write the length of the sync word into the sync_word_length field. Firmware also must
write the value of the sync word into the context area, following the context value. When the specified sync word
is less than four bytes, only the first few bytes are used. For example, if the sync word length is two, hardware
uses bytes zero and one and ignores bytes two and three.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 93

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.3.2. SWD Command Definition
Each SWD command is 64 bits long.

Table 40. SWD Command Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSwdCmd module

%unsigned 7 reserved_0

%unsigned 1 save_context

*

0: don’t overwrite the old
context with the new context.
1: overwrite the old context
with the new context.

%unsigned 1 use_specified_sync_word

*

0: use default sync word
(0x000001) for matching.
1: use sync word specified in
context area for matching.

%unsigned 2 sync_word_length

*

Length of the sync word
Valid only when
use_specified_sync_word is
1.
1: one byte sync word
2: two byte sync word
3: three byte sync word
0: four byte sync word

%unsigned 5 reserved_1

%unsigned 16 context_address

* Address of the context;

%unsigned 16 source_address

* Address of the input data in
byte

%unsigned 16 input_size

*
size of the input data in
byte;
0 is mapped to 65536

$ENDOFINTERFACE
94 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.3.3. SWD Context Definition
Each SWD context is 64 bits long.

Table 41. SWD Context Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSwdCtx module

%unsigned 32 context

* Value of the context

%unsigned 32 sync_word

*

Value of the sync word;
Valid only when
use_specified_sync_word in
TspSwdCmd is one. Valid
length of this field is
defined by
sync_word_length in
TspSwdCmd.
SWD only uses this field
for matching, it does not
change the value of this
field.

$ENDOFINTERFACE
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 95

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
10.3.3.1. SWD Return Definition
SWD will write 64-bit return word to the return FIFO after it finishes the execution of a SWD command.

10.3.3.2. SWD Return Address Mapping
SWD shares the same address mechanism as Crypto engine, except that SWD has no access to the key table.
For more information, see Section 10.2.5.4., Address Mapping.

Table 42. SWD Return Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset -
Access

Array

$INTERFACE TspSwdRtn module

%unsigned 1 syncword_detected

*

0: no syncword is
found in the input
data
1: syncword is found
in the input data

%unsigned 15 reserved_0

* This field will be
filled with all zeros

%unsigned 16 syncword_position

*
Index of the last byte
of the detected sync
word

%unsigned 32 reserved_1

* This field will be
filled with all zeros

$ENDOFINTERFACE
96 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11. Graphics Engine

The Imagination™ graphics processing IP, included within the SL1640 SoC, is defined as a family of high-
performance GPU cores that deliver hardware acceleration for 3D graphics displays for next generation IoT
devices.

The PowerVR™ Series9XEP Bombo core is a reusable IP block designed to bring high quality graphics
acceleration and GPU compute capability to System-on-Chip (SoC) designs for a wide range of target
applications; for example, smart home and appliances, security, streaming, mobile computing and control
systems.

11.1. GPU Features and Supported Standards

11.1.1. GPU Key Features
The PowerVR Series9XEP graphics processors are built around multi-threaded Unified Shading Clusters (USCs)
which feature an ALU architecture with high SIMD efficiency, and support tile-based deferred rendering with
concurrent processing of multiple tiles.

The Bombo core has the following features:
 Base architecture, fully compliant with the following APIs:

○ OpenGL® ES™ 3.2

○ OpenCL™ 1.2EP

○ Vulkan® 1.2

○ Android™ NN HAL
○ Renderscript

 Tile-based deferred rendering architecture for 3D graphics workloads, with concurrent processing of
multiple tiles.

 Programmable high quality image anti-aliasing.
 Fine grain triangle culling.
 Support for DRM security.
 Support for Imagination AI Synergy when paired with an Imagination NNA (Neural Network Accelerator)

core.
 Asynchronous Fast 2D Renders.
 Multi-threaded Unified Shading Cluster (USC) engine incorporating pixel shader, vertex shader and GP-

GPU (compute shader) functionality.
 USC incorporates an ALU architecture with high SIMD efficiency.
 Fully virtualized memory addressing (up to 64 GB address space), supporting unified memory

architecture.
 Fine-grained task switching, workload balancing and power management.
 Advanced DMA driven operation for minimum host CPU interaction.
 System Level Cache (SLC).
 Specialized Texture Cache Unit (TCU).
 Texture compression.
 Lossless data compression (PVRGC)—The PowerVR's geometry compression, which is performed in the

Geometry Processing phase of the 3D graphics workload.
 Lossless and/or visually lossless image compression (PVRIC)—the PowerVR frame buffer compression

and decompression (FBCDC) algorithm.
 Dedicated processor for Series9XEP core firmware execution.

○ Single-threaded firmware processor with a 2KB instruction cache and a 2KB data cache.
 On-Chip Performance, Power, and Statistics Registers.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 97

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.1.2. Unified Shading Cluster Features
 Number of ALU pipelines: 2.
 8 parallel instances per clock.
 Local data, texture and instruction caches.
 Variable length instruction set encoding.
 Full support for OpenCL™ atomic operations.
 Scalar and vector SIMD execution model.
 USC F16 Sum-of-Products Multiply-Add (SOPMAD) Arithmetic Logic Unit (ALU).
 Support for F16 data type in complex ALU.
 Complex and trigonometric instructions co-issued with F32/F16 instructions.

11.1.3. 3D Graphics Features
 Rasterization

○ Deferred Pixel Shading.
○ On-chip tile floating point depth buffer.
○ 8-bit stencil with on-chip tile stencil buffer.
○ Maximum tiles in flight (per ISP): 2.
○ 16 parallel depth/stencil tests per clock.
○ 1 fixed-function rasterization pipeline(s).

 Texture Lookups
○ Load from source instruction support.
○ Texture writes enabled through the Texture Processing Unit.

 Filtering
○ Point, bilinear and tri-linear filtering.
○ Anisotropic filtering.
○ Corner filtering support for Cube Environment Mapped textures and filtering across faces.

 Texture Formats
○ PVRTC I and II compressed texture formats.
○ ASTC LDR compressed texture format support.
○ PVRIC lossless and/or lossy compression format support for non-compressed textures and YUV

textures.
○ ETC
○ YUV planar support.
○ 10-bit sRGB and YUV format support.

 Resolution Support
○ Frame buffer max size = 4K × 4K
○ Texture max size = 4K × 4K.

 Anti-aliasing
○ Maximum 4× multi-sampling.

 Primitive Assembly
○ Early hidden object removal.
○ Vertex compression.
○ Tile acceleration.
98 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
 Render to Buffers
○ Twiddled format support
○ Multiple on-chip render targets (MRT)
○ Lossless and/or lossy Frame Buffer Compression (and Decompression)
○ Programmable Geometry Shader Support
○ Direct Geometry Stream Out (Transform Feedback)

11.1.4. Compute Features
 1, 2, and 3-dimensional compute primitives.
 Block DMA to/from USC Common Store (for local data).
 Per task input data DMA (to USC Unified Store).
 Conditional execution.
 Execution fences.

11.1.5. FBCDC Features
 Frame Buffer Compression/Decompression (FBCDC) version 4.
 Additional Frame Buffer Compressor Tile Type of 32 x2 pixels (strided, and 24bpp or more only

supported).
 Per 8 bits lossless, non-expanding, linear wavelet transformation and selective entropy encoding.
 Throughput up to 4 pixels of 4 × 8 bits each per clock (4 pixels × 4 channels × 8 bits)
 No increase in data size.
 Data is grouped in 8 × 8 compression tiles
 Per texel, channel/component data decorrelation when appropriate. (e.g.: RCT decorrelation for RGB8

data).
 Formats: 1, 2, or 4 channels of U8, U16, U32, F16, or F32 (up to 4 components).
 Per plane YUV planar (2 or 3 plane) video compression.
 Selective compression: No compression for data components known to be noisy.
 Entropy encoding using Exponential-Golomb code of order 0.
 Similar method for compression and decompression.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 99

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.2. GPU Integration Overview
Figure 26 shows the view of Bombo core in the Synaptics SoC. The Bombo (GPU) core and Host CPU work
together to process the various workloads that are supported by the Bombo core, while the Bombo core needs
access to a memory subsystem to fetch commands and data.

The SoC interconnect, or bus fabric, as shown in the Figure 26, consists of two key buses:
 Memory interconnect to allow the SoC modules access to system memory (for example, SDRAM,

FLASH, and so on) via the memory controller.
 System bus to allow a host CPU to access configuration/status registers of various target IPs in the

SoC, such as the Bombo core.

Figure 26. Bombo core in SoC

AXI BUS(128bit)

GPU CPU

Memory Controller

AHB BUS(32bit)

ahb2axi

SOC
100 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.3. GPU Bus Interface
This section describes the bus interface groups for an AXI bus protocol configured Bombo core. There are two
bus interface groups in the Bombo design, the system bus interface and the memory bus interface. Each group
is independent of the other in terms of the bus width and how they can operate.

11.3.1. AXI Host Interface
This is an AXI host interface (AXI MEMIF). It consists of a single channel denoted as 0. A channel is a 128-bit
wide port and is used to read and write the memory data from/to memory. The mapping of physical addresses
generated from the core to the port is configurable according to Bombo configuration registers.

Table 43. Features of GPU AXI Host Interface

Feature Characteristic

Number of memory interfaces 1

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock mem_clk

AXI type ACE Lite

Host or Target Host

Burst attribute
Max Burst: 4 beats
Incrementing (wrapped burst type is not supported)

Burst size
128
Total max burst is 64 bytes which equals:
128 bits * 4(burst size * burst length)

Address bus width 32 bits

Data bus width 128 bits

Tag ID width 6 bits

Number of IDs 26

Max number of outstanding reads 64

Max number of outstanding writes 64

Combined number of outstanding reads and writes
128 combined read and write transactions.
The total number of outstanding tag IDs can be any mix of read
and write at any one time.

Interleaving Write Interleaving is not supported

Sideband signals
AXI_ARUSER_MEMIF: internal tag id (read)
AXI_AWUSER_MEMIF: internal tag id (write)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 101

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.3.2. AXI SoC Interface
The SoC Interface (SOCIF) is an AXI Target interface. This interface is used to access the Bombo control
registers. It is a fixed 32-bit data interface.

The SOCIF interface tag width is configurable and specified by the generic AXI_SOCIF_TAG_WIDTH.

The interface supports write byte masking and the byte mask does not apply to read accesses. This is so that
only writes which the driver intends to make into the device are observed irrespective of the bus width. Fully
masked writes to the SoC Interface are supported.

Table 44. Features of GPU AXI SoC Interface

Feature Characteristic

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock sys_clk

AXI type AXI3

Host or Target Target

Burst attribute Bursts are not supported on the SOCIF

Address bus width 32 bits

Data bus width 32 bits

Tag ID width 10 bits

Number of IDs 210

Max number of outstanding reads 4

Max number of outstanding writes 4

Interleaving Write Interleaving is not supported

Sideband signal N/A

Burst cross 4KB boundary Not supported

Unaligned transfer support Not supported
102 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.4. Performance Characteristics
The performance characteristics of the Bombo core are theoretical maximum performance with the architecture
running at 100% efficiency.

Table 45. GPU Core Performance Characteristics

Feature Performance

Floating Point Operations (F32) 32 operations per clock

Floating Point Operations (F16) 64 operations per clock

Integer Operations 16 operations per clock

Geometry Performance 0.25 poly per clock

Texture performance 2 texels per clock (@32 BPP)

Pixel performance 2 pixel(s) per clock (@32 BPP)

Maximum memory latency tolerance 200 core clock cycles
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 103

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.5. GPU Architecture Overview
Figure 27 shows the key modules of the GPU core.

The PowerVR Bombo core processes a number of different workload types concurrently, namely:
 3D Graphics Workload, which involves processing vertex data and pixel data for rendering of 3D

scenes.
 Compute Workload (GP-GPU), which involves general purpose data processing.
 2D Workload, which involves processing of pixel data for rendering 2D objects. The 2D workload is

structured as a series of 2D render packets by the driver, and these are known as blits.

Note that for the Bombo core the Compute Workload cannot run concurrently with any other workload. The 2D
workload can run concurrently with the 3D workload.

3D graphics workloads are generally composed of vertex and pixel processing. The PowerVR Series9XEP
architecture is based on tile-based deferred rendering and processes data in 2 phases. The first of these
phases is the Geometry Processing Phase which involves vertex operations such as transformation and vertex
lighting, as well as dividing a 3D scene into tiles. The next phase which involves pixel operations such as
rasterization, texturing and shading of pixels, is referred to as the Fragment Processing Phase in the PowerVR
Series9XEP architecture.

The Series9XEP architecture utilizes both programmable and fixed function pipelines to perform the various
processing tasks required in the different types of workloads.

Figure 27. GPU High-Level Architecture

MTS

MIPS

SOCIF

SLC MMUIMG to
AXI nIMG to

AXI 0
FBDC/FBC

SLC_ SIDEKICK MH_SLC_ SYSARB_ WRAP
MH_ SYSARB

MH_RC

RASCAL

RASTERIZATION

TA

FB_CDC_
RASCAL_ARB

HUB_ BIFPMACHE
BIFPMCACHE

HUB

DUSTa

USC0 TPU_ MCU_L0

TPU2

Host Interface Memory Interface
104 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
For performance scalability and power management purposes the PowerVR Series9XEP architecture is
partitioned into various top-level blocks: SLC_SIDEKICK, RASCAL, and one or more DUSTs.

 SLC_SIDEKICK

This top-level block contains the firmware execution and high-level scheduling block, the MIPS micro-
controller. The Memory Management Unit (MMU) and the SoC Interface (SOCIF) relate to memory
access and SoC interfacing.

The System Level Cache (SLC) provides caching of all types of workload data, and converts sequences
of memory requests from the various requesters in the Bombo core into external memory transactions.

The SYSARB arbitrates between MIPS and SLC for access to the memory interface.

 RASCAL

This top-level block contains the fixed function units used by the Geometry Processing Phase. These
include the Unified Vertex Store (UVS) which stores the vertices processed by the USCs in the Geometry
Processing Phase, and the Tile Accelerator (TA) unit, which performs clipping, culling and generation of
tiles.

To support the Fragment Processing Phase, the fixed function units, such as the Image Synthesis
Processor (ISP) for hidden surface removal, Texture Shading Processor (TSP) for fetching the required
data to enable pixel shading on the USCs, and the Pixel Back End (PBE) for transferring pixels to the
frame buffer, are located in this top-level block.

The Parameter Management (PM) block is responsible for allocation and deallocation of memory
required to hold tile related data structures (parameters) generated by the Geometry Processing Phase,
which are then processed in the Fragment Processing Phase.

The Programmable Data Sequencer (PDS) controls the scheduling of USC tasks for 3D graphics and
compute workloads. It selects among the various tasks from the relevant data hosts, which include the
Vertex Data Host (VDH), the Pixel Data Host (PDH) and the Compute Data Host (CDH).

These data hosts are primarily responsible for fetching the tasks from memory for the 3D graphics and
compute workloads.

This block also contains the 2D Data Host (TDM) which is used to support asynchronous processing of
fast 2D renders.

Various infrastructure related units including the Texture Cache Unit (TCU), the USC Instruction Cache,
and the MH_RC, which consists of the Request Arbiter (REQARB) and the Core Arbiter (COREARB), are
located in this top-level block.

 DUST

This block contains the main programmable processing elements of the PowerVR Series9XEP
architecture called the Unified Shading Clusters (USCs).

A USC is a multi-threaded programmable SIMD processor, which can simultaneously process pixel
shader, vertex shader, and compute shader tasks.

The TPU is used for addressing textures in memory and applying filtering on the texture data fetched.

There is a specialized L0 cache, which is utilized by the USC and TPU.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 105

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.5.1. 3D Graphics Workload Outline
An outline of the Bombo architecture units involved with the 3D graphics workload is shown in Table 4, along
with the associated 3D graphics operations.

Table 46. 3D Graphics Workload Outline

Host
Application initiates a render.

Vertex Processing

Client Driver writes 3D control stream to system memory and kicks the GPU.

Geometry
Processing

Phase

The firmware processor sets up the GPU and initiates the Geometry Processing
Phase.

VDM, Vertex Data Host, fetches geometry and forwards to Programmable Data
Sequencer.

PDS, Programmable Data Sequencer, creates “vertex tasks” and forwards to
USCs.

USCs, Unified Shading Clusters, process geometry and forwards transformed
data to the Geometry Processing Pipeline and Tiling Engine

GPP and TE, Geometry Processing Pipeline and Tiling Engine, groups the
transformed-geometry into tiles and writes to a parameter buffer in system
memory.

Tile Processing

Fragment
Processing

Phase

The firmware processor initiates the Fragment Processing Phase.

Hidden Surface

Removal and Depth/
Z Tests

PDM, Pixel Data Host, fetches tiles from the Parameter Buffer one-by-one.

ISP, Image Synthesis Processor, determines which fragments are visible in a tile.

TSP, Texture and Shading Processor, reads the vertex data for triangles which
are still visible via the Texture and Shading Parameter Fetch (TPF) and forwards
to Texturing and Shading FPU (TFPU). The TFPU provides plane equations to the
USC so that per pixel colors and texture coordinates may be delivered to the
texture pipeline.

PDS, Programmable Data Sequencer, creates pixel tasks and forwards to USC.

Fragment ProcessingUSC, Unified Shading Cluster, processes fragments and forwards final pixel
values to PBE.

PBE, Pixel Back End, buffers all rendered data for a tile – writes a complete tile's
worth of data to memory.

Pixel Processing
106 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.5.2. Compute Workload Outline
An outline of the Bombo architecture units involved with the compute workload is shown in Table 47.

Table 47. Compute Workload Outline

Host

Application initiates an enqueue Kernel.

Compute driver writes kernel enqueue parameters to system memory and kicks the GPU.

Compute
Workload

The firmware processor sets up the GPU and initiates the compute processing.

CDM, Compute Data Host, fetches parameter data, generates multiple kernel instances and forwards to
PDS.

PDS, Programmable Data Sequencer, groups kernel instances into compute tasks and forwards to
available USCs.

USCs, Unified Shading Clusters, execute the tasks, writing results of computation to system memory.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 107

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
11.6. GPU Control Streams
One of the key concepts for controlling the Series9XEP core is control streams. Control streams are structures of
control data stored in memory. There are essentially two types of control streams; workload control streams and
internal control streams.

Control streams are stored in system memory that is shared between the host system and the Bombo core.
Further control of the Series9XEP core is provided through the use of control registers.

11.6.1. Workload Control Streams
Series9XEP workload processing is controlled through the use of a control stream which is stored in system
memory. At initiation of a workload, the Series9XEP device driver creates a series of data blocks in memory for
that workload, which contains information, such as state data, triangle index lists, vertices, shader constants
and instruction code. The workload control streams are also used when resuming from a context switch.

A particular set of control streams is used for each type of workload.

Workload control data is split into sections, where each section has a header which describes the type and
format of the data which follows. In its simplest form, the structure of the input format consists of a stream of
words; a Block Header followed by Block Data as shown in Figure 28.

11.6.2. Internal Control Streams
Different parts of the Series9XEP core also communicate with each other using internal control streams.

The Parameter Buffer, for example, is in system memory, and contains the intermediate 3D Display List
Structure, which is the data used for communication between the Geometry Processing Phase and Fragment
Processing Phase of a 3D workload.

Figure 28. Example Workload Control Stream

Block Header

Block Data

...

...

Block Header

Block Data

...

...

...

...
108 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
12. Neural Network Engine

The SL1640 integrates a Neural Processing Unit (NPU) based on intellectual property (IP) cores from
VeriSilicon™, designed to accelerate artificial intelligence and machine learning applications. This section
provides an overview of the features and capabilities of the NPU. For further details of the IP core and
architecture, please contact VeriSilicon.

12.1. Overview
The NPU in the Synaptics Astra SL1640 utilizes IP from VeriSilicon, with the following primary configuration:

 4NN core with 768 INT8 MACs
 6 TPs
 1M SRAM

The main functional blocks of the NPU are described as follows:
 Host Interface—Allows the NPU to communicate with external memory and the CPU through the AXI or

AHB bus. In this block data crosses clock domain boundaries.
 Memory Controller—An internal memory management unit that controls the block-to-host memory

request interface.
 Power Management—Provides top level controls for clock gating and power management.
 Vision Front End Inserts high level primitives and commands into the vision pipeline.
 Neural Network Core—Provides parallel convolution MAC for recognition functions using integer

operations.
 Tensor Processing Fabric—Provides data preprocessing and supports compression and pruning for

multi-dimensional array processing for Neural Nets.
 Compute Unit—SIMD processor programmable execution unit that perform as a Compute Unit for

OpenCL. The NPU IP has 1 vec4 Parallel Processor Unit which also acts as 4 Processing Elements for
OpenCL.

 Vision Engine—Provides advanced image processing functions. For example, in one cycle, the Vision
Engine can perform one MUL/ADD instruction or a dot product of two 16-component values.

 Universal Storage Cache—Cache shared between the Vision Front End and the Parallel Processing Unit.
A portion of this cache can be locked to stay on-chip.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 109

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

12.2. Interface
Table 48. Interface

Feature VIP Support

AHB interface 32-bit

AXI interface 1 128-bit AXI / ACE-Lite interfaces for external memory access

Virtual memory support Yes

Code and data memory location
restrictions

Unrestricted; arbitrary memory reads and writes

Physical address 32 bits

Secure Memory Management Yes, TrustZone

Resource locks with CPU Semaphore lock

Latency Hiding 256 VIP cycles

Figure 29. NPU block diagram

Compute Modules

VIVANTE VIPNanoS

Host Interface Memory Controller

AHB AXI

Vision Front End & Scheduler

Universal Storage Cache

Programmable Engine Unit Neural Network Engine

Compute Unit (CL Instructions)

Vision Engine
(EVIS Instructions)

Tensor Processing Fabric

Neural Network Core

Processing Element Processing Element

Processing Element Processing Element

System Bus

In
te

rn
al

 B
us

Compute Pipeline
110 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13. Video Post Processing (VPP)

13.1. Overview
The VPP (video post processing) module in SL1640 device loads up to 2 planes of video or graphics data from
DRAM frame buffers at the desired refresh rate, converts various input format/resolution into target format and
resolution, position and finally blends the associated planes to form following video outputs:

 HDMI TX output - up to UHD(3840x2160) resolution @ maximum refresh rate of 60P over HDMI
Transmitter

 MIPI TX output - up to FHD(1920x1080) resolution @ maximum refresh rate of 60P over MIPI-DSI
Transmitter

 Supports 12bpc video processing pipe
 Supports SDR to HDR conversion and vice-versa
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 111

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

ane, there is one SRAM-based anti-jitter
red for different applications through

OP HDMITX / MIPITX
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 112

Figure 30 illustrates the VPP pipe-line structure in SL1640.

The video post processing engine in SL1640 has the following stages:
 Data loading
 Format conversion
 Scaling
 Blending
 Output

In the data loading stage (dHub1), video and graphics data are loaded from DRAM buffers. For each of the input pl
buffer to tolerate the DRAM bandwidth fluctuations. The allocation of the SRAM between planes can be re-configu
software programming.

1. Data Streaming Hub (dHub) is the multi-channel DMA Engine of SL1640.
BPC is Bits Per Component
BPP is Bits Per Pixel
MFR is Maximum Frame Rate

Figure 30. High-level Block Diagram of the SL1640 VPP Engine

OffLine DownScale/OVP
(vScalar)

Main Plane
(vScalar, DVEDR, vDCM, CMU)

GFX1 Plane
(gScalar, DVCVM, gDCM)

D
D

R

O
V

E
R

LA
Y V

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The VPP supports four plane inputs with format support as shown in Table 49.

SL1640 has three scalars in the scaling stage—the Main video (1d-Scalar), Offline/OVP pipe (1d-Scalar), and
Graphics (Graphics Scalar) planes can be scaled before they are selected for blending (blending stage).

In the blending stage, the main blender (CPCB0) can select any of the 2 input planes and blend them into one
output (PROG0). The Z-order of the blending is completely programmable through the layer-to-plane selection
inside the blenders.

In the output stage, the output of main blenders (CPCB0) can be directed to HDMI or MIPI transmitter output
port.

The VPP supports the following video output interfaces:
 HDMI compliant, supports 480i/p, 576i/p, 720p, 1080i/p, 3840x2160p (4K60p)
 MIPI DSI compliant, supports up to 1920x1080p (2K60p)

Table 49. VPP Supported Plane Inputs with Format Support

Plane Input Data Format BPC BPP Resolution MFR

Main Video

YUV444-Pack DWA 10 30 4K 60P

YUV422-SP DWA 10 20 4K 60P

YUV420-SP DWA 10 20 4K 60P

ARGB8888 8 32 4K 60P

ARGB2101010 — 32 4K 60P

YUV/IPT 4:2:0
(Tiled420SP-Progressive)

8, 10 12, 16 4K 60P

YUV/IPT 4:2:0 (420SP) 8, 10 12, 15 4K 60P

GFX1 (Graphics)

CLUT8 — 8 4K 60P

ARGB8888 8 32 4K 60P

RGB565 — 16 4K 60P

ARGB1555 — 16 4K 60P

ARGB4444 — 16 4K 60P

ARGB2101010 — 32 4K 60P

ARGB8332 — 16 4K 60P

RGB888 8 24 4K 60P
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 113

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2. VPP Functional Description
This section describes all the functions of VPP in detail.

13.2.1. Main Video Plane

13.2.1.1. Feature List
 Input format

○ YUV(IPT)420 semi-planar raster scan 8/10-bit
○ YUV(IPT)420 semi-planar tiled 8/10-bit
○ YUV444-Pack DWA 10-bit
○ YUV422-SP DWA 10-bit
○ YUV420-SP DWA 10-bit
○ ARGB8888/ARGB2101010

 Rotation, Flip support:

 1D Scalar
○ Input format

 YUV444 12bit for SDR video path
 IPT444 12bit for EDR video path

○ Supports inline upscale
○ Supports inline/offline downscale

 Conversion between HDR and SDR: Various conversion between SDR and HDR is supported as shown
in Table 50

Plane Input Data Format 90,180, 270 Degree Rotation

H-Flip

V-Flip

HV-Flip

Main Video

YUV444-Pack DWA 10-bit
YUV422-SP DWA 10-bit
YUV420-SP DWA 10-bit
ARGB8888/ARGB2101010

No Yes

Main Video
YUV/IPT 4:2:0 (Tiled420SP) Only for V4H6, V4H8 formats Yes

YUV/IPT 4:2:0 (420SP-Progressive) No Yes
114 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

13.2.2. Graphics Planes

13.2.2.1. Feature List
 One plane
 Graphic input formats - ARGB32 or ARGB32 with alpha-pre-multiplied, RGB565, ARGB1555,

ARGB4444, ARGB2101010, ARGB8332, CLUT8 and RGB888
○ Up to 1920x1080 - when vertical scaling is enabled
○ Up to 3840x2160 when vertical scaling is disabled (horizontal-only scaling or bypass)

 GFX Scalar
○ 4 channels for A, R, G and B
○ Up to 1920x1080 - when vertical scaling is enabled
○ Up to 3840x2160 when vertical scaling is disabled (horizontal-only scaling or bypass)
○ Upscale Mode -

 Maximum input resolution: 1920x1080
 Maximum output resolution: 3840x2160

○ DownScale Mode
 Maximum input resolution:1920x2160
 Maximum output resolution: 1920x2160

○ Horizontal-only upscale mode
 Maximum input resolution: 3840x2160
 Maximum output resolution: 3840x2160

○ Horizontal-only downscale mode
 Maximum input resolution: 3840x2160
 Maximum output resolution: 3840x2160

○ Bypass (no scaling) mode
 Maximum input/output resolution: 3840x2160
 Performance: one pixel per cycle

 Rotation Support:

Table 50. HDR and SDR Conversions

SDR HDR10 HLG

SDR N/A Yes Yes

HDR10 Yes N/A Yes

HLG Yes Yes N/A

Plane Input Data Format 90,180, 270 Degree Rotation

H-Flip

V-Flip

HV-Flip

GFX1 (Graphics)

ARGB8888, RGB565,
ARGB1555, ARGB4444,
ARGB2101010, ARGB8332,
RGB888, CLUT8

No Yes
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 115

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2.3. 1D Scaler (Video Scalar)
The main features of the 1D Scaler include:

 Scaling the input frame to fit the display resolution or the user-specified resolution.
○ Interpolation, Reduction, 1:1
○ Supports video scaling.
○ Independent horizontal and vertical scaling ratios.

 Non-linear 3 zones scaling for preserving aspect ratio.
 Main scaler can convert progressive input to interlace output. For interlace output, scaler's vertical

initial phase and vertical tap offset needs to be firmware programmed per frame (even and odd frames)
based on input and output resolution.

 Main Video Plane
○ I/O Format

 YUV444, 12b'YUV444, 12b
 IPT444, 12b'IPT444, 12b

○ 1-D upscale
 Input up to 3840x2160
 Maximum output 3840x2160
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1920
 6 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1920
 32 phases

○ 1-D downscale
 Input up to 3840x2160
 Minimum output 640x480
 3 to 6 vertical taps; 5 to 8 horizontal taps
 32 phases

○ Offline support

The scaler loads the data from Format Conversion stage and outputs the scaled data to Blending stage directly.
116 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2.4. Graphics Scalar
The main features of the Scaler include:

 General
○ 4 channels for A, R, G and B
○ alpha-pre-multiplied format is scaled as-is
○ 32 phases, with 10-bit coefficients (including sign bit)
○ coefficients stored in register file (48x80b)
○ Interpolation, Reduction, 1:1
○ Progressive input to Progressive/Interlaced output.
○ Independent horizontal and vertical scaling ratios.
○ 8-tap horizontal filter

 Non-linear 3 zones scaling for preserving aspect ratio.
 Upscale mode

○ Maximum input resolution: 1920x2160
○ Maximum output resolution: 3840x2160
○ Up-scale ratio: 1-to-1 to 1-to-6
○ 4-tap vertical filter for input width <=1440
○ 3-tap vertical filter for input width > 1440

 Downscale mode
○ Maximum input resolution: 1920x2160
○ Maximum output resolution: 1920x2160
○ Down-scale ratio: 1-to-1 to 6-to-1
○ 4-tap vertical filter

 Horizontal-only upscale mode
○ Maximum input resolution: 3840x2160
○ Maximum output resolution: 3840x2160
○ Up-scale ratio: 1-to-1 to 1-to-64

 Horizontal-only downscale mode
○ Maximum input resolution:3840x2160
○ Maximum output resolution:3840x2160
○ Down-scale ratio: 1-to-1 to 64-to-1

 Bypass (no scaling) mode
○ Maximum input/output resolution:3840x2160
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 117

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2.5. Offline Downscale/OVP Scalar
The main features of the Scaler include:

 Used for transcoding or MP display
 Combined with YUV420/422/444 format conversion
 I/O Format

○ YUV420, 8/10b -> YUV420, 8/10/12b
○ YUV422, 8/10b -> YUV420/422, 8/10/12b
○ YUV444, 8/10b -> YUV420/422/444, 8/10/12b

 1-D upscale
○ Input up to 3840x2160
○ Maximum output 3840x2160
○ 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
○ 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
○ 32 phases

 1-D downscale
○ Input up to 3840x2160
○ Minimum output 640x480
○ Maximum output 1920x1080
○ 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
○ 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
○ 32 phases
118 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2.6. CPCB (Overlay and Timing Generator)
The CPCB module mix video and graphics sources into a single image, and output that image according to the
timing generator generated timings. The timing generator generates the video format timing reference signals
to request pixel data from the processing pipeline and send to the output port

CPCB has its own Timing Generator (TG). The Timing Generator module provides all other modules inside that
CPCB with timing reference signals. The basic TG registers that control the generated video format timing are:

 VTOTAL: Total vertical lines including blank lines
 HTOTAL: Total horizontal pixels per line including blank pixels
 HSYNC_START: Position where horizontal sync is activated with in a line in terms of pixel clocks
 HSYNC_END: Position where horizontal sync is de-activated with in a line in terms of pixel clocks
 VSYNC_START: Position where vertical sync is activated with in a frame in terms of lines
 VSYNC_END: Position where vertical sync is de-activated with in a frame in terms of lines

Apart from the output timing, each plane has its own set of registers to specify the position and size within the
total display canvas defined by the PL-8 registers in CPCB0:

 PL_X_start: Horizontal start position of the plane in terms of pixels
 PL_X_end: Horizontal end position of the plane in terms of pixels
 PL_Y_start: Vertical start position of the plane in terms of lines
 PL_Y_end: Vertical end position of the plane in terms of lines

13.2.6.1. CPCB0 OSD Overlay
The following are the main features of CPCB0 overlay engine of SL1640:

 Can overlay up to 2 input planes (1 video plane and 1 graphic plane): pl-1 (Main video), pl-3 (GFX1)
 Each input plane can be of any size
 Each input plane can be put in any location
 For graphic planes, programmable to take alpha from input (per pixel alpha) or from a programmable

register (global alpha). For video planes, alpha is programmable from register (global alpha).
 Option to invert the usage of alpha.
 Supports border plane for each input plane: Each input plane has an associated border plane with solid

color. The input plane is always above its border plane. The pixel data from input plane and the
respective boarder plane are multiplexed before send to OSD Overlay (OO). The global Alpha value for
boarder plane can be different from the input plane Alpha.

 Supports cropping for pl-1 (Main video), pl-3 (GFX1) before blending
 Overlay happens in IPT/RGB domain.
 Programmable mapping from plane to overlay layers to facilitate flexible Z-order (order of blending).
 Support alpha-pre-multiplied format
 Alpha-PreMultiplied input format support
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 119

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 31 is a detailed block diagram of the CPCB0 which consists of CSC in Main Video Plane and OSD overlay
(OO).

Figure 31. Detailed Block Diagram of CPCB0

pl-3
(GFX-1)

pl-1

O
ve

rla
y

 (R
G

B
44

4
12

-b
it)

pl-3

Timing Generator (CPCB-TG)

idat0

oreq0

idat3

oreq3

pl-1
(Main Pl)

U
F

P
R
O
T
E
C
T
I
O
N

F
I
F
OCG11

clk

en11

CSC

CG10

clk

en10
120 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The final mixing of the main video and Gfx1 planes are done at OSD overlay block. Figure 32 illustrates the
details of the basic overlay function (OSD Overlay - OO) that is used by CPCB0.

In Figure 32, multiplexer between video and their respective border planes indicate simple data selection
between these planes without blending. The “Alpha Blender” module of OSD Overlay implements the following
equation for alpha-blending. In the equations below, FGP is fore-ground plane and BGP is back-ground plane
participating in the blending function:

Normal Mode operation:

Alpha Blender Output = alpha * FGP + (1 – alpha) * BGP (normal alpha sense)

 alpha * BGP + (1 – alpha) * FGP (inverted alpha sense)

Alpha pre-multiplied operation: This mode of overlay is used when graphic pixels are pre-multiplied with alpha
(in normal alpha case) and 1-alpha (in inverted alpha case).

Alpha Blender Output = FGP + (1-alpha) * BGP (normal alpha sense)

 FGP + alpha * BGP (inverted alpha sense)

Figure 32. Block Diagram of Overlay Engine which is part of CPCB0

pl-1

pl-5

pl-3

pl-7

pl-0

pl-4

layer-1

layer-0
Alpha

Blender
Alpha

Blender

layer-3
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 121

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Table 51 describes the source of different CPCB0 planes.

The order-of-overlay (Z-order) is completely programmable through the layer selection. Layer1 is the bottom-
most layer (above layer0 which is the base-plane), and layer3 is the top-most layer. There is a 3-bit select control
provided for each of the 3 layers (layer1 to layer3). Any of the input planes can go to any of the layers. For
example, the following shows one kind of Z-order:

 Layer1: pl-3 (Gfx1)
 Layer2: pl-1 (Main)

There is a restriction of the input layer selections and plane routings for CPCBs: When one layer on CPCB is not
used, it needs to be disabled by setting the layer control register to 7.

Table 51. Source of Different CPCB0 Planes

CPCB0 Plane Description Source

pl-0 Base plane Solid color from Register

pl-1 Main From video processing pipe

pl-3 Gfx1 From video processing pipe

pl-4 Border for pl-0 (overall display canvas) Solid color from Register

pl-5 Border for pl-1 Solid color from Register

pl-7 Border for pl-3 Solid color from Register
122 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.2.7. 3D-HDMI Formatter

13.2.7.1. Feature List
 Supports 3D progressive, interlaced format.
 Supports the following 3D formats:

○ Frame packing for progressive (HDMI 3D format).
○ Frame packing for interlaced (HDMI 3D format).
○ Field Alternative for interlaced (HDMI 3D format).

13.2.8. Video Output Stage (VOP)

13.2.8.1. Feature List
 Input from overlay is IPT/RGB444 12-bit
 TG is put after underflow-protection FIFO
 Color space conversion to support YUV format
 Down sampler to support YUV422 and YUV420
 Dither to support 8/10bpc
 HDMITX support for 640x480p, 720x480p, 720x576p, 3840x2160, 1080p, 1080i, 720p
 MIPITX support for 640x480p, 720x480p, 720x576p, 1080p, 720p
 DV EDR over HDMI for DV capable sink

○ Pixel format is YUV(IPT)422 12bit
○ metaData is carried using one or more packets, each packet containing 128 bytes
○ Bit scrambling with luma/chroma data
○ metaData is transmitted bit-by-bit onto the LSB of each 12-bit Chroma sample

 DV EDR over HDMI for HDR10/SDR sink
○ Pixel format is YUV422/YUV444 8/10-bit after DV dithering
○ DV metaData over HDMI

 Interlaced output support
○ No H/W interlacer
○ Software programs scalars to make the output height half of the input height; for 1080i, scalar

output will be 1920x540
○ Software needs to adjust the initial phase for top and bottom fields differently

 VOP output can be input to HDMI-TX or MIPI-TX only one at a time
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 123

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.3. HDMI Transmitter
HDMI Tx supports the following features:

 Video formats:
○ All CEA-861-E video formats up to 1080p at 60 Hz and 720p/1080i at 120 Hz
○ Optional HDMI 1.4b video formats: (configuration dependent)

 All CEA-861-E video formats up to 1080p at 120 Hz
 HDMI 1.4b 4K x 2K video formats
 HDMI 1.4b 3D video modes with up to 340 MHz (TMDS clock)

○ Optional HDMI 2.0 video formats: (configuration dependent)
 All CEA-861-E video formats
 Dynamic Range and Mastering Infoframe (DRM, packet header 0x87)

 Colorimetry:
○ 24/30/36-bit RGB 4:4:4
○ 24/30/36-bit YCBCR 4:4:4
○ 16/20/24-bit YCBCR 4:2:2
○ 24/30/36-bit YCBCR 4:2:0

 Optional HDMI 1.4b supported Infoframes:
○ Audio InfoFrame packet extension to support LFE playback level information
○ AVI InfoFrame packet extension to support YCBCR Quantization range (Limited Range, Full Range)
○ AVI InfoFrame packet extension to support Content type (Graphics, Photo, Cinema, Game)
○ NTSC VBI InfoFrame packet extension to support the carriage of SCTE 127 [29] payloads

containing VBI data
 Audio formats:

○ I2S
 Up to 192 kHz IEC60958 audio sampling rate

○ For IEC61937 compressed audio
 HDMI 2.0b: up to 1536 kHz
 HDMI 1.4b: Up to 768 kHz

 Pixel clock from 25MHz up to 600 MHz
 Option to remove pixel repetition clock (prepclk) from HDMI Tx interface for an easy integration with

third-party HDMI Tx PHYs
 Flexible synchronous enable per clock domain to set functional power down modes
 I2C DDC, EDID block read mode
 SCDC I2C DDC access
 TMDS Scrambler to enable support for 2160p@60Hz with RGB/YCBCR 4:4:4 or YCBCR 4:2:2
 YCBCR 4:2:0 support to enable 2160p@60Hz at lower HDMI link speeds
 Support for HDR10+, Dynamic HDR Metadata
124 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.4. HDCP
 HDCP Compliance

○ 1.4
 According to HDMI 2.1 Specification, support to this HDCP encryption/decryption method is

not possible.
 For HDMI 2.0 and lower version specifications, HDCP 1.4 content protection engine can be

optionally configured as HDMI Repeater, supporting one or more downstream devices.
○ 2.x

 HDCP 2 Embedded Security Module IP interfaces with the HDMI-Rx Controller.
 Support HDMI streams up to 48Gbps (maximum data cipher throughput of 42.7Gbps for HDMI

operation).
 Transmitter support.

○ For more information, you can find the specifications on the HDMI.org website.

13.5. Offline Downscale/OVP Pipe

13.5.1. Feature List
 Serve as input pipe for offline scalar, optional OVP pipe for optional memory to memory scaling and test

path for HDMI-Tx
 Input resolution up to 3840x2160@60Hz
 Data format in DDR is YUV(IPT)422-pack 8/10-bit, YUV(IPT)420-SP 8/10/16-bit, YUV444-Pack 8/10-bit

13.6. Pipeline Control
This section describes a few important aspects related to VPP such as DRAM Interface, VBI programming,
Interrupts, and so on.

13.6.1. Register Interface
All the VPP registers are accessible from CPU through internal AHB bus on 32bit boundary. It takes up 128KB
address space in total.

In some applications (for example, a smooth scaling effect coupled with synchronized graphics overlay
animation), a large number of VPP register needs to be reprogrammed during the video blank time. In order to
achieve this without heavy loading on CPU interrupt routine, SL1640 has a DMA-channel to program the VPP
related registers. It helps to program the registers at the maximum speed. To use this feature, CPU prepares the
register programming data in DRAM (address, data pairs) and then kick off the DMA programming channel
during video blanking interval so that VPP registers are programmed in a seamless way without disturbing the
output.

13.6.2. DRAM Interface
VPP loads all frame data from DRAM. For HDMITX/MIPITX VOP, one DMA engines interface VPP to DRAM
controller through 128-bit AXI bus at 400MHz. For AIO, another DMA engine interface VPP to DRAM controller
through 64-bit AXI bus at 200MHz.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 125

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
13.6.3. Interrupt Scheme
All the VPP related interrupts are segregated by dHub engines and sent to SoC Interrupt Controller (PIC) and
routed to CPUs. The following VPP events can be turned on to generate interrupts:

 HDMITX/MIPITX VBI Start
 HDMITX/MIPITX Start of active-video event
 Offline Downscale Pipe or OVP pipe (End of Frame Interrupt)
 BCM Invalid Request Interrupt
 HDMITX Interrupt events (Controller, Sink Detect)
 HDCP (ESM, TRNG)
 Audio Interrupts (I2S, SPDIFRx)

13.7. AVPLL
SL1640 uses four (2x-Audio, 1x-Video) AVPLL (Audio-Video PLL) to generate all the audio-video clocks. All the
clock sources are generated through internal AVPLLs locked to a 25MHz crystal oscillator. All required
frequencies for driving audio and video output from 20MHz to 594MHz can be generated through the AVPLL.
The AVPLL is programmable with Fractional-N divider, it has a 24bit Fractional Divider Value. The AVPLL
generated clock can be locked to the input source yet adjusted to a fine-degree of precision of near 1PPB
resolution. The adjustment can be made through AVPLL register interface. The video output timing generators
can be driven by independent clock source for each of HDMITX and MIPITX.
126 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
14. Dual Audio DSP

14.1. Overview
The Dual Audio DSP integrated in the SL1640 device are the Tensilica® HiFi4 DSP from Cadence® with the
same configuration. The HiFi4 DSP is a highly optimized audio/voice processor geared for efficient execution of
audio and voice codecs and pre- and post-processing modules as well as other demanding DSP functions.

Its key features include:
 Support for four 32x32-bit multiplier-accumulators (MACs) per cycle with 72-bit accumulators.
 Support for eight 32x16-bit MACs per cycle under specified conditions.
 Four very long instruction word (VLIW) slot architecture capable of issuing two 64-bit loads per cycle.
 Vector floating-point unit providing up to four single-precision IEEE floating-point MACs per cycle.
 Software compatible with the existing HiFi DSP Family.
 Support JTAG based debugger.
 Configured with 64KB Instruction Cache and 64KB Data Cache.
 Includes memory protection unit.
 Capable of running up to 800MHz.

14.2. Interrupt
The Audio DSP shares the same interrupt sources as the SoC’s application CPU. Software can control which
interrupts are distributed to the Audio DSP core by configuring the GIC-400 interrupt controller.

14.3. Audio DSP Sub System Block Diagram
Figure below is the block diagram of the sub system. The sub system is a simple wrapper that instantiates the
configured HiFi4 core along with a register module that connects to the core control and status signals.

HiFi4
Core

Wrapper Registers

CLK
RST

Interrupt

AHB

AXI

HiFi4
Core

Wrapper Registers

DSPXBAR
DCXBAR

AXI

AHB

slow AHB

CLK
RST

Interrupt

Figure 33. Audio DSP subsystem block diagram
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 127

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
14.4. Versions
Table 52 lists versions used for the core configuration.

Table 52. HiFi4 Versions

Module Revision

XPG Release RI-2019.3

Hardware Version LX7.1.3
128 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15. Audio Input Output

15.1. Overview
The main functions of the Audio input-output (AIO) module are:

 To transmit the audio stream prepared in DRAM by firmware in supported audio formats (Output path
from dHub) through I2S/SPDIF pins.

 To receive different audio input streams through I2S/PDM/SPDIF pins, de-serialize, pack, and store in
DRAM (Input paths to dHub).

Table 53. Audio Output paths/ports in SL1640

S.no Name Description

1 Primary Audio Output (PRI)
Up to 8 channel audio in I2S mode or
2/4/6/8 Channel in TDM mode is transmitted through I2S pins.
For this port, 4 I2S transmitters are enabled.

2 SPDIF Audio Output (SPDIF-TX)
SPDIF transmitter is connected to chip output.
2 channel audio data are transmitted in IEC60958 mode or 8 channel
compressed audio data are transmitted in IEC61937 mode.

3 SEC Audio Output (SEC/BTo)

2 channel audio in I2S mode or
8 channel in TDM mode or
PCM mono channel output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

4 HDMI Audio Output

HDMI audio source outputs up to 8 channel audio to HDMI-TX. HDMI-TX
receives audio through HD-audio path which has customized 4 I2S
transmitters. (Up to 8 channel L-PCM audio or 2 channel compressed
audio.)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 129

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Table 54. Audio Input paths/ports in SL1640

S.no Name Description

1 MIC1 Audio Input (MIC1)

Up to 8 channel audio in I2S mode or
2/4/6/8 Channel in TDM mode can be received through I2S pins.
Externally, 2 I2S lanes and 2 PDM lanes are connected through
multiplexers.
For this port, 4 I2S receivers are enabled.

2 PDM Audio Input (PDM)

Up to 4 channel audio can be received in PDM format.
Externally, 2 I2S lines and 2 PDM lines are connected through
multiplexers.
For this port, 2 PDM receivers are enabled.

2a PDM Audio Input (DMIC)

Up to 4 channel audio can be received in PDM format (the ones
mentioned in #2). These inputs go in DMIC which do PDM2PCM
conversion and interleaving.
Externally, 2 I2S lines and 2 PDM lanes are connected through
multiplexers.
One DMIC input comes from first PDM lane.
Another DMIC input can either come from DRAM or from second PDM
lane.
For this port, 2 DMIC receivers are enabled.

3 SPDIF Audio Input (SPDIF-RX)

SPDIF receiver is connected to chip input. 2 channel audio data are
received from eARC-Rx output. 2 channel audio data are received in
IEC60958 mode, or 8 channel compressed audio data are received in
IEC61937 mode.

4 MIC2 Audio Input (MIC2/BTi)

2 channel audio in I2S mode or 2/4/6/8 Channel in TDM mode can be
received through I2S pins, or PCM Mono audio can be received through
I2S pins.
For this port, 1 I2S receivers is enabled.

5
MIC4 Audio Input
(Pri Tx Loopback)

Up to 8 channel audio in I2S mode or 2/4/6/8 Channel in TDM mode can
be received through I2S pins.
For this port, 4 I2S receivers are enabled.

6
MIC5 Audio Input
(HDMI Tx Loopback)

Up to 8 channel audio in I2S mode can be received through I2S pins.
For this port, 4 I2S receivers are enabled.
130 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 34 is a functional block diagram of the AIO module.

For each input/output ports, there are audio FIFOs between the DMA channel and the Transmitter/Receiver
block. In unexpected or error cases when underflow or overflow happens, an interrupt will be generated. All the
FIFOs can be flushed by firmware.

The SL1640 AIO module also has audio clock logic to generate the various sampling clocks (Bit-Clocks or BCLK)
required for each port by dividing from Host Clock (MCLK). The source of MCLK is driven by the APLLs.

The audio clock module generates the data BCLK for AIO module by dividing the input Host Clock (MCLK) by 1/
2/4/8/16/32/64/128/256/512/1024. The desired BCLK clock frequency and polarity can be selected by
programming the AIO registers.

Figure 34. Functional Block Diagram of AIO Module

A
ud

io
 d

H
ub

PRI
I2S-2CH or TDM-4/8CH
I2S-2CH or TDM-4CH
I2S-2CH
I2S-2CH

11w

1r

29r

spdif TX
PCM-2CH or Comp-8CH

VS640 AIO

bcmq_top
avioBcm

16w
17wm

MIC1
I2S-2CH or TDM-4/8CH
I2S-2CH or TDM-4CH

31w spdif RX
PCM-2CH or Comp-8CH

APLL0
APLL1

3r
7r

21w

15r

19w
27r

9w

23w

1
2
3
4

1
2

SEC/BTo
I2S x1, 2CH or TDM-8CH
MIC2/BTi
I2S x1, 2CH or TDM-8CH

13w
5r

HDMI-TxHBR/I2S 7.1CH

MIC1 or PDM
I2S-2CH or PDM-2CH
I2S-2CH or PDM-2CH

1
2

audXmt
audXmt
audXmt
audXmt

audRcv
audRcv
audRcv
audRcv

Spdif_Tx
Spdif_Rx

audRcv
audRcv
audRcv
audRcv

audRxPdm
audRxPdm

audXmt
audRcv

audHdTop

HDMI-Tx
audRcv
audRcv
audRcv
audRcv

DMIC

25r

Use Cases:
1. up to 8CH I2S output (up to 4x data pin) or
2. up to 8CH T DM output (using 1x data pin) or
3. up to 8CH T DM output (using 2x data pin)

Use Cases:
1. up to 8CH I2S input (up to 4x data pin) or
2. up to 8CH T DM i nput (us ing 1x data pi n) or
3. up to 8CH T DM i nput (us ing 2x data pi n)

MIC4

MIC5
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 131

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15.2. Audio Clock Scheme
Each audio transmitter and receiver of AIO has its own MCLK (host clock). Two independent clocks from APLL
are used to generate these MCLKs. There are independent dividers for each MCLK to fine adjust their required
frequencies. BCLKs are derived from MCLKs using another set of dividers.

15.2.1. Sampling Rate and Bit Clock
The bit clock toggles once for each discrete bit of data on the data lines. The bit clock frequency is derived by
the number of bits per channel, the number of channels, and the sampling rate. For example, stereo audio (2
channels) with a sample frequency of 192 KHz and 16-bits per sample will have a bit clock frequency of 6.144
MHz (192x2x16). The Word Strobe clock (LRCK) indicates whether Left Channel or Right Channel data is
currently being sent to the device. Transitions on the LRCK also serve as a start-of-word indicator. The LRCK
frequency is always the same as the audio sampling rate. The sampling size and sampling rate must be same
within the same channel pair and the same port.

Table 55 shows the required BCLK frequency for supported audio sampling rates at 32FS/48FS/64FS.

To generate desired frequencies for audio clocks, APLL must be first configured to generate required MCLKs.
AIO clock dividers must be programmed to generate correct BCLKs and LRCKs from MCLKs.

Table 55. Sampling Rate and Bit Clock Relationship (I2S/LJ/RJ)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

32*FS (2-Ch) 48*FS (2-Ch) 64*FS (2-Ch)

32 KHz 1.02 1.536 2.048

44.1 KHz 1.4112 2.1168 2.8224

48 KHz 1.536 2.304 3.072

96 KHz 3.072 4.608 6.144

192 KHz 6.144 9.216 12.288

Table 56. Sampling Rate and Bit Clock Relationship (TDM)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

128*FS (4-Ch) 192*FS (6-Ch) 256*FS (8-Ch)

32 KHz 4.096 6.144 8.192

44.1 KHz 5.6448 8.4672 11.2896

48 KHz 6.144 9.216 12.288

96 KHz 12.288 18.432 24.576
132 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15.3. Data Formats
The SL1640 I2S Transmitters and Receivers supports I2S mode, Left-Justified mode, Right-Justified mode, TDM
Mode, PCM Mono, SPDIF mode and PDM mode.

The following sections provide brief description about each of the supported data formats.

15.3.1. I2S Mode
In I2S mode, data is sent out “one” BCLK after the LRCK transition. In this mode left channel data are
transmitted during the low period of LRCK and right channel data are transmitted during the high period of
LRCK. Figure 35 shows the I2S mode.

15.3.2. Left-Justified Mode
In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK transition and
data is aligned with the leading transitions on LRCK. In this mode left channel data are transmitted during the
high period of LRCK and right channel data are transmitted during the low period of LRCK. Figure 36 shows the
Left-Justified mode.

Figure 35. I²S Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left
Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB

1 BCLK 1 BCLK
1 2 3 ------ n-1 n

1/fs

Figure 36. Left-Justified Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB
1 2 3 ------ n-1 n

1/fs
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 133

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15.3.3. Right-Justified Mode
In Figure 37, the Right-Justified format is very similar to the Left-Justified format, with the exception of the
placement of channel data within the LRCK. In this mode, the data lines up with the right edge of LRCK
transition and last bit of the data are transmitted one BCLK before the LRCK transition.

As with the Left-Justified mode, left channel data is transmitted during the high period of LRCK and right
channel data are transmitted during the low period of LRCK. Figure 37 shows the Right-Justified mode.

15.3.4. Time Division Multiplexed (TDM) Mode
The TDM format is typically used when communicating between integrated circuit devices on the same printed
circuit board or on another printed circuit board within the same piece of equipment. For example, the TDM
format is used to transfer data between the DSP and one or more analog-to-digital converter (ADC), digital-to-
analog converter (DAC).

The TDM format consists of three components in a basic synchronous serial transfer: the clock (BCLK), the data
(DIN / DOUT) and the frame sync (LRCK).
1. The BCLK for Transmit / Receive needed for 32bit resolution per channel:

 256 Clocks: 8-Channel
 192 Clocks: 6-Channel
 128 Clocks: 4-Channel

Each 64 BCLK 2-Channel data is transmitted / received.

2. In I2S-TX, the LRCLK can be generated for 1-254 BCLK in an audio frame whereas in I2S-RX the module
detects the low to high edge to start decoding the data.

3. The audio frame in TDM mode carries 2/4/6/8-Channels of data.
4. The data is always in I2S / Justified Mode.

 In I2S mode, data is sent out one BCLK after the LRCK transition.
 In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK

transition and data is aligned with the leading transitions on LRCK.
 It’s relatively apparent that the Right-Justified format is very similar to the Left-Justified format, with the

exception that the placement of channel data within the LRCK. In this mode the data lines up with the
right edge of LRCK transition and last bit of the data is transmitted one BCLK before the LRCK
transition.

Figure 37. Right-Justified Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB
1 2 3 ------ n-1 n

1/fs
134 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Figure 38. 8-Channel TDM Mode Data

Figure 39. 6-Channel TDM Mode Data

Figure 40. 4-Channel TDM Mode Data

BCLK

FSYNC/LRCK

I2S Mode

1/fs = 64 BCLK

23 22 -- 0 23 22 -- 0 23 22 -- 0

Left Justified Mode 23 22 -- 0 23 22 -- 0 23 22 -- 0

Ch - 1 Ch - 2

Figure 41. 2-Channel TDM Mode Data
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 135

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15.4. PCM Mono mode
PCM mono channel data is used specifically for transfer of chunk data indicative by a single pulse to start the
data.

After the rising edge of the PCM_FR the data will be captured. The number of bits (Data resolution) which needs
to be captured will be configurable between 8/16/24/32 Bits. Data is captured or sent on the falling edge.

When transmitter is operating in Host Mode the frame width, that is, the occurrence of PCM_FR pulses can also
be configured between 8 to 256. While transmitter is operating in Target mode the frame width is defined by the
Host Mode generating the PCM_FR, to take care of this there is a programming guideline to be followed.

Figure 42 represents the data being sent by the transmitter.

15.5. Pulse Density Modulation (PDM) Mode
AIO module in SL1640 has a dedicated receiver to receive PDM digital input. In PDM mode, register
configurable PDM clock is sent out from SL1640 to the PDM device to clock the data bits. The data bits are
presented by the PDM device at the clock rate, either on the rising edge/falling edge or both. SL1640 samples
the PDM data and stores in the DRAM.

SL1640 supports both the PDM data transfer modes namely Classic PDM and Half Cycle PDM. In Classic PDM,
the PDM device will present data on every rising (or falling) clock edge. In Half cycle PDM, the PDM device will
present valid data on both the clock edges. SL1640 samples the PDM data either using the internal PDM clock
edges or a programmable counter running on internal high-speed clock, also number of bits to store per frame
is configurable using the register settings.

PCM_IN/BCLK

PCM_FR/LRCK

1 2 3 ------ n-1 n

Mono Channel

MSB LSB MSB LSB
1 2 3 ------ n-1 n

8-256

Mono Channel

8-32

SD (Left-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (I2S-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (Right-Justified)

Figure 42. PCM Mono Mode Data

Figure 43. Half-Cycle PDM

L R L R

PDM CLOCK

PDM DATA
136 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
15.6. S/P-DIF (IEC60958) Mode
The SPDIF transmitter generates the SPDIF stream up to 192 KHz from the input data. This block operates on
SPDIF Host Clock (MCLK) generated from the AVPLL or from external source.

The SPDIF module reads the input audio stream from DRAM using a dedicated DMA Channel and generates the
serial S/P-DIF output. SPDIF functionality is divided among firmware and hardware. AIO hardware performs the
following functions:

 Sync preamble coding
 Parity bit generation
 Output channel coding in bi-phase-mark-code (BMC)

The functions performed by firmware are:
 Block and frame formats
 Validity flag, user data format, and channel status

Figure 44 shows the SPDIF frame format.

15.6.1. SPDIF Internal Sub-frame Format
AIO receives the SPDIF data from firmware in the following sub-frame format. Each sub-frame is 32-bits long as
shown in Figure 45.

Figure 44. SPDIF Frame Format

M Channel 1 W Channel 2 B Channel 1 W Channel 2 M Channel 1 W Channel 2 M

Frame 191 Frame 0 Frame 1

Sub-frame Sub-frame

X Y Z Y X Y X

Start of block

Figure 45. SPDIF Internal Frame Format

Audio Sample
Word SYNCVUCPAux

Data

M
S
B

L
S
B

Validity Flag
User Data
Channel Status
Parity Bit

 31 ----- 12 11 – 8 7 6 5 4 3 - 0bits
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 137

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Bits 0 to 3 carry one of the three permitted preambles. AIO directly encode the received 4-bit data into the
corresponding preamble sync words as shown in Table 57.

Bits 8 to 31 carry the audio sample word in linear 2’s complement representation.

Bit 4 carries the validity flag associated with the audio sample word, this flag is set to logical 0 if the audio
sample is reliable, and it is set to logical 1 if unreliable. Firmware maintains this bit.

Bit 5 carries one bit of the user data channel associated with the audio channel transmitted in the same sub
frame.

Bit 8 to 31 will carry data (unused LSBs bits are set to 0).

Table 57. Encoding for Preambles

Preamble Word Encoding [3:0]

B “0000”

M “0010”

W “0011” to “1111”
138 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
16. Video Codec

16.1. Video Decoder
The video decoder is a multiple format ultra high-definition (UHD) video decoder. It supports decoding of major
video formats in ultra-high definition. It is capable of decoding multiple video streams with various resolutions
and formats simultaneously.

Figure 46 shows the interactions between the video decoder subsystem and other components in a conceptual
video playback system. The video decoder subsystem decodes the compressed video elementary streams to
produce the reconstructed video frames in YUV format for display or further processing. Both the input video
elementary stream and output frames are stored in DRAM.

The video decoder subsystem contains the following two standard interfaces for communicating with the rest of
the system, as shown in Figure 47. There is one CPU control interface for video decoder internal register and
SRAM access, and one DRAM Data interface for video decoder to access compressed, decompressed video,
and intermediate data buffers.

Figure 46. Video Decoder Subsystem in a Video Playback System

DRAMVideo Elementary Streams Decoded Video Frames

Video
Post-Processing

Display

Decryption/Demux

- Broadcast
- Storage
- Network

Video Decoder
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 139

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Besides these two interfaces, the video decoder also has an interrupt connection to the SoC CPU. The interrupt
is used to communicate with the CPU regarding the video decoder's internal status and events that may require
the CPU's intervention.

16.1.1. Supported Video Decode Formats

The video decoder can switch between video streams with any supported format and resolutions. The stream
switching should only take place at the frame boundary. There is no limitation to the number of simultaneous
streams the video decoder can support, as long as the total performance requirements are within performance
constrains of the video decoder.

The video decoder has a built-in error resilience function. Video bitstream errors can be handled inside the
video decoder without high level application's intervention.

Table 58. Supported Video Decode Formats

Feature Description

H.265 (HEVC) Main, Main 10 Profiles, up to Level 5.1, UHD 10-bit @ 60 fps

H.264 (AVC) Constrained Baseline, Main, High, Stereo High Profiles, up to Level 5.2, UHD @ 60 fps

AV1 Main Profile, up to Level 5.1, UHD 10-bit @ 60 fps

VP9 Profile 0 and Profile 2, up to UHD 10-bit @ 60 fps

VP8 Version 2 (WebM), up to FHD @ 60 fps

MPEG-2 Main Profile, up to High Level, FHD @ 60 fps

Figure 47. Top Level Interfaces to Video Decoder Subsystem

DRAM Data Interface

CPU Control Interface

Video Decoder

Video Elementary Streams Decoded/Reference
Video Frames

DRAM Controller

CPU

DRAM
140 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
16.2. Video Encoder

16.2.1. Supported Video Encode Formats

Table 59. Supported Video Encode Formats

Feature Description

H.264 (AVC) Constrained Baseline, Main, High Profiles, I/P frames only up to Level 4.1, FHD @ 30 fps
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 141

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
17. Peripheral Subsystem

17.1. Introduction
The Peripheral Subsystem integrates various standard interface controllers to provide connectivity between the
SL1640 SoC and the variety of peripheral devices that can be attached to the SL1640 device.

17.2. Description
Dedicated controllers handle the communication protocol for each of the standard interfaces of the SL1640
device. All of the controllers have connection to an internal target bus interface for register programming. Most
of the high speed interface controllers also include a built-in DMA, which enables them to access the SL1640
system memory as a host.

There are also sixteen timers, three watchdog timers, and local programmable interrupt controllers (PICs) for
the low-speed interface controllers.

Figure 48 is a diagram of the peripheral subsystem.
142 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Figure 48. Peripheral Subsystem Block Diagram

PERIF Data
Bus Crossbar

USB 2.0 (OTG) Host USB 2.0 PHY

32-Bit Configuration Target Bus
@100MHz

64-Bit Data Host Bus
@400MHz

USB 3.0 Host Controller USB 3.0 PHY

8-bit UTMI @60MHz

8-bit UTMI @60MHz

32-bit PIPE @125MHz

PCIe 2.0 X1 Controller PCIe 2.0 X1
PHY

16-bit PIPE @250MHz

SDIO 3.0 PHY
SDR104 104MBps

eMMC 5.1 PHY
Upto HS400 @ 8 Bit

400MBps

10/100 Ethernet MAC
10/100Mbps

PWM
PWM x4

SPI
Handler

Low
speed
Perif

Config
Crossbar

TWSI

SPI

GPIO

Timer

Watch
Dog

X2 TWSI

X1 SPI

GPIO

Transport Stream Processor
TSP

32-Bit Target Data Bus
@400MHz

X8 STSI

5Gbps x1

480Mbps

5Gbps (SS)

FEPHY

UART

X1 UART

USIM
Controller

X1 SCRD IFC
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 143

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The integrated peripheral subsystem communicates with the SL1640 device SoC through the following three
interfaces:

 32-bit target interface on the configuration bus running @ 100 MHz for system CPUs to access
peripheral registers

 64-bit host interface on the data bus @300 MHz for PERIF DMAs to access system memories
 Interrupts to system CPUs

The peripheral subsystem supports the following external interfaces:
 1 USB 2.0 OTG with PHY
 1 SDIO host controller provides SDIO3.0 support
 1 eMMC controller provides eMMC5.1 support
 1 USB 3.0 with 3.0 and 2.0 PHY
 1 Ethernet MAC Controller (10/100Mbps) with MII interface talking to FEPHY which is in System

Manager block
 1 PCI-e 2.0 x1
 8 Serial Transport Stream Inputs
 2 I2C (TWSI)
 1 SPI
 1 UART
 4 PWM
 GPIO
144 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18. APB Components of Peripheral Interface

18.1. General Purpose Input/Output (GPIO)

18.1.1. GPIO as I/O Pins
In I/O mode, the SL1640 device can control the output data and direction of I/O pads. There are 67 GPIOs in
the SoC power domain and 20 GPIOs in the SM power domain. GPIO pins are pin-shared with other interfaces.
For more pin-sharing information, refer to the SL1640 Datasheet (PN: 505-001120-01). The output and input
GPIO status can be accessed directly through memory-mapped registers. Each of the GPIO pins can be
controlled independently as described in this chapter.

Figure 49 illustrates one of 67 GPIO pins. Each of the GPIO pins (N from 0 to 66) are mapped to registers as
follows:

 GPIO 0-21 maps to apb_gpio_0 in the register manual
 GPIO 22-48 maps to apb_gpio_1 1-27
 GPIO 49-66 maps to apb_gpio_2 0-17

Figure 49. GPIO Block Diagram

D Q

D Q

D Q

Gpio_swport0_drN

gpio_swporta_ddrN

GPIO I/O PAD

gpio_ext_portaN

GPIO_P0_SYNC_EXT_DATA

N=0...66 for all 67-bit GPIOs

Metastability
Registers
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 145

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.1.1.1. Controlling the GPIO
The data and direction control for the signal are sourced from the data register (gpio_swporta_dr) and direction
control register.

Under software control, the direction of the external I/O pad is controlled by a write to the data direction register
(gpio_swporta_ddr) to control the direction of the GPIO pad.

The data written to the data register (gpio_swporta_dr) drives the output buffer of the I/O pad. External data are
input on the external data signal, gpio_ext_porta. Reading the external signal register (gpio_ext_porta) shows
the value on the signal, regardless of the direction. This register is read only.

18.1.1.2. Reading External Signals
The GPIO PAD data on the gpio_ext_porta external signal can always be read through the memory-mapped
register, gpio_ext_porta.

A read to the gpio_ext_porta register yields a value equal to that which is on the gpio_ext_porta signal,
regardless of the direction.

18.1.1.3. GPIO as Interrupt
GPIO can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The
type of interrupt is programmable with one of the following settings:

 Active-high and level
 Active-low and level
 Rising edge
 Falling edge

The interrupts can be masked by programming the gpio_intmask register. The interrupt status can be read
before masking (called raw status) and after masking.

The interrupts are also combined into a single interrupt output signal, which has the same polarity as the
individual interrupts. To mask the combined interrupts, all individual interrupts have to be masked. The single
combined interrupt does not have its own mask bit.

Whenever GPIO is configured for interrupts, the data direction must be set to Input for interrupts to be latched.
If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no
new interrupts are generated.

Figure 50 illustrates how the interrupts are generated and how the data flows. The signal names in the diagram
correspond to either I/O signals or memory-mapped registers.
146 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
The gpio_status register must be read in the interrupt service routine (ISR) to find the source of the interrupt.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the gpio_porta_eoi register for
the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers.
Writing to the gpio_porta_eoi register has no effect on level-sensitive interrupts. If level-sensitive interrupts
cause the processor to interrupt, then the ISR can poll the gpio_rawint status register until the interrupt source
disappears, or it can write to the gpio_intmask register to mask the interrupt before exiting the ISR. If the ISR
exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt repeatedly
requests an interrupt until the interrupt is cleared at the source.

If the interrupt service routine reads the gpio_intr_status register to find multiple pending interrupt requests,
then it is up to the processor to prioritize these pending interrupt requests. There are no restrictions on the
number of edge-detected interrupts that can be cleared simultaneously by writing multiple 1s to the
gpio_porta_eoi register.

Interrupt signals are internally synchronized to a system clock. Synchronization must occur for edge-detect
signals. Edge-detected interrupts to the processor are always synchronous to the system bus clock. With level-
sensitive interrupts, synchronization is optional and under software control.

Figure 50. GPIO Interrupt Block Diagram

gpio_int_polarity

gpio_int_level

gpio_intmaskN

gpio_debounceN

gpio_intr_flag{_n}

gpio_intr{_n}N

gpio_intstatusN

gpio_rawintstatusNgpio_porta_eoiN

1

0

gpio_ext_portaN

N=0 through 127

Debounce

1

0

Falling Edge
Detect

1

0

1

0

& OR Polarity

Polarity

Active-High
Detect

Rising Edge
Detect

Active-Low
Detect
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 147

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.2. Two-Wire Serial Interface (TWSI)

18.2.1. Overview
The TWSI bus is a two-wire serial interface. The TWSI module can operate in both standard mode (with data
rates up to 100 Kbps), and fast mode (with data rates up to 400 Kbps) and supports high-speed mode (with
data rates up to 3.4Mbps). The TWSI can communicate with devices only of these modes as long as they are
attached to the bus. The TWSI serial clock determines the transfer rate. The TWSI interface protocol is set up
with a host and target. The host is responsible for generating the clock and controlling the transfer of data. The
target is responsible for either transmitting or receiving data to and from the host. The acknowledgment of data
is sent by the device that is receiving data, which can be either the host or the target. The protocol also allows
multiple hosts to reside on the TWSI bus, which requires the hosts to arbitrate for ownership.

The targets each have a unique address that is determined by the system designer. When the host is
programmed to communicate with a target, the host transmits a START condition that is then followed by the
target address and a control bit (R/W) to determine if the host is to transmit data or receive data from the
target. The target then sends an acknowledge (ACK) pulse after the address and the R/W bit is received to notify
the host that the target has received the request.

If the host (host-transmitter) is writing to the target (target-receiver), the receiver receives a byte of data. This
transaction continues until the host terminates the transmission with a STOP condition. If the host is reading
from a target, the target transmits a byte of data to the host, and the host then acknowledges the transaction
with the ACK pulse. This transaction continues until the host terminates the transmission by not acknowledging
the transaction after the last byte is received, and then the host issues a STOP condition or addresses another
target after issuing a RESTART condition. This process is illustrated in Figure 51.

The TWSI is a synchronous serial interface. The data signal (SDA) is a bidirectional signal and changes only
while the serial clock signal (SCL) is low, except for STOP, START, and RESTART conditions. The output drivers
are open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices on
the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte
packages.

Figure 51. TWSI Start and Stop Condition

LSBMSB ACK
from target

ACK
from receiver

3-8 92198721

Start or
Repeated Start
Condition

Byte Complete
Interrupt within
Target

SCL held low
while servicing
interrupts

Stop or
Repeated Start
Condition

SDA

SCL

P

Sr
148 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.2.2. TWSI Protocols
The TWSI has the following protocols:

 START and STOP Condition
 Addressing Target
 Transmitting and Receiving
 START BYTE Transfer

18.2.2.1. START and STOP Condition Protocol
When the bus is IDLE both the SCL and SDA signals are pulled high through external pull-up resistors on the
bus. When the host is programmed to start a transmission on the bus, the host issues a START condition. This
action is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the host is programmed to
terminate the transmission, the host issues a STOP condition. This action is defined to be a low-to-high
transition of the SDA line while SCL is 1. Figure 52 shows the timing of the START and STOP conditions. When
data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

18.2.2.2. Addressing Target Protocol
There are two address formats, the 7-bit address format and the 10-bit address format. During the 7-bit address
format, the first seven bits (7:1) of the first byte set the target address and the LSB bit (bit 0) is the R/W bit as
shown in Figure 53. When Bit 8 is set to 0, the host writes to the target. When Bit 8 (R/W) is set to 1, the host
reads from the target. Data is transmitted to the most significant bit (MSB) first. During 10-bit addressing, two
bytes are transferred to set the 10-bit address. The transfer of the first byte contains the following bit definition.
The first five bits (7:3) notify the targets that this is a 10-bit transfer followed by the next two bits (2:1), which set
the targets address bits 9:8, and the LSB bit (Bit 8) is the R/W bit. The second byte transferred sets bits 7:0 of
the target address. Figure 54 shows the 10-bit address format, and Table 60 defines the special purpose and
reserved first byte addresses.

Figure 52. START and STOP Condition

LSBMSB ACK
from target

ACK
from receiver

3-8 92198721

Start or
Repeated Start
Condition

Byte Complete
Interrupt within
Target

SCL held low
while servicing
interrupts

Stop or
Repeated Start
Condition

SDA

SCL

P

Sr
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 149

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Table 60. TWSI Definition of Bits in the First Byte

Target Address R/W Description

0000 000 0
General Call Address. The TWSI module places the data in the receive buffer and issues a
general call interrupt.

0000 000 1 START byte. For more information, refer to START BYTE Transfer Protocol.

0000 001 X CBUS address. The TWSI module ignores these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed host code (for more information, refer to Host Arbitration).

1111 1XX X Reserved.

1111 0XX X 10-bit target addressing.

Figure 53. 7-Bit Address Format

A6S A4A5 A2A3 A0A1 ACKR/W

MSB LSB

sent by target
Target Address

S = Start condition
R/W = Read/Write Pulse
ACK = Acknowledge

Figure 54. 10-Bit Address Format

S

S = Start condition
R/W = Read/Write Pulse
ACK = Acknowledge

‘1’ ‘1’ ‘1’ ‘1’ ‘0' A9 A8 R/W A7 A6 A5 A4 A3 A2 A1 A0 ACK

Reserved for 10-bit
Address

sent by target sent by target

ACK
150 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.2.2.3. Transmitting and Receiving Protocol
All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After
the host sends the address and R/W bit or the host transmits a byte of data to the target, the target-receiver
must respond with the acknowledge signal. When a target-receiver does not respond with an acknowledge
pulse, the host aborts the transfer by issuing a STOP condition. The target leaves the SDA line high so the host
can abort the transfer. If the host-transmitter is transmitting data as shown in Figure 55, then the target-
receiver responds to the host-transmitter with an acknowledge pulse after every byte of data is received.

If the host is receiving data as shown in Figure 56, then the host responds to the target-transmitter with an
acknowledge pulse after a byte of data has been received, except for the last byte. This process is how the host-
receiver notifies the target-transmitter that this is the last byte. The target- transmitter relinquishes the SDA line
after detecting the No Acknowledge so that the host can issue a STOP condition.

When a host is programmed to not relinquish the bus with a STOP condition, the host can issue a repeated start
condition. This is identical to a START condition except it occurs after the ACK pulse. The host can then
communicate with the same target or a different target.

Figure 55. Host-Transmitter Protocol

S

From Host to Target A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = Start Condition
P = Stop Condition

‘0’ (write)

‘0’ (write)

Target Address R/W A ADATA DATA A/A P

S Target Address
First 7 bits R/W A ATarget Address

Second Byte DATA A/A P

From Target to Host

For 7-bit Address

For 10-bit Address

Figure 56. Host-Receive Protocol

S

From Host to Target
A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = Start Condition
Sr = Restart Condition
P = Stop Condition

‘1’ (read)

‘0’ (write)

Target Address R/W A ADATA DATA A P

S Target Address
First 7 bits A ATarget Address

First 7 bits DATA P

From Target to Host

For 7-bit Address

For 10-bit Address

AR/WSrA Target Address
Second ByteR/W

‘1’ (read)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 151

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.2.3. START BYTE Transfer Protocol
The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated TWSI hardware
module. When the TWSI is addressed as a target, it always samples the TWSI bus at the highest speed
supported so that it never requires a START BYTE transfer. However, when the TWSI is a host, it supports the
generation of START BYTE transfers at the beginning of every transfer should a target device require it. The
START BYTE protocol consists of seven 0's being transmitted followed by a 1, as illustrated in Figure 57, and
allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the
micro-controller detects a 0, it switches from the under-sampling rate to the correct rate of the host.

The START BYTE procedure is as follows:
1. Host generates a START condition

2. Host transmits the START byte (0000 0001)

3. Host transmits the ACK clock pulse

4. No target sets the ACK signal to 0

5. Host generates a repeated START (Sr) condition

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the
Sr (restart condition) is generated.

18.2.4. Multiple Host Arbitration and Clock Synchronization
The TWSI bus protocol allows multiple hosts to reside on the same bus. When two or more hosts try to transfer
information on the bus at the same time, they must arbitrate and synchronize the SCL clock.

This section explains the following topics:
 Host arbitration
 Clock synchronization

18.2.4.1. Host Arbitration
Arbitration occurs on the SDA line, while the SCL line is 1. The host, which transmits a 1 while the other host
transmits 0, loses arbitration and turns off its data output stage. The host that lost arbitration can continue to
generate clocks until the end of the byte transfer. If both hosts are addressing the same target device, the
arbitration could go into the data phase.

For high-speed mode, the arbitration cannot enter into the data phase because each host is programmed with a
different high-speed host code. Because the codes are unique, only one host can win arbitration, which occurs
by the end of the transmission of the high-speed host code.

Figure 57. Start Byte Transfer

start byte 00000001

dummy
acknowledge

(HIGH)

S Sr

SDA

SCL
1 2 7 8 9

ACK
152 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.2.4.2. Clock Synchronization
All hosts generate their own clock to transfer messages. Data is valid only during the high period of SCL clock.
Clock synchronization is performed using the wired-AND connection to the SCL signal. When the host transitions
the SCL clock to 0, the host starts counting the low time of the SCL clock and transitions the SCL clock signal to
1 at the beginning of the next clock period. However, if another host is holding the SCL line to 0, then the host
goes into a HIGH wait state until the SCL clock line transitions to 1. All hosts then count off their high time and
the host with the shortest high time transitions the SCL line to 0. The hosts then count out their low time and the
one with the longest low time forces the other host into a HIGH wait state. Therefore, a synchronized SCL clock
is generated. Optionally, targets may hold the SCL line low to slow down the timing on the TWSI bus.

18.2.5. Operation Model
The TWSI interface operates under the following model:

1. Disable the interface by writing 0 to the IC_ENABLE register.

2. Program speed (standard or fast), addressing (7 or 10-bit) and host/target modes by writing to the
IC_CON register.

3. If acting as a host, program the target address into IC_TAR. If acting as a target, program the target
address into IC_SAR.

4. Program the SCL high and low duty cycles by using the IC_SS_SCL_HCNT and IC_SS_SCL_LCNT
registers for standard-speed mode, and IC_FS_SCL_HCNT and IC_FS_SCL_LCNT for fast-speed mode.

5. Program all required interrupt masks by using the IC_INTR_MASK register.

6. Enable the interface by writing 1 to the IC_ENABLE register.

7. To transmit onto the TWSI bus, write to the IC_DATA_CMD register. Bit[7:0]= Data Bit[8]= Command (0
= write, 1 = read).

8. To read data received on the TWSI bus, read from the IC_DATA_CMD register. Bit[7:0]= Data.

18.3. Timers
There is one timer in the SM power domain, and one timer in the SL1640 SoC power domain. Each of the timers
has sixteen separate programmable counters. All these counters can be programmed separately.

Each counter counts down from a programmed value and generates an interrupt when the count reaches zero.

The counters in SoC are driven by a 200 MHz clock. The counters in SM are driven by a 10 to 30 MHz clock. The
width of these counters is 32 bits.

The initial value for each counter (that is, the value from which it counts down) is loaded into the counter using
the appropriate load count register (TimerNLoadCount). Two events can cause a counter to load the initial count
from its TimerNLoadCount register:

 The counter is enabled after being reset or disabled.
 The counter counts down to 0.

All interrupt status registers and end-of-interrupt registers of the counters can be accessed at any time. When a
counter counts down to 0, it loads one of two values, depending on the timer operating mode:

 User-defined count mode - Counter loads the current value of the TimerNLoadCount register. Use this
mode for a fixed, timed interrupt. Designate this mode by writing a 1 to bit 1 of TimerNControlReg.

 Free-running mode - Counter loads the maximum value, which depends on the counter width (that is,
the TimerNLoadCount register is comprised of 32 bits, all of which are loaded with 1s). The timer
counter wrapping to its maximum value allows time to reprogram or disable the counter before another
interrupt occurs.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 153

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.4. Watchdog Timers (WDT)
The SL1640 device integrates three watchdog timers (WDT) in the SoC power domain and three WDT in the SM
power domain. The WDT is used to prevent system lock-up that can be caused by conflicting parts or programs
in a SoC.

The WDT in a SoC power domain is driven by the Register Configuration Clock at 200 MHz. The WDT in a SM
power domain is driven by the System Manager Clock at 10 to 30 MHz.

This section describes the functional operation of the WDT and contains the following sections:
 Counter
 Interrupts
 System Resets
 Reset Pulse Length
 Timeout Period Values

The generated interrupt is passed to an interrupt controller. The generated reset is passed to the SL1640 global
module, which in turn generates a reset for the components in the system. The WDT can be reset independently
of the other components

18.4.1. Counter
The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero,
depending on the output response mode selected, either a system reset or an interrupt occurs. When the
counter reaches zero, it wraps to the selected timeout value and continues decrementing. The counter can be
restarted to its initial value, which is programmed by writing to the restart register at any time. The process of
restarting the watchdog counter is sometimes referred to as “kicking the dog.” As a safety feature to prevent
accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

Figure 58. Example Watchdog Timer

Interrupt
Controller

ICTL

Watchdog
Timer

Global
module

presetn

wdt_intr wdt_sys_rst

wdt_presetn
154 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.4.2. Interrupts
The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When
a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the
WDT generates an interrupt when the first timeout occurs. If it is not cleared by the time a second timeout
occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches
zero, an interrupt is not generated.

Figure 59 shows the timing diagram of the interrupt being generated and cleared. The interrupt is cleared by
reading the Watchdog Timer Interrupt Clear register (WDT_EOI) in which no kick is required. The interrupt can
also be cleared by a “kick” (watchdog counter restart).

18.4.3. System Resets
When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register
(WDT_CR), the WDT generates a system reset when a timeout occurs. Figure 60 shows the timing diagram of a
counter restart and the generation of a system reset.

If a restart occurs at the same time the watchdog counter reaches zero, a system reset is not generated.

The length of the reset pulse is the number of clock cycles for which a system reset is asserted. When a system
reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the
system is reset. A counter restart has no effect on the system reset once it has been asserted.

The WDT Timeout period is not fully programmable. However, the software can select from a set of supported
timeout periods.

Figure 59. Interrupt Generation

0123 116117118119

SM CLK/
Register Config CLK

WDT_COUNTER[31:0]

WDT_INTR

Clear_interrupt

255 120

Figure 60. Counter Restart and System Restart

2558910 25425501

SM CLK/
Register Config CLK

WDT_COUNTER[31:0]

WDT_INTR

WDT_SYS_RST

254 2
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 155

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.5. Serial Peripheral Interface
This section describes the functional operation of the Serial Peripheral Interface (SPI) and contains the following
sections:

 SPI Overview
 Transfer Modes
 Operation Modes

18.5.1. Overview
SPI is a four-wire, full-duplex serial protocol. There are four possible combinations for the serial clock phase and
polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of the target
select signal or the first edge of the serial clock. The target select line is held High when the SPI is idle or
disabled.

The protocol allows for serial targets to be selected or addressed using either hardware or software. When
implemented in hardware, serial targets are selected under the control of dedicated hardware select lines. The
number of select lines generated from the serial-host is equal to the number of serial-targets present on the
bus. The serial-host device asserts the select line of the target serial-target before data transfer begins. This
architecture is illustrated in Figure 61.

Figure 61. Hardware Target Selection

Host Target
Data Bus

.

.

.
Target

A

ss = target select line

ss_0

ss_x

ss

ss
156 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.5.2. Clock Ratios
The frequency of the SPI serial input clock (SPI_CLK) is 200 MHz. The maximum frequency of the bit-rate clock
(SCLK_OUT) is one-half the frequency of SPI_CLK, which allows the shift control logic to capture data on one
clock edge of SCLK_OUT and propagate data on the opposite edge (see Figure 62). The SCLK_OUT line toggles
only when an active transfer is in progress. At all other times it is held in an inactive state, as defined by the
serial protocol under which it operates.

The frequency of SCLK_OUT can be derived from the following equation:

Fscl kout= Fssiclk/Sckdv

The SCKDV is a bit field in the programmable register, BAUDR, holding any even value in the range 0 to 65,534.
If SCKDV is 0, then SCLK_OUT is disabled.

A summary of the frequency ratio restrictions between the bit-rate clock (SCLK_OUT/SCLK_IN) and the SPI
peripheral clock (spi_clk) is described as:

Host: Fspi_clk >= 2 × (maximum Fsclk_out)

18.5.3. Transmit and Receive FIFO Buffers
The FIFO buffers used by the SPI are internal D-type flip-flops that have a depth of 64. The widths of both
transmit and receive FIFO buffers is fixed at 16 bits due to the serial specifications which state that a serial
transfer (data frame) can be 4 to 16 bits in length. Data frames that are less than 16 bits in size must be right-
justified when written into the transmit FIFO buffer. The shift control logic automatically right-justifies receive
data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data frames in
a single FIFO location (for example, two 8-bit data frames cannot be stored in a single FIFO location). If an 8-bit
data frame is required, the upper 8 bits of the FIFO entry are ignored or unused when the serial shifter transmits
the data.

Note: The transmit and receive FIFO buffers are cleared when the SPI is disabled (SPI_EN=0) or when it is
reset (PRESETN).

The transmit FIFO is loaded by write commands to the SPI data register (DR). Data are popped (removed) from
the transmit FIFO by the shift control logic into the transmit shift register. The transmit FIFO generates a FIFO
empty interrupt request (SPI_TXE_INTR) when the number of entries in the FIFO is less than or equal to the FIFO
threshold value. The threshold value, set through the programmable register TXFTLR, determines the level of
FIFO entries at which an interrupt is generated. The threshold value allows for early indication to the processor
that the transmit FIFO is nearly empty. A transmit FIFO overflow interrupt (spi_txo_intr) is generated for attempts
to write data into an already full transmit FIFO.

Figure 62. Maximum SCLK_OUT/SPI_CLK Ratio

MSB

SPI_CLK

sclk_out

txd/rxd

capture drive1 capture1 drive2 capture2 drive3 capture3
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 157

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Data are popped from the receive FIFO by read commands to the SPI data register (DR). The receive FIFO is
loaded from the receive shift register by the shift control logic. The receive FIFO generates a FIFO-full interrupt
request (SPI_RXF_INTR) when the number of entries in the FIFO is greater than or equal to the FIFO threshold
value plus 1. The threshold value, set through programmable register RXFTLR, determines the level of FIFO
entries at which an interrupt is generated.

The threshold value allows for early indication to the processor that the receive FIFO is nearly full. A receive FIFO
overrun interrupt (SPI_RXO_INTR) is generated when the receive shift logic attempts to load data into a
completely full receive FIFO. However, this newly received data are lost. A receive FIFO underflow interrupt
(SPI_RXU_INTR) is generated for attempts to read from an empty receive FIFO. This alerts the processor that the
read data are invalid.

18.5.4. SPI Interrupts
The SPI supports combined interrupt requests which can be masked. The combined interrupt request is the
ORed result of all other SPI interrupts after masking. SPI interrupts are active-high. The SPI interrupts are
described as follows:

 Transmit FIFO Empty Interrupt (SPI_TXE_INTR) - Set when the transmit FIFO is equal to or below its
threshold value and requires service to prevent an underrun. The threshold value, set through a
software-programmable register, determines the level of transmit FIFO entries at which an interrupt is
generated. This interrupt is cleared by hardware when data are written into the transmit FIFO buffer,
bringing it over the threshold level.

 Transmit FIFO Overflow Interrupt (SPI_TXO_INTR) - Set when an access attempts to write into the
transmit FIFO after it has been completely filled. When set, data written from the APB is discarded. This
interrupt remains set until the transmit FIFO overflow interrupt clear register (TXOICR) is read.

 Receive FIFO Full Interrupt (SPI_RXF_INTR) - Set when the receive FIFO is equal to or above its
threshold value plus 1 and requires service to prevent an overflow. The threshold value, set through a
software-programmable register, determines the level of receive FIFO entries at which an interrupt is
generated. This interrupt is cleared by hardware when data are read from the receive FIFO buffer,
bringing it below the threshold level.

 Receive FIFO Overflow Interrupt (SPI_RXO_INTR) - Set when the receive logic attempts to place data
into the receive FIFO after it has been completely filled. When set, newly received data are discarded.
This interrupt remains set until the receive FIFO overflow interrupt clear register (RXOICR) is read.

 Receive FIFO Underflow Interrupt (SPI_RXU_INTR) - Set when an access attempts to read from the
receive FIFO when it is empty. When set, zeros are read back from the receive FIFO. This interrupt
remains set until the receive FIFO underflow interrupt clear register (RXUICR) is read.

 Multi-Host Contention Interrupt (SPI_MST_INTR). The interrupt is set when another serial host on the
serial bus selects the SPI host as a serial-target device and is actively transferring data. This informs
the processor of possible contention on the serial bus. This interrupt remains set until the multi-host
interrupt clear register (MSTICR) is read.

 Combined Interrupt Request (SPI_INTR) - OR'ed result of all the above interrupt requests after masking.
To mask this interrupt signal, mask all other SPI interrupt requests.

18.5.5. Transfer Modes
The SPI operates in the following four modes when transferring data on the serial bus:

 Transmit and Receive
 Transmit only
 Receive only
 EEPROM Read

The transfer mode (TMOD) is set by writing to control register 0 (CTRLR0).

Note: The transfer mode setting does not affect the duplex of the serial transfer. TMOD is ignored for
Microwire transfers, which are controlled by the MWCR register.
158 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.5.5.1. Transmit and Receive
When TMOD = 2'b00, both transmit and receive logic are valid. The data transfer occurs as normal according to
the selected frame format (serial protocol). Transmit data are popped from the transmit FIFO and sent through
the transmitted line to the target device, which replies with data on the received line. The receive data from the
target device is moved from the receive shift register into the receive FIFO at the end of each data frame.

18.5.5.2. Transmit Only
When TMOD = 2'b01, the receive data are not valid and should not be stored in the receive FIFO. The data
transfer occurs as normal, according to the selected frame format (serial protocol). Transmit data are popped
from the transmit FIFO and sent through the transmitted line to the target device, which replies with data on the
received line. At the end of the data frame, the receive shift register does not load its newly received data into
the receive FIFO. The data in the receive shift register is overwritten by the next transfer. Mask the interrupts
originating from the receive logic when this mode is entered.

18.5.5.3. Receive Only
When TMOD = 2'b10, the transmit data are not valid. When configured as a target, the transmit FIFO is never
popped in Receive Only mode. Data from a previous transfer is retransmitted from the shift register. The data
transfer occurs as normal according to the selected frame format (serial protocol). The receive data from the
target device is moved from the receive shift register into the receive FIFO at the end of each data frame. Mask
interrupts originating from the transmit logic when this mode is entered.

18.5.5.4. EEPROM Read
When TMOD = 2'b11, the transmit data is used to transmit an opcode or an address to the EEPROM device.
Typically, this requires three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower address).
During the transmission of the opcode and address, no data is captured by the receive logic (as long as the SPI
host is transmitting data on its transmitted line, data on the received line is ignored). The SPI host continues to
transmit data until the transmit FIFO is empty. Therefore, there should be enough data frames in the transmit
FIFO to supply the opcode and address to the EEPROM. If more data frames are in the transmit FIFO than are
required, then read data is lost. When the transmit FIFO becomes empty (all control information has been sent),
data on the receive line (rxd) is valid and is stored in the receive FIFO. The serial transfer continues until the
number of data frames received by the SPI host matches the value of the NDF field in the CTRLR1 register + 1.

18.5.6. Operation Modes
 Operation Mode
 Serial-Host Mode

18.5.6.1. Operation Mode
The SPI interface operates under the following model:

1. Disable the interface by writing 0 to the SPIENR register.

2. Program the baud rate setting into the BAUDR register

3. Set the transfer modes, clock phase and polarity, data frame size, and number of data frames by
writing to the CTRLR0 and CTRLR1 registers.

4. Program all required interrupt masks by using the IMR register.

5. Enable the interface by writing 1 to the SPIENR register.

6. Enable the preferred target select line by writing to the SER register.

7. To transmit onto the SPI bus, write to the DR register

8. To read data received from the SPI bus, read from the DR register.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 159

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.5.6.2. Serial-Host Mode
This mode enables serial communication with serial-target peripheral devices. The SPI initiates and controls all
serial transfers. Figure 63 is an example of the SPI configured as a serial host with all other devices on the serial
bus configured as serial targets.

The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is
disabled (SPI_EN = 0), no serial transfers can occur and sclk_out is held in “inactive” state, as defined by the
serial protocol under which it operates.

18.5.7. Data Transfers
Data transfers are started by the serial-host device. When the SPI is enabled (SPI_EN=1), at least one valid data
entry is present in the transmit FIFO and a serial-target device is selected. When actively transferring data, the
busy flag (BUSY) in the status register (SR) is set. Wait until the busy flag is cleared before attempting a new
serial transfer.

The BUSY status is not set when the data are written into the transmit FIFO. This bit is set only when the target
has been selected and the transfer is underway. After writing data into the transmit FIFO, the shift logic does not
begin the serial transfer until a positive edge of the sclk_out signal is present. The delay in waiting for this
positive edge depends on the baud rate of the serial transfer. Before polling the BUSY status, first poll the TXE
status (waiting for 1) or wait for BAUDR * spi_clk clock cycles.

Figure 63. SPI Host Device

txd

ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_n[1]

ss_n[2]

ss_n[3]

SPI Controller

DI DO
SCLK
SSn

Target Peripheral 2

DI DO
SCLK
SSn

Target Peripheral 3

DI DO
SCLK
SSn

Target Peripheral 1

DI DO
SCLK
SSn

Target Peripheral 0
160 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
18.5.8. Serial Peripheral Interface (SPI) Protocol
With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the
serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH)
and clock polarity (SCPOL) values. The data frame can be 4 to 16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the target select
signal. The first data bit is captured by the host and target peripherals on the first edge of the serial clock;
therefore, valid data must be present on the transmitted and received lines prior to the first serial clock edge.
Figure 64 is a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for
configuration parameters SCPOL = 0 and SCPOL = 1.

The following signals are illustrated in the timing diagrams in this section: sclk_out serial clock from SPI host
(host configuration only) sclk_in serial clock from SPI target (target configuration only) ss_0_n target select
signal from SPI host (host configuration only) ss_in_n target select input to the SPI target ss_oe_n output enable
for the SPI host/target txd transmit data line for the SPI host/target rxd receive data line for the SPI host/target.

Figure 64. SPI Serial Format (SCPH = 0)

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

spi_oe_n

MSB

MSB
4 – 16 bits

LSB

LSB
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 161

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
19. SDIO

The SL1640 device integrates SDIO controller and SDIO PHY.

19.1. SDIO Host Controller Features
 Supports SD memory and SDIO digital interface protocol
 Compliant with SD HCI specification
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for SD mode

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 1.8v
 Supports independent controller, Target Interface and Host Interface clock
 Supports gating of controller base clock if Host Controller is inactive
 Supports context aware functional clock gates
 Applications can gate the target interface clock if Host Controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs
○ Supports interrupt enabling and masking

 Supports tuning
○ SD Tuning using CMD19 (SD)
○ Mode 1 Re-Tuning—Host driver maintains the re-tune timer
○ Fully Software driven Tuning/Re-tuning operations
○ Auto-tuning or Mode 3 Re-tuning

 Supports 4-bit interface
 Supports UHS-I mode
 Supports Default Speed (DS), high-speed (HS), SDR12, SDR25, SDR50 and SDR104
 Supports SDIO read wait
 Supports SDIO card interrupts in both 1-bit and 4-bit modes
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 SD Specifications Part A2 SD Host Controller Standard Specification Version 4.20, August 2015
162 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
19.2. SDIO PHY Features
 Supports SDR104, DDR50 and legacy modes
 Voltage signaling (LVS) host and SDIO (1.8V)

○ JESD8-7a (1.8V)
 Six I/O signals for each dwc_emmc_sd_phy1812 instance

○ SD or eMMC (4-bit data) operation: Single dwc_emmc_sd_phy1812 instance
○ Each I/O signal independently operates at 1.8V

 Three delay lines
 Each delay line consists of the following delay chains

○ A 128-stage variable delay chain
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334MHz and data rate up to 667MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 1.8V power supplies
 Three functional receivers per I/O pad

○ 1.8V Schmitt trigger
○ 1.8V comparator receiver

 Power supply requirements for 1.8V I/O signaling
○ 1.8V
○ Low-voltage power supply

 SD Specifications Part A2 SD Host Controller Standard Specification, Version 4.20, September 2013
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 163

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
20. eMMC

The SL1640 device integrates eMMC controller and eMMC PHY.

20.1. eMMC Host Controller Features
 Uses the same SD-HCI register set for eMMC transfers
 Supports eMMC protocols including eMMC 5.1
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for eMMC modes:

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 1.8V.
 Supports independent controller, Target Interface and Host Interface clocks
 Supports gating of controller base clock if Host Controller is inactive
 Support context aware functional clock gates
 Applications can gate the target interface clock if Host Controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs
○ Supports interrupt enabling and masking

 Supports Command Queuing Engine (CQE) and compliant with eMMC CQ HCI
○ Programmable scheduler algorithm selection of task execution
○ Supports data prefetch for back-to-back WRITE operations

 Supports tuning
○ eMMC Tuning using CMD21 (eMMC)
○ Mode 1 Re-Tuning - Host driver maintains the re-tune timer
○ Fully Software driven Tuning/Re-tuning operations
○ Auto-tuning or Mode 3 Re-tuning

 Supports 4-bit/8-bit interface
 Supports legacy, high-speed SDR, high-speed DDR, HS200, and HS400 speed modes
 Supports boot operation and alternative boot operation
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 JEDEC eMMC 5.1 Specification - JESD84-B51, February 2015
164 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
20.2. eMMC PHY Features
 Compliant with eMMC 5.1 with backwards compatibility (HS400 and legacy modes)

○ JESD8-7a (1.8V)
 Six I/O signals for each dwc_emmc_phy1812 instance

○ eMMC (4-bit data) operation: Single dwc_emmc_phy1812 instance
○ eMMC (8-bit data) operation: Two dwc_emmc_phy1812 instances

 Three delay lines
 Each delay line consists of the following delay chains:

○ A 128-stage variable delay chain
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334MHz and data rate up to 667MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 1.8V power supply
 eMMC (1.8V) PHY has four functional receivers per I/O pad:

○ 1.8-V Schmitt trigger
○ 1.8-V comparator receiver

 Power supply requirements
○ 1.8V I/O signaling: 1.8V and a low-voltage digital power supply

20.3. DigiLogic-Specific Features
 Capability to enable or disable DLL
 Locked output to the controller/SoC
 Capability to select half-cycle or full-cycle locking with reference to the RefClk
 Once “locked”, DigiLogic works in a low-bandwidth mode to validate “locked Phase” correctness. If the

DigiLogic cannot attain the lock, it provides an error output
 Code update on target delay line without causing glitches on dataStrobe
 Offset for tweaking the target delay code
 Cut-off clock to host delay line when not used
 Configurable WAIT cycle post phase code change before sampling PD output
 Configurable delay line stages
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 165

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

166 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

21. Pulse Width Modulator (PWM)

21.1. Overview
The Pulse Width Modulator (PWM) provides the capability to generate a high resolution periodic digital signal
with programmable duty-cycles to control off-chip devices. It has 4 separate channels that are independently
configurable as shown in Figure 65.

pwmClk runs @ 100 MHz.

The PreScaler module pre-divides the input clock if a longer periodic signal is needed.

Read-only counter registers are provided via pwmCh01Ctr and pwmCh23Ctr registers for debug. The counters
reside within the Modulator block, meaning that they are clocked by divClk, not the original input pwmClk.

 Maximum terminal count supports 65535
 Duty cycle is programmed via the pwmCh*Duty registers
 Terminal count is programmed via the pwmCh*TCnt registers
 If duty cycle is 0, modOut always be low
 If duty cycle is >= terminal count, modOut is always high
 modOut can be inverted by setting the polarity inversion register, pwmCh*Pol
 Maximum divider factor supports 4096

Figure 65. PWM Block Diagram

PreScaler
(divider) Modulator Polarity

pwmClk divClk modOut pwmOut

Figure 66. Waveform

divClk

modOut

duty cycle = 3

terminal count = 7

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
22. USB 2.0 Host

The SL1640 device integrates USB OTG 2.0 controller and USB 2.0 PHY.

22.1. USB Controller Features
 Support OTG 2.0 mode
 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of

operation, in accordance with the UTMI+ Level 3 specification
 Support for the following speeds

○ High-Speed (HS, 480-Mbps)
○ Full-Speed (FS, 12-Mbps)
○ Low-Speed (LS, 1.5-Mbps)

 Multiple options available for low power operations
 Multiple DMA/non-DMA mode access support on the application side
 Supports the Scatter Gather DMA operation in both Device and Host mode
 Supports Periodic OUT Channel in Host mode
 Total Data FIFO RAM Depth is 4288
 Enable dynamic FIFO sizing
 Largest Rx Data FIFO Depth is 4288
 Largest Non-Periodic Host Tx Data FIFO Depth is 4288
 Largest Host mode Periodic Tx Data FIFO Depth is 4288
 Non-Periodic Request Queue Depth is 8
 Host Mode Periodic Request Queue Depth is 16
 Width of Transfer Size Counters is 19
 Width of Packet Counters is 10
 Label Largest Device Mode Tx Data FIFO N Depth are 4288
 Supports different clocks for AHB and the PHY interfaces for ease of integration
 Supports up to 5 bidirectional endpoints, including control endpoint 0
 Low speed is not supported for DWC_otg as a device with a UTMI+ PHY
 Supports Session Request Protocol (SRP)
 Supports Host Negotiation Protocol (HNP)
 Supports up to 8 host channels
 Supports the external hub connection in Host Buffer DMA mode
 Includes automatic ping capabilities
 Supports the Keep-Alive in Low-Speed mode and SOFs in High/Full-Speed modes
 AHB Target interface for accessing Control and Status Registers (CSRs), the Data FIFO, and queues
 Supports only 32-bit data on the AHB
 Supports Little-endian or Big-endian mode
 Supports INCR4, INCR8, INCR16, INCR, and SINGLE transfers on the AHB Target interface
 Supports Split, Retry, and Error AHB responses on the AHB Host interface. Split and retry responses are

not generated on the AHB Target interface
 Software-selectable AHB burst type on AHB Host interface in DMA mode

○ If INCR4 is chosen, the controller only uses INCR/INCR4, or Single
○ If INCR8 is chosen, the controller normally uses INCR8, but at the beginning and at the end of a

transfer, it can use INCR or Single, depending on the size of the transfer
○ If INCR16 is chosen, controller normally uses INCR16, but at the beginning and at the end of a

transfer, it can use INCR or Single, depending on the size of the transfer
 Handles the fixed burst address alignment. For example, INCR16 is used only when lower addresses

[5:0] are all 0.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 167

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
 Generates AHB Busy cycles on the AHB Host interface
 Takes care of the 1KB boundary breakup

22.2. USB PHY Features
 Implements low-power dissipation while active, idle, or on standby
 Provides parameter override bits for optimal yield and interoperability
 Fully integrates high-, full-, and low-speed (Host mode only) termination and signal switching
 Implements one parallel data interface and clock for high-, full-, and low-speed (Host mode only) USB

data transfers
 Requires minimal external components-single resistor on TXRTUNE and single resistor on VBUS0 (if the

PHY’s VBUS0 pin is used)
 Provides on-chip PLL to reduce clock noise and eliminate the need for an external clock generator
 Supports off-chip charge pump regulator to generate 5 V for VBUS
 Provides Built-in Self-Test (BIST) circuitry to confirm high-, full-, and low-speed operation
 Provides extensive test interface
 Provides 5v tolerance on D+ and D- lines for 24 hours

 Fully integrates 45-Ω termination, 1.5-kΩ pull-up and 15-kΩ pull-down resistors, with support for
independent control of the pull-down resistors

 Supports 480-Mbps high-speed, 12-Mbps full-speed, and 1.5-Mbps low-speed (Host mode only) data
transmission rates

 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of
operation, in accordance with the UTMI+ specification

 Provides dual (HS/FS) mode host support
 Implements SYNC/End-of-Packet (EOP) generation and checking
 Implements bit stuffing and unstuffing, and bit-stuffing error detection
 Implements Non-Return to Zero Invert (NRZI) encoding and decoding
 Implements bit serialization and deserialization
 Implements holding registers for staging transmit and receive data
 Implements logic to support suspend, sleep, resume
 Supports USB 2.0 test modes
 Implements VBUS threshold comparators
168 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
23. 10/100 Mbps Ethernet

The SL1640 device implements one 10/100 Mbps Ethernet port with integrated Fast Ethernet PHY. The Fast
Ethernet PHY is part of the SL1640 System Manager (SM) subsystem to support Wake-On-LAN feature.

23.1. Functional Overview
The 10/100 Mbps Ethernet controller in SL1640 device handles all functionality associated with moving packet
data between local memory and an Ethernet port. It integrates the MAC function and a Fast Ethernet PHY. It is
fully compliant with the IEEE 802.3 and 802.3u standards.

The controller speed and duplex mode is auto negotiated through the signaling with external PHY and does not
require software intervention. The port also features 802.3x flow-control mode for full-duplex and backpressure
mode for half duplex.

Integrated address filtering logic provides support for up to 8K MAC addresses. The address table resides in
DRAM with proprietary hash functions for address table management. The address table functionality supports
Multicast as well as Unicast address entries.

The Ethernet controller integrates powerful DMA engines, which automatically manage data movement between
buffer memory and the controller and guarantee the wire-speed operation on the port. There are two DMA for
the SL1640 Ethernet controller-one dedicated for receive and the other for transmit.

23.2. Features
The 10/100 Mbps Ethernet port provides the following features:

 IEEE 802.3 compliant MAC Layer function
 10/100 Mbps operation - half and full duplex
 Fast Ethernet PHY Functionality support 10/100 Mbps operation
 Flow control features:

○ IEEE 802.3x flow-control for full-duplex operation mode
○ Backpressure for half duplex operation mode

 Internal and external loopback modes
 Full-duplex operation

○ IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input
de-assertion

 Half-duplex operation:
○ CSMA/CD Protocol support
○ Flow control using backpressure support
○ Frame bursting and frame extension in 1000 Mbps half-duplex operation

 Preamble and start of frame data (SFD) insertion in Transmit path
 Preamble and SFD deletion in the Receive path
 Automatic CRC and pad generation controllable on a per-frame basis
 Automatic Pad and CRC Stripping options for receive frames
 Flexible address filtering modes, such as:

○ Up to 15 additional 48-bit perfect (DA) address filters with masks for each byte
○ Up to 15 48-bit SA address comparison check with masks for each byte
○ 128-bit Hash filter (optional) for Multi-cast and Unicast (DA) addresses
○ Option to pass all Multi-cast addressed frames
○ Promiscuous mode to pass all frames without any filtering for network monitoring
○ Pass all incoming packets (as per filter) with a status report

 Programmable frame length to support Standard or Jumbo Ethernet frames with up to 16 KB of size
 Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 169

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
 Option to transmit frames with reduced preamble size
 Separate 32-bit status for transmit and receive packets
 Receive module for checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet

frame (Type 1)
 Enhanced Receive module for checking IPv4 header checksum and TCP, UDP, or ICMP
 checksum encapsulated in IPv4 or IPv6 datagrams (Type 2)
 MDIO host interface for PHY device configuration and management
 CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement,

and deletion in transmitted frames with per-frame control
 Programmable watchdog timeout limit in the receive path
 Fast Ethernet PHY features include:

○ Fully complaint with IEEE802.3 10/100 Base-TX complaint and supports EEE
○ Capable to support length up to 120m in 100Base-TX for UTP CAT5 cables
○ Integrated MDI termination resistors
○ Auto negotiation and parallel detection capability for automatic speed and duplex selection
○ Auto polarity correction in 10Base-T
○ Supports WOL (Wake-On-LAN) Functionality
170 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 171

24. PCI-e 2.0

24.1. Overview
The SL1640 device implements a PCI-e® subsystem that function as root complex (RC) with 1 physical lane and
up to Gen2 speeds (5Gbps). A PCI-e subsystem has inbound and outbound address translation to map the
external PCI-e devices address map to internal system memory map.

24.2. Functional Overview
The PCI-e subsystem in SL1640 handles all functionality associated with moving data between SoC and
external PCI-e devices. The PCI-e subsystem includes PCI-e controller, PHY, and Reference clock generator.

 PCI-e controller implements all the PCI-e protocol layers, transaction layer, data link layer
 PCI-e PHY Implements the 1 lane TX/ RX SERDES and PCS functionality, and supports speeds up to

Gen 2
 Reference clock generator includes a PLL and differential output buffer which is used to supply

100MHz PCI-e specification-compliant reference clock to external devices (endpoints)

All the data movement is done using TLPs in PCI-e.

Outbound packets are generated at the PCI-e controller boundary when there are AXI target transactions
received from CPU or other hosts. When PCI-e receives the inbound packets from attached endpoints they are
converted into SoC system memory address map, and transactions are generated on AXI host interface.

24.2.1. Features
 PCI-e Root Complex Mode
 Supports all non-optional features of PCI Express Base Specification, Revision 2.0, Version 1.0
 Support for the following optional features of the specifications:

○ PCI Express Active State Power Management (ASPM)
○ PCI Express Advanced Error Reporting (AER)
○ ARI Forwarding

 Supports 1 Lane in Gen1 and Gen2 speeds
 Internal Address Translation units for inbound and outbound transactions
 Embedded DMA for inbound requests and completions
 Automatic Lane Flip and Reversal
 Manual Lane Flip
 Maximum payload sizes up to 512 Bytes
 Supports Legacy and MSI Interrupt
 ECRC Generation and Checking
 Active State Link PM Support - L0s and L1
 100MHz Reference Clock with PCI-e Standard SSC support

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

172 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

25. USB 3.0 Host

25.1. Overview
The USB3 host controller provides highly power-efficient operation, higher performance, and extensibility to
support new USB3 specification. It is compliant with xHCl which ultimately replaces UHCI/OHCI/EHCI and
provides an easy path for new USB specification and technologies.

The host controller supports all USB respective speeds which includes SuperSpeed and USB2 HS/FS.

25.1.1. Features
 64 bits AXI host system bus interface

○ One AXI host
○ 8 outstanding read requests and 8 outstanding write requests for each read and write client

 32-bit AHB target register programming interface
 32-bit addressing
 Up to 127 devices
 Up to 1024 interrupts
 xHCI1.1 compatible

○ Aggressive power management
○ Clean software and Hardware interface
○ Memory access optimization
○ Interrupt Moderation

 Descriptor caching for predictable performance in high latency systems
 Concurrent IN and OUT transfers to get full 8Gbps duplex throughput
 Concurrent USB3.0/2.0/1.1 traffic

○ Designed so that USB2.0 devices do not degrade the overall throughput
○ Net BW increased to 8.48Gbps

 Up to 32K event ring segment table
 Configurable TRB cache memory to enhance predictable performance

○ 4, 8, TRB per EP
○ Up to 32 EPs concurrently (4, 8, 16, 32)

 Dynamic FIFO memory allocation for endpoints
 Endpoint FIFO sizes that are not powers of 2, to allow the use of contiguous memory locations
 LPM protocol in USB 2.0 and Link U1, U2, U3 states for USB 3.0
 Hardware controlled LPM support
 Software controlled standard USB Commands
 Hardware controlled USB bus level and packet level error handling
 Low MIPS requirement

○ Driver involved only in setting up transfers and high-level error recovery
○ Hardware handles data packing and routing to a specific pipe

 PIPE clock and SuperSpeed core clock shutdown and recovery in power-down mode and wake-up
 Features specified in USB3 specification
 Features specified in USB2 specification for HS/FL
 32 bits/125 MHz PIPE interface to PHY
 8 bits/60 MHz or 16 bits/30 MHz UTMI interface

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B

Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 173

26. Smart Cards

This chapter describes the Universal Subscriber Identity Module (USIM) controller and registers that are
supported by the SL1640 device.

26.1. Overview
The USIM controller is a primary device and communication interface for a GSM mobile handset. The USIM
controller supports communication with smart cards as specified in the standard ISO 7816-3 and technical
specification 3G TS 31.101 of the 3rd Generation Partnership Project.

Smart cards are used in many applications and the GSM network USIM smart card is only one of many
applications. Smart cards usually consist of CPU, Flash memory, and a serial-communication interface device
similar to the one described in this chapter. More sophisticated smart cards contain PLL for frequency
enhancement. Encryption accelerators also can exist in a smart card since many of their applications are
security oriented. In all smart card applications, the physical layer and data link layer are identical. Familiarity
with the standards cited in this section allows readers to better understand this chapter.

Software controls the session between the USIM controller and the smart card by updating the USIM controller
registers. Choosing protocol type and parameters, receiving or sending a byte to and from the smart card,
activating and deactivating the smart card, setting the transmitter and receiver baud rates, and so on, are
accomplished via read and write operations to the USIM controller registers. Transforming the byte convention
(inverse to direct and vice-versa, according to the session convention) is performed within the USIM controller.
Therefore, software does not have to perform format inversion before a character is received. The USIM
controller provides functionality to support the above standards, but software ensures that the standards are
met.

26.1.1. Features
 Compatible with any USIM smart card that is compliant with standard ISO 7816-3 and 3G TS 31.101

and operates in voltages of 1.8V
 Supports USIM smart card reset pin control (using reset pin control and power supply control, warm

and cold reset can be software initiated)
 Supports T=0 and T=1 protocols
 Programmable smart card clock frequency
 Supports any combination of the following clock-rate conversion factor F and bit-rate adjustment factor

D:
○ F = {372, 512, 558}
○ D = {1,2,4,8,12, 16, 20, 32}

 Auto-error signal in T=0 Receive mode
 Auto-character repeat in T=0 Transmit mode
 Transforms inverted format to regular format, and vice-versa
 Programmable block guard time period
 Programmable extra guard time period
 Programmable character waiting time period Programmable block waiting time period
 Programmable timeout period
 Programmable CPU interrupt request on an error-signal detection
 Programmable CPU interrupt request when a smart card is connected

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
27. References
 SL1640 Embedded IoT Processor Datasheet (PN: 505-001415-01)

Provides a feature list and overview describing the SL1640. It also provides the pin description, pin
map, mechanical drawings, and electrical specifications.
174 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
28. Revision History

Last Modified Revision Description

September 2024 A Initial release.

November 2024 B
Release as a public document and removed functions which are not
implemented in this product.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 175

Astra™ SL1640 Embedded IoT Processor Functional Specification PN: 505-001416-01 Rev.B
Copyright
Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Trademarks
Synaptics and the Synaptics logo are trademarks or registered trademarks of Synaptics Incorporated in the United States and/or other
countries.

Arm, Cortex, NEON, CoreSight, and TrustZone are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. Android is a trademark of Google LLC. OpenGL ES is a trademark or registered trademark of Hewlett Packard Enterprise in the
United States and/or other countries worldwide. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc. Imagination and PowerVR are trademarks or registered
trademarks of Imagination Technologies Limited. MIPI DSI and MIPI CSI2 are service marks of MIPI Alliance. PCI Express and PCI-e are
registered trademarks of PCI-SIG. VeriSilicon is a registered trademark of VeriSilicon Holdings Co., Ltd. All other trademarks are the
properties of their respective owners.

Notice
Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or
implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics may, from time to time and at its sole
option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS,” WITH NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT
OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS
DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT
JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS’ TOTAL CUMULATIVE
LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S. DOLLARS..

Contact Us
Visit our website at www.synaptics.com to locate the Synaptics office nearest you.
176 Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

	Contents
	List of Tables
	List of Figures
	1. Architecture Overview
	1.1. Key Components and Sub-systems
	1.1.1. Global Unit
	1.1.2. System Manager (SM)
	1.1.3. CPU (Arm Cortex A55 DSU Sub-system)
	1.1.4. Boot ROM
	1.1.5. Security Island Subsystem
	1.1.6. SoC Connectivity and Access Control
	1.1.7. Peripheral Subsystem
	1.1.8. Memory Controller (DDR)
	1.1.9. Graphics and Neural Network Engines
	1.1.10. Audio and Video Processing
	1.1.11. JTAG and Debugging Interfaces

	2. Global Unit
	2.1. Overview
	2.2. Functional Description
	2.2.1. Reset Module
	2.2.2. Reset Sources
	2.2.3. Software Reset Scheme
	2.2.4. External Reset Sequence
	2.2.5. Clock Module
	2.2.6. PLL and Oscillator
	2.2.7. Clock Dividers and Switches
	2.2.8. Clock Switching Procedure
	2.2.9. Boot Strap Module

	3. System Manager (SM)
	3.1. Overview
	3.2. Power Domain and Power Sequence
	3.2.1. Power Sequence
	3.2.2. Initial Power-up Sequence (Cold Boot)
	3.2.3. Power-down Sequence (Entering Standby)
	3.2.4. Standby Power-up Sequence (Exiting Standby; Warm Boot)

	3.3. Functional Description
	3.3.1. System Manager CPU
	3.3.2. Clock and Reset Generation
	3.3.3. System Manager Address Map
	3.3.4. System Manager Hardware Devices

	4. CPU
	4.1. CortexA55 DSU Sub-system
	4.2. Reference Documents
	4.3. Module Revision
	4.4. CPU Clock

	5. Boot ROM
	5.1. Overview
	5.2. SL1640 ROM Code Flow
	5.3. Flash Layout
	5.3.1. SPI Flash for SPI-Secure Boot
	5.3.2. eMMC Layout
	5.3.3. Boot Operation Mode in eMMC
	5.3.4. eMMC Boot in SL1640 Device
	5.3.5. eMMC Boot Mode

	6. JTAG
	6.1. Overview
	6.2. JTAG Debug Port Configurations
	6.3. Boundary Scan Support

	7. SoC Connectivity and Access Control
	7.1. Connection Table
	7.1.1. Address Map

	8. DDR Memory Controller
	8.1. Introduction
	8.2. Memory Controller Feature List
	8.3. DDR Memory Controller Overview
	8.4. Functional Description
	8.5. DDRPHY Overview

	9. Security Island Subsystem
	9.1. Overview
	9.2. BCM
	9.2.1. Feature List
	9.2.2. Configuration Options
	9.2.3. Block Diagram

	9.3. TSP
	9.4. Kilopass OTP

	10. Transport Stream Processor
	10.1. Overview
	10.1.1. Standards
	10.1.2. Functionalities
	10.1.3. Interfaces

	10.2. Function Description
	10.2.1. FIGO System
	10.2.2. Transport Stream Input (TSI)
	10.2.3. Transport Stream Output (TSO)
	10.2.4. Section Filter
	10.2.5. Crypto Engine
	10.2.6. Command Dispatcher
	10.2.7. Crypto Blocks

	10.3. Sync Word Detection (SWD)
	10.3.1. Operation Model
	10.3.2. SWD Command Definition
	10.3.3. SWD Context Definition

	11. Graphics Engine
	11.1. GPU Features and Supported Standards
	11.1.1. GPU Key Features
	11.1.2. Unified Shading Cluster Features
	11.1.3. 3D Graphics Features
	11.1.4. Compute Features
	11.1.5. FBCDC Features

	11.2. GPU Integration Overview
	11.3. GPU Bus Interface
	11.3.1. AXI Host Interface
	11.3.2. AXI SoC Interface

	11.4. Performance Characteristics
	11.5. GPU Architecture Overview
	11.5.1. 3D Graphics Workload Outline
	11.5.2. Compute Workload Outline

	11.6. GPU Control Streams
	11.6.1. Workload Control Streams
	11.6.2. Internal Control Streams

	12. Neural Network Engine
	12.1. Overview
	12.2. Interface

	13. Video Post Processing (VPP)
	13.1. Overview
	13.2. VPP Functional Description
	13.2.1. Main Video Plane
	13.2.2. Graphics Planes
	13.2.3. 1D Scaler (Video Scalar)
	13.2.4. Graphics Scalar
	13.2.5. Offline Downscale/OVP Scalar
	13.2.6. CPCB (Overlay and Timing Generator)
	13.2.7. 3D-HDMI Formatter
	13.2.8. Video Output Stage (VOP)

	13.3. HDMI Transmitter
	13.4. HDCP
	13.5. Offline Downscale/OVP Pipe
	13.5.1. Feature List

	13.6. Pipeline Control
	13.6.1. Register Interface
	13.6.2. DRAM Interface
	13.6.3. Interrupt Scheme

	13.7. AVPLL

	14. Dual Audio DSP
	14.1. Overview
	14.2. Interrupt
	14.3. Audio DSP Sub System Block Diagram
	14.4. Versions

	15. Audio Input Output
	15.1. Overview
	15.2. Audio Clock Scheme
	15.2.1. Sampling Rate and Bit Clock

	15.3. Data Formats
	15.3.1. I2S Mode
	15.3.2. Left-Justified Mode
	15.3.3. Right-Justified Mode
	15.3.4. Time Division Multiplexed (TDM) Mode

	15.4. PCM Mono mode
	15.5. Pulse Density Modulation (PDM) Mode
	15.6. S/P-DIF (IEC60958) Mode
	15.6.1. SPDIF Internal Sub-frame Format

	16. Video Codec
	16.1. Video Decoder
	16.1.1. Supported Video Decode Formats

	16.2. Video Encoder
	16.2.1. Supported Video Encode Formats

	17. Peripheral Subsystem
	17.1. Introduction
	17.2. Description

	18. APB Components of Peripheral Interface
	18.1. General Purpose Input/Output (GPIO)
	18.1.1. GPIO as I/O Pins

	18.2. Two-Wire Serial Interface (TWSI)
	18.2.1. Overview
	18.2.2. TWSI Protocols
	18.2.3. START BYTE Transfer Protocol
	18.2.4. Multiple Host Arbitration and Clock Synchronization
	18.2.5. Operation Model

	18.3. Timers
	18.4. Watchdog Timers (WDT)
	18.4.1. Counter
	18.4.2. Interrupts
	18.4.3. System Resets

	18.5. Serial Peripheral Interface
	18.5.1. Overview
	18.5.2. Clock Ratios
	18.5.3. Transmit and Receive FIFO Buffers
	18.5.4. SPI Interrupts
	18.5.5. Transfer Modes
	18.5.6. Operation Modes
	18.5.7. Data Transfers
	18.5.8. Serial Peripheral Interface (SPI) Protocol

	19. SDIO
	19.1. SDIO Host Controller Features
	19.2. SDIO PHY Features

	20. eMMC
	20.1. eMMC Host Controller Features
	20.2. eMMC PHY Features
	20.3. DigiLogic-Specific Features

	21. Pulse Width Modulator (PWM)
	21.1. Overview

	22. USB 2.0 Host
	22.1. USB Controller Features
	22.2. USB PHY Features

	23. 10/100 Mbps Ethernet
	23.1. Functional Overview
	23.2. Features

	24. PCI-e 2.0
	24.1. Overview
	24.2. Functional Overview
	24.2.1. Features

	25. USB 3.0 Host
	25.1. Overview
	25.1.1. Features

	26. Smart Cards
	26.1. Overview
	26.1.1. Features

	27. References
	28. Revision History

