

Astra™ SL1620 Embedded IoT Processor
Functional Specification
PN: 505-001456-01 Rev.A

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Contents

List of Tables . 5

List of Figures . 6

1. Architecture Overview . 8
1.1. Key Components and Sub-systems . 9

1.1.1. Global Unit . 9
1.1.2. CPU (Arm Cortex A55 DSU Sub-system) . 9
1.1.3. Boot ROM . 9
1.1.4. Security Island Sub-system (SISS) . 9
1.1.5. DDR Memory Controller . 9
1.1.6. Graphics Engine . 9
1.1.7. Video Post Processing (VPP) . 9
1.1.8. Audio Input/Output (AIO) . 9
1.1.9. SoC Connectivity and Access Control .10
1.1.10. Peripheral Sub-system .10
1.1.11. JTAG and Debugging Interfaces .10

2. Global Unit .11
2.1. Overview .11
2.2. Functional Description .12

2.2.1. Reset Module .12
2.2.2. Reset Sources .12
2.2.3. Software Reset Scheme .12
2.2.4. External Reset Sequence .12
2.2.5. Clock Module .14
2.2.6. PLL and Oscillator .14
2.2.7. Clock Dividers and Switches .15
2.2.8. Clock Switching Procedure .18
2.2.9. Boot Strap Module .18

3. CPU .19
3.1. CortexA55 DSU Sub-system .19
3.2. Reference Documents .20
3.3. Module Revision .21
3.4. CPU Clock .21

4. Boot ROM .22
4.1. Overview .22
4.2. SL1620 ROM Code Flow .22
4.3. Flash Layout .24

4.3.1. Multi-copies, Magic Number, and ECC Attributes in Page 0, Block 024
4.3.2. SPI Flash for SPI-Secure Boot .24
4.3.3. eMMC Layout .24
4.3.4. Boot Operation Mode in eMMC .25
4.3.5. eMMC Boot in SL1620 Device .26
4.3.6. eMMC Boot Mode .26

5. JTAG .27
5.1. Overview .27
5.2. JTAG Debug Port Configurations .27
5.3. Boundary Scan Support .28

6. SoC Connectivity and Access Control .29
6.1. Connection Table .30

6.1.1. Address Map .31
2 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
7. Security Island Subsystem .33
7.1. Overview .33
7.2. BCM .33

7.2.1. Feature List .33
7.2.2. Configuration Options .33
7.2.3. Block Diagram .33

7.3. OTP .35

8. DDR Memory Controller .36
8.1. Introduction .36
8.2. Memory Controller Feature List .36
8.3. DDR Memory Controller Overview .37
8.4. Functional Description .38
8.5. DDR PHY Overview .38

9. Graphics Engine .39
9.1. GPU Features and Supported Standards .39

9.1.1. GPU Key Features .39
9.1.2. Unified Shading Cluster Features .40
9.1.3. 3D Graphics Features .40
9.1.4. Compute Features .41
9.1.5. TFBC Features .41

9.2. GPU Integration Overview .42
9.3. GPU Bus Interface .43

9.3.1. AXI Host Interface .43
9.3.2. AXI SoC Interface .44

9.4. Performance Characteristics .45
9.5. GPU Architecture Overview .46

10. Video Post Processing (VPP) .47
10.1. Overview .47
10.2. LCDC Interfaces .48
10.3. LCDC Controller Configuration .49

10.3.1. LCD with Display Serial Interface (MIPI) .49
10.3.2. TFT Interface .50
10.3.3. STN Interface .52
10.3.4. LCDC Output Pin .53
10.3.5. CPU-Type Interface .55
10.3.6. General-Purpose Output for Row/Column Driver .57
10.3.7. LCDC interface handshake signal Pin-out Mapping Summary 57

11. Audio Input Output .58
11.1. Overview .58
11.2. Audio Clock Scheme .61

11.2.1. Sampling Rate and Bit Clock .61
11.3. Data Formats .62

11.3.1. I2S Mode .62
11.3.2. Left-Justified Mode .62
11.3.3. Right-Justified Mode .63
11.3.4. Time Division Multiplexed (TDM) Mode .63

11.4. PCM Mono Mode .65
11.5. Pulse Density Modulation (PDM) Mode .65
11.6. Audio Sample Counter & Timestamp .66
11.7. Audio Accurate Playback/Recording Trigger (AAPRT) .66
11.8. Audio Playback/Recording Pause/Restart .67
11.9. I2S/TDM HW/SW Mute .67
11.10. PTRACK .67
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 3

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
12. Peripheral Subsystem .68
12.1. Introduction .68
12.2. Description .68

13. NAND Flash Controller .69
13.1. Features .69
13.2. NAND Timing Registers .69

14. APB Components of Peripheral Interface .70
14.1. General Purpose Input/Output (GPIO) .70

14.1.1. GPIO as I/O Pins .70
14.2. Two-Wire Serial Interface (TWSI) .73

14.2.1. Overview .73
14.2.2. TWSI Protocols .74
14.2.3. START BYTE Transfer Protocol .77
14.2.4. Multiple Host Arbitration and Clock Synchronization .77
14.2.5. Operation Model .78

14.3. Timers .78
14.4. Watchdog Timers (WDT) .79

14.4.1. Counter .79
14.4.2. Interrupts .80
14.4.3. System Resets .80

14.5. Serial Peripheral Interface .81
14.5.1. Overview .81
14.5.2. Clock Ratios .82
14.5.3. Transmit and Receive FIFO Buffers .82
14.5.4. SPI Interrupts .83
14.5.5. Transfer Modes .83
14.5.6. Operation Modes .84
14.5.7. Data Transfers .85
14.5.8. Serial Peripheral Interface (SPI) Protocol .85

15. SD Host .87
15.1. SDIO Host Controller Features .87
15.2. SDIO PHY Features .88

16. eMMC Host .89
16.1. eMMC Host Controller Features .89
16.2. eMMC PHY Features .90
16.3. DigiLogic-Specific Features .90

17. Pulse Width Modulator (PWM) .91
17.1. Overview .91

18. USB 2.0 Host .92
18.1. USB Controller Features .92
18.2. USB PHY Features .93

19. USB 3.0 Host .94
19.1. Overview .94

19.1.1. Features .94

20. 10/100/1000 Mbps (Gigabit) Ethernet Controller .95
20.1. Functional Overview .95
20.2. Features .96

21. References .97

22. Revision History .98
4 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Copyright © 2024 Synaptics Incorporated. All Rights Reserved 5

List of Tables

Table 1. PLLs and Output Frequency . 14
Table 2. SL1620 Clocks . 15
Table 3. Cortex-A55 DSU Configuration Options . 20
Table 4. ARM IP Revision. 21
Table 5. SoC Boot Source . 23
Table 6. SL1620 Debug Port Configuration . 28
Table 7. SL1620 Supported Instructions . 28
Table 8. Host and Target Pair Connection Levels . 31
Table 9. System Memory Map. 31
Table 10. Low-Speed Register Memory Map . 32
Table 11. Features of GPU AXI Host Interface . 43
Table 12. Features of GPU AXI SoC Interface. 44
Table 13. GPU Core Performance Characteristics . 45
Table 14. LD Values for TFT LCD Panel . 50
Table 15. TFT LD[23:0] Connectivity. 51
Table 16. LCDC Output Pins . 53
Table 17. TFT LD[23:0] Connectivity (CPU display) . 56
Table 18. Interface Pinout . 57
Table 19. Audio Output paths/ports . 58
Table 20. Audio Input paths/ports . 59
Table 21. Sampling Rate and Bit Clock Relationship (I2S) . 61
Table 22. Sampling Rate and Bit Clock Relationship (For TDM Mode) . 61
Table 23. PTRACK sources . 67
Table 24. TWSI Definition of Bits in the First Byte . 75

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
List of Figures

Figure 1. SL1620 architecture block diagram . 8
Figure 2. SL1620 Global Unit Block. .11
Figure 3. SL1620 Power-up Sequence .13
Figure 4. SL1620 Clock Generation Structure .17
Figure 5. Cortex-A55 DSU Block Diagram .19
Figure 6. ROM Code Flow .23
Figure 7. SPI Flash Layout for SPI-Secure Boot. .24
Figure 8. State Diagram of Boot Mode .25
Figure 9. State Diagram of Alternative Boot Mode .25
Figure 10. Layout of eMMC Device .26
Figure 11. JTAG Chain and Boundary Scan diagram .27
Figure 12. SL1620 Bus Hosts and Targets .29
Figure 13. BCM block diagram .34
Figure 14. DDR Memory Controller Top-Level Block Diagram. .37
Figure 15. DDRPHY Block Diagram .38
Figure 16. BXE-2-32 core in SoC .42
Figure 17. GPU High-Level Architecture .46
Figure 18. SL1620 Video Processing Pipe .47
Figure 19. SL1620 DSI Connectivity .49
Figure 20. TFT LCD panel timing .50
Figure 21. LCDC TFT Interface Connectivity .51
Figure 22. LD Timing for STN LCD Panel .52
Figure 23. STN LCD Panel Timing. .52
Figure 24. Output MUX for Control Signal .54
Figure 25. 68-Type CPU Interface, One 16-Bit and One 8-Bit Bus. .55
Figure 26. 80-Type CPU Interface, One 16-Bit and One 8-Bit Bus. .55
Figure 27. 80-Type CPU Interface, One 16-Bit and One 8-Bit Bus. .57
Figure 28. Functional Block Diagram of AIO Module .60
Figure 29. I²S Mode. .62
Figure 30. Left-Justified Mode .62
Figure 31. Right-Justified Mode .63
Figure 32. 8-Channel TDM Mode Data .64
Figure 33. 6-Channel TDM Mode Data .64
Figure 34. 4-Channel TDM Mode Data .64
Figure 35. 2-Channel TDM Mode Data .64
Figure 36. PCM Mono Mode Data .65
Figure 37. Half-Cycle PDM .65
Figure 38. Audio Sample Counter & Timestamp. .66
Figure 39. GPIO Block Diagram .70
Figure 40. GPIO Interrupt Block Diagram. .72
Figure 41. TWSI Start and Stop Condition .73
Figure 42. START and STOP Condition. .74
Figure 43. 7-Bit Address Format. .75
Figure 44. 10-Bit Address Format .75
Figure 45. Host-Transmitter Protocol .76
6 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Figure 46. Host-Receive Protocol .76
Figure 47. Start Byte Transfer. .77
Figure 48. Example Watchdog Timer .79
Figure 49. Interrupt Generation .80
Figure 50. Counter Restart and System Restart .80
Figure 51. Hardware Target Selection .81
Figure 52. Maximum SCLK_OUT/SPI_CLK Ratio. .82
Figure 53. SPI Host Device .85
Figure 54. SPI Serial Format (SCPH = 0) .86
Figure 55. PWM Block Diagram .91
Figure 56. Waveform. .91
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 7

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

f the Synaptics Astra™ SL1620
 into their systems, offering

SOC FABRIC

SS

Global

SYS
PLL x2

NIC-400 AXI Interconnect
DXBAR (64-bit @sysClk)

NIC-400 AXI Interconnect
CXBAR (32bit @sysClk)

Reset
Gen

sy
sC

lk

perifSysClk

BSCAN
2AHB

GIC-400

A5
5

4
co

re
s

BC
M

Slow AHB

PU
lock
EN

PU
eset
EN

SO
C2

D
DR

JT
AG

C
PU

2S
O

C PE
RI

F2
SO

C

C
S2

SO
C

sysClk

PU
EG

SOC
SZC

AHB
DEC

Slow AHB
(@ cfgClk)

TOP PP

PU
LL

m0 m1 s0

m1
m0

m2

s0 s1

sysClk

sysClk

sy
sC

lk

S nS

M
ID

MID

Boot
Strap

Clock
Gen

sysClk

SI
SS

2S
O

C

sysClk

m2

s1

IO
POR

BOOT
VEC

80KB
SRAM

cspwd

pe
ifS

ys
C

lk
SO

C2
N

AN
D

s2
Copyright © 2024 Synaptics Incorporated. All Rights Reserved8

1. Architecture Overview

This document provides an in-depth description of the architecture, sub-systems, and operational characteristics o
embedded IoT processor. This document is essential for developers and engineers who are integrating the SL1620
comprehensive details on each sub-system and their interactions.

avio

MC_WRAP

PERIF_

APBPERIF
(@apbCoreClk:)

CPU_WRAP

CA55 Macro

SIE-200 AHB Interconnect
PCXBAR

(32bit @cfgClk)

pe
rif

Sy
sC

lk

cfgClk
perifSysClk

DDR
PHY Arm Cortex A55

32 KB I$
32 KB D$
64 KB L2

Arm Cortex A55
32 KB I$
32 KB D$
64 KB L2

Arm Cortex A55
32 KB I$
32 KB D$
64 KB L2

Arm Cortex A55
32 KB I$
32 KB D$
64 KB L2

Coherent Fabric

L3 Cache (512KB)

C
C
G

C
R
G

32-bit DDR3/DDR3L/DDR4-2133
Memory Controller (dClk)

NIC-400 AXI Interconnect
CPXBAR (128bit @dClk)MEM

PLL

dClk dClk

P0P1

Slow AHB

cf
gC

lk

Slow AHB

PERIF2SOC

SOC2DDR

sysClk

CPU2SOC

JT
AG

C
S2

SO
C

C
R

Slow AHB

CPU_WRAP Macro PP

TOP PP

TOP PP

C
P

IMTEST
@dClk Coresight

Slow AHB

m1

m0
s0

s1

m1 m3 m4

s0

m0

m2

s0

cfgClk perifSysClk

apbCoreClk

m2

pe
rif

Sy
sC

lk

CPU Core PP CPU Core PP CPU Core PP CPU Core PP

DMA
dC

lk

pe
rif

Sy
sC

lk

DDR SZC DDR SZC

32
-b

it
D

D
R

M
ID

MID

M
ID

dClk

SI_SS

 siSS_mini

NIC-400 AXI Interconnect
TXBAR (64bit @sysClk)

cfgClk

BCM

MBX
ARM
RNG

sysClkcfgClk

Access
Filter

SISS
REG

Arm
Cortex M3

256KB
ROM

128KB
TCM

AES RSA SHA ECC

Access
Filter

OTP
32Kb

m0 m1 m2

s0m3

s1

APB2AHB
bcmClk

sysClk bcmClk

MIDMIDMID

m2

S nS

NIC-400 AXI Interconnect
PXBAR (64bit @perifSysClk)

MID MID

pe
rif

Sy
sC

lk

MID

PVT SEN

16x Timer

IMG BXE-2-32

MID

NIC-400 AXI Interconnect
ADXBAR (128bit @avSysClk)

MID

AV2DDR

avSysClk

AV2DDR

m3

SISS2SOCSlow AHB

Slow AHB

m0
m1

s0

sysClk

m1 m2m5

m3

s0

CORE POR

4x I2C
(STD/
FAST/
HIGH)

pe
rif

Sy
sC

lk

us
b3

C
or

eC
lk

MID MID

m4
m0

NAND

pe
rif

Sy
sC

lk

1x
eMMC

5.1

USB
3.0

MAC

GE
MAC(
RGMI)

1x
SDIO
3.0

USB
OTG
2.0

pe
rif

Sy
sC

lk

MID
m6

64-bit aDHUB

APLL x2

SOC2NANDGPU PP

4D1C

AHB2APB

MID

BC
M

I2S1

2Ch
I2S or
4/6/8/
10Ch
TDM

m1

64x
GPIO

2x
SPI

（4CS)

1x
UART
(RTS/
CTS)

3x
WDT

1x
UART
(RTS/
CTS)

eMMC
5.1

PHY

USB
3.0

PHY

Keypad 4x
PWM

SPI
Handler PBridge

I2S2

2Ch
I2S or
4/6/8/
10Ch
TDM

I2S3

2Ch
I2S or
4/6/8/
10Ch
TDM

I2S4

2Ch
I2S or
4/6/8/
10Ch
TDM

I2S5

2Ch
I2S or
4/6/8/
10Ch
TDM

PDM

4x2ch
PDM

w/
PDM
2PC

M
Dec

S nS

D
CL

S

D
RT

A HB 2A
PB

VPLL x2

LCDCLCDC

DSI-HC

D-PHY

avioSysClk

S nS

A HB 2A
PB

pTrack pTrack

SDIO
3.0

(1.8V)
PHY

OTG
2.0

PHY

128-bit vDHUB

Figure 1. SL1620 architecture block diagram

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
1.1. Key Components and Sub-systems

1.1.1. Global Unit
The Global Unit manages the core functionalities of the SL1620, including clock generation, reset signals, and
bootstrapping. It encompasses modules such as the Clock Module, Reset Module, and Boot Strap Module,
which work together to ensure the processor operates correctly from power-up through normal operation. The
Clock Module includes multiple PLLs that generate the necessary frequencies for the device's various
subsystems.

1.1.2. CPU (Arm Cortex A55 DSU Sub-system)
The SL1620 is powered by a quad-core Arm® Cortex® A55 processor, integrated within a DynamIQ Shared Unit
(DSU). This subsystem is responsible for the main processing tasks and includes L3 cache for enhanced
performance. The CPU subsystem supports a variety of interfaces for debugging and system management.

1.1.3. Boot ROM
The Boot ROM handles the initial boot process of the SL1620, including secure boot options. It supports
multiple boot scenarios, such as SPI-Secure, eMMC-Secure, and USB-Secure boot modes, ensuring a flexible
and secure startup process.

1.1.4. Security Island Sub-system (SISS)
The SISS is critical for managing security features within the SL1620. It includes the BCM (Boot and
Cryptographic Manager) and OTP (One-Time Programmable) memory, supporting secure key management,
encryption/decryption, and other cryptographic operations. The BCM can operate in either FIPS-compliant mode
for high security or a non-FIPS mode for cryptographic acceleration.

1.1.5. DDR Memory Controller
The DDR Memory Controller interfaces with the system’s DDR memory, handling the queuing and scheduling of
memory transactions. It supports dynamic scheduling, multiple traffic classes for quality of service (QoS), and
features like write-combining and out-of-order execution to optimize performance.

1.1.6. Graphics Engine
The SL1620 includes a high-performance graphics engine based on the Imagination B-Series BXE-2-32 core.
This GPU supports advanced 3D graphics features, such as tile-based deferred rendering, programmable
shading, and high SIMD efficiency. It is compliant with multiple graphics APIs, including OpenGL, Vulkan, and
OpenCL, making it suitable for rich graphical applications.

1.1.7. Video Post Processing (VPP)
The VPP module handles video processing tasks, including interfacing with LCD panels or MIPI panels. It
supports various display interfaces and formats, such as RGB and CPU-type interfaces, and includes features
for brightness control, gamma correction, and partial refresh for power-saving modes.

1.1.8. Audio Input/Output (AIO)
The AIO module manages the transmission and reception of audio streams, supporting formats like I2S, TDM,
and PCM. It handles both audio input and output, ensuring high-quality audio processing for applications like
media playback and recording.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 9

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
1.1.9. SoC Connectivity and Access Control
This subsystem links the CPU and hardware engines with various targets, including DRAM and external flash
memory. It manages data routing and access control, ensuring secure and efficient communication between
different parts of the system.

1.1.10. Peripheral Sub-system
The peripheral sub-system includes interfaces for general-purpose input/output (GPIO), serial communication,
timers, and watchdog timers. These components allow the SL1620 to interact with external devices and
sensors, extending its functionality in embedded applications.

1.1.11. JTAG and Debugging Interfaces
The JTAG interface supports debugging through In-Circuit Emulation (ICE) and boundary scan, crucial for
hardware validation and troubleshooting. It includes security features to protect against unauthorized access
during debugging.
10 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
2. Global Unit

2.1. Overview
The SL1620 device relies on the Global Unit to provide on-chip clocking and reset signals. The Global Unit also
handles all the chip and system-level control. The Global Unit includes a clock module, reset module, boot strap
module, and CPU Programmable Registers. Figure 2 depicts the relationships among these modules.

The Reset Module takes the system reset signal from POR pad and resets from CPU- controlled registers to
create individual resets to each subsystem. The Boot Strap Module latches the strapping values from the pads
320 ns (8 cycles of 25 MHz clock) after SoC reset, or POR changes from low to high. The strap values are kept in
registers for the CPU to read and the same registers are also used directly to configure the SL1620 device. In
this way, the boot strap register values and the actual configuration are always consistent. The boot straps are
used to select SL1620 clock generation and CPU boot options. The strap description is found in the SL1620
Datasheet (PN: 505-001428-01). The Clock Module includes 8 PLLs that generate required frequencies, and
clock divider/switching logic for all the subsystems of the SL1620 device. The clock parameters are controlled
by CPU programmable registers.

Figure 2. SL1620 Global Unit Block

Clock Module

Reset Module

Boot Strap Module

CPU Programmable
Registers

Boot Strap Pads

Strap
Values

Strap
Latching
Signal

PLL
Resets

Resets

Clocks

Clock
Straps

Clock Parameters

SW Resets

25MHz refClk

Register Values /
Strap Values

POR Reset

Config Bus
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 11

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
2.2. Functional Description

2.2.1. Reset Module
Separate reset signals are generated for each clock domain on which a particular sub-system operates.

2.2.2. Reset Sources
There are five sources to trigger each individual reset:

 Reset from RSTIn pad
 Reset from POR_VDD (monitor Core VDD)
 Reset from POR_IO_VDD (monitor IO power supply)
 Watchdog reset
 Register controlled module reset

2.2.3. Software Reset Scheme
The SL1620 device uses a pair of reset registers (reset trigger register and reset status register) to facilitate the
software reset. When software writes 1 to a reset trigger register bit, it results in the assertion of the
corresponding reset for 16 reference clock cycles (25 MHz). The corresponding reset status bit is set to 1 until
cleared by software. The CPU can access both the reset trigger register and reset status register.

2.2.4. External Reset Sequence
During the hardware reset, the SL1620 device prevents the CPU from booting up earlier than the remainder of
the SoC by de-asserting the CPU reset after all other resets are de-asserted.

The power-up reset sequence is as follows:
1. External Reset pin is asserted, hardware reset occurs. The full SL1620 device is reset immediately.

2. External Reset is de-asserted. The SL1620 device reset state machine initiates.
3. SL1620 internal reset state machine de-asserts PLL reset. PLL starts to oscillate and lock.
4. SL1620 device latches power-on setting from strap pins.
5. PLLs are locked and stable clocks are driven to the modules after 1 ms.
6. Global reset is de-asserted to all modules (except CA55 CPU) after 1ms.
7. De-assert CPU resets after 32 cycles (25 MHz)

Figure 3 shows the SL1620 power-up sequence.
12 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Figure 3. SL1620 Power-up Sequence

(11.18 ms) (21.68 ms) (21.68128 ms)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 13

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
2.2.5. Clock Module
The clock module generates the clocks to each sub-system in the SL1620 device using PLLs and dividers.

2.2.6. PLL and Oscillator
The clock module has an internal oscillator to generate a stable reference clock to the PLLs using external 25
MHz crystal.

Table 1 lists the PLLs which are present in the clock modules and their corresponding frequency outputs.

Table 1. PLLs and Output Frequency

PLL
Frequency

Output Range
Output Frequency

formula
Notes

1
Memory
PLL

20 MHz - 6 GHz
CLKOUT =(DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

Users can change the Feedback divider FBDIV
values and VCO divider VCODIV value to obtain
the preferred PLL frequency.
The following block clocks are provided by this
PLL during reset default:
• DDR Memory Controller
• DDR PHY

2 CPU PLL 20 MHz - 6 GHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

User can change the Feedback divider FBDIV
values and VCO divider VCODIV value to obtain
the preferred PLL frequency.
CPU clock is provided by this PLL during reset
default.

3
System
PLL

20 MHz - 6 GHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

Users can change the Feedback divider FBDIV
values and VCO divider VCODIV value to obtain
the preferred PLL frequency.
The following block clocks are provided by this
PLL during reset default:
• Peripheral sub-system
• Audio post-processor
• Video post-processor
• 3D Graphics

4 APLL0/1 20 MHz - 6 GHz
CLKOUT =(DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

There are 2 independent APLL PLLs (APLL0 and
APLL1). User can change Feedback divider
DIVFI, DIVR and DIVQ values to obtain the
preferred PLL frequency for APLL0 and APLL1
respectively. The final clock output is also
determined by its corresponding interpreter
frequency offset and PPM offset setting.
Audio are provided by these PLLs during reset
default.

5 VPLL0/1 20 MHz - 6 GHz
CLKOUT = (DIVFI[8:0])*4
/ DIVR * 25 / DIVQ

There are 2 independent VPLL PLLs (VPLL0 and
VPLL1). User can change Feedback divider
DIVFI, DIVR and DIVQ values to obtain the
preferred PLL frequency for VPLL0 and VPL1
respectively. The final clock output is also
determined by its corresponding interpreter
frequency offset and PPM offset setting.
Video pixel clocks are provided by these PLLs
during reset default.
14 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
PLL frequencies can be adjusted without affecting the normal SoC operation with the following programming
sequence:

 Switch clock source to reference clock by setting the clock into bypass mode.
Note: Using PLL-generated clock registers to change PLL parameters is prohibited.

 Set the PLL Bypass register bit.
 Assert the PLL Reset.
 Program PLL to the new preferred frequency by changing its corresponding parameters.
 De-assert the PLL Reset after 2µs and have PLL re-LOCK with the new setting.
 Wait for the PLL to lock (max 10 µs).
 Remove PLL Bypass.
 Switch clock source back to PLL clock output.

2.2.7. Clock Dividers and Switches
The SL1620 device clock divider creates divide-by-1, divide-by-2, divide-by-3, divide-by-4, divide- by-6, divide-by-
8, and divide-by-12 clocks for each individual module. To provide more flexibility of clock sources, the SL1620
device also allows most of the clocks selected from AVPLL_B[7:4] outputs as their clock divider source clock.
Table 2 lists the main clocks in SL1620 device and corresponding options available to select the clock sources.

Table 2. SL1620 Clocks

Clock Clock Source Options Clock Divider Options
Maximum
Frequency

1 DDRPHY Clock Memory PLL None 2133

2 Memory Controller Clock Memory PLL Divide by 4 533

3 CPU Clock CPU PLL Divide by 1/2/3/4/6/8/12 1600

4 AXI System Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 300

5 Register Configuration Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 100

6 APB Peripheral Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200

7 AVIO AXI Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 100

8 GPU Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 800

9 GPU AXI Clock
Same as Memory Controller
Clock

None 533

10 BCM Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 100

11 eMMC Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200

12 SD Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200

13 NAND Flash Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200

14 NAND Flash BCH Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 15

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
15 USB Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 200

16 USB3 Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 400

17 GMAC Core Clock
System PLL0/1 or 2 outputs
from APLL

Divide by 1/2/3/4/6/8/12 250

Table 2. SL1620 Clocks (Continued)

Clock Clock Source Options Clock Divider Options
Maximum
Frequency
16 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
The SL1620 device’s individual clock divider and clock multiplexer settings could be changed dynamically
during the operation. For the clock generation structure, see Figure 4.

Figure 4. SL1620 Clock Generation Structure

Clock Generation Logic

SYSPLL
OUT

RCLKO XTAL

OUTF

pllPwrDownStrap

refClk (25Mhz)

PLL Bypass

XTL_CLK

sysPllClk

sysPllClkf

CG

CG

Analog
refClk

(25 Mhz)

1

0

1

0

PLL Bypass

OCC refClk
RCLKI

clkD3Switch
ClkPllSel

2

4

0

1

3

0

1

clkPllSwitch

Divider

2

4

6

8

12

3

ClkSel clkSwitch clkEn

OCC

1

0

0

1

1

2

3

4
5

Clock Generation Logic

CG
Clock Tree Root

apbPerifapbCoreClkClock Generation Logic CG

clkEn

GPU
gpuClk

clkEn

bcmClk

clkEn

aioSysClk/avioSysClk/avSysClk

clkEn

AVIO

clkEn

cfgClk Targets

BCM Module

atbClk

clkEn

CoreSight

SYSPLL0_CLKOUT

SYSPLL0_CLKOUTF

APLL0 CLK

APLL1 CLK

SYSPLL1_CLKOUT

clken
CG USBusb0CoreClk

SDIOclken CG
sdio0SysClkperifSysClk

sd0Clk
SDIO

eMMC

SYSPLL1_CLKOUTF

APLL0_CLKOOUT
APLL0_CLKOOUTF

SYSPLL1_CLKOUT
SYSPLL1_CLKOUTF

cfgClk

Clock Generation Logic CG

clkEn

cpu_clkcpufastRefClk

Clock Generation Logic CG

clkEn

memClkmemfastRefClk

Clock Generation Logic CG
USB

usb2TestClk480mGroup*/usb2TestClk100mGroup*
perifTestClk125mGroup*/perifTestClk200mGroup*
perifTestClk250mGroup0/perifTestClk500mGroup0

clkEn

Clock Generation Logic CG

clkEn

emmcClk

Clock Generation Logic

Clock Generation Logic

Clock Generation Logic

Clock Generation Logic

CG

CG

CG

CG

CG

Clock Generation Logic CG

clkEn

Clock Generation Logic CG

clkEn

clken CG
emmcSysClk

EMMC

clken CG
pBridgeCoreClk

PBRIDGE

SYSPLL0_CLKOUT

SYSPLL0_CLKOUTF

EMMC

NANDnfcAxiClk
CGclken

GE

clken CG
gethRgmiiSysClk

GE

Clock Generation Logic CG

clkEn

SOC
sysClk

Clock Generation Logic CG

clkEn

NPU/GPU
gfxSysClk

USB30

A1

A2

A3

A4

C1

S1

SISS

Divide_by_N USBPHYusbotgPllClk
SYSPLL1_CLKOUTF

Clock Generation Logic CG

clkEn

GE
gethRgmiiClk

Clock Generation Logic CG

clkEn

NAND

nfcEccClk/
nfcCoreClk

Clock Generation Logic CG

clkEn

AVIO

lcdc1ScanClk/
lcdc2ScanClock
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 17

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
2.2.8. Clock Switching Procedure
The clock generation scheme provides dynamic clock switching capability. Here is the programming pseudo
code to illustrate the dynamic clock frequency change sequence using clock switching circuit shown in Figure 4.

If (desired clock frequency is divided by 3 clock) {
Turn on divide by 3 clock switch (ClkD3Switch = 1);

 Clock selection done;
}
else if (desired clock frequency is 1x clock)
{
Turn off divided clock switch (ClkSwitch = 0);
Turn off divide by 3 clock switch (ClkD3Switch = 0);
 Clock selection done;
}
 else {
Select desired divided clock (/2, /4, /6, /8, or /12 by setting ClkSel);
 Turn on divided clock switch (ClkSwitch = 1);
 Turn off divide by 3 clock switch (ClkD3Switch = 0);
Clock selection done;
}

2.2.9. Boot Strap Module
The SL1620 device boot strap pins are shared with chip output pins. The SL1620 device is the only driver of
those pins in the system. During boot-up, the SL1620 device sets those pins to input mode and external pull-
up/pull-down resistors pull the boot strap pins to required levels. After boot strap latching window, those pins
can be driven by the SoC to any level without affecting the bootstraps. The strapping information, which can be
read by the CPU, is used to configure the SL1620 device. For detailed definitions of boot strap pin assignments
and functions, see the SL1620 Datasheet (PN: 505-001375-01).
18 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
3. CPU

The SL1620 device integrates a Arm® Cortex®A55 DSU sub-system as the SoC CPU.

3.1. CortexA55 DSU Sub-system
Figure 5 is a CPU block diagram.

The Cortex-A55 DSU sub-system integrates Arm DynamIQ Shared Unit (DSU) with Quad-Core Arm CortexA55
CPU, GIC, and the CoreSight™ components needed to debug the CPU.

The Cortex-A55 DSU sub-system consists of the following:

 Four Arm® Cortex®-A55 processors
 DSU that maintains coherency between the processors and arbitrates L3 requests from the processors
 One ACE host interface
 An APB Target interface for debug

Figure 5. Cortex-A55 DSU Block Diagram

DynamIQ Shared Unit (DSU)

ACP*

Host
Interface

Power
Management

Test

Core 3*
Core 2*

Core 1*
Core 0

Timer

Interrupt

Core

Trace

Debug

APB Debug
Clocks
Resets

Configuration

Counter
ICDT*, nIRQ, nFIQ

Timer events

ICCT*, nVCPUMNTIRQ

PMU

ATB

Debug

AXI target interface

ACE or CHI
host interface

Power control

DFT

MBIST

* Optional
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 19

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
The configuration options used for the implementation of the Cortex-A55 DSU sub-system are shown in Table 3.

3.2. Reference Documents
CPU users should be familiar with Arm documentation for these modules. Arm documentation is located at the
Arm website: http://infocenter.arm.com.

Contact Arm support via email at: Support-cores@arm.com.

Table 3. Cortex-A55 DSU Configuration Options

Feature Option

Number of CA55 Processors 4

Number of Interrupts 0

Integrated Generic Interrupt Controller No

L2 Cache Controller Yes

L1 Instruction Cache Size 32 KB

L1 Data Cache Size 32 KB

L2 Cache Size 64 KB

L2 Data RAM Input Cycle Latency 1 cycle

L2 Data RAM Output Cycle Latency 2 cycles

L3 Cache Yes

L3 Cache Size 512KB

L3 Data RAM Input Cycle Latency 1 cycle

L3 Data RAM Output Cycle Latency 2 cycles

Trace For Each Processor Yes

ROM APB Base Address 22'h40_0000

CPU0 APB Debug Base Address 22'h40_4000

CPU1 APB Debug Base Address 22'h40_5000

CPU2 APB Debug Base Address 22'h40_6000

CPU3 APB Debug Base Address 22'h40_7000

Core 0 FPU Yes

Core 1 FPU Yes

Core 2 FPU Yes

Core 3 FPU Yes

Core 0 NEON™ technology Yes

Core 1 NEON™ technology Yes

Core 2 NEON™ technology Yes

Core 3 NEON™ technology Yes
20 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
3.3. Module Revision
Table 4 lists Arm revisions of modules used.

3.4. CPU Clock
The PLL provides the CortexA55 DSU sub-system clocks. The PLL can be programmed to a stable clock
frequency from 9 MHz to 3 GHz. A specific sequence is required to change the PLL frequency.

Table 4. ARM IP Revision

Module Revision

DSU r2p0-00rel0

Arm CortexA55 r4p0-00rel0

CoreSight r1p0
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 21

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
4. Boot ROM

4.1. Overview
The SL1620 device ROM boot flow, the layout of the flash image, and secure boot scheme are described in this
chapter.

The related hardware modules are as follows:
 BCM
 Boot strap
 SoC CPU
 eMMC Controller
 SPI Controller
 USB Controller

4.2. SL1620 ROM Code Flow
The SL1620 device can boot in the following different scenarios depending on the boot strap options:

 SPI-Secure-The SoC boots from iROM and loads an encrypted image from SPI flash; upon decryption
and security verification, the decrypted image takes control of CPU for the remainder of boot up.

 eMMC-Secure-The SoC boots from iROM and loads an encrypted image from eMMC flash; upon
decryption and security verification, the decrypted image takes control of the CPU for the remainder of
boot-up.

 USB-Secure-Conditionally supported based on OTP field. The SoC boots from iROM and loads an
encrypted signed image from the USB host; upon decryption and security verification, the decrypted
image takes control of the CPU for the remainder of boot up.

The same ROM code is used for SPI-Secure and eMMC-Secure boot options; the iROM code is executed in the
Secure Processor (SCPU; the Arm® Cortex®-M3) domain in the BCM. The iROM code loads the next stage
extension of iROM (eROM) book image; the eROM is also executed in the SCPU and loads the Applications
Processor (APCU. Arm Cortex55) boot image (IM2) from one of the boot sources; decrypt and verify the IM2;
then eROM starts the ACPU to execute IM2.

Figure 6 illustrates the iROM code flow.
22 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
After boot up from iROM and eROM, the ACPU continues the boot flow with IM2 SPI or eMMC, or USB host. The
boot flow of Image-2 is completely flexible and independent of the SL1620 device; therefore, it is not covered as
part of this document.

The source of the eROM and the IM2 is determined by boot strap pins.

Table 5. SoC Boot Source

Boot Up SW Strap0
Boot Source

Strap[2]
Description

SPI-Secure 0 00 Boot from iROM and load eROM and IM2 from SPI flash.

NAND-Secure 0 01 Boot from iROM and load eROM and IM2 from NAND.

eMMC-Secure 0 10 Boot from iROM and load eROM and IM2 from eMMC.

USB-Secure 1 Xx Boot from iROM and load eROM and IM2 from USB.

Figure 6. ROM Code Flow

BCM Reset

BCM Init:
1. init Cortex-M3
2. init crypto engines
3. init BCM data

SoC Init:
1. read+validate OTP
2. gen. OTP Dump
3. init secure boot data

If OTF allows, button
pressed, USB Boot?

Flash Media Boot
(SPI/NAND/eMMC)

Disable_USB_Boot ||
Disable_Blank_Media?

Panic
(reset/halt)

Yes

USB BootYes

Fail

OK Run USB eROM

Run USB eROM

Run Flash eROM

USB Boot

OK

No OK

Fail
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 23

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
4.3. Flash Layout
The flash has different layouts when the SoC boots from different sources.

4.3.1. Multi-copies, Magic Number, and ECC Attributes in Page 0, Block 0
Page 0 stores the parameters. It is programmed once and is never changed. To be generic and simple, ECC is
disabled when the iROM code reads Page 0. One problem is that NAND flash can have read errors. Therefore,
multiple copies must be stored to cover these errors.

 Page 0 is fulfilled by the magic number and ECC attributes. In other words, for a 2K page size NAND
flash, 256 copies are stored in Page 0; for 4K page size NAND flash, 512 copies are stored in Page 0.

The SL1620 ROM code can tolerate up to 127 bits for each 2K bytes.

4.3.2. SPI Flash for SPI-Secure Boot
The layout for SPI flash is shown in Figure 7. ROM code only reads Image-2 from the start of SPI flash
(0xF0000000) to SRAM. Figure 7 provides an example layout. The layout of another bootstrap image and
related data is determined by IM2 and other designs (in other words, it can be changed and is not addressed in
this document).

4.3.3. eMMC Layout

4.3.3.1. Partition Management in eMMC Device
The default area of the memory device consists of a User Data Area to store data, two possible boot area
partitions for booting, and the Replay Protected Memory Block Area Partition to manage data in an
authenticated and replay protected manner.

 Two Boot Area Partitions, whose size is multiple of 128 KB and from which booting from eMMC can be
performed.

 Other user data area.

For other details about the eMMC partition management, refer to Section 7.2 and 7.3 in the JEDEC STANDARD
DESD84-A441.

Figure 7. SPI Flash Layout for SPI-Secure Boot

eROM

IM2

Other bootstrap image and related data

fixed address
24 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
4.3.4. Boot Operation Mode in eMMC
Based on eMMC standard, two boot operations are introduced.

 Normal Boot operation (see section 7.3.3 in JEDEC STANDARD DESD84-A441)
If the CMD line is held Low for 74 clock cycles and more after power-up or reset operation (either
through CMD0 with the argument of 0xF0F0F0F0 or assertion of hardware reset for eMMC, if it is
enabled in Extended CSD register byte [162], bits [1:0]) before the first command is issued, the target
recognizes that boot mode is being initiated and starts preparing boot data internally. The partition
from which the host will read the boot data can be selected in advance using EXT_CSD byte [179], bits
[5:3].

The host can terminate boot mode with the CMD line High.

Figure 8 is the state diagram of boot mode.

 Alternative boot operation (see section 7.3.4 in JEDEC STANDARD DESD84-A441)
This boot function is mandatory for device from v4.4 standard. After power-up or reset operation (either
assertion of CMD0 with the argument of 0xF0F0F0F0 or hardware reset if it is enabled), if the host
issues CMD0 with the argument of 0xFFFFFFFA after 74 clock cycles, before CMD1 is issued or the
CMD line goes Low, the target recognizes that boot mode is being initiated and starts preparing boot
data internally. The partition from which the host reads the boot data can be selected in advance using
EXT_CSD byte [179], bits [5:3].

The host can terminate boot mode by issuing CMD0 (Reset).

Figure 9 is the state diagram of alternative boot mode.

Figure 8. State Diagram of Boot Mode

Boot terminated
Min 8 clocks + 48 clocks = 56 clocks required
from CMD signal high to next MMC command.

CMD1 RESP CMD2 RESP CMD3 RESP

CLK

CMD

DAT[0]

1 sec. max

50ms
max

S 010 E S E512bytes
+ CR

S E512bytes
+ CR

Figure 9. State Diagram of Alternative Boot Mode

Boot terminated
Min 74
clocks
required
after
power is
stable to
start boot
command

NOTE 1. CMD0 with argument 0xFFFFFFFA

CMD1 RESP CMD2 RESP CMD3 RESP

CLK

CMD

DAT[0]

1 sec. max

50ms
max

S 010 E S E512bytes
+ CR

S E512bytes
+ CR

CMD0/ResetCMD01
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 25

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
4.3.5. eMMC Boot in SL1620 Device
The SL1620 device supports alternative boot operation from the eMMC device (see Figure 10).

Following are some inputs for the layout of eMMC boot:
 Two boot area partitions are defined as ping-pong copies; this ensures the system can boot if online

upgrade fails.
 The iROM always tries to read eROM from the first boot area partition; if that attempt is not successful,

the iROM reads eROM from the second boot area partition.

4.3.6. eMMC Boot Mode
The SL1620 device does not support the primary boot mode but supports alternative boot mode. Therefore, the
SL1620 cannot support the eMMC device which is compliant only with eMMC standard version 4.4.

Figure 10. Layout of eMMC Device

ARM Boot Codes

Ping-Pong copy of boot area
partition 1

EXT3 Partitions

Linux image, system config image

Copy of Linux image
and system config image

User area

RSA Keys, eROM, IM2
and related data

Boot area partition 1

Boot area partition 2

0x00000000

Maximum boot partition size

0x00000000

Maximum boot partition size
26 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
5. JTAG

5.1. Overview
The SL1620 device implements a standard IEEE 1149.1-compliant JTAG interface to support debugging of
SOC_CPU (ARM) through In-Circuit Emulation (ICE). Additionally, this JTAG interface is also used to control
boundary scan (BSCAN) TAP controller, using which Memory Built-In Self Test (MBIST) and IJTAG paths are
controlled.

5.2. JTAG Debug Port Configurations
Figure 11 shows SL1620 JTAG chain connections for both ICE debugger and BSCAN mode. Both the BSCAN TAP
controller and the ICE debugger share the same JTAG interface. To support security control features, either CPU
ICE debugger interface or boundary scan access is disabled during power up. JTAG access protection level is
provided by the OTP.

JTAG_SEL is used to select the BSCAN or ICE debugger path. JTAG_SEL is from pad. For a secure ICE debugger,
secure debug enable signal for the SOC_CPU (drmCpu0IceEn) is generated by the security engine from siSS
(BCM). Table 6 shows the different configurations of debug ports in the SL1620 device.

CPU_TAP

BSCAN_TAP

CPU0IceEn

MBIST

JTAG_SEL

SOCJTAG_TDI

BSJTAG_TDI

SOCJTAG_TDI

BSJTAG_TDI

TDO

TDO

TDO

TDI

TMS

TRSTn

TCK

TDO
TDO TDO

BCELLS

JTAG_SEL Security

1 0

1

0

Figure 11. JTAG Chain and Boundary Scan diagram
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 27

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Note: {JTAG_SEL,drmCpu0IceEn}=1x, and ENG_EN = 0, secure access over JTAG to BSCAN_TAP is controlled
by other means.

5.3. Boundary Scan Support
The SL1620 device supports the IEEE 1149.1-compliant boundary scan (BSCAN) interface. Table 7 is a list of
instructions supported.

Table 6. SL1620 Debug Port Configuration

{JTAG_SEL, drmCpu0IceEn} ENG_EN BSCAN TAP
CPU TAP

(CoreSight™)

0x 1 No Yes

1x 1 Yes No

01 0 No Yes

00 0 No No

1x 0 Yes No

Table 7. SL1620 Supported Instructions

Instruction Code

BYPASS 4'b1111

EXTEST 4'b0001

INTEST 4'b0100

SAMPLE/PRELOAD 4'b0101

IDCODE 4'b1100

HIGHZ 4'b0110

CLAMP 4'b0000

Reserved All others
28 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
6. SoC Connectivity and Access Control

The main function of SoC subsystem is to link CPU and hardware engines with various targets, including DRAM,
memory-mapped external Flash device, and an internal configuration bus. The destination of each transaction is
decided solely on the transaction address. The SL1620 SoC sub-system handles 32-bit address space. Three
targets are shared among the bus hosts, such as hardware DMA engines and CPUs. Simultaneous access to the
same target from different hosts are arbitrated and sent to the addressed target in sequence. Accesses to
different targets are independent and can be served concurrently. In addition to address-based routing, the SoC
subsystem is also capable of protecting sensitive data content by rejecting untrusted transactions to DDR
SDRAM or register spaces, including low-speed and fast-access registers.

Figure 12 shows the bus hosts and targets in the SL1620 device.

Figure 12. SL1620 Bus Hosts and Targets

SoC Subsystem

External SDRAM

Low-speed Device
Registers

AV D
M

A

C
PU

G
PU
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 29

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
6.1. Connection Table
There are two transaction target regions in SL1620:

 DDR SDRAM memory
○ System memory

 Low-speed registers
○ Normal device registers running at 100 MHz

Possible hosts for these three targets are:
 CPU

○ Quad Arm CortexA55 core sub-system
 AV DMA

○ Direct-Memory Access engine fetching display video and audio output data and storing the video
and audio input data.

 Peripheral DMAs
○ Direct Memory Access engines for storing received data or loading transmitted data through

various interfaces including USB2.0, USB3.0, Gigabit Ethernet, NAND flash, EMMC, SDIO
 Security Island Sub-System DMA

○ BCM
 GPU Engine

○ Storing or fetching graphic data
30 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Table 8 shows the connection levels of various host and target pairs.
 Full means the host can access full range of target without constraint.
 No Access means there is no logical connection for the host/target pair.

6.1.1. Address Map

Table 8. Host and Target Pair Connection Levels

Targets
DDR SDRAM Fast-Access Registers Low-Speed Registers

Hosts

CPU Full Full Full

AV DMA engine Full No Access No Access

Perif DMA Full Full Full

Security Island DMA Full Full Full

GPU Full No Access No Access

Table 9. System Memory Map

Address Range Host CPU BCM/USB/GE/eMMC/SDIO All Other DMAs

0x0000000000 ~
0x0DFFFFFFF

DDR
(0~3.5GB)

DDR
(0~3.5GB)

DDR
(0~4GB)

0x0F00000000 ~
0x0F1FFFFFF

SPI SPI

0x0F20000000 ~
0x0FFFFFFFF

Register Register
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 31

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Table 10. Low-Speed Register Memory Map

Address Range in Hexadecimal Size

SPI Flash 0xF000_0000 ~ 0xF1FF_FFFF 32MByte

CoreSight Registers 0xF680_0000 ~ 0xF6FF_FFFF 8MByte

Encoder Registers 0xF700_0000 ~ 0xF700_0FFF 4MByte

AVIO Registers 0xF740_0000 ~ 0xF75F_FFFF 2MByte

GIC400 Registers 0xF790_0000 ~ 0xF790_7FFF 32MByte

CPU Registers 0xF792_0000 ~ 0xF792_FFFF 64KByte

BCM Registers 0xF793_0000 ~ 0xF793_FFFF 64KByte

MCtrl Subsystem Registers 0xF794_0000 ~ 0xF794_FFFF 64Kbyte

GPU Registers 0xF798_0000 ~ 0xF79F_FFFF 512Kbytes

EMMC Registers 0xF7AA_0000 ~ 0xF7AA_0FFF 4Kbyte

SDIO3.0 Controller Registers 0xF7AB_0000 ~ 0xF7AB_0FFF 4Kbyte

PBRIDGE Registers 0xF7B3_0000 ~ 0xF7B3_FFFF 64Kbyte

MTEST Registers 0xF7B4_0000 ~ 0xF7B4_FFFF 64Kbyte

Gigabit Ethernet Registers 0xF7B6_0000 ~ 0xF7B6_FFFF 64Kbyte

USB2.0 OTG Controller Registers 0xF7C0_0000 ~ 0xF7C7_FFFF 512Kbyte

SoC Registers 0xF7CA_0000 ~ 0xF7CA_FFFF 64Kbyte

Memory Controller Registers 0xF7CB_0000 ~ 0xF7CB_3FFF 16Kbyte

USB3 Registers 0xF7D0_0000 ~ 0xF7DF_FFFF 1MB

ApbPerif Registers 0xF7E8_0000 ~ 0xF7E8_FFFF 64Kbyte

Chip Control Registers 0xF7EA_0000 ~ 0xF7EA_FFFF 64Kbyte

NAND Target DMA 0xF7F0_0000 ~ 0xF7F0_FFFF 64Kbyte

NAND AHB Registers 0xF7F1_0000 ~ 0xF7F1_FFFF 64Kbyte

Pulse Width Modulator Registers 0xF7F2_0000 ~ 0xF7F2_FFFF 64Kbyte

MC DFI0 Control Registers 0xF800_0000 ~ 0xF800_0FFF 4MB

MPTS Registers 0xF900_0000 ~ 0xF903_FFFF 256Kbyte

Boot-Vector 0xFFFF_0000 ~ 0xFFFF_FFFF 64Kbyte
32 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
7. Security Island Subsystem

7.1. Overview
SISS has the following main blocks:

 BCM
 OTP

7.2. BCM

7.2.1. Feature List
The BCM unit can be instantiated either in FIPS 140-2/3 compliant mode, or in Non-FIPS (accelerator-only)
mode. The FIPS mode uses a Hardware-Root-Of-Trust authorization scheme for authenticating the use of keys
and provides the basis for secure, trusted operations. The FIPS mode contains intelligence in the form of
firmware and behavior documented here. The Non-FIPS mode permits access to the crypto engines to
accelerate cryptographic algorithms, but no key management or implication of trust is provided. Switching from
FIPS to Non-FIPS mode requires no-overlapping internal plain text BCM key structures. In addition to a slightly
different memory map, the functionality provided by the trusted firmware within the FIPS mode of the BCM must
be provided by a software stack exterior to the BCM, which is the BCM Client.

The BCM primitive instructions perform the following types of security operations:
 Key authorization, loading and wrapping
 Symmetric encryption and decryption
 Asymmetric encryption and decryption
 Digital Signature signing / verification
 Hashing and HMAC verification of messages
 High-quality random number generation
 Reading and writing of One-time Programmable (OTP) memory cells

7.2.2. Configuration Options
The BCM allows for several interface configuration options:

 The target interface can be either a 64-bit AXI interface or a 32-bit AHB interface.
 The host interface can be either a 64-bit AXI interface or a 64-bit read/32-bit write AHB interface.
 The debug port can be either a DAP interface or a JTAG interface.

7.2.3. Block Diagram
The BCM interface is made up mostly of two AXI interfaces. The AXI Host interface belongs to the DMA engine
that moves bulk data in and out of DMA from the system memory area. The AXI Target interface belongs to the
AXI2APB module, which is the agent for the main CPU to communicate with the BCM.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 33

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
FUSE Module

SECURE
PROCESSOR

Arm
Cortex M3

DMA AXI2APB

BIU

ACCEL_TOP

Power Monitor & Other Side-Channel Attack Detectors

AXI Host

OUT
FIFO

IN
FIFO

IN
FIFO

APB Host

APB Target

APB Target

APB Host

AH
B Target

Mail Box
FIFO

JTAG TAP CTRL

AHB
Host

AHB
Host

BOOT
ROM

CODE/
DATA
RAM

AHB Target

APB Target

OTP
FUSE
BANK

ABUS
CNTLR

APB Target

Crypto
Accelerator

#1

APB Target

ABUS I/F

Crypto
Accelerator

#N

APB Target

ABUS I/F

SCRATCH
PAD

APB Target

ABUS I/F

ABUS

APB BUS
CNTLR

APB Bus

AXI Bus AXI Bus

ABUS I/F

Memory
Ctrl

SoC
CPU

AXI Host

AXI Target

LCS
bits

Figure 13. BCM block diagram
34 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
7.3. OTP
Functions included in this core are:

 32K bits OTP using anti-fuse technology
 Un-programmed value of OTP bit is zero, programmed value is zero/one
 Built-in charge pump to provide programming power
 Built-in programming sequencer with (SMART programming algorithm)
 Synchronous OTP interface (x16 bit for read, x1 bit for program)
 Simplified interface for reading, programming and manufacturing test operations
 BIST (built-in self-test) to cover:

○ Bit and word line integrity (TESTDEC) of memory array
○ Gate oxide integrity (Blank Check) of memory array
○ Test programming (WRTEST) of spare memory
○ Repair of failing banks for 100% Blank Check manufacturing yield

The OTP provides a synchronous, 16-bit-wide read-bus interface reading and a synchronous, 1-bit wide bus
interface for programming.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 35

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
8. DDR Memory Controller

8.1. Introduction
The SL1620 memory controller receives transactions from the SoC core. These transactions are queued
internally and scheduled for access to the SDRAM while satisfying the SDRAM protocol timing requirements,
transaction priorities, and dependencies between the transactions. The memory controller in turn issues
commands on the DFI interface to the PHY module, which launches and captures data to and from the SDRAM.

The SL1620 memory controller is designed for ARM AXI bus protocols. It has two generic ports for different
hosts in the SoC. Along with built-in arbitration schemes, it also acts as a bus fabric and reduces the size and
latency of the AXI fabric.

8.2. Memory Controller Feature List
 DDR PHY Interface (DFI) support for easy integration with industry standard DFI 3.1-compliant PHYs.
 X32 DRAM Bus Width support.
 DDR3 support.
 Direct software request control or programmable internal control for ZQ short calibration cycles.
 Support for ZQ long calibration after self-refresh exit.
 Dynamic scheduling to optimize bandwidth and latency.
 Read and write buffers in fully associative CAMs, configurable in powers of two, from 16 up to 64 reads

and 64 writes.
 Delayed writes for optimum performance on SDRAM data bus.
 For maximum SDRAM efficiency, commands are executed out-of-order:

○ Read requests accompanied by a unique token (tag) from HIF.
○ Read data returned with token (tag) for SoC core to associate read data with correct read request.

 Hardware configurable and software programmable Quality of Service (QoS) support:
○ For three traffic classes on read commands-high priority reads, variable priority reads, and low

priority reads.
○ For two traffic classes on write commands-normal priority writes and variable priority writes.
○ For port urgent and port throttling control.

 If QOS support is not configured in the hardware:
○ Two traffic classes on read commands-high priority reads and low priority reads.
○ One traffic class on write commands-normal priority writes.

 Programmable SDRAM parameters.
 Configurable maximum SDRAM data-bus width (denoted as “full data-bus width” below).
 Programmable support for all the following SDRAM data-bus widths:

○ Full data-bus width, or
○ Half of the full data-bus width.

 Guaranteed coherency for write-after-read (WAR) and read-after-write (RAW) hazards.
 Write combine to allow multiple writes to the same address to be combined into a single write to

SDRAM; supported for same starting address.
 Paging policy selectable by configuration registers as any of the following:

○ Leave pages open after accesses, or
○ Close page when there are no further accesses available in the controller for that page, or
○ Auto-precharge with each access, with an optimization for page-close mode which leaves the page

open after a flush for read-write and write-read collision cases.
 Supports automatic SDRAM power-down entry and exit caused by lack of transaction arrival for a

programmable time.
 Supports self-refresh entry and exit.
36 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
 Support for dynamically changing clock frequency while in self-refresh.
 Leverages out of order requests with CAM to maximize throughput.
 APB interface for the memory controller software accessible registers.
 Compatibility with the AMBA 4 AXI4 and AMBA 3 AXI protocols.
 Read reorder buffer with reduced latency options.

8.3. DDR Memory Controller Overview

The memory controller contains the following main architectural components:
 The AXI Port Interface (XPI) block: This block provides the interface to the application ports. It provides

bus protocol handling, data buffering and reordering for read data, data bus size conversion (up-sizing
or downsizing), and memory burst address alignment. Read data is stored in a SRAM, read re-order
buffer and returned in order, to the AXI ports. The SRAM may be instantiated as embedded memory
external to the memory controller or implemented as flops within the memory controller.

 The Port Arbiter (PA) block: This block provides latency sensitive, priority-based arbitration between the
addresses issued by the XPIs (by the ports).

 The DDR Controller (DDRC) block: This block contains a logical CAM (Content Addressable Memory),
which can be synthesized using standard cells. This holds information on the commands, which is used
by the scheduling algorithms to optimally schedule commands to be sent to the PHY, based on priority,
bank/rank status and DDR timing constraints. A bypass path is also provided.

 The APB Register block: This block contains the software accessible registers.

Figure 14. DDR Memory Controller Top-Level Block Diagram

Scheduler

D
DR

PH
Y

Response
Engine

DDR
External
Memory

Port Arbiter

APB Register
Block

Command
Mux

AXI Port
Interface (n)

command

core_ddrc_core_clk

AXI Port
Interface (0)

data

aclk_0

command

data

aclk_n

Data Mux /
Response

Mux

Bypass Path
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 37

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
8.4. Functional Description
The memory controller performs the following functions:

 Accepts requests from the SoC core with system addresses and associated data for writes.
 Performs address mapping from system addresses to SDRAM addresses (rank, bank, bank group, row).
 Prioritizes requests to minimize the latency of reads (especially high priority reads) and maximize page

hits.
 Ensures that the SDRAM is properly initialized.
 Ensures that all requests made to the SDRAM are legal (accounting for associated SDRAM constraints).
 Ensures that refreshes and other SDRAM and PHY maintenance requests are inserted as required.
 Controls when the SDRAM enters and exits the various power-saving modes appropriately.

8.5. DDR PHY Overview
DDRPHY is an implementation of DFI4.0 specification that describes the inter-operation between a DDR
memory controller and the physical interface (PHY).

Figure 15. DDRPHY Block Diagram

dfi_address
dfi_bank

dfi_cas_n
dfi_cke

dfi_cs_n
dfi_odt

dfi_ras_n
dfi_we_n

dfi_wrdata_en
dfi_wrdata

dfi_wrdata_mask

dfi_rddata_en
dfi_rddata
dfi_rddata_va lid

dfi_ctrlupd_req
dfi_ctrlupd_ack
dfi_phyupd_req
dfi_phyupd_type

dfi_phyupd_ack

dfi_init_complete
dfi_dram_clk_disable

ip_dq
ip_dqs

op_dq
op_dqs

op_dq_oen
op_dm

op_dqs_oen
op_mclk

op_ma
op_ba

op_ras_n
op_cas_n

op_cs_n
op_we_n

op_cke
op_odt

hclk
haddr

hwdata
hwrite
hrdata
htrans

hsel_phy_reg_intfc
hready

hreadyout
38 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9. Graphics Engine

The Imagination™ graphics processing IP, included within the SL1620 SoC, is defined as a family of high-
performance GPU cores that deliver hardware acceleration for 3D graphics displays for next generation IoT
devices.

The IMG B-Series BXE-2-32 core is a reusable IP block designed to bring high quality graphics acceleration and
GPU compute capability to System-on-Chip (SoC) designs for a wide range of target applications; for example,
smart home and appliances, security, streaming, mobile computing and control systems.

9.1. GPU Features and Supported Standards

9.1.1. GPU Key Features
The Imagination B-Series graphics processors are built around multi-threaded Unified Shading Clusters (USCs)
which feature an ALU architecture with high SIMD efficiency, and support tile-based deferred rendering with
concurrent processing of multiple tiles.

The B-Series core has the following features:
 Base architecture, fully compliant with the following APIs:

○ OpenGL® ES™ 3.2
○ EGL 1.4
○ OpenCL™ 1.2EP
○ Vulkan® 1.2
○ Android™ NN HAL

 Tile-based deferred rendering architecture for 3D graphics workloads, with concurrent processing of
multiple tiles.

 Programmable high quality image anti-aliasing.
 Fine grain triangle culling.
 Support for DRM security.
 Support for GPU virtualization

○ Up to 8 virtual GPUs
○ Support for IMG hyper-lane technology, with 8 hyper-lanes available
○ Separate IRQs per OSID

 Multi-threaded Unified Shading Cluster (USC) engine incorporating pixel shader, vertex shader and GP-
GPU (compute shader) functionality.

 USC incorporates an ALU architecture with high SIMD efficiency.
 Fully virtualized memory addressing (up to 64 GB address space), supporting unified memory

architecture.
 Fine-grained task switching, workload balancing and power management.
 Advanced DMA driven operation for minimum host CPU interaction.
 System Level Cache (SLC).

○ The size of the SLC can be configured by the customer
 Specialized Texture Cache Unit (TCU).
 Compressed Texture decoding.
 Lossless and/or visually lossless low area image compression - the Imagination frame buffer

compression and decompression (TFBC) algorithm
 Dedicated processor for B-Series core firmware execution.

○ Single-threaded firmware processor with a 2KB instruction cache and a 2KB data cache.
 Separate power island for the firmware processor
 On-Chip Performance, Power, and Statistics Registers.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 39

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.1.2. Unified Shading Cluster Features
 Number of ALU pipelines: 2.
 8 parallel instances per clock.
 Local data, texture and instruction caches.
 Variable length instruction set encoding.
 Full support for OpenCL™ atomic operations.
 Scalar and vector SIMD execution model.
 USC F16 Sum-of-Products Multiply-Add (SOPMAD) Arithmetic Logic Unit (ALU).

9.1.3. 3D Graphics Features
 Rasterization

○ Deferred Pixel Shading.
○ On-chip tile floating point depth buffer.
○ 8-bit stencil with on-chip tile stencil buffer.
○ Maximum tiles in flight (per ISP): 2.
○ 16 parallel depth/stencil tests per clock.
○ 1 fixed-function rasterization pipeline(s).

 Texture Lookups
○ Load from source instruction support.
○ Texture writes enabled through the Texture Processing Unit.

 Filtering
○ Point, bilinear and tri-linear filtering.
○ Anisotropic filtering.
○ Corner filtering support for Cube Environment Mapped textures and filtering across faces.

 Texture Formats
○ ASTC LDR compressed texture format support.
○ TFBC lossless and/or lossy compression format support for non-compressed textures and YUV

textures.
○ ETC
○ YUV planar support.

 Resolution Support
○ Frame buffer max size = 8K × 8K
○ Texture max size = 8K × 8K.

 Anti-aliasing
○ Maximum 4× multi-sampling.

 Primitive Assembly
○ Early hidden object removal.
○ Tile acceleration.

 Render to Buffers
○ Twiddled format support
○ Multiple on-chip render targets (MRT)
○ Lossless and/or lossy Frame Buffer Compression (and Decompression)
○ Programmable Geometry Shader Support
○ Direct Geometry Stream Out (Transform Feedback)
40 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.1.4. Compute Features
 1, 2, and 3-dimensional compute primitives.
 Block DMA to/from USC Common Store (for local data).
 Per task input data DMA (to USC Unified Store).
 Conditional execution.
 Execution fences.
 Compute workload can be overlapped with any other workload.
 Round to nearest even.

9.1.5. TFBC Features
 Lossless delta encoding algorithm
 Multiple levels of lossy compression, with memory footprint reduction to 75%, 50% or 25% of the

original data size
○ Lossy compression reduces memory bandwidth

 Block size is 64 x 32-bit pixels, these can be 8 x 8 or 16 x 4 in shape
 Throughput up to 4 pixels of 4 × 8 bits each per clock (4 pixels × 4 channels × 8 bits)
 No increase in data size.
 Formats: 1, 2, 3 or 4 channels of U8, U16, U32, F16, or F32 (up to 4 components). Max pixel size is 32

bits
 Per plane YUV planar (2 or 3 plane) video compression.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 41

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.2. GPU Integration Overview
Figure 16 shows the view of BXE-2-32 core in the Synaptics SoC. The BXE-2-32 (GPU) core and Host CPU work
together to process the various workloads that are supported by the BXE-2-32 core, while the BXE-2-32 core
needs access to a memory subsystem to fetch commands and data.

The SoC interconnect, or bus fabric, as shown in the Figure 16, consists of two key buses:
 Memory interconnect to allow the SoC modules access to system memory (for example, SDRAM,

FLASH, and so on) via the memory controller.
 System bus to allow a host CPU to access configuration/status registers of various target IPs in the

SoC, such as the BXE-2-32 core.

Figure 16. BXE-2-32 core in SoC

AXI BUS(128bit)

GPU CPU

Memory Controller

AHB BUS(32bit)

ahb2axi

SOC
42 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.3. GPU Bus Interface
This section describes the bus interface groups for an AXI bus protocol configured BXE-2-32 core. There are two
bus interface groups in the BXE-2-32 design, the system bus interface and the memory bus interface. Each
group is independent of the other in terms of the bus width and how they can operate.

9.3.1. AXI Host Interface
This is an AXI host interface (AXI MEMIF). It consists of a single channel denoted as 0. A channel is a 128-bit
wide port and is used to read and write the memory data from/to memory. The mapping of physical addresses
generated from the core to the port is configurable according to BXE-2-32 configuration registers.

Table 11. Features of GPU AXI Host Interface

Feature Characteristic

Number of memory interfaces 1

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock mem_clk

AXI type ACE Lite

Host or Target Host

Burst attribute
Max Burst: 4 beats
Incrementing (wrapped burst type is not supported)

Burst size
Total max burst is 64 bytes which equals:
128 bits * 4(burst size * burst length)

Address bus width 36 bits

Data bus width 128 bits

Tag ID width 6 bits

Number of IDs 26

Max number of outstanding reads 64

Max number of outstanding writes 64

Combined number of outstanding reads and writes
96 combined read and write transactions.
The total number of outstanding tag IDs can be any mix of read
and write at any one time.

Interleaving Write Interleaving is not supported

Sideband signals

AXI_AxUSER_MEMIF:
Bit 5:0 - Internal Tag ID
Bits 8:6 - OSID
Bit 9 - FW Code Access
Bit 10 - Trusted Access
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 43

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.3.2. AXI SoC Interface
The SoC Interface (SOCIF) is an AXI Target interface. This interface is used to access the BXE-2-32 control
registers. It is a fixed 32-bit data interface.

The SOCIF interface tag width is configurable and specified by the generic AXI_SOCIF_TAG_WIDTH.

The interface supports write byte masking and the byte mask does not apply to read accesses. This is so that
only writes which the driver intends to make into the device are observed irrespective of the bus width. Fully
masked writes to the SoC Interface are supported.

Table 12. Features of GPU AXI SoC Interface

Feature Characteristic

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock sys_clk

AXI type AXI3

Host or Target Target

Burst attribute Bursts are not supported on the SOCIF

Address bus width 32 bits

Data bus width 32 bits

Tag ID width 10 bits

Number of IDs 210

Max number of outstanding reads 4

Max number of outstanding writes 4

Read/Write data Interleaving Not supported

Sideband signal N/A

Burst cross 4KB boundary Not supported

Unaligned transfer support Not supported

Response support OKAY, EXOKAY

LOCK access Supported

Exclusive access Supported

Read/Write out-of-order Not Supported

Write-data-before-addr Not Supported

Write early response Not Supported

Write strobe support Supported
44 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.4. Performance Characteristics
The performance characteristics of the BXE-2-32 core are theoretical maximum performance with the
architecture running at 100% efficiency.

Table 13. GPU Core Performance Characteristics

Feature Performance

Floating Point Operations (F32) 32 operations per clock

Floating Point Operations (F16) 64 operations per clock

Integer Operations 16 operations per clock

Geometry Performance 0.25 triangles per clock

Texture Performance 2 texels per clock (@32 BPP)

Pixel Performance 2 pixel(s) per clock (@32 BPP)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 45

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
9.5. GPU Architecture Overview
Figure 17 shows the key modules of the BXE-2-32 core.

Figure 17. GPU High-Level Architecture

BXE-2-32

Unified Shading Cluster Array

USC
Texture

Processing
Unit

ASTC

Specialized Caches TFBC

Fragment
Phase Pipeline

Geometry
Phase Pipeline

Firmware
Processor

SoCs & Other
Interfaces

MMU and
System

Level Cache

Pixel Data
Host

Compute Data
Host

Vertex Data
Host Programmable

Data
Sequencer

System Memory Bus

Control and Register Bus

System
Memory Bus

Secondary IRQ

XPU Interface

Host Interface
46 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10. Video Post Processing (VPP)

10.1. Overview
The VPP (video post processing) module in the SL1620 device:

 Utilizes an LCDC design with two LCDC instances to interface with either an LCD or MIPI panel.
 Supports one LCDC with an LCD output interface for TFT RGB16/18/24-bit and CPU-68/80Type 8/16-

bit panels with resolutions up to 1080p30 or 720p60.
 Supports one LCDC for DSI MIPI interfacing, enabling MIPITX output (same DSI-HC and D-PHY design as

VS640), supporting RGB16/18/24-bit format from LCDC, with resolutions up to 1080p60.

Figure 18 illustrates the VPP pipe-line structure in SL1620.

Figure 18. SL1620 Video Processing Pipe

vD
hu

b

LCDC #1

LCDC #2 DSI-HC D-PHY

128-bit

128-bit

TFT: 16/18/24-bit
CPU: 68-Type 8/16-bit
 80-Type 8/16-bit

RGB565
RGB666
RGB888
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 47

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.2. LCDC Interfaces
The LCDC interfaces with LCD panel or DSI.

The supported inputs include:
 Display size - up to 1920x1080
 One of the following color formats:

○ RGB18 6:6:6 and 8-bit color STN interface
○ RGB16 5:6:5
○ RGB24 packed
○ RGB24 unpacked

The supported image processing functions include:
 Background color to fill outside of display plane
 Brightness control over the whole display plane
 Gamma correction with 32-piecewise linear interpolation
 Clipping control with registers for each RGB
 Partial refresh for power save mode (screen saver)

The display output drives one of the following targets:
 RGB streaming (TFT LCD)
 16, 18, 24 bit (true color) RGB
 Up to 150 MHz pixel clock
 CPU type (TFT LCD)

○ 16-bit RGB interface
○ 8-bit interface
○ 68-type (Motorola) and 80-type (Intel)
○ Supports command FIFO
48 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3. LCDC Controller Configuration
The LCD controller supports interfaces for several types of LCD panels. This section describes the hardware
connectivity required for each of the supported interfaces.

10.3.1. LCD with Display Serial Interface (MIPI)
Figure 19 shows an example of an LCD with DSI connectivity.

Figure 19. SL1620 DSI Connectivity

Data Lane0

Data Lane1

Data Lane2

Data Lane3

Clock

DSI (MIPI)

SL1620

DSI

D
-P

H
Y

D
IS

P
LA

Y
 C

O
N

TR
O

LL
ER

DSI Display
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 49

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3.2. TFT Interface
The LCDC provides the following interface signals for TFT display panels:

 Vertical synchronization signal (LVSYNC): can be configured by programming VSL in the VSTR register.
 Horizontal synchronization signal (LHSYNC): asserted at every line start.
 Data enable signal (LDENA): asserted when active output data is valid; polarity can be programmed

through IOE in the PANCSR register.
 Pixel clock (LPCLK): used to synchronize LCD pixel data out.
 LCD data out (LD[23:0]): 18/24-bit RGB sent to the TFT panel; output data width can be configured

through DISPType in the DISPIR register and BGR in the PANCSR register. Table 14 shows LCD data
format.

Figure 20 shows the interface signal timing for the TFT LCD panel. The timing and polarity of each signal can be
configured by programming the relevant registers.

Table 14. LD Values for TFT LCD Panel

BGR LD[23:0]

{ GPMUX18B, GPMUX16B }= 2'b1x 2'b00

18-bit interface
(DISPType =0)

BGR = 0
LD[23:16] =
LD[15:8] =
LD[7:0] =

{ R[7:2], R[7:6] }
{ G[7:2], G[7:6] }
{ B[7:2], B[7:6] }

{ 6'd0, R[7:6] }
{ R[5:2], G[7:4] }
{ G[3:2], B[7:2] }

BGR = 1
LD[23:16] =
LD[15:8] =
LD[7:0] =

{ B[7:2], B[7:6] }
{ G[7:2], G[7:6] }
{ R[7:2], R[7:6] }

{ 6'd0, B[7:6] }
{ B[5:2], G[7:4] }
{ G[3:2], R[7:2] }

{ GPMUX18B, GPMUX16B }= 2'b01 2'b00

16-bit interface
(DISPType =0)

BGR = 0
LD[23:16] =
LD[15:8] =
LD[7:0] =

{ R[7:3], R[7:5] }
{ G[7:2], G[7:6] }
{ B[7:3], B[7:5] }

{ 6'd0, R[7:6] }
{ R[5:2], G[7:4] }
{ G[3:2], B[7:2] }

BGR = 1
LD[23:16] =
LD[15:8] =
LD[7:0] =

{ B[7:3], B[7:5] }
{ G[7:2], G[7:6] }
{ R[7:3], R[7:5] }

{ 6'd0, B[7:6] }
{ B[5:2], G[7:4] }
{ G[3:2], R[7:2] }

24-bit interface
(DISPType =1)

BGR = 0 LD[23:0] = { R[7:0], G[7:0], B[7:0] }

BGR = 1 LD[23:0] = { B[7:0], G[7:0], R[7:0] }

HBL + 1

SYNC

SYNC

CLK

17:0]

ENA

Line 1 Data Line 2 Data Line 3 Data

HEL + 1

VSL + 1

VBL VELVAL + 1

HSL + 1

Figure 20. TFT LCD panel timing
50 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Figure 21 shows connectivity for the TFT interface.

Table 15 summarizes the data out (LD[23:0]) connectivity for different TFT display configurations. It explains
mapping of RGB888 bus mapping to LCDC output 24-bit bus.

Table 15. TFT LD[23:0] Connectivity

Figure 21. LCDC TFT Interface Connectivity

16/18/24
LCDD[23:0]]

LCDGP0

LCDGP1

LCDGP2

CLK

VSYNC

HSYNC

ENABLE

DOTCLK

Data_In[R,G,B]

TFT DisplayLCDC

SL1620
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 51

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3.3. STN Interface
The LCDC provides the following interface signals for STN display panels:

 Vertical synchronization signal (LVSYNC): asserted when the first active data line in frame is present;
duration is one line width.

 Horizontal synchronization signal (LHSYNC): asserted during pixel inactive times; assertion time and
duration are controlled by HSL and HEL parameters.

 Pixel clock (LPCLK): should be set for STN LCD to satisfy the following equation.

FHCLK ≥ 8/3 x FLPCLK

2 2/3 pixels are sent to the STN LCD panel per LPCLK, so HCLK is at least 8/3 faster than the LPCLK.

 LCD data out (LD[7:0]): supports 8-bit color STN LCD panels; LD (data out) timing is shown in Figure 22.

Figure 23 shows interface signal timing for the STN LCD panel. The timing and polarity of each signal can be
configured by programming the relevant registers.

Figure 22. LD Timing for STN LCD Panel

MSB
T

…

R0
G0

B0

R1

G1

B1

R2

G2

B2
R3

G3

B3

R4

G4

B4

R5

G5
B5

R6

G6

B6

R7

G7

B7

STN LCD Panel

R0
G0

B0

R1
G1

B1

R2
G2

B2

R3
G3

B3

R4
G4

B4

R5
G5

B5

R6
G6

B6

R7
G7

B7

…

.

.

.
LSB

Figure 23. STN LCD Panel Timing

LVSYNC

LHSYNC

LPCLK

LD[7:0] Line 1 Data Line End Data Line 1 DataLine 2 Data Line 3 Data Line 4 Data

HSL HBL HEL
VSLVAL
52 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3.4. LCDC Output Pin
LCDC output pins are multiplexed as shown in Table 16.

Output pin configuration can be programmed by GPSEL. If GPSEL is set to 1, GP0-GP7 are output. Otherwise,
LDGP0–LDGP3 can be selected from among several panel timing signals, as shown in Table 16. The LCDC
output control pin multiplexing is shown in Figure 24.

Table 16. LCDC Output Pins

Name GP TFT24 TFT181

1. Assuming GPMUX18B=1

TFT162

2. Assuming GPMUX18B=0 and GPMUX16B=1

CCIR656 STN 68-type CPU 80-type CPU

LPCLK LPCLK LPCLK LPCLK LPCLK LPCLK LPCLK

LDGP0 GP0 LVSYNC LVSYNC LVSYNC LVSYNC
CPU-type GP0

RS

LDGP1 GP1 LHSYNC LHSYNC LHSYNC LHSYNC
CPU-type GP1

R/W /WR

LDGP2 GP2 LDENA LDENA LDENA
CPU-type GP2

ENABLE /RD

LDGP3 GP3
CPU-type GP3

/CS

LDGP4 GP4

LDGP5 GP5

LDGP6 GP6

LDGP7 GP7

LDGP8 GP8

LD[23:0]

LD[23:16]

LD[15:8]

LD[7:0]

R[7:0]

G[7:0]

B[7:0]

LD[23:18]

LD[17:16]

LD[15:10]

LD[9:8]

LD[7:2]

LD[1:0]

R[7:2]

R[7:6]

G[7:2]

G[7:6]

B[7:2]

B[7:6]

LCDD[15:11]

LCDD[10:5]

LCDD[4:0]

R[7:3]

G[7:2]

B[7:3]

CPUDATA[15:11]

CPUDATA[10:5]

CPUDATA[4:0]

LD[7:0] CCIRDATA[7:0] STN[7:0] CPUDATA[7:0]
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 53

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Figure 24. Output MUX for Control Signal

LCDCGPGEN

LCDCPUGEN

LCDTIMECNT1

F/F

LCDOUTMUX

LCDCGP4-8

LCDCGP0-3

LCDCPU
GPSEL
54 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3.5. CPU-Type Interface
The following figures show the connectivity for 68-type and 80-type CPU interfaces.

Table 17 summarizes the data out (LD[23:0]) connectivity for different CPU display configurations. It explains
mapping of 8/16 bit bus mapping to LCDC output 24-bit bus.

Figure 25. 68-Type CPU Interface, One 16-Bit and One 8-Bit Bus

SL1620
LCDC
LCDD[15:0]

LCDD[7:0]

LCDGP0

LCDGP1

LCDGP2

LCDGP3

68-Type CPU
CPUDATA[15:0]

CPUDATA[7:0]

RS

R/W

ENABLE

CS

16

8

16 bi t

8 bi t

Figure 26. 80-Type CPU Interface, One 16-Bit and One 8-Bit Bus

SL1620
LCDC
LCDD[15:0]

LCDD[7:0]

LCDGP0

LCDGP1

LCDGP2

LCDGP3

80-Type CPU
CPUDATA[15:0]

CPUDATA[7:0]

RS

WR

RD

CS

16

8

16 bi t

8 bi t
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 55

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Table 17. TFT LD[23:0] Connectivity (CPU display)
56 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
10.3.6. General-Purpose Output for Row/Column Driver
Figure 27 describes the signals that are provided by the LCDC in general-purpose mode.

10.3.7. LCDC interface handshake signal Pin-out Mapping Summary
Table 18 summarizes the different handshake signal output mapping options for each interface.

Table 18. Interface Pinout

Name GP TFT24 TFT18 TFT16 68-type CPU 80-type CPU

LPCLK LPCLK LPCLK LPCLK LPCLK — —

LCDGP0 GP0 LVSYNC LVSYNC LVSYNC
CPU type GP0

RS

LCDGP1 GP1 LHSYNC LHSYNC LHSYNC
CPU type GP1

R/W WR

LCDGP2 GP2 LDENA LDENA LDENA
CPU type GP2

ENABLE RD

LCDGP3 GP3 — — —
CPU type GP3

CS

SL1620

LCDC

LPCLK

LCDGP0

LCDGP1

LCDGP2

LCDGP3

LCDGP4

Figure 27. 80-Type CPU Interface, One 16-Bit and One 8-Bit Bus
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 57

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11. Audio Input Output

11.1. Overview
The main functions of the Audio input-output (AIO) module are:

 To transmit the audio stream prepared in DRAM by firmware in supported audio formats (Output path
from dHub) through I2S pins.

 To receive different audio input streams through I2S/PDM pins, de-serialize, pack, and store in DRAM
(Input paths to dHub).

Table 19. Audio Output paths/ports

Sr. no Name Description

1
I2S1_TX Audio Output
(I2S_1)

2 channel audio in I2S mode or
2/4/6/8/16 Channels in TDM mode or
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

2
I2S2_TX Audio Output
(I2S_2)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

3
I2S3_TX Audio Output
(I2S_3)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

4
I2S4_TX Audio Output
(I2S_4)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

5
I2S5_TX Audio Output
(I2S_5)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.
58 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Table 20. Audio Input paths/ports

Sr. no Name Description

1
I2S1_RX Audio Input
(MIC_1)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM Mono audio can be received through I2S pin
For this port 1 I2S receiver is enabled.

2
I2S2_RX Audio Input
(MIC_2)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM Mono audio can be received through I2S pin
For this port 1 I2S receiver is enabled.

3
I2S3_RX Audio Input
(MIC_3)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM Mono audio can be received through I2S pin
For this port 1 I2S receiver is enabled.

4
I2S4_RX Audio Input
(MIC_4)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM Mono audio can be received through I2S pin
For this port 1 I2S receiver is enabled.

5
I2S5_RX Audio Input
(MIC_5)

2 channel audio in I2S mode or
2/4/6/8/16 Channel in TDM mode or
PCM Mono audio can be received through I2S pin
For this port 1 I2S receiver is enabled.

6
PDM Audio Input
(PDM)

Up-to 8 channel audio can be received in PDM format.
For this port, 4 PDM receivers are enabled.

6a PDM Audio Input (DMIC)

Up-to 8 channel audio can be received in PDM format (the ones
mentioned in #6). These inputs go in DMIC which do PDM2PCM
conversion and interleaving.
For this port 4 DMIC receivers are enabled.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 59

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Figure 28 is a functional block diagram of the AIO module.

For each input/output ports, there are audio FIFOs between the DMA channel and the Transmitter/Receiver
block. In unexpected or error cases when underflow or overflow happens, an interrupt will be generated. All the
FIFOs can be flushed by firmware.

The SL1620 AIO module also has audio clock logic to generate the various sampling clocks (Bit-Clocks or BCLK)
required for each port by dividing from Host Clock (MCLK). The source of MCLK is driven by the APLLs.

The audio clock module generates the data BCLK for AIO module by dividing the input Host Clock (MCLK) by 1/
2/4/8/16/32/64/128/256/512/1024. The desired BCLK clock frequency and polarity can be selected by
programming the AIO registers.

Figure 28. Functional Block Diagram of AIO Module

audRxPdm
audRxPdm

A
ud

io
 d

H
ub

1r

bcmq_top
avioBcm

16w

17wm

PDM
PDM-2CH
PDM-2CH
PDM-2CH
PDM-2CH

23w

0
1

audRxPdm
audRxPdm

DMIC
25r

audXmt
audRcv

I2S_1/MIC_1
I2 S 2 CH or TDM-4/8/16CH

audXmt
audRcv

I2S_2/MIC_2
I2 S 2 CH or TDM-4/8/16CH

audXmt
audRcv

I2S_3/MIC_3
I2 S 2 CH or TDM-4/8/16CH

audXmt
audRcv

I2S_4/MIC_4
I2 S 2 CH or TDM-4/8/16CH

audXmt
audRcv

I2S_5/MIC_5
I2 S 2 CH or TDM-4/8/16CH

3w

5r

7w

9r

11w

13r

15w

19r

21w

2
3

0
0

1
1

2
2

3
3

4
4

pTrack#1
pTrack#2
60 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.2. Audio Clock Scheme
Each I2S (TX+RX pair) or PDM of AIO has its own MCLK (host clock). Two independent clocks from APLL are used
to generate these MCLKs. There are independent dividers for each MCLK to fine adjust their required
frequencies. BCLKs are derived from MCLKs using another set of dividers.

11.2.1. Sampling Rate and Bit Clock
The bit clock toggles once for each discrete bit of data on the data lines. The bit clock frequency is derived by
the number of bits per channel, the number of channels, and the sampling rate. For example, stereo audio (2
channels) with a sample frequency of 192 KHz and 16-bits per sample will have a bit clock frequency of 6.144
MHz (192x2x16). The Word Strobe clock (LRCK) indicates whether Left Channel or Right Channel data is
currently being sent to the device. Transitions on the LRCK also serve as a start-of-word indicator. The LRCK
frequency is always the same as the audio sampling rate. The sampling size and sampling rate must be same
within the same channel pair and the same port.

Table 21 shows the required BCLK frequency for supported audio sampling rates at 32FS/48FS/64FS.

To generate desired frequencies for audio clocks, APLL must be first configured to generate required MCLKs.
AIO clock dividers must be programmed to generate correct BCLKs and LRCKs from MCLKs.

Table 21. Sampling Rate and Bit Clock Relationship (I2S)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

32*FS (2-Ch) 48*FS (2-Ch) 64*FS (2-Ch)

32 KHz 1.02 1.536 2.048

44.1 KHz 1.4112 2.1168 2.8224

48 KHz 1.536 2.304 3.072

96 KHz 3.072 4.608 6.144

192 KHz 6.144 9.216 12.288

Table 22. Sampling Rate and Bit Clock Relationship (For TDM Mode)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

128*FS (4-Ch) 192*FS (6-Ch) 256*FS (8-Ch) 512*FS (16-Ch

32 KHz 4.096 6.144 8.192 16.384

44.1 KHz 5.6448 8.4672 11.2896 22.579

48 KHz 6.144 9.216 12.288 24.576

96 KHz 12.288 18.432 24.576 49.152

192 KHz 24.576 36.864 49.152 Not supported
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 61

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.3. Data Formats
The SL1620 I2S Transmitters and Receivers supports I2S mode, Left-Justified mode, Right-Justified mode, TDM
Mode, PCM Mono, and PDM mode.

The following sections briefly describe each of the supported data formats.

11.3.1. I2S Mode
In I2S mode, data is sent out “one” BCLK after the LRCK transition. In this mode left channel data are
transmitted during the low period of LRCK and right channel data are transmitted during the high period of
LRCK. Figure 29 shows the I2S mode.

11.3.2. Left-Justified Mode
In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK transition and
data is aligned with the leading transitions on LRCK. In this mode left channel data are transmitted during the
high period of LRCK and right channel data are transmitted during the low period of LRCK. Figure 30 shows the
Left-Justified mode.

Figure 29. I²S Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left
Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB

1 BCLK 1 BCLK
1 2 3 ------ n-1 n

1/fs

Figure 30. Left-Justified Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB
1 2 3 ------ n-1 n

1/fs
62 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.3.3. Right-Justified Mode
In Figure 31, the Right-Justified format is very similar to the Left-Justified format, with the exception of the
placement of channel data within the LRCK. In this mode, the data lines up with the right edge of LRCK
transition and last bit of the data are transmitted one BCLK before the LRCK transition.

As with the Left-Justified mode, left channel data is transmitted during the high period of LRCK and right
channel data are transmitted during the low period of LRCK. Figure 31 shows the Right-Justified mode.

11.3.4. Time Division Multiplexed (TDM) Mode
The TDM format is typically used when communicating between integrated circuit devices on the same printed
circuit board or on another printed circuit board within the same piece of equipment. For example, the TDM
format is used to transfer data between the DSP and one or more analog-to-digital converter (ADC), digital-to-
analog converter (DAC).

The TDM format consists of three components in a basic synchronous serial transfer: the clock (BCLK), the data
(DIN / DOUT) and the frame sync (LRCK).
1. The BCLK for Transmit / Receive needed for 32bit resolution per channel:

 512 Clocks: 16-Channel
 256 Clocks: 8-Channel
 192 Clocks: 6-Channel
 128 Clocks: 4-Channel

Each 64 BCLK 2-Channel data is transmitted / received.

2. In I2S-TX, the LRCLK can be generated for 1-510 BCLK in an audio frame whereas in I2S-RX the module
detects the low to high edge to start decoding the data.

3. The audio frame in TDM mode carries 2/4/6/8/16-Channels of data.
4. The data is always in I2S / Justified Mode.

 In I2S mode, data is sent out one BCLK after the LRCK transition.
 In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK

transition and data is aligned with the leading transitions on LRCK.
 It is relatively apparent that the Right-Justified format is very similar to the Left-Justified format, with the

exception that the placement of channel data within the LRCK. In this mode the data lines up with the
right edge of LRCK transition and last bit of the data is transmitted one BCLK before the LRCK
transition.

Figure 31. Right-Justified Mode

BCLK

FSYNC/LRCK

1 2 3 ------ n-1 n

Left Channel

TSD 0/1/2/3
MSB LSB

Right Channel

MSB LSB
1 2 3 ------ n-1 n

1/fs
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 63

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Figure 32. 8-Channel TDM Mode Data

Figure 33. 6-Channel TDM Mode Data

Figure 34. 4-Channel TDM Mode Data

BCLK

FSYNC/LRCK

I2S Mode

1/fs = 64 BCLK

23 22 -- 0 23 22 -- 0 23 22 -- 0

Left Justified Mode 23 22 -- 0 23 22 -- 0 23 22 -- 0

Ch - 1 Ch - 2

Figure 35. 2-Channel TDM Mode Data
64 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.4. PCM Mono Mode
PCM mono channel data is used specifically for transfer of chunk data indicative by a single pulse to start the
data.

After the rising edge of the PCM_FR the data will be captured. The number of bits (Data resolution) which needs
to be captured will be configurable between 8/16/24/32 Bits. Data is captured or sent on the falling edge.

When transmitter is operating in Host Mode the frame width, that is, the occurrence of PCM_FR pulses can also
be configured between 8 to 256. While transmitter is operating in Target mode the frame width is defined by the
Host Mode generating the PCM_FR, to take care of this there is a programming guideline to be followed.

Figure 36 represents the data being sent by the transmitter.

11.5. Pulse Density Modulation (PDM) Mode
AIO module has a dedicated receiver to receive PDM digital input. In PDM mode, register configurable PDM
clock is sent out from SL1620 to the PDM device to clock the data bits. The data bits are presented by the PDM
device at the clock rate, either on the rising edge/falling edge or both. SL1620 samples the PDM data and
stores in the DRAM.

SL1620 supports both the PDM data transfer modes namely Classic PDM and Half Cycle PDM. In Classic PDM,
the PDM device will present data on every rising (or falling) clock edge. In Half cycle PDM, the PDM device will
present valid data on both the clock edges. SL1620 samples the PDM data either using the internal PDM clock
edges or a programmable counter running on internal high-speed clock, also number of bits to store per frame
is configurable using the register settings.

PCM_IN/BCLK

PCM_FR/LRCK

1 2 3 ------ n-1 n

Mono Channel

MSB LSB MSB LSB
1 2 3 ------ n-1 n

8-256

Mono Channel

8-32

SD (Left-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (I2S-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (Right-Justified)

Figure 36. PCM Mono Mode Data

Figure 37. Half-Cycle PDM

L R L R

PDM CLOCK

PDM DATA
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 65

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.6. Audio Sample Counter & Timestamp

AIO has 32bit free-running audio timer that increments by 1 every 40ns. This timer can be cleared and restarted
by SW. This timer is used to capture the timestamp (STR) of a frame of I2S/TDM/PDM/DRT/DCLASS interface.
The number frames transferred on each interface are counted by sample counter (SCR). AIO facilitates all-
interfaces- simultaneous start and simultaneous capture of SCR and STR. It also facilitates the start of the SCR
and STR using selected GPIO pads (low-to-high transition of selected GPIO can be considered as the start of the
sample counter. Sample counter keeps running till SW clears GPIO_TRIG)

Apart from this, each of I2S/TDM/PDM/DCLASS/DRT interfaces can also generate interrupt periodically after
transferring every INT_SCNT number of frames. INT_SCNT is 32bit register and each of I2S/TDM/PDM/
DCLASS/DRT interfaces has its own INT_SCNT register.

11.7. Audio Accurate Playback/Recording Trigger (AAPRT)
Each of the interfaces in AIO can be scheduled to start at a particular time. The time-tracking is done by Audio
Timer (ATR) and SW can schedule the start of a transfer at an absolute ATR time or relative ATR time (some
offset time from current ATR), or immediately (ASAP or exactly at current ATR time). Each interface can be
scheduled independently and at different times but SW can also use this feature to do simultaneous schedule
start or simultaneous ASAP start (bulk start; all the start bit of all the interfaces are in a single register). Each
interface sends 'STARTED' status to SW (all 'STARTED' bits of all the interfaces are in a single register).

Figure 38. Audio Sample Counter & Timestamp

D Q
1

D Q

D Q

25MHz

ATR

STR(i)

ASIR(i)

SCR(i)

LRCK/FSYNC

1

32-bit Audio Timer
32-bit BIU Audio Timer
Register: indicates current time

1-bit BIU ASIR (Audio Sample
info request) register

32-bit Audio Sample Counter
for each Audio I/O port

32-bit BIU Audio Tx/Rx Sample
Counter Register (SCR) for each
Audio I/O port

32-bit “Current” Sample Time
Stamp for each Audio I/O port

32-bit BIU Audio Tx/Rx Sample
Time Stamp Register (STR) for
each Audio I/O port

I2S/TDM/PDM/DRT/DCLASS

0

1

GPIO_ET
M

1

GPIO_TRIG
66 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
11.8. Audio Playback/Recording Pause/Restart
Each of the I2S/TDM TX/RX interfaces in AIO can be configured to be paused after programmable number of
frames are transferred and each of the paused interfaces then can be scheduled to be restarted at some ATR
time (absolute/relative/ASAP). SW can program a register to program number of frames after which the
interface should be paused. SW can also schedule simultaneous pause of multiple interfaces. SW can read SCR
of each interface to know the number of frames already transferred on that interface and based on that it can
schedule pause.

Restarting of interfaces is similar to AAPRT. SW can do simultaneous restart of multiple interfaces.

SW can configure each interface to send interrupt every time it gets paused and/or restarted. Each interface
raise PAUSED status during the time that interface is in paused state.

11.9. I2S/TDM HW/SW Mute
I2S(#1, #2, #3) RX and PDM(#0 to #3) inputs can be muted by pressing an external switch connected to a
dedicated FORCEMUTE pad (also known as HW mute). This pad has internal pull-down resistor which keeps it
unmuted when the switch is not pressed. When the switch is pressed, FORCEMUTE input is raised and it
consequently mutes I2S(#1, #2, #3) RX and PDM(#0 to #3). Apart from this, all I2S RX and all PDM inputs can
be muted by SW as well. (Also known as SW mute.)

11.10. PTRACK
The Phase Tracker (PTRACK) facilitates between two different sources. The Phase Tracker (PTRACK) locks on
the phase of the sample rate of an input signal. The output of the sample rate tracker is the rate ratio R between
the input sample rate and the output sample rate. The input sample rate and the output sample rate are
asynchronous and derived from different sources. There are two instances of PTRACK in SL1620.

Table 23 lists the different selectable sources for PTRACK.

Table 23. PTRACK sources

Signal Description

I2S1_BCLKIO_DI Audio PAD

I2S2_BCLKIO_DI Audio PAD

I2S3_BCLKIO_DI Audio PAD

I2S4_BCLKIO_DI Audio PAD

I2S5_BCLKIO_DI Audio PAD

PDM_CLKIO_DI Audio PAD

I2S1_MCLK_DI Audio PAD

I2S2_MCLK_DI Audio PAD

aioSysClk Audio System Clock

I2S1_LRCLKIO_DI Audio PAD

I2S2_LRCLKIO_DI Audio PAD

I2S3_LRCLKIO_DI Audio PAD

I2S4_LRCLKIO_DI Audio PAD

I2S5_LRCLKIO_DI Audio PAD

Int_fsi DRT, 8KHz

USB SOF Indicator —
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 67

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

68 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

12. Peripheral Subsystem

12.1. Introduction
The Peripheral Subsystem integrates various standard interface controllers to provide connectivity between the
SL1620 SoC and the variety of peripheral devices that can be attached to the SL1620 device.

12.2. Description
Dedicated controllers handle the communication protocol for each of the standard interfaces of the SL1620
device. All of the controllers have connection to an internal target bus interface for register programming. Most
of the high speed interface controllers also include a built-in DMA, which enables them to access the SL1620
system memory as a host.

There are also sixteen timers and three watchdog timers.

The integrated peripheral subsystem communicates with the SL1620 device SoC through the following three
interfaces:

 32-bit target interface on the configuration bus running @ 100 MHz for system CPUs to access
peripheral registers

 64-bit host interface on the data bus @200 MHz for PERIF DMAs to access system memories
 Interrupts to system CPUs

The peripheral subsystem supports the following external interfaces:
 1 USB 2.0 OTG with PHY
 1 USB 3.0 with 3.0 PHY
 1 SDIO host controller provides SDIO3.0 support
 1 eMMC controller provides eMMC5.1 support
 1 Gigabit Ethernet Controller (10/100/1000Mbps) with RGMII or RMII
 1 NAND controller provides ONFI 1.0 support
 4 I2C (TWSI)
 2 SPI
 2 UART
 4 PWM
 GPIO

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Copyright © 2024 Synaptics Incorporated. All Rights Reserved 69

13. NAND Flash Controller

13.1. Features
 Supports one chip selects and 8-bit interface to the data-flash device.
 Supports 32, 64, 128, or 256-page block sizes.
 Supports page sizes up to 16KB.
 Supports two ECC algorithms:

○ Hamming ECC for 2-bit detection and 1-bit correction per page.
○ BCH ECC to correct up to 128-bit errors per page (including spare, if enabled and parity bits

themselves).
 Supports host and target DMA interfaces.
 Controller has 8 execution threads.
 Interrupt Controller:

○ Each interrupt can be masked.
○ Each interrupt has its own status flag.
○ The status flags are also valid when the given interrupt is masked, and can be checked by the

software polling mechanism.
○ Common interrupt port is provided for all interrupt sources.

 Support for volume addressing. Up to sixteen volumes supported.
 Support for pipeline read and write commands for maximum data throughput.
 Programmable access timing.
 Intelligent hardware abstraction layer to off-load the processor as well as to provide direct data and

control paths to the device.
 Supports up to seven address cycles.
 Controller support devices that have two- or three-bytes row address.
 For the legacy devices controller provide basic interface to provide the read/program/erase operation.

If device uses different interface for the cache, multi-plane or multi-LUN operation then one
implemented in the controller and present in current devices implementation then this interface will
not be supported.

 ONFI 1.0 compliant.

13.2. NAND Timing Registers
The following registers need to be optimized depending on the speed of operation:

1. The async_toggle_timings (0x101c) - timings characteristic for SDR modes.

2. The timings0 (0x1024) - sequence timings common for all work modes.

3. The timings1 (0x1028) - sequence timings common for all work modes.

4. The timings2 (0x102c) - sequence timings common for all work modes.

The time delay generated by the controller equals the minimum value written into the register, increased by 1.
All the timings are generated using the nf_clk clock signal. Once the timing registers are set, the host may
change the clock to the Controller. For this, the host needs to ensure that all operations in the Flash Controller
have been completed and the Controller is in idle state. This is identified by checking the level of ctrl_busy pin or
by the ctrl_busy bit in the ctrl_status (0x0118) register. If this is asserted, it is an indication for the host that the
Flash Controller is busy waiting for an operation inside the Controller to complete. If this is de-asserted, it is an
indication that the Controller is idle, and clocks may be changed to the Controller.

Now the Controller is ready to accept data commands to the device.

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14. APB Components of Peripheral Interface

14.1. General Purpose Input/Output (GPIO)

14.1.1. GPIO as I/O Pins
In I/O mode, the SL1620 device can control the output data and direction of I/O pads. There are 67 GPIOs in
the SoC power domain and 20 GPIOs in the SM power domain. GPIO pins are pin-shared with other interfaces.
For more pin-sharing information, refer to the SL1620 Datasheet (PN: 505-001375-01). The output and input
GPIO status can be accessed directly through memory-mapped registers. Each of the GPIO pins can be
controlled independently as described in this chapter.

Figure 39 illustrates one of 67 GPIO pins. Each of the GPIO pins (N from 0 to 66) are mapped to registers as
follows:

 GPIO 0-21 maps to apb_gpio_0 in the register manual
 GPIO 22-48 maps to apb_gpio_1 1-27
 GPIO 49-66 maps to apb_gpio_2 0-17

Figure 39. GPIO Block Diagram

D Q

D Q

D Q

Gpio_swport0_drN

gpio_swporta_ddrN

GPIO I/O PAD

gpio_ext_portaN

GPIO_P0_SYNC_EXT_DATA

N=0...66 for all 67-bit GPIOs

Metastability
Registers
70 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.1.1.1. Controlling the GPIO
The data and direction control for the signal are sourced from the data register (gpio_swporta_dr) and direction
control register.

Under software control, the direction of the external I/O pad is controlled by a write to the data direction register
(gpio_swporta_ddr) to control the direction of the GPIO pad.

The data written to the data register (gpio_swporta_dr) drives the output buffer of the I/O pad. External data are
input on the external data signal, gpio_ext_porta. Reading the external signal register (gpio_ext_porta) shows
the value on the signal, regardless of the direction. This register is read only.

14.1.1.2. Reading External Signals
The GPIO PAD data on the gpio_ext_porta external signal can always be read through the memory-mapped
register, gpio_ext_porta.

A read to the gpio_ext_porta register yields a value equal to that which is on the gpio_ext_porta signal,
regardless of the direction.

14.1.1.3. GPIO as Interrupt
GPIO can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The
type of interrupt is programmable with one of the following settings:

 Active-high and level
 Active-low and level
 Rising edge
 Falling edge

The interrupts can be masked by programming the gpio_intmask register. The interrupt status can be read
before masking (called raw status) and after masking.

The interrupts are also combined into a single interrupt output signal, which has the same polarity as the
individual interrupts. To mask the combined interrupts, all individual interrupts have to be masked. The single
combined interrupt does not have its own mask bit.

Whenever GPIO is configured for interrupts, the data direction must be set to Input for interrupts to be latched.
If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no
new interrupts are generated.

Figure 40 illustrates how the interrupts are generated and how the data flows. The signal names in the diagram
correspond to either I/O signals or memory-mapped registers.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 71

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
The gpio_status register must be read in the interrupt service routine (ISR) to find the source of the interrupt.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the gpio_porta_eoi register for
the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers.
Writing to the gpio_porta_eoi register has no effect on level-sensitive interrupts. If level-sensitive interrupts
cause the processor to interrupt, then the ISR can poll the gpio_rawint status register until the interrupt source
disappears, or it can write to the gpio_intmask register to mask the interrupt before exiting the ISR. If the ISR
exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt repeatedly
requests an interrupt until the interrupt is cleared at the source.

If the interrupt service routine reads the gpio_intr_status register to find multiple pending interrupt requests,
then it is up to the processor to prioritize these pending interrupt requests. There are no restrictions on the
number of edge-detected interrupts that can be cleared simultaneously by writing multiple 1s to the
gpio_porta_eoi register.

Interrupt signals are internally synchronized to a system clock. Synchronization must occur for edge-detect
signals. Edge-detected interrupts to the processor are always synchronous to the system bus clock. With level-
sensitive interrupts, synchronization is optional and under software control.

Figure 40. GPIO Interrupt Block Diagram

gpio_int_polarity

gpio_int_level

gpio_intmaskN

gpio_debounceN

gpio_intr_flag{_n}

gpio_intr{_n}N

gpio_intstatusN

gpio_rawintstatusNgpio_porta_eoiN

1

0

gpio_ext_portaN

N=0 through 127

Debounce

1

0

Falling Edge
Detect

1

0

1

0

& OR Polarity

Polarity

Active-High
Detect

Rising Edge
Detect

Active-Low
Detect
72 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.2. Two-Wire Serial Interface (TWSI)

14.2.1. Overview
The TWSI bus is a two-wire serial interface. The TWSI module can operate in both standard mode (with data
rates up to 100 Kbps), and fast mode (with data rates up to 400 Kbps) and supports high-speed mode (with
data rates up to 3.4Mbps). The TWSI can communicate with devices only of these modes as long as they are
attached to the bus. The TWSI serial clock determines the transfer rate. The TWSI interface protocol is set up
with a host and target. The host is responsible for generating the clock and controlling the transfer of data. The
target is responsible for either transmitting or receiving data to and from the host. The acknowledgment of data
is sent by the device that is receiving data, which can be either the host or the target. The protocol also allows
multiple hosts to reside on the TWSI bus, which requires the hosts to arbitrate for ownership.

The targets each have a unique address that is determined by the system designer. When the host is
programmed to communicate with a target, the host transmits a START condition that is then followed by the
target address and a control bit (R/W) to determine if the host is to transmit data or receive data from the
target. The target then sends an acknowledge (ACK) pulse after the address and the R/W bit is received to notify
the host that the target has received the request.

If the host (host-transmitter) is writing to the target (target-receiver), the receiver receives a byte of data. This
transaction continues until the host terminates the transmission with a STOP condition. If the host is reading
from a target, the target transmits a byte of data to the host, and the host then acknowledges the transaction
with the ACK pulse. This transaction continues until the host terminates the transmission by not acknowledging
the transaction after the last byte is received, and then the host issues a STOP condition or addresses another
target after issuing a RESTART condition. This process is illustrated in Figure 41.

The TWSI is a synchronous serial interface. The data signal (SDA) is a bidirectional signal and changes only
while the serial clock signal (SCL) is low, except for STOP, START, and RESTART conditions. The output drivers
are open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices on
the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte
packages.

Figure 41. TWSI Start and Stop Condition

LSBMSB ACK
from target

ACK
from receiver

3-8 92198721

Start or
Repeated Start
Condition

Byte Complete
Interrupt within
Target

SCL held low
while servicing
interrupts

Stop or
Repeated Start
Condition

SDA

SCL

P

Sr
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 73

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.2.2. TWSI Protocols
The TWSI has the following protocols:

 START and STOP Condition
 Addressing Target
 Transmitting and Receiving
 START BYTE Transfer

14.2.2.1. START and STOP Condition Protocol
When the bus is IDLE both the SCL and SDA signals are pulled high through external pull-up resistors on the
bus. When the host is programmed to start a transmission on the bus, the host issues a START condition. This
action is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the host is programmed to
terminate the transmission, the host issues a STOP condition. This action is defined to be a low-to-high
transition of the SDA line while SCL is 1. Figure 42 shows the timing of the START and STOP conditions. When
data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

14.2.2.2. Addressing Target Protocol
There are two address formats, the 7-bit address format and the 10-bit address format. During the 7-bit address
format, the first seven bits (7:1) of the first byte set the target address and the LSB bit (bit 0) is the R/W bit as
shown in Figure 43. When Bit 8 is set to 0, the host writes to the target. When Bit 8 (R/W) is set to 1, the host
reads from the target. Data is transmitted to the most significant bit (MSB) first. During 10-bit addressing, two
bytes are transferred to set the 10-bit address. The transfer of the first byte contains the following bit definition.
The first five bits (7:3) notify the targets that this is a 10-bit transfer followed by the next two bits (2:1), which set
the targets address bits 9:8, and the LSB bit (Bit 8) is the R/W bit. The second byte transferred sets bits 7:0 of
the target address. Figure 44 shows the 10-bit address format, and Table 24 defines the special purpose and
reserved first byte addresses.

Figure 42. START and STOP Condition

LSBMSB ACK
from target

ACK
from receiver

3-8 92198721

Start or
Repeated Start
Condition

Byte Complete
Interrupt within
Target

SCL held low
while servicing
interrupts

Stop or
Repeated Start
Condition

SDA

SCL

P

Sr
74 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Table 24. TWSI Definition of Bits in the First Byte

Target Address R/W Description

0000 000 0
General Call Address. The TWSI module places the data in the receive buffer and issues a
general call interrupt.

0000 000 1 START byte. For more information, refer to START BYTE Transfer Protocol.

0000 001 X CBUS address. The TWSI module ignores these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed host code (for more information, refer to Host Arbitration).

1111 1XX X Reserved.

1111 0XX X 10-bit target addressing.

Figure 43. 7-Bit Address Format

A6S A4A5 A2A3 A0A1 ACKR/W

MSB LSB

sent by target
Target Address

S = Start condition
R/W = Read/Write Pulse
ACK = Acknowledge

Figure 44. 10-Bit Address Format

S

S = Start condition
R/W = Read/Write Pulse
ACK = Acknowledge

‘1’ ‘1’ ‘1’ ‘1’ ‘0' A9 A8 R/W A7 A6 A5 A4 A3 A2 A1 A0 ACK

Reserved for 10-bit
Address

sent by target sent by target

ACK
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 75

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.2.2.3. Transmitting and Receiving Protocol
All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After
the host sends the address and R/W bit or the host transmits a byte of data to the target, the target-receiver
must respond with the acknowledge signal. When a target-receiver does not respond with an acknowledge
pulse, the host aborts the transfer by issuing a STOP condition. The target leaves the SDA line high so the host
can abort the transfer. If the host-transmitter is transmitting data as shown in Figure 45, then the target-
receiver responds to the host-transmitter with an acknowledge pulse after every byte of data is received.

If the host is receiving data as shown in Figure 46, then the host responds to the target-transmitter with an
acknowledge pulse after a byte of data has been received, except for the last byte. This process is how the host-
receiver notifies the target-transmitter that this is the last byte. The target- transmitter relinquishes the SDA line
after detecting the No Acknowledge so that the host can issue a STOP condition.

When a host is programmed to not relinquish the bus with a STOP condition, the host can issue a repeated start
condition. This is identical to a START condition except it occurs after the ACK pulse. The host can then
communicate with the same target or a different target.

Figure 45. Host-Transmitter Protocol

S

From Host to Target A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = Start Condition
P = Stop Condition

‘0’ (write)

‘0’ (write)

Target Address R/W A ADATA DATA A/A P

S Target Address
First 7 bits R/W A ATarget Address

Second Byte DATA A/A P

From Target to Host

For 7-bit Address

For 10-bit Address

Figure 46. Host-Receive Protocol

S

From Host to Target
A = Acknowledge (SDA low)
A = No Acknowledge (SDA high)
S = Start Condition
Sr = Restart Condition
P = Stop Condition

‘1’ (read)

‘0’ (write)

Target Address R/W A ADATA DATA A P

S Target Address
First 7 bits A ATarget Address

First 7 bits DATA P

From Target to Host

For 7-bit Address

For 10-bit Address

AR/WSrA Target Address
Second ByteR/W

‘1’ (read)
76 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.2.3. START BYTE Transfer Protocol
The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated TWSI hardware
module. When the TWSI is addressed as a target, it always samples the TWSI bus at the highest speed
supported so that it never requires a START BYTE transfer. However, when the TWSI is a host, it supports the
generation of START BYTE transfers at the beginning of every transfer should a target device require it. The
START BYTE protocol consists of seven 0's being transmitted followed by a 1, as illustrated in Figure 47, and
allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the
micro-controller detects a 0, it switches from the under-sampling rate to the correct rate of the host.

The START BYTE procedure is as follows:
1. Host generates a START condition

2. Host transmits the START byte (0000 0001)

3. Host transmits the ACK clock pulse

4. No target sets the ACK signal to 0

5. Host generates a repeated START (Sr) condition

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the
Sr (restart condition) is generated.

14.2.4. Multiple Host Arbitration and Clock Synchronization
The TWSI bus protocol allows multiple hosts to reside on the same bus. When two or more hosts try to transfer
information on the bus at the same time, they must arbitrate and synchronize the SCL clock.

This section explains the following topics:
 Host arbitration
 Clock synchronization

14.2.4.1. Host Arbitration
Arbitration occurs on the SDA line, while the SCL line is 1. The host, which transmits a 1 while the other host
transmits 0, loses arbitration and turns off its data output stage. The host that lost arbitration can continue to
generate clocks until the end of the byte transfer. If both hosts are addressing the same target device, the
arbitration could go into the data phase.

For high-speed mode, the arbitration cannot enter into the data phase because each host is programmed with a
different high-speed host code. Because the codes are unique, only one host can win arbitration, which occurs
by the end of the transmission of the high-speed host code.

Figure 47. Start Byte Transfer

start byte 00000001

dummy
acknowledge

(HIGH)

S Sr

SDA

SCL
1 2 7 8 9

ACK
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 77

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.2.4.2. Clock Synchronization
All hosts generate their own clock to transfer messages. Data is valid only during the high period of SCL clock.
Clock synchronization is performed using the wired-AND connection to the SCL signal. When the host transitions
the SCL clock to 0, the host starts counting the low time of the SCL clock and transitions the SCL clock signal to
1 at the beginning of the next clock period. However, if another host is holding the SCL line to 0, then the host
goes into a HIGH wait state until the SCL clock line transitions to 1. All hosts then count off their high time and
the host with the shortest high time transitions the SCL line to 0. The hosts then count out their low time and the
one with the longest low time forces the other host into a HIGH wait state. Therefore, a synchronized SCL clock
is generated. Optionally, targets may hold the SCL line low to slow down the timing on the TWSI bus.

14.2.5. Operation Model
The TWSI interface operates under the following model:

1. Disable the interface by writing 0 to the IC_ENABLE register.

2. Program speed (standard or fast), addressing (7 or 10-bit) and host/target modes by writing to the
IC_CON register.

3. If acting as a host, program the target address into IC_TAR. If acting as a target, program the target
address into IC_SAR.

4. Program the SCL high and low duty cycles by using the IC_SS_SCL_HCNT and IC_SS_SCL_LCNT
registers for standard-speed mode, and IC_FS_SCL_HCNT and IC_FS_SCL_LCNT for fast-speed mode.

5. Program all required interrupt masks by using the IC_INTR_MASK register.

6. Enable the interface by writing 1 to the IC_ENABLE register.

7. To transmit onto the TWSI bus, write to the IC_DATA_CMD register. Bit[7:0]= Data Bit[8]= Command (0
= write, 1 = read).

8. To read data received on the TWSI bus, read from the IC_DATA_CMD register. Bit[7:0]= Data.

14.3. Timers
There is one timer in the SM power domain, and one timer in the SL1620 SoC power domain. Each of the timers
has sixteen separate programmable counters. All these counters can be programmed separately.

Each counter counts down from a programmed value and generates an interrupt when the count reaches zero.

The counters in SoC are driven by a 200 MHz clock. The counters in SM are driven by a 10 to 30 MHz clock. The
width of these counters is 32 bits.

The initial value for each counter (that is, the value from which it counts down) is loaded into the counter using
the appropriate load count register (TimerNLoadCount). Two events can cause a counter to load the initial count
from its TimerNLoadCount register:

 The counter is enabled after being reset or disabled.
 The counter counts down to 0.

All interrupt status registers and end-of-interrupt registers of the counters can be accessed at any time. When a
counter counts down to 0, it loads one of two values, depending on the timer operating mode:

 User-defined count mode - Counter loads the current value of the TimerNLoadCount register. Use this
mode for a fixed, timed interrupt. Designate this mode by writing a 1 to bit 1 of TimerNControlReg.

 Free-running mode - Counter loads the maximum value, which depends on the counter width (that is,
the TimerNLoadCount register is comprised of 32 bits, all of which are loaded with 1s). The timer
counter wrapping to its maximum value allows time to reprogram or disable the counter before another
interrupt occurs.
78 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.4. Watchdog Timers (WDT)
The SL1620 device integrates three watchdog timers (WDT) in the SoC power domain and three WDT in the SM
power domain. The WDT is used to prevent system lock-up that can be caused by conflicting parts or programs
in a SoC.

The WDT in a SoC power domain is driven by the Register Configuration Clock at 200 MHz. The WDT in a SM
power domain is driven by the System Manager Clock at 10 to 30 MHz.

This section describes the functional operation of the WDT and contains the following sections:
 Counter
 Interrupts
 System Resets
 Reset Pulse Length
 Timeout Period Values

The generated interrupt is passed to an interrupt controller. The generated reset is passed to the SL1620 global
module, which in turn generates a reset for the components in the system. The WDT can be reset independently
of the other components

14.4.1. Counter
The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero,
depending on the output response mode selected, either a system reset or an interrupt occurs. When the
counter reaches zero, it wraps to the selected timeout value and continues decrementing. The counter can be
restarted to its initial value, which is programmed by writing to the restart register at any time. The process of
restarting the watchdog counter is sometimes referred to as “kicking the dog.” As a safety feature to prevent
accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

Figure 48. Example Watchdog Timer

Interrupt
Controller

ICTL

Watchdog
Timer

Global
module

presetn

wdt_intr wdt_sys_rst

wdt_presetn
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 79

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.4.2. Interrupts
The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When
a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the
WDT generates an interrupt when the first timeout occurs. If it is not cleared by the time a second timeout
occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches
zero, an interrupt is not generated.

Figure 49 shows the timing diagram of the interrupt being generated and cleared. The interrupt is cleared by
reading the Watchdog Timer Interrupt Clear register (WDT_EOI) in which no kick is required. The interrupt can
also be cleared by a “kick” (watchdog counter restart).

14.4.3. System Resets
When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register
(WDT_CR), the WDT generates a system reset when a timeout occurs. Figure 50 shows the timing diagram of a
counter restart and the generation of a system reset.

If a restart occurs at the same time the watchdog counter reaches zero, a system reset is not generated.

The length of the reset pulse is the number of clock cycles for which a system reset is asserted. When a system
reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the
system is reset. A counter restart has no effect on the system reset once it has been asserted.

The WDT Timeout period is not fully programmable. However, the software can select from a set of supported
timeout periods.

Figure 49. Interrupt Generation

0123 116117118119

SM CLK/
Register Config CLK

WDT_COUNTER[31:0]

WDT_INTR

Clear_interrupt

255 120

Figure 50. Counter Restart and System Restart

2558910 25425501

SM CLK/
Register Config CLK

WDT_COUNTER[31:0]

WDT_INTR

WDT_SYS_RST

254 2
80 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.5. Serial Peripheral Interface
This section describes the functional operation of the Serial Peripheral Interface (SPI) and contains the following
sections:

 SPI Overview
 Transfer Modes
 Operation Modes

14.5.1. Overview
SPI is a four-wire, full-duplex serial protocol. There are four possible combinations for the serial clock phase and
polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of the target
select signal or the first edge of the serial clock. The target select line is held High when the SPI is idle or
disabled.

The protocol allows for serial targets to be selected or addressed using either hardware or software. When
implemented in hardware, serial targets are selected under the control of dedicated hardware select lines. The
number of select lines generated from the serial-host is equal to the number of serial-targets present on the
bus. The serial-host device asserts the select line of the target serial-target before data transfer begins. This
architecture is illustrated in Figure 51.

Figure 51. Hardware Target Selection

Host Target
Data Bus

.

.

.
Target

A
ss = target select line

ss_0

ss_x

ss

ss
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 81

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.5.2. Clock Ratios
The frequency of the SPI serial input clock (SPI_CLK) is 200 MHz. The maximum frequency of the bit-rate clock
(SCLK_OUT) is one-half the frequency of SPI_CLK, which allows the shift control logic to capture data on one
clock edge of SCLK_OUT and propagate data on the opposite edge (see Figure 52). The SCLK_OUT line toggles
only when an active transfer is in progress. At all other times it is held in an inactive state, as defined by the
serial protocol under which it operates.

The frequency of SCLK_OUT can be derived from the following equation:

Fscl kout= Fssiclk/Sckdv

The SCKDV is a bit field in the programmable register, BAUDR, holding any even value in the range 0 to 65,534.
If SCKDV is 0, then SCLK_OUT is disabled.

A summary of the frequency ratio restrictions between the bit-rate clock (SCLK_OUT/SCLK_IN) and the SPI
peripheral clock (spi_clk) is described as:

Host: Fspi_clk >= 2 × (maximum Fsclk_out)

14.5.3. Transmit and Receive FIFO Buffers
The FIFO buffers used by the SPI are internal D-type flip-flops that have a depth of 64. The widths of both
transmit and receive FIFO buffers is fixed at 16 bits due to the serial specifications which state that a serial
transfer (data frame) can be 4 to 16 bits in length. Data frames that are less than 16 bits in size must be right-
justified when written into the transmit FIFO buffer. The shift control logic automatically right-justifies receive
data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data frames in
a single FIFO location (for example, two 8-bit data frames cannot be stored in a single FIFO location). If an 8-bit
data frame is required, the upper 8 bits of the FIFO entry are ignored or unused when the serial shifter transmits
the data.

Note: The transmit and receive FIFO buffers are cleared when the SPI is disabled (SPI_EN=0) or when it is
reset (PRESETN).

The transmit FIFO is loaded by write commands to the SPI data register (DR). Data are popped (removed) from
the transmit FIFO by the shift control logic into the transmit shift register. The transmit FIFO generates a FIFO
empty interrupt request (SPI_TXE_INTR) when the number of entries in the FIFO is less than or equal to the FIFO
threshold value. The threshold value, set through the programmable register TXFTLR, determines the level of
FIFO entries at which an interrupt is generated. The threshold value allows for early indication to the processor
that the transmit FIFO is nearly empty. A transmit FIFO overflow interrupt (spi_txo_intr) is generated for attempts
to write data into an already full transmit FIFO.

Figure 52. Maximum SCLK_OUT/SPI_CLK Ratio

MSB

SPI_CLK

sclk_out

txd/rxd

capture drive1 capture1 drive2 capture2 drive3 capture3
82 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
Data are popped from the receive FIFO by read commands to the SPI data register (DR). The receive FIFO is
loaded from the receive shift register by the shift control logic. The receive FIFO generates a FIFO-full interrupt
request (SPI_RXF_INTR) when the number of entries in the FIFO is greater than or equal to the FIFO threshold
value plus 1. The threshold value, set through programmable register RXFTLR, determines the level of FIFO
entries at which an interrupt is generated.

The threshold value allows for early indication to the processor that the receive FIFO is nearly full. A receive FIFO
overrun interrupt (SPI_RXO_INTR) is generated when the receive shift logic attempts to load data into a
completely full receive FIFO. However, this newly received data are lost. A receive FIFO underflow interrupt
(SPI_RXU_INTR) is generated for attempts to read from an empty receive FIFO. This alerts the processor that the
read data are invalid.

14.5.4. SPI Interrupts
The SPI supports combined interrupt requests which can be masked. The combined interrupt request is the
ORed result of all other SPI interrupts after masking. SPI interrupts are active-high. The SPI interrupts are
described as follows:

 Transmit FIFO Empty Interrupt (SPI_TXE_INTR) - Set when the transmit FIFO is equal to or below its
threshold value and requires service to prevent an underrun. The threshold value, set through a
software-programmable register, determines the level of transmit FIFO entries at which an interrupt is
generated. This interrupt is cleared by hardware when data are written into the transmit FIFO buffer,
bringing it over the threshold level.

 Transmit FIFO Overflow Interrupt (SPI_TXO_INTR) - Set when an access attempts to write into the
transmit FIFO after it has been completely filled. When set, data written from the APB is discarded. This
interrupt remains set until the transmit FIFO overflow interrupt clear register (TXOICR) is read.

 Receive FIFO Full Interrupt (SPI_RXF_INTR) - Set when the receive FIFO is equal to or above its
threshold value plus 1 and requires service to prevent an overflow. The threshold value, set through a
software-programmable register, determines the level of receive FIFO entries at which an interrupt is
generated. This interrupt is cleared by hardware when data are read from the receive FIFO buffer,
bringing it below the threshold level.

 Receive FIFO Overflow Interrupt (SPI_RXO_INTR) - Set when the receive logic attempts to place data
into the receive FIFO after it has been completely filled. When set, newly received data are discarded.
This interrupt remains set until the receive FIFO overflow interrupt clear register (RXOICR) is read.

 Receive FIFO Underflow Interrupt (SPI_RXU_INTR) - Set when an access attempts to read from the
receive FIFO when it is empty. When set, zeros are read back from the receive FIFO. This interrupt
remains set until the receive FIFO underflow interrupt clear register (RXUICR) is read.

 Multi-Host Contention Interrupt (SPI_MST_INTR). The interrupt is set when another serial host on the
serial bus selects the SPI host as a serial-target device and is actively transferring data. This informs
the processor of possible contention on the serial bus. This interrupt remains set until the multi-host
interrupt clear register (MSTICR) is read.

 Combined Interrupt Request (SPI_INTR) - OR'ed result of all the above interrupt requests after masking.
To mask this interrupt signal, mask all other SPI interrupt requests.

14.5.5. Transfer Modes
The SPI operates in the following four modes when transferring data on the serial bus:

 Transmit and Receive
 Transmit only
 Receive only
 EEPROM Read

The transfer mode (TMOD) is set by writing to control register 0 (CTRLR0).

Note: The transfer mode setting does not affect the duplex of the serial transfer. TMOD is ignored for
Microwire transfers, which are controlled by the MWCR register.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 83

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.5.5.1. Transmit and Receive
When TMOD = 2'b00, both transmit and receive logic are valid. The data transfer occurs as normal according to
the selected frame format (serial protocol). Transmit data are popped from the transmit FIFO and sent through
the transmitted line to the target device, which replies with data on the received line. The receive data from the
target device is moved from the receive shift register into the receive FIFO at the end of each data frame.

14.5.5.2. Transmit Only
When TMOD = 2'b01, the receive data are not valid and should not be stored in the receive FIFO. The data
transfer occurs as normal, according to the selected frame format (serial protocol). Transmit data are popped
from the transmit FIFO and sent through the transmitted line to the target device, which replies with data on the
received line. At the end of the data frame, the receive shift register does not load its newly received data into
the receive FIFO. The data in the receive shift register is overwritten by the next transfer. Mask the interrupts
originating from the receive logic when this mode is entered.

14.5.5.3. Receive Only
When TMOD = 2'b10, the transmit data are not valid. When configured as a target, the transmit FIFO is never
popped in Receive Only mode. Data from a previous transfer is retransmitted from the shift register. The data
transfer occurs as normal according to the selected frame format (serial protocol). The receive data from the
target device is moved from the receive shift register into the receive FIFO at the end of each data frame. Mask
interrupts originating from the transmit logic when this mode is entered.

14.5.5.4. EEPROM Read
When TMOD = 2'b11, the transmit data is used to transmit an opcode or an address to the EEPROM device.
Typically, this requires three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower address).
During the transmission of the opcode and address, no data is captured by the receive logic (as long as the SPI
host is transmitting data on its transmitted line, data on the received line is ignored). The SPI host continues to
transmit data until the transmit FIFO is empty. Therefore, there should be enough data frames in the transmit
FIFO to supply the opcode and address to the EEPROM. If more data frames are in the transmit FIFO than are
required, then read data is lost. When the transmit FIFO becomes empty (all control information has been sent),
data on the receive line (rxd) is valid and is stored in the receive FIFO. The serial transfer continues until the
number of data frames received by the SPI host matches the value of the NDF field in the CTRLR1 register + 1.

14.5.6. Operation Modes
 Operation Mode
 Serial-Host Mode

14.5.6.1. Operation Mode
The SPI interface operates under the following model:

1. Disable the interface by writing 0 to the SPIENR register.

2. Program the baud rate setting into the BAUDR register

3. Set the transfer modes, clock phase and polarity, data frame size, and number of data frames by
writing to the CTRLR0 and CTRLR1 registers.

4. Program all required interrupt masks by using the IMR register.

5. Enable the interface by writing 1 to the SPIENR register.

6. Enable the preferred target select line by writing to the SER register.

7. To transmit onto the SPI bus, write to the DR register

8. To read data received from the SPI bus, read from the DR register.
84 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
14.5.6.2. Serial-Host Mode
This mode enables serial communication with serial-target peripheral devices. The SPI initiates and controls all
serial transfers. Figure 53 is an example of the SPI configured as a serial host with all other devices on the serial
bus configured as serial targets.

The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is
disabled (SPI_EN = 0), no serial transfers can occur and sclk_out is held in “inactive” state, as defined by the
serial protocol under which it operates.

14.5.7. Data Transfers
Data transfers are started by the serial-host device. When the SPI is enabled (SPI_EN=1), at least one valid data
entry is present in the transmit FIFO and a serial-target device is selected. When actively transferring data, the
busy flag (BUSY) in the status register (SR) is set. Wait until the busy flag is cleared before attempting a new
serial transfer.

The BUSY status is not set when the data are written into the transmit FIFO. This bit is set only when the target
target has been selected and the transfer is underway. After writing data into the transmit FIFO, the shift logic
does not begin the serial transfer until a positive edge of the sclk_out signal is present. The delay in waiting for
this positive edge depends on the baud rate of the serial transfer. Before polling the BUSY status, first poll the
TXE status (waiting for 1) or wait for BAUDR * spi_clk clock cycles.

14.5.8. Serial Peripheral Interface (SPI) Protocol
With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the
serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH)
and clock polarity (SCPOL) values. The data frame can be 4 to 16 bits in length.

Figure 53. SPI Host Device

txd

ssi_oe_n

rxd

sclk_out

ss_n[0]

ss_n[1]

ss_n[2]

ss_n[3]

SPI Controller

DI DO
SCLK
SSn

Target Peripheral 2

DI DO
SCLK
SSn

Target Peripheral 3

DI DO
SCLK
SSn

Target Peripheral 1

DI DO
SCLK
SSn

Target Peripheral 0
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 85

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the target select
signal. The first data bit is captured by the host and target peripherals on the first edge of the serial clock;
therefore, valid data must be present on the transmitted and received lines prior to the first serial clock edge.
Figure 54 is a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for
configuration parameters SCPOL = 0 and SCPOL = 1.

The following signals are illustrated in the timing diagrams in this section: sclk_out serial clock from SPI host
(host configuration only) sclk_in serial clock from SPI target (target configuration only) ss_0_n target select
signal from SPI host (host configuration only) ss_in_n target select input to the SPI target ss_oe_n output enable
for the SPI host/target txd transmit data line for the SPI host/target rxd receive data line for the SPI host/target.

Figure 54. SPI Serial Format (SCPH = 0)

sclk_out/in 0

sclk_out/in 1

txd

rxd

ss_0_n/ss_in_n

spi_oe_n

MSB

MSB
4 – 16 bits

LSB

LSB
86 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
15. SD Host

The SL1620 device integrates SDIO controller and SDIO PHY.

15.1. SDIO Host Controller Features
 Supports SD memory and SDIO digital interface protocol
 Compliant with SD HCI specification
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for SD mode

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 1.8v
 Supports independent controller, Target Interface and Host Interface clock
 Supports gating of controller base clock if Host Controller is inactive
 Supports context aware functional clock gates
 Applications can gate the target interface clock if Host Controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs
○ Supports interrupt enabling and masking

 Supports tuning
○ SD Tuning using CMD19 (SD)
○ Mode 1 Re-Tuning - Host driver maintains the re-tune timer
○ Fully Software driven Tuning/Re-tuning operations
○ Auto-tuning or Mode 3 Re-tuning

 Supports 4-bit interface
 Supports UHS-I mode
 Supports Default Speed (DS), high-speed (HS), SDR12, SDR25, SDR50 and SDR104
 Supports SDIO read wait
 Supports SDIO card interrupts in both 1-bit and 4-bit modes
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 SD Specifications Part A2 SD Host Controller Standard Specification Version 4.20, August 2015
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 87

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
15.2. SDIO PHY Features
 Supports SDR104, DDR50 and legacy modes
 Voltage signaling (LVS) host and SDIO (1.8V)

○ JESD8-7a (1.8 V)
 Six I/O signals for each dwc_emmc_sd_phy1812 instance

○ SD or eMMC (4-bit data) operation: Single dwc_emmc_sd_phy1812 instance
○ Each I/O signal independently operates at 1.8V

 Three delay lines
 Each delay line consists of the following delay chains

○ A 128-stage variable delay chain
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334MHz and data rate up to 667MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 1.8 V power supplies
 Three functional receivers per I/O pad

○ 1.8V Schmitt trigger
○ 1.8V comparator receiver

 Power supply requirements for 1.8V I/O signaling
○ 1.8 V
○ Low-voltage power supply

 SD Specifications Part A2 SD Host Controller Standard Specification, Version 4.20, September 2013
88 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
16. eMMC Host

The SL1620 device integrates eMMC controller and eMMC PHY.

16.1. eMMC Host Controller Features
 Uses the same SD-HCI register set for eMMC transfers
 Supports eMMC protocols including eMMC 5.1
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for eMMC modes:

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 1.8V.
 Supports independent controller, Target Interface and Host Interface clocks
 Supports gating of controller base clock if Host Controller is inactive
 Support context aware functional clock gates
 Applications can gate the target interface clock if Host Controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs
○ Supports interrupt enabling and masking

 Supports Command Queuing Engine (CQE) and compliant with eMMC CQ HCI
○ Programmable scheduler algorithm selection of task execution
○ Supports data prefetch for back-to-back WRITE operations

 Supports tuning
○ eMMC Tuning using CMD21 (eMMC)
○ Mode 1 Re-Tuning - Host driver maintains the re-tune timer
○ Fully Software driven Tuning/Re-tuning operations
○ Auto-tuning or Mode 3 Re-tuning

 Supports 4-bit/8-bit interface
 Supports legacy, high-speed SDR, high-speed DDR, HS200, and HS400 speed modes
 Supports boot operation and alternative boot operation
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 JEDEC eMMC 5.1 Specification - JESD84-B51, February 2015
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 89

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
16.2. eMMC PHY Features
 Compliant with eMMC 5.1 with backwards compatibility (HS400 and legacy modes)

○ JESD8-7a (1.8V)
 Six I/O signals for each dwc_emmc_phy1812 instance

○ eMMC (4-bit data) operation: Single dwc_emmc_phy1812 instance
○ eMMC (8-bit data) operation: Two dwc_emmc_phy1812 instances

 Three delay lines
 Each delay line consists of the following delay chains:

○ A 128-stage variable delay chain
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334MHz and data rate up to 667MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 1.8V power supply
 eMMC (1.8V) PHY has four functional receivers per I/O pad:

○ 1.8-V Schmitt trigger
○ 1.8-V comparator receiver

 Power supply requirements
○ 1.8V I/O signaling: 1.8V and a low-voltage digital power supply

16.3. DigiLogic-Specific Features
 Capability to enable or disable DLL
 Locked output to the controller/SoC
 Capability to select half-cycle or full-cycle locking with reference to the RefClk
 Once “locked”, DigiLogic works in a low-bandwidth mode to validate “locked Phase” correctness. If the

DigiLogic cannot attain the lock, it provides an error output
 Code update on target delay line without causing glitches on dataStrobe
 Offset for tweaking the target delay code
 Cut-off clock to host delay line when not used
 Configurable WAIT cycle post phase code change before sampling PD output
 Configurable delay line stages
90 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

Copyright © 2024 Synaptics Incorporated. All Rights Reserved 91

17. Pulse Width Modulator (PWM)

17.1. Overview
The Pulse Width Modulator (PWM) provides the capability to generate a high resolution periodic digital signal
with programmable duty-cycles to control off-chip devices. It has four separate channels that are independently
configurable as shown in Figure 55.

pwmClk runs @ 100 MHz.

The PreScaler module pre-divides the input clock if a longer periodic signal is needed.

Read-only counter registers are provided via pwmCh01Ctr and pwmCh23Ctr registers for debug. The counters
reside within the Modulator block, meaning that they are clocked by divClk, not the original input pwmClk.

 Maximum terminal count supports 65535
 Duty cycle is programmed via the pwmCh*Duty registers
 Terminal count is programmed via the pwmCh*TCnt registers
 If duty cycle is 0, modOut always be low
 If duty cycle is >= terminal count, modOut is always high
 modOut can be inverted by setting the polarity inversion register, pwmCh*Pol
 Maximum divider factor supports 4096

Figure 55. PWM Block Diagram

PreScaler
(divider) Modulator Polarity

pwmClk divClk modOut pwmOut

Figure 56. Waveform

divClk

modOut

duty cycle = 3

terminal count = 7

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
18. USB 2.0 Host
The SL1620 device integrates USB OTG 2.0 controller and USB 2.0 PHY.

18.1. USB Controller Features
 Support OTG 2.0 mode
 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of

operation, in accordance with the UTMI+ Level 3 specification
 Support for the following speeds

○ High-Speed (HS, 480-Mbps)
○ Full-Speed (FS, 12-Mbps)
○ Low-Speed (LS, 1.5-Mbps)

 Multiple options available for low power operations
 Multiple DMA/non-DMA mode access support on the application side
 Supports the Scatter Gather DMA operation in both Device and Host mode
 Supports Periodic OUT Channel in Host mode
 Total Data FIFO RAM Depth is 4288
 Enable dynamic FIFO sizing
 Largest Rx Data FIFO Depth is 4288
 Largest Non-Periodic Host Tx Data FIFO Depth is 4288
 Largest Host mode Periodic Tx Data FIFO Depth is 4288
 Non-Periodic Request Queue Depth is 8
 Host Mode Periodic Request Queue Depth is 16
 Width of Transfer Size Counters is 19
 Width of Packet Counters is 10
 Label Largest Device Mode Tx Data FIFO N Depth are 4288
 Supports different clocks for AHB and the PHY interfaces for ease of integration
 Supports up to 5 bidirectional endpoints, including control endpoint 0
 Low speed is not supported for DWC_otg as a device with a UTMI+ PHY
 Supports Session Request Protocol (SRP)
 Supports Host Negotiation Protocol (HNP)
 Supports up to 8 host channels
 Supports the external hub connection in Host Buffer DMA mode
 Includes automatic ping capabilities
 Supports the Keep-Alive in Low-Speed mode and SOFs in High/Full-Speed modes
 AHB Target interface for accessing Control and Status Registers (CSRs), the Data FIFO, and queues
 Supports only 32-bit data on the AHB
 Supports Little-endian or Big-endian mode
 Supports INCR4, INCR8, INCR16, INCR, and SINGLE transfers on the AHB Target interface
 Supports Split, Retry, and Error AHB responses on the AHB Host interface. Split and retry responses are

not generated on the AHB Target interface
 Software-selectable AHB burst type on AHB Host interface in DMA mode

○ If INCR4 is chosen, the controller only uses INCR/INCR4, or Single
○ If INCR8 is chosen, the controller normally uses INCR8, but at the beginning and at the end of a

transfer, it can use INCR or Single, depending on the size of the transfer
○ If INCR16 is chosen, controller normally uses INCR16, but at the beginning and at the end of a

transfer, it can use INCR or Single, depending on the size of the transfer
 Handles the fixed burst address alignment. For example, INCR16 is used only when lower addresses

[5:0] are all 0.
 Generates AHB Busy cycles on the AHB Host interface
 Takes care of the 1KB boundary breakup
92 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
18.2. USB PHY Features
 Implements low-power dissipation while active, idle, or on standby
 Provides parameter override bits for optimal yield and interoperability
 Fully integrates high-, full-, and low-speed (Host mode only) termination and signal switching
 Implements one parallel data interface and clock for high-, full-, and low-speed (Host mode only) USB

data transfers
 Requires minimal external components-single resistor on TXRTUNE and single resistor on VBUS0 (if the

PHY's VBUS0 pin is used)
 Provides on-chip PLL to reduce clock noise and eliminate the need for an external clock generator
 Supports off-chip charge pump regulator to generate 5 V for VBUS
 Provides Built-in Self-Test (BIST) circuitry to confirm high-, full-, and low-speed operation
 Provides extensive test interface
 Provides 5v tolerance on D+ and D- lines for 24 hours

 Fully integrates 45-Ω termination, 1.5-kΩ pull-up and 15-kΩ pull-down resistors, with support for
independent control of the pull-down resistors

 Supports 480-Mbps high-speed, 12-Mbps full-speed, and 1.5-Mbps low-speed (Host mode only) data
transmission rates

 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of
operation, in accordance with the UTMI+ specification

 Provides dual (HS/FS) mode host support
 Implements SYNC/End-of-Packet (EOP) generation and checking
 Implements bit stuffing and unstuffing, and bit-stuffing error detection
 Implements Non-Return to Zero Invert (NRZI) encoding and decoding
 Implements bit serialization and deserialization
 Implements holding registers for staging transmit and receive data
 Implements logic to support suspend, sleep, resume
 Supports USB 2.0 test modes
 Implements VBUS threshold comparators
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 93

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A

94 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

19. USB 3.0 Host

19.1. Overview
The USB3 host controller provides highly power-efficient operation, higher performance, and extensibility to
support new USB3 specification. It is compliant with xHCl which ultimately replaces UHCI/OHCI/EHCI and
provides an easy path for new USB specification and technologies.

The host controller supports all USB respective speeds which includes SuperSpeed and USB2 HS/FS.

19.1.1. Features
 64 bits AXI host system bus interface

○ One AXI host
○ 8 outstanding read requests and 8 outstanding write requests for each read and write client

 32-bit AHB target register programming interface
 32-bit addressing
 Up to 127 devices
 Up to 1024 interrupts
 xHCI1.1 compatible

○ Aggressive power management
○ Clean software and Hardware interface
○ Memory access optimization
○ Interrupt Moderation

 Descriptor caching for predictable performance in high latency systems
 Concurrent IN and OUT transfers to get full 8Gbps duplex throughput
 Concurrent USB3.0/2.0/1.1 traffic

○ Designed so that USB2.0 devices do not degrade the overall throughput
○ Net BW increased to 8.48Gbps

 Up to 32K event ring segment table
 Configurable TRB cache memory to enhance predictable performance

○ 4, 8, TRB per EP
○ Up to 32 EPs concurrently (4, 8, 16, 32)

 Dynamic FIFO memory allocation for endpoints
 Endpoint FIFO sizes that are not powers of 2, to allow the use of contiguous memory locations
 LPM protocol in USB 2.0 and Link U1, U2, U3 states for USB 3.0
 Hardware controlled LPM support
 Software controlled standard USB Commands
 Hardware controlled USB bus level and packet level error handling
 Low MIPS requirement

○ Driver involved only in setting up transfers and high-level error recovery
○ Hardware handles data packing and routing to a specific pipe

 PIPE clock and SuperSpeed core clock shutdown and recovery in power-down mode and wake-up
 Features specified in USB3 specification
 Features specified in USB2 specification for HS/FL
 32 bits/125 MHz PIPE interface to PHY
 8 bits/60 MHz or 16 bits/30 MHz UTMI interface

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
20. 10/100/1000 Mbps (Gigabit) Ethernet Controller

The SL1620 device implements one 10/100/1000 Mbps Ethernet port with RGMII interface brought onto pads.
The Wake-On-LAN feature will be supported through the external interrupt from RGMII PHY to System Manager
block.

20.1. Functional Overview
The 10/100/1000 Mbps Ethernet controller in SL1620 device handles all functionality associated with moving
packet data between local memory and an Ethernet port. It integrates the MAC function and a muxed RGMII and
RMII Interface. It is fully compliant with the IEEE 802.3 and 802.3u standards.

The controller speed and duplex mode is auto negotiated through the signaling with external PHY and does not
require software intervention. The port also features 802.3x flow-control mode for full-duplex and back-pressure
mode for half duplex.

Integrated address filtering logic provides support for up to 8K MAC addresses. The address table resides in
DRAM with proprietary hash functions for address table management. The address table functionality supports
Multicast as well as Unicast address entries.

The Ethernet controller integrates powerful DMA engines, which automatically manage data movement between
buffer memory and the controller and guarantee the wire-speed operation on the port. There are two DMA for
the SL1620 Ethernet controller-one dedicated for receive and the other for transmit.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 95

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
20.2. Features
The 10/100/1000 Mbps Ethernet port provides the following features:

 IEEE 802.3 compliant MAC Layer function
 10/100/ 1000 Mbps operation - half and full duplex
 RGMII Specification version 2.6 or RMII Specification version 1.2 support to communicate with an

external PHY
 Flow control features:

○ IEEE 802.3x flow-control for full-duplex operation mode
○ Back-pressure for half duplex operation mode
○ Frame bursting and frame extension in 1000 Mbps half-duplex operation

 Internal and external loopback modes
 Full-duplex operation

○ IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input
de-assertion

 Half-duplex operation:
○ CSMA/CD Protocol support
○ Flow control using back-pressure support
○ Frame bursting and frame extension in 1000 Mbps half-duplex operation

 Preamble and start of frame data (SFD) insertion in Transmit path
 Preamble and SFD deletion in the Receive path
 Automatic CRC and pad generation controllable on a per-frame basis
 Automatic Pad and CRC Stripping options for receive frames
 Flexible address filtering modes, such as

○ Up to 15 additional 48-bit perfect (DA) address filters with masks for each byte
○ Up to 15 48-bit SA address comparison check with masks for each byte
○ 128-bit Hash filter (optional) for Multi-cast and Unicast (DA) addresses
○ Option to pass all Multi-cast addressed frames
○ Promiscuous mode to pass all frames without any filtering for network monitoring
○ Pass all incoming packets (as per filter) with a status report

 Programmable frame length to support Standard or Jumbo Ethernet frames with up to 16 KB of size
 Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)
 Option to transmit frames with reduced preamble size
 Separate 32-bit status for transmit and receive packets
 Receive module for checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet

frame (Type 1)w
 Enhanced Receive module for checking IPv4 header checksum and TCP, UDP, or ICMP checksum

encapsulated in IPv4 or IPv6 datagrams (Type 2)
 MDIO host interface for PHY device configuration and management
 Standard IEEE 802.3az-2010 for Energy Efficient Ethernet
 CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement,

and deletion in transmitted frames with per-frame control
 Programmable watchdog timeout limit in the receive path
 Supports Ethernet frame time-stamping as described in IEEE 1588-2002 and IEEE 1588-2008
 Remote wake-up frame and magic packet frame processing
96 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
21. References
 SL1620 Embedded IoT Processor Datasheet (PN: 505-001428-01)

Provides a feature list and overview describing the SL1620. It also provides the pin description, pin
map, mechanical drawings, and electrical specifications.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved 97

Astra™ SL1620 Embedded IoT Processor Functional Specification PN: 505-001456-01 Rev.A
22. Revision History

Copyright
Copyright © 2024 Synaptics Incorporated. All Rights Reserved.

Trademarks
Synaptics, Astra, and the Synaptics logo are trademarks or registered trademarks of Synaptics Incorporated in the United States and/or
other countries.

Arm, Cortex, NEON, CoreSight, and TrustZone are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. OpenGL ES is a trademark or registered trademark of Hewlett Packard Enterprise in the United States and/or other countries
worldwide. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Vulkan and the Vulkan logo are
registered trademarks of the Khronos Group Inc. Imagination and PowerVR are trademarks or registered trademarks of Imagination
Technologies Limited. MIPI DSI and MIPI CSI2 are service marks of MIPI Alliance.

Notice
Use of the materials may require a license of intellectual property from a third party or from Synaptics. This document conveys no express or
implied licenses to any intellectual property rights belonging to Synaptics or any other party. Synaptics may, from time to time and at its sole
option, update the information contained in this document without notice.

INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS,” WITH NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING ANY
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES OF NON-INFRINGEMENT
OF ANY INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE INFORMATION CONTAINED IN THIS
DOCUMENT, HOWEVER CAUSED AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT
JURISDICTION DOES NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS’ TOTAL CUMULATIVE
LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S. DOLLARS.

Contact Us
Visit our website at www.synaptics.com to locate the Synaptics office nearest you.

Last Modified Revision Description

November 2024 A Initial release.
98 Copyright © 2024 Synaptics Incorporated. All Rights Reserved

	Contents
	List of Tables
	List of Figures
	1. Architecture Overview
	1.1. Key Components and Sub-systems
	1.1.1. Global Unit
	1.1.2. CPU (Arm Cortex A55 DSU Sub-system)
	1.1.3. Boot ROM
	1.1.4. Security Island Sub-system (SISS)
	1.1.5. DDR Memory Controller
	1.1.6. Graphics Engine
	1.1.7. Video Post Processing (VPP)
	1.1.8. Audio Input/Output (AIO)
	1.1.9. SoC Connectivity and Access Control
	1.1.10. Peripheral Sub-system
	1.1.11. JTAG and Debugging Interfaces

	2. Global Unit
	2.1. Overview
	2.2. Functional Description
	2.2.1. Reset Module
	2.2.2. Reset Sources
	2.2.3. Software Reset Scheme
	2.2.4. External Reset Sequence
	2.2.5. Clock Module
	2.2.6. PLL and Oscillator
	2.2.7. Clock Dividers and Switches
	2.2.8. Clock Switching Procedure
	2.2.9. Boot Strap Module

	3. CPU
	3.1. CortexA55 DSU Sub-system
	3.2. Reference Documents
	3.3. Module Revision
	3.4. CPU Clock

	4. Boot ROM
	4.1. Overview
	4.2. SL1620 ROM Code Flow
	4.3. Flash Layout
	4.3.1. Multi-copies, Magic Number, and ECC Attributes in Page 0, Block 0
	4.3.2. SPI Flash for SPI-Secure Boot
	4.3.3. eMMC Layout
	4.3.4. Boot Operation Mode in eMMC
	4.3.5. eMMC Boot in SL1620 Device
	4.3.6. eMMC Boot Mode

	5. JTAG
	5.1. Overview
	5.2. JTAG Debug Port Configurations
	5.3. Boundary Scan Support

	6. SoC Connectivity and Access Control
	6.1. Connection Table
	6.1.1. Address Map

	7. Security Island Subsystem
	7.1. Overview
	7.2. BCM
	7.2.1. Feature List
	7.2.2. Configuration Options
	7.2.3. Block Diagram

	7.3. OTP

	8. DDR Memory Controller
	8.1. Introduction
	8.2. Memory Controller Feature List
	8.3. DDR Memory Controller Overview
	8.4. Functional Description
	8.5. DDR PHY Overview

	9. Graphics Engine
	9.1. GPU Features and Supported Standards
	9.1.1. GPU Key Features
	9.1.2. Unified Shading Cluster Features
	9.1.3. 3D Graphics Features
	9.1.4. Compute Features
	9.1.5. TFBC Features

	9.2. GPU Integration Overview
	9.3. GPU Bus Interface
	9.3.1. AXI Host Interface
	9.3.2. AXI SoC Interface

	9.4. Performance Characteristics
	9.5. GPU Architecture Overview

	10. Video Post Processing (VPP)
	10.1. Overview
	10.2. LCDC Interfaces
	10.3. LCDC Controller Configuration
	10.3.1. LCD with Display Serial Interface (MIPI)
	10.3.2. TFT Interface
	10.3.3. STN Interface
	10.3.4. LCDC Output Pin
	10.3.5. CPU-Type Interface
	10.3.6. General-Purpose Output for Row/Column Driver
	10.3.7. LCDC interface handshake signal Pin-out Mapping Summary

	11. Audio Input Output
	11.1. Overview
	11.2. Audio Clock Scheme
	11.2.1. Sampling Rate and Bit Clock

	11.3. Data Formats
	11.3.1. I2S Mode
	11.3.2. Left-Justified Mode
	11.3.3. Right-Justified Mode
	11.3.4. Time Division Multiplexed (TDM) Mode

	11.4. PCM Mono Mode
	11.5. Pulse Density Modulation (PDM) Mode
	11.6. Audio Sample Counter & Timestamp
	11.7. Audio Accurate Playback/Recording Trigger (AAPRT)
	11.8. Audio Playback/Recording Pause/Restart
	11.9. I2S/TDM HW/SW Mute
	11.10. PTRACK

	12. Peripheral Subsystem
	12.1. Introduction
	12.2. Description

	13. NAND Flash Controller
	13.1. Features
	13.2. NAND Timing Registers

	14. APB Components of Peripheral Interface
	14.1. General Purpose Input/Output (GPIO)
	14.1.1. GPIO as I/O Pins

	14.2. Two-Wire Serial Interface (TWSI)
	14.2.1. Overview
	14.2.2. TWSI Protocols
	14.2.3. START BYTE Transfer Protocol
	14.2.4. Multiple Host Arbitration and Clock Synchronization
	14.2.5. Operation Model

	14.3. Timers
	14.4. Watchdog Timers (WDT)
	14.4.1. Counter
	14.4.2. Interrupts
	14.4.3. System Resets

	14.5. Serial Peripheral Interface
	14.5.1. Overview
	14.5.2. Clock Ratios
	14.5.3. Transmit and Receive FIFO Buffers
	14.5.4. SPI Interrupts
	14.5.5. Transfer Modes
	14.5.6. Operation Modes
	14.5.7. Data Transfers
	14.5.8. Serial Peripheral Interface (SPI) Protocol

	15. SD Host
	15.1. SDIO Host Controller Features
	15.2. SDIO PHY Features

	16. eMMC Host
	16.1. eMMC Host Controller Features
	16.2. eMMC PHY Features
	16.3. DigiLogic-Specific Features

	17. Pulse Width Modulator (PWM)
	17.1. Overview

	18. USB 2.0 Host
	18.1. USB Controller Features
	18.2. USB PHY Features

	19. USB 3.0 Host
	19.1. Overview
	19.1.1. Features

	20. 10/100/1000 Mbps (Gigabit) Ethernet Controller
	20.1. Functional Overview
	20.2. Features

	21. References
	22. Revision History

