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f the Synaptics Astra™ SL1680 
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1. Architecture Overview 

This document provides an in-depth description of the architecture, sub-systems, and operational characteristics o
embedded IoT processor. This specification is crucial for engineers and developers integrating the SL1680 into th
information on each sub-system and their interactions.

Figure 1.  SL1680 architecture block diagram
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1.1.  Key Components and Sub-systems

1.1.1.  Global Unit
The Global Unit manages critical functions such as clocking, reset signals, and bootstrapping. It 
includes the Clock Module, Reset Module, and Boot Strap Module, ensuring stable operation from 
power-up to runtime. The Clock Module features PLLs and clock dividers that generate the necessary 
frequencies for all subsystems.

1.1.2.  System Manager (SM)
The SM handles power management and front panel control for media player devices. It operates 
independently of the main SoC power domains, enabling low-power standby operations. The SM 
includes an Arm® Cortex® M3 CPU, I/O controllers, and an integrated A/D converter and PVT sensor, 
managing various peripheral interfaces and ensuring efficient power usage.

1.1.3.  CPU (Arm Cortex A73MP Sub-system)
The CPU subsystem is powered by a quad-core Arm Cortex A73MP processor. This subsystem includes 
an integrated L2 cache controller and provides high-performance processing for the SL1680. The CPU 
clock can be dynamically adjusted, with the system clock derived from a programmable PLL.

1.1.4.  Boot ROM
The Boot ROM is responsible for initializing the system upon startup. It manages the flow of boot code, 
flash layout, and secure boot operations, ensuring that the processor boots securely and efficiently.

1.1.5.  SoC Connectivity and Access Control
This section details the connectivity options within the SL1680, including interfaces like PCIe, USB, 
Ethernet, and more. It also covers access control mechanisms, which regulate data flow between 
different subsystems to ensure secure and efficient communication.

1.1.6.  DDR Memory Controller
The DDR Memory Controller manages data flow between the CPU and external memory. It supports 
high-speed memory operations, crucial for the processor’s performance in memory-intensive 
applications.

1.1.7.  Graphics and Neural Network Engines
The SL1680 features a GPU for advanced graphics processing and a Neural Network Engine for AI 
tasks. These components are designed to handle demanding visual and computational workloads, 
making the SL1680 suitable for media-rich and AI-driven applications.

1.1.8.  Image Signal Processing (ISP)
The ISP subsystem processes image data, supporting various pixel formats and image enhancement 
functions. It plays a key role in applications that require high-quality image capture and processing.

1.1.9.  Video Post Processing (VPP)
The VPP subsystem handles video data processing, including scaling, color space conversion, and 
video output formatting. It supports both HDMI and MIPI interfaces, catering to a wide range of display 
outputs.
12 Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 
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1.1.10.  Audio Input/Output
The audio subsystem manages the input and output of audio signals, supporting various data formats 
and interfaces such as I2S, PCM, and S/P-DIF. It is designed to deliver high-quality audio processing for 
media applications.

1.1.11.  Peripheral Sub-system
This sub-system includes various peripheral interfaces such as GPIO, TWSI, SPI, UART, and more. These 
peripherals enable the SL1680 to interact with external devices and sensors, expanding its 
functionality in embedded applications.

1.1.12.  JTAG and Debugging Interfaces
The JTAG interface provides debugging capabilities, allowing developers to troubleshoot and optimize 
the SL1680 during development. It includes support for boundary scan and ICE debugging, crucial for 
low-level hardware debugging.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 13
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2. Global Unit 

2.1.  Overview
The SL1680 device relies on the Global Unit to provide on-chip clocking and reset signals. The Global Unit also 
handles all the chip and system-level control. The Global Unit includes a clock module, reset module, boot strap 
module, and CPU Programmable Registers. Figure 2 depicts the relationships among these modules. 

The Reset Module takes the system reset signal from System Manager/POR pad and resets from CPU- 
controlled registers to create individual resets to each subsystem. The Boot Strap Module latches the strapping 
values from the pads 320 ns (8 cycles of 25 MHz clock) after SM to SoC reset, or POR changes from low to high. 
The strap values are kept in registers for the CPU to read and the same registers are also used directly to 
configure the SL1680 device. In this way, the boot strap register values and the actual configuration are always 
consistent. The bootstraps are used to select SL1680 clock generation and CPU boot options. The strap 
description is found in the SL1680 Datasheet (PN: 505-001413-01). The Clock Module includes 3 PLLs that 
generate required frequencies, and clock divider/switching logic for all the subsystems of the SL1680 device. 
The clock parameters are controlled by CPU programmable registers.

Figure 2.  Block Diagram of Global Unit
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2.2.  Functional Description

2.2.1.  Reset Module
Separate reset signals are generated for each clock domain on which a particular sub-system operates. 

2.2.2.  Reset Sources
There are nine sources to trigger each individual reset:

 Reset from SM
 Reset from POR_VDD (monitor CORE VDD)
 Reset from POR_VDD (monitor SM CORE VDD)
 Reset from POR_VDD in CPU domain (monitor VDD_CPU)
 Reset from POR_AVDD18 (monitor 1.8V power supply on VDDIO)
 Reset from POR_AVDD18 (monitor 1.8V power supply on SM VDDIO)
 Reset from POR_AVDD33 (monitor 3.3V power supply on AVDD33_USB2)
 Watchdog reset
 Register controlled module reset

2.2.3.  Software Reset Scheme
The SL1680 device uses a pair of reset registers (reset trigger register and reset status register) to facilitate the 
software reset. When software writes 1 to a reset trigger register bit, it results in the assertion of the 
corresponding reset for 16 reference clock cycles (25 MHz). The corresponding reset status bit is set to 1 until 
cleared by software. The CPU can access both the reset trigger register and reset status register.

Figure 3.  SL1680 Device Reset Structure
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2.2.4.  External Reset Sequence
During the hardware reset, the SL1680 device prevents the CPU from booting up earlier than the remainder of 
the SoC by de-asserting the CPU reset after all other resets are de-asserted.

The power-up reset sequence is as follows:
1. External Reset pin is asserted, hardware reset occurs. The full SL1680 device is reset immediately.

2. External Reset is de-asserted. The SL1680 device reset state machine initiates.
3. SL1680 internal reset state machine de-asserts PLL reset. PLL starts to oscillate and lock.
4. SL1680 device latches power-on setting from strap pins.
5. PLLs are locked and stable clocks are driven to the modules after 1 ms
6. Global reset is de-asserted to all modules (except both CM3 CPU and CA73CPU) after 1ms.
7. De-assert CPU resets after 32 cycles (25 MHz).

Figure 4 shows the SL1680 power-up sequence.

 

Figure 4.  SL1680 Power-up Sequence

(1.18 ms) (2.68 ms) (2.68128 ms)
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2.2.5.  Clock Module
The clock module generates the clocks to each sub-system in the SL1680 device using PLLs and dividers. 

2.2.6.  PLL and Oscillator
The clock module has an internal oscillator to generate a stable reference clock to the PLLs using external 25 
MHz crystal.

Table 1 lists the PLLs which are present in the clock modules and their corresponding frequency outputs.

Table 1. PLLs and Output Frequency

# PLL
Frequency Output 

Range
Output Frequency 

formula 
Notes

1
Memory 
PLL 

20 MHz - 934 MHz
CLKOUT = (DIVFI[8:0])*4 
/ DIVR * 25 / DIVQ

Users can change the Feedback divider DIVFI 
values and VCO divider DIVQ value to obtain the 
preferred PLL frequency.
The following block clock is provided by this PLL 
during reset default:
• DDR Memory Controller

2 CPU PLL 20 MHz - 2.2 GHz
CLKOUT = (DIVFI[8:0])*4 
/ DIVR * 25 / DIVQ

User can change the Feedback divider DIVFI 
values and VCO divider DIVQ value to obtain the 
preferred PLL frequency.
CPU clock are provided by this PLL during reset 
default.

3
System 
PLL 

20 MHz - 1200 MHz
CLKOUT = (DIVFI[8:0])*4 
/ DIVR * 25 / DIVQ

There are 3 SYSPLL provided. Users can change 
the Feedback divider DIVFI values and VCO 
divider DIVQ value to obtain the preferred PLL 
frequency.
The following block clocks are provided by this 
PLL during reset default:
• Video encoder/decoder
• Peripheral sub-system
• Video post-processor
• GPU
• NPU
• Security Sub-system 
• Image Signal Processing Sub-system

4 AVPLL 20 MHz - 1200 MHz
CLKOUT = (DIVFI[8:0])*4 
/ DIVR * 25 / DIVQ

There are 2 independent Audio PLL and 2 Video 
PLL PLLs (APLL_0/1 and VPLL_0/1). User can 
change Feedback divider DIVFI values to obtain 
the preferred PLL frequency for Audio and Video 
PLL respectively. The final clock output is also 
determined by its corresponding interpreter 
frequency offset and PPM offset setting.
For detailed audio video clocks, see the AVPLL 
section of Video Post Processing (VPP) in this 
datasheet. Audio and video pixel clocks are 
provided by this PLL during reset default.
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 17
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PLL frequencies can be adjusted without affecting the normal SoC operation with the following programming 
sequence: 

 Switch clock source to reference clock by setting the clock into bypass mode. 
Note: Using PLL-generated clock registers to change PLL parameters is prohibited. 

 Set the PLL Bypass register bit. 
 Assert the PLL Reset. 
 Program PLL to the new preferred frequency by changing its corresponding parameters. 
 De-assert the PLL Reset after 2 s and have PLL re-LOCK with the new setting. 
 Wait for the PLL to lock (>= 120 µs). 
 Remove PLL Bypass. 
 Switch clock source back to PLL clock output.

2.2.7.  Clock Dividers and Switches 
The SL1680 device clock divider creates divide-by-1, divide-by-2, divide-by-3, divide-by-4, divide- by-6, divide-by- 
8, and divide-by-12 clocks for each individual module. To provide more flexibility of clock sources, the SL1680 
device also allows most of the clocks selected from three SYSPLL_0/1/2 outputs as their clock divider source 
clock. Table 2 lists the main clocks in SL1680 device and corresponding options available to select the clock 
sources. 

Table 2. SL1680 Clocks (Sheet 1 of 2)

# Clock Clock Source Options Clock Divider Options
Maximum 
Frequency 

(MHz)

1 Memory Controller Clock Memory PLL Divide by 2/4 934

2 Arm® Cortex® A73 CPU 
Clock

CPU PLL Divide by 1/2/3/4/6/8/12 1800

3 System Bus Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 400

4
Register Configuration Bus 
Clock

3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 100

5 Video Decoder Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 900

6 Video Encoder Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 1000

7 GPU Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 700

8 NPU Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 800

9
Image Capture Sub-system 
Core Clock

3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 600

10 AVIO VPP System Clock 
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 600

11 TSP Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 700

12 EMMC Controller Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 200

13 SDIO0 Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 200
18 Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 
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14 RGMII Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 125

15 USB3 Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 400

16 OVP Core Clock
3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 400

17
Arm Cortex M3 BCM CPU 
Clock

3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 250

18
Low Speed Peripherals Core 
Clock

3x SYSPLL “PLLOUT and 
PLLOUTF”

Divide by 1/2/3/4/6/8/12 250

Table 2. SL1680 Clocks (Sheet 2 of 2)

# Clock Clock Source Options Clock Divider Options
Maximum 
Frequency 

(MHz)
Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 19
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The SL1680 device’s individual clock divider and clock multiplexer settings could be changed dynamically 
during the operation. For the clock generation structure, see Figure 5.

Figure 5.  SL1680 Clock Generation Structure
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2.2.8.  Clock Switching Procedure 
The clock generation scheme provides dynamic clock switching capability. Here is the programming pseudo 
code to illustrate the dynamic clock frequency change sequence using clock switching circuit shown in Figure 5. 

If (desired clock frequency is divided by 3 clock) {

Turn on divide by 3 clock switch (ClkD3Switch = 1);       
    Clock selection done;
}
else if (desired clock frequency is 1x clock) 
{
Turn off divided clock switch (ClkSwitch = 0);
Turn off divide by 3 clock switch (ClkD3Switch = 0); 
    Clock selection done;
}
    else {
Select desired divided clock (/2, /4, /6, /8, or /12 by setting ClkSel);
    Turn on divided clock switch (ClkSwitch = 1);
    Turn off divide by 3 clock switch (ClkD3Switch = 0);
Clock selection done;
}

2.2.9.  Boot Strap Module
The SL1680 device boot strap pins are shared with functional output pins. The SL1680 device is the only driver 
of those pins in the system. During boot-up, the SL1680 device sets those pins to input mode and external pull-
up/pull-down resistors pull the boot strap pins to required levels. After boot strap latching window, those pins 
can be driven by the SoC to any level without affecting the bootstraps. The strapping information, which can be 
read by the CPU, is used to configure the SL1680 device. For detailed definitions of boot strap pin assignments 
and functions, see the SL1680 Datasheet (PN: 505-001413-01).
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3. System Manager (SM) 

3.1.  Overview
The SL1680 device System Manager (SM) is designed for front panel control and power management functions 
in a media player device. The SM core and I/O power supply are isolated from the remainder of the SL1680 
device (SoC). In standby mode, all the power rails of the SoC are shut down while the SM is powered up. This 
action enables the SM to drive the front panel, receive wake-up events from the remote control or front panel 
buttons, and initiate the SoC power-up sequence. By shutting down the SoC power, standby mode power 
consumption is less than 10mW.

The SM includes a low-power CPU (Arm® Cortex® M3) with on-chip instruction SRAM, ITCM, I/O controllers, such 
as TWSI, SPI, UART and GPIOs. The SM also has an integrated A/D converter and PVT sensor. In addition to 
direct access by SM CPU, these SM I/O devices can also be accessed by the SoC CPU through the internal AHB 
bus interface.
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3.2.  Power Domain and Power Sequence
The SL1680 device has three power domains: System Manager as the always on power domain and the other 
two SOC and CPU are controlled domains. CPU and SOC are controlled power domains and they both together 
can be either ON (normal mode) or OFF (standby mode). As shown in Figure 6, there are multiple ways to control 
the power domain; refer the Key Factors below.

Key Factors:
1. Having separate control for CPU power allows flexibility in system design with power budget (DVFS) at 

the expense of PMIC cost.

2. Whether to use on-board switch or PMIC internal switch control is up to system design.

Figure 6.  SL1680 Power Domain Partitions
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3.2.1.  Power Sequence
A specific power-up/-down sequence is required to power down the SoC block and to effectively and safely 
power up the system again later. SM supports three scenarios for power sequence:

 Initial power-up sequence (cold boot)
 Power-down sequence (entering standby mode from normal operation mode)
 Standby power-up sequence (exiting standby mode to normal mode; Warm Boot)

In each scenario, a specific power sequence must be followed by a combination of hardware and software.

3.2.2.  Initial Power-up Sequence (Cold Boot)
1. System power supply applies power to SM.

2. System power supply provides power to SoC.
3. System de-asserts SM reset (SM_RSTIn). SM CPU is kept in reset state by default after SM reset is de- 

asserted.
4. System de-asserts SoC reset (RSTIn), SoC boots up from the SoC boot ROM.
5. SoC downloads SM firmware to the SM ITCM.
6. SoC programs SM internal register to de-assert the SM CPU reset.
7. SM boots from the ITCM.
8. SM notifies SoC about the boot-complete state.

3.2.3.  Power-down Sequence (Entering Standby) 
1. SoC sends power-down request to SM.

2. SM asserts SM2SOC_RSTn to assert SoC reset (RSTIn).
3. SM notifies system power supply to shut down the SoC power.
4. SM de-asserts SM2SOC_RSTn to de-assert SoC reset.
5. System enters standby mode. Only SM block is active.

3.2.4.  Standby Power-up Sequence (Exiting Standby; Warm Boot) 
1. SM receives power-up command from front panel control through the GPIO or UART/IR receiver.

2. SM asserts SM2SOC_RSTn to assert SoC reset.
3. SM notifies system power supply to turn on the SoC power.
4. SM de-asserts SM2SOC_RSTn to de-assert SoC reset.
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3.3.  Functional Description
The System Manager (SM) includes the following main functional blocks; Figure 7 is the SM block diagram.

  Arm® Cortex® M3 
  SXBAR SIE-200 to route AHB transactions between 2 hosts and 5 targets
  Clock/Reset generation
  Interrupt controller, GPIOs, Watchdog timer, SPI controller, TWSI controller, UART, CEC
  ADC (A/D converter) and PVT (process voltage temperature) sensor 

Figure 7.  SM Block Diagram
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3.3.1.  System Manager CPU
The System Manager CPU is an Arm Cortex M3. The SM CPU is configured to support 124 Kbyte instruction 
SRAM (ITCM). To save system power consumption, this CPU runs up to 25 MHz.

The SM CPU is kept in reset state after power-up. The SoC CPU boots first and then downloads the firmware 
image to the ITCM in SM. After the image is downloaded, it de-asserts the SM CPU reset for it to boot up.

The SM CPU supports JTAG-based ICE debugging. The SM CPU’s debug can be accessed through CoreSight™ in 
SoC. SoC must be in power-on state to connect to SM CPU’s debug port.

For detailed information on ICE debug support, see Section 6., JTAG. 

3.3.2.  Clock and Reset Generation 
The SL1680 SM has its dedicated on-chip oscillator to provide clocks for the subsystem. An external crystal of 
up to 25 MHz is required. This clock is the only one used throughout the SM subsystem.

The SM can be reset by:
  External system level reset generation circuit
  Watchdog timer (WDT)
  Software programmable register
  Reset from Security Control Logic (in SoC)

In addition to these reset sources, the SM CPU has its own software-programmable reset register control bit. By 
default, the reset register bit maintains the SM CPU in reset state until the SoC finishes downloading the SM 
CPU binary code to ITCM and then clears this bit.

SM also has a reset output, SM2SOC_RSTn. It resets the SL1680 SoC and other system-level components. The 
SM CPU can set this reset output. The reset output is also driven to active level.

3.3.3.  System Manager Address Map 
The hardware devices in the SL1680 SM can be accessed by both SM CPU and SoC CPU. Table 3 and Table 4 
show the address map of these devices from both SM CPU and SoC CPU. Note that the memory map refers to 
the starting address of each module.

The 4KB security SRAM is designed to store security information when the SoC is powered off and can be 
retrieved after SoC is powered on again. This memory space is not accessible by the SM CPU and is securely 
controlled by the SoC interconnect during boot-up. Only secure hosts can access this SRAM. For more 
information on secure access, see Section 7., SoC Connectivity and Access Control. 

Table 3. SM Memory Map

Items SM Address Range SoC Address Range 

ITCM Memory 0x0000_0000 0x0001_FFFF 0xF7F8_0000 0xF7F9_FFFF

APB Components 0x4000_0000 0x4000_FFFF 0xF7FC_0000 0xF7FC_FFFF

Security Memory 0x1000_0000 0x1000_FFFF 0xF7FD_0000 0xF7FD_FFFF

CEC Registers 0x4001_0000 0x4001_0FFF 0xF7FE_1000 0xF7FE_1FFF

SM Ctrl Registers (biusmSysCtl) 0x4001_1000 0x4001_1FFF 0xF7FE_2000 0xF7FE_2FFF
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3.3.4.  System Manager Hardware Devices
This section briefly describes the peripheral devices integrated in the SL1680 SM sub-system. For detailed 
information of these devices, including interrupt controller, Timer, WDT, SPI, TWSI, UART, and GPIO controller, 
see Section 16., Peripheral Sub-system for low speed peripheral devices. 

3.3.4.1.  Interrupt Controller
The SM has three interrupt controllers. Each controller merges 35 interrupt inputs to generate a single IRQ 
request to SM CPU directly or to SoC interrupt controllers. All the interrupts are level triggered. The SM interrupt 
controller supports software interrupts, priority filtering, and vectorized interrupts which are not supported by 
SL1680 CPUs. The SM interrupt controller supports configurable input and output polarity.

The output of ICTL0 is connected to SM CPU, and the output of ICTL1, ICTL2 are connected to two SoC interrupt 
controller inputs (see Table 5 for details).

Table 5 shows the interrupt sources connected to the interrupt controller.

Table 4. System Manager I/O Device Address Map

Components Address Range Base Address SoC Base Address

ICTL_0 0x1000 0x1000_0000 0xF7FC_0000

ICTL_1 0x1000 0x1000_1000 0xF7FC_1000

ICTL_2 0x1000 0x1000_2000 0xF7FC_2000

WDT_0 0x1000 0x1000_3000 0xF7FC_3000

WDT_1 0x1000 0x1000_4000 0xF7FC_4000

WDT_2 0x1000 0x1000_5000 0xF7FC_5000

Timer_0 0x1000 0x1000_6000 0xF7FC_6000

Timer_1 0x1000 0x1000_7000 0xF7FC_7000

GPIO_0 0x1000 0x1000_8000 0xF7FC_8000

GPIO_1 0x1000 0x1000_9000 0xF7FC_9000

SSI 0x1000 0x1000_A000 0xF7FC_A000

I2C_0 0x1000 0x1000_B000 0xF7FC_B000

I2C_1 0x1000 0x1000_C000 0xF7FC_C000

UART_0 0x1000 0x1000_D000 0xF7FC_D000

UART_1 0x1000 0x1000_E000 0xF7FC_E000

Table 5. Interrupt Sources Connected to Interrupt Controller

Interrupt 
Number

Interrupt Type Interrupt Source

0 WDT_0 Watchdog Timer 0

1 WDT_1 Watchdog Timer 1

2 WDT_2 Watchdog Timer 2

3 Unused NA

4 GPIO_1 GPIO 1

5 SSI SPI Host

6 I2C_0 TWSI 0 Host
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3.3.4.2.  Timers
This SM timer includes two timer modules with eight counters in each module that are individually 
programmable. These times are driven by the SM clock. For each timer, software can program a 32-bit initial 
value. After it is kicked off, the timer counts down from this initial value. When the value reaches zero, the timer 
generates an interrupt and reloads the initial value and starts countdown again.

7 I2C_1 TWSI 1 Host

8 UART_0 UART 0

9 UART_1 UART 1

10 Unused NA

11 GPIO_0 GPIO 0

12 ADC ADC

13 SOC2SMSWInt SW Programmable Register Bit

14 TSEN Temperature Sensor

15 Unused NA

16 CEC CEC Interrupt

17 FIFO_intr_en FIFO Status Interrupt from CEC

18 Unused NA

19 HPD HPD Interrupt

20 ~HPD Inverted HPD Interrupt

21 Timer0_Intr_0 Timer0 Interrupt Bit 0

22 Timer0_Intr_1 Timer0 Interrupt Bit 1

23 Timer0_Intr_2 Timer0 Interrupt Bit 2

24 Timer0_Intr_3 Timer0 Interrupt Bit 3

25 Timer0_Intr_4 Timer0 Interrupt Bit 4

26 Timer0_Intr_5 Timer0 Interrupt Bit 5

27 Timer0_Intr_6 Timer0 Interrupt Bit 6

28 Timer0_Intr_7 Timer0 Interrupt Bit 7

29 Timer1_Intr_0 Timer1 Interrupt Bit 0

30 hdmirx0Pwr5v —

31 ~hdmirx0Pwr5v —

32 ~edid_intr —

Table 5. Interrupt Sources Connected to Interrupt Controller (Continued)

Interrupt 
Number

Interrupt Type Interrupt Source
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3.3.4.3.  Watchdog Timer
The SL1680 SM provides a watchdog timer (WDT) to detect system hang from software or hardware issues.

The WDT counts down from a 32-bit preset timeout value. When the counter reaches zero, a system reset or 
CPU interrupt is generated, depending on the software setting of the WDT mask register. After the WDT reaches 
zero, it reloads the preset timeout value and restarts the countdown.

Software can restart from the preset timeout value at any time.

There are three WDTs in the SL1680 SM, each of which can be separately enabled or disabled to trigger SM and 
SoC resets through the mask register. As shown in Figure 7, when any of the WDTs has timed out, and if its 
corresponding SM mask bit is disabled, the full SM module is reset. SM2SOC_RSTn is also asserted to reset the 
SL1680 SoC partition. On the other hand, if the corresponding SoC mask bit is disabled, the SM module is not 
reset; only the SM2SOC_RSTn pin is asserted to reset the SL1680 SoC portion.

3.3.4.4.  SPI Host
SPI Host supports multiple serial protocols: 

 Serial Peripheral Interface (SPI)—A four-wire, full-duplex serial protocol. There are four possible 
combinations for the serial clock phase and polarity. The serial transfer can begin at the falling edge of 
the target select signal or at the first edge of the serial clock (depending on the register setting).

 Serial Protocol (SSP)—A four-wire, full-duplex serial protocol. The target-select line used for SPI and 
Microwire protocols doubles as the frame indicator for the SSP protocol.

 Microwire—A half-duplex serial protocol, which uses a control word transmitted from the serial host to 
the serial target.

3.3.4.5.  TWSI Host
Two TWSI hosts are implemented to support fast transfer mode and 10-bit addressing. 

3.3.4.6.  UART
Two UARTs are selected for the SM design. UART0 and UART1 support IrDA functions.

3.3.4.7.  GPIO
This block provides a total of 64 generic input/output controls. 

3.3.4.8.  PVT Sensor
The SL1680 SM PVT sensor measures the silicon process, voltage, and temperature inside the package. By 
reading the TSEN output registers, software can monitor the silicon PVT and take necessary actions. The range 
of the SM temperature sensor is from -40 degC (degree Celsius) to 125 degC, with accuracy of ±6 degC 
(untrimmed) and ±1 degC (trimmed).

The sequence mentioned below is basically from Datasheet for Process Translation method. The same 
sequence is valid for Temperature and Voltage sampling.

Table 6. Function Enable

VSAMPLE PSAMPLE0 PSAMPLE1 ENA Description

X X X 0 Reset

0 0 0 1 Temperature evaluation

1 X X 1 Voltage evaluation

0 1 0 1 Process evaluation (LVT)

0 0 1 1 Process evaluation (ULVT)

0 1 1 1 Process evaluation (SVT)
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Register Values:
 Default register value of tsen_clk_en = 0
 Default register value of tsen_en = 0

Test sequence: 
1. Reset de-assertion

2. Set first 3 columns from above table to select Temperature evaluation
3. Tsen_en ->1, 
4. tsen_clk_en ->1
5. Sample(poll) data_rdy
6. Sample Data
7. Clear Data_rdy and Tsen_en ->0
8. Optional step tsen_clk_en ->0
9. Set first 3 columns from above table to select Voltage evaluation
10. Repeat 3 to 8 
11. Set first 3 columns from above table to select LVT evaluation
12. Repeat 3 to 8 
13. Repeat above steps for remaining functions evaluation

3.3.4.9.  ADC
The SL1680 ADC block is a successive approximation analog-to-digital converter having the resolution 
selectable between 12-/10-/8- and 6-bit. This cell is suitable to serve as an auxiliary ADC of a microprocessor, 
as a house-keeping converter for digital applications and broadband wireless communications. The ADC 
provides the following features:

 Selectable 12-/10-/8-/6-bit Resolution
 5 MHz Conversion Rate 
 Single-Ended or Differential Input 
 8:1 Multiplexed Inputs 
 1.8V Analog Power Supply 
 0.8V Digital Power Supply 

3.3.4.10.  CEC
The CEC interface consists of a set of programmable registers, status registers, Initiator and Follower logic, and 
two FIFOs of depth 16 for Initiator and Follower. The programmable registers can be addressed and data written 
to or read from, by a Host Interface Bus (referred to as M-bus in the block diagram). These registers serve to 
control the CEC Initiator and Follower logic. The status registers indicate status of interrupts and FIFO status, 
and may be read by the controller (in CPU subsystem) along the same bus. The Follower and Initiator logic take 
in cec_line_in as an input to sense the activity on the common CEC line while the cec_line_out_en output from 
the Initiator logic serves to affect the status (low/high impedance) of the CEC line.

The CEC block is added in the SM block and provides interrupts which are mapped on the ICTL for SM CPU and 
Main CPU. 

3.3.4.11.  Low Dropout (LDO)
LDO generates core voltage for the System Manager from an external power supply. Selecting the core voltage 
from an external source as well as using a pin selection are available options. Chip reset is asserted when 
power is unstable or when voltage drops below a certain threshold.
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4. CPU

The SL1680 device integrates an Arm® Cortex®A73MP sub-system as the SoC CPU.

4.1.  CortexA73MP Sub-system
Figure 8 is a CPU block diagram.

The CortexA73MP subsystem integrates a Quad-Core Arm® Cortex®A73MP CPU, GIC, and the CoreSight™ 
components needed to bring out the ETM debug trace bus from the CPU.

The CortexA73MP consists of the following:
 Four Arm CortexA73 processors
 SCU that maintains coherency between the processors and arbitrates L2 requests from the processors
 One ACE host interface
 An APB target interface for debug
 Four ATB interfaces for each CA73 core

Figure 8.  Arm CortexA73MP Block Diagram
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The configuration options used for the implementation of the CortexA73MP are shown in Table 7.

4.2.  Reference Documents
CPU users should be familiar with Arm documentation for these modules. Arm documentation is located at the 
Arm website: http://infocenter.arm.com. 

Contact Arm support via email at: Support-cores@arm.com.

Table 7. CortexA73MP Configuration Options

Feature Option

Number of CA73 Processors 4

Number of Interrupts 0

Integrated Generic Interrupt Controller No

L2 Cache Controller Yes

L1 Instruction Cache Size 64 KB

L1 Data Cache Size 32 KB

L2 Cache Size 1024 KB

L2 Data RAM Input Cycle Latency 2 cycles

L2 Data RAM Output Cycle Latency 3 cycles

Trace For Each Processor No

ROM APB Base Address 22'h00_0000

CPU0 APB Debug Base Address 22'h01_0000

CPU1 APB Debug Base Address 22'h11_0000

CPU2 APB Debug Base Address 22'h21_0000

CPU3 APB Debug Base Address 22'h31_0000

Core 0 FPU Yes

Core 1 FPU Yes

Core 2 FPU Yes

Core 3 FPU Yes

Core 0 NEON™ Yes

Core 1 NEON™ Yes

Core 2 NEON™ Yes

Core 3 NEON™ Yes
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4.3.  Module Revision
Table 8 lists Arm revisions of modules used.

4.4.  CPU Clock
The PLL provides the CortexA73MP system clock. The PLL can be programmed to a stable clock frequency from 
9 MHz to 3 GHz. A specific sequence is required to change the PLL frequency. 

Table 8. ARM IP Revision

Module Revision

Arm CortexA73MP r1p0

CoreSight r1p0
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5. Boot ROM 

5.1.  Overview
The SL1680 device ROM boot flow, the layout of the flash image, and secure boot scheme are described in this 
chapter.

The related hardware modules are as follows:
  BCM
  Boot strap
  SoC CPU
  eMMC Controller
  SPI Controller
  USB Controller

5.2.  ROM Code Flow
The SL1680 device can boot in the following different scenarios depending on the boot strap options:

 SPI-Secure—The SoC boots from iROM and loads an encrypted image from SPI flash; upon decryption 
and security verification, the decrypted image takes control of CPU for the remainder of boot up.

 eMMC-Secure—The SoC boots from iROM and loads an encrypted image from eMMC flash; upon 
decryption and security verification, the decrypted image takes control of the CPU for the remainder of 
boot-up.

 USB-Secure—Conditionally supported based on OTP field. The SoC boots from iROM and loads an 
encrypted signed image from the USB host; upon decryption and security verification, the decrypted 
image takes control of the CPU for the remainder of boot up.

The same ROM code is used for SPI-Secure and eMMC-Secure boot options; the iROM code is executed in the 
Secure Processor (SCPU; the Arm® Cortex®-M3) domain in the BCM. The iROM code loads the next stage 
extension of iROM (eROM) book image; the eROM is also executed in the SCPU and loads the Applications 
Processor (APCU. Arm Cortex-73) boot image (IM2) from one of the boot sources; decrypt and verify the IM2; 
then eROM starts the ACPU to execute IM2.

Figure 9 illustrates the iROM code flow.
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Figure 9.  ROM Code Flow
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After boot up from iROM and eROM, the ACPU continues the boot flow with IM2 SPI, eMMC, or USB host. The 
boot flow of Image-2 is completely flexible and independent of the SL1680 device; therefore, it is not covered as 
part of this document.

The source of the eROM and the IM2 is determined by boot strap pins.

5.3.  Flash Layout
When the SoC boots from different sources, the flash has different layouts.

5.3.1.  SPI Flash for SPI-Secure Boot
The layout for SPI flash is shown in Figure 10. ROM code only reads Image-2 from the start of SPI flash 
(0xF0000000) to FIGO SRAM. Figure 10 provides an example layout. The layout of another bootstrap image and 
related data is determined by IM2 and other designs (in other words, it can be changed and is not addressed in 
this document).

5.3.2.  eMMC Layout

5.3.2.1.  Partition Management in eMMC Device
The default area of the memory device consists of a User Data Area to store data, two possible boot area 
partitions for booting, and the Replay Protected Memory Block Area Partition to manage data in an 
authenticated and replay protected manner.

 Two Boot Area Partitions, whose size is multiple of 128 KB and from which booting from eMMC can be 
performed.

 Other user data area.

For other details about the eMMC partition management, refer to Section 7.2 and 7.3 in the JEDEC STANDARD 
DESD84-A441.

Table 9. SoC Boot Source

Boot Up SW Strap0
Boot Source 

Strap[2]
Description

SPI-Secure 0 00 Boot from iROM and load eROM and IM2 from USB host. 

eMMC-Secure 0 10 Boot from iROM and load eROM and IM2 from SPI flash.

USB-Secure 1 Xx Boot from iROM and load eROM and IM2 from USB host.

Figure 10.  SPI Flash Layout for SPI-Secure Boot
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5.3.3.  Boot Operation Mode in eMMC
Based on eMMC standard, two boot operations are introduced. 

 Normal Boot operation (see section 7.3.3 in JEDEC STANDARD DESD84-A441)
If the CMD line is held Low for 74 clock cycles and more after power-up or reset operation (either 
through CMD0 with the argument of 0xF0F0F0F0 or assertion of hardware reset for eMMC, if it is 
enabled in Extended CSD register byte [162], bits [1:0]) before the first command is issued, the target 
recognizes that boot mode is being initiated and starts preparing boot data internally. The partition 
from which the host will read the boot data can be selected in advance using EXT_CSD byte [179], bits 
[5:3].

The host can terminate boot mode with the CMD line High.

Figure 11 is the state diagram of boot mode.

                         

 Alternative boot operation (see section 7.3.4 in JEDEC STANDARD DESD84-A441)
This boot function is mandatory for device from v4.4 standard. After power-up or reset operation (either 
assertion of CMD0 with the argument of 0xF0F0F0F0 or hardware reset if it is enabled), if the host 
issues CMD0 with the argument of 0xFFFFFFFA after 74 clock cycles, before CMD1 is issued or the 
CMD line goes Low, the target recognizes that boot mode is being initiated and starts preparing boot 
data internally. The partition from which the host reads the boot data can be selected in advance using 
EXT_CSD byte [179], bits [5:3].

The host can terminate boot mode by issuing CMD0 (Reset).

Figure 12 is the state diagram of alternative boot mode.

                         

Figure 11.  State Diagram of Boot Mode
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5.3.4.  eMMC Boot in SL1680 Device
The SL1680 device supports alternative boot operation from the eMMC device (see Figure 13).

Following are some inputs for the layout of eMMC boot:
 Two boot area partitions are defined as ping-pong copies; this ensures the system can boot if online 

upgrade fails.
 The iROM always tries to read eROM from the first boot area partition; if that attempt is not successful, 

the iROM reads eROM from the second boot area partition.

5.3.5.  eMMC Boot Mode
The SL1680 device does not support the primary boot mode but supports alternative boot mode. Therefore, the 
SL1680 cannot support the eMMC device which is compliant only with eMMC standard version 4.4. 

Figure 13.  Layout of eMMC Device
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6. JTAG

6.1.  Overview
The SL1680 device implements a standard IEEE 1149.1-compliant JTAG interface to support debugging of 
SOC_CPU (ARM) through In-Circuit Emulation (ICE). Additionally, this JTAG interface is also used to control 
boundary scan (BSCAN) TAP controller, using which Memory Built-In Self Test (MBIST) and IJTAG paths are 
controlled.

6.2.  JTAG Debug Port Configurations
Figure 14 shows SL1680 JTAG chain connections for both ICE debugger and BSCAN mode. Both the BSCAN TAP 
controller and the ICE debugger share the same JTAG interface. To support security control features, either CPU 
ICE debugger interface or boundary scan access is disabled during power up. JTAG access protection level is 
provided by the OTP.

Figure 14.  JTAG Chain and Boundary Scan diagram
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JTAG_SEL is used to select the BSCAN or ICE debugger path. JTAG_SEL is from pad. For a secure ICE debugger, 
secure debug enable signal for the SOC_CPU (drmCpu0IceEn) is generated by the security engine from siSS 
(BCM). Table 10 shows the different configurations of debug ports in the SL1680 device.

Note: {JTAG_SEL,drmCpu0IceEn}=1x, and ENG_EN = 0, secure access over JTAG to BSCAN_TAP is controlled 
by other means.

6.3.  Boundary Scan Support
The SL1680 device supports the IEEE 1149.1-compliant boundary scan (BSCAN) interface. Table 11 is a list of 
instructions supported.

Table 10. SL1680 Debug Port Configuration

{JTAG_SEL, drmCpu0IceEn} ENG_EN iso_eN BSCAN TAP
CPU TAP 

(CoreSight™)

0x 1 1 No Yes

0x 1 0 No No

1x 1 x Yes No

01 0 1 No Yes

01 0 0 No No

00 0 x No No

1x 0 x Yes No

Table 11. SL1680 Supported Instructions

Instruction Code

BYPASS 4'b1111

EXTEST 4'b0001

INTEST 4'b0100

SAMPLE/PRELOAD 4'b0101

IDCODE 4'b1100

HIGHZ 4'b0110

CLAMP 4'b0000

Reserved All others
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7. SoC Connectivity and Access Control

The main function of SoC subsystem is to link CPU and hardware engines with various targets, including DRAM, 
memory-mapped external Flash device, and an internal configuration bus. The destination of each transaction is 
decided solely on the transaction address. The SL1680 SoC sub-system handles 32-bit address space. Three 
targets are shared among the bus hosts, such as hardware DMA engines and CPUs. Simultaneous access to the 
same target from different hosts are arbitrated and sent to the addressed target in sequence. Accesses to 
different targets are independent and can be served concurrently. In addition to address-based routing, the SoC 
subsystem is also capable of protecting sensitive data content by rejecting untrusted transactions to DDR 
SDRAM or register spaces, including low-speed and fast-access registers.

Figure 15 shows the bus hosts and targets in the SL1680 device. 

Figure 15.  SL1680 Bus Hosts and Targets
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7.1.  Connection Table
There are three transaction target regions in SL1680:

 DDR SDRAM memory
○ System memory

 Low-speed registers
○ Normal device registers running at 100 MHz

 Fast-access registers
○ Latency-sensitive device registers running at system clock frequency

Possible hosts for these three targets are:
 CPU

○ Quad Arm CortexA73 core sub-system
 AV DMA

○ Direct-Memory Access engine fetching display video and audio output data and storing the video 
and audio input data.

 Peripheral DMAs
○ Direct Memory Access engines for storing received data or loading transmitted data through 

various interfaces including PCI-E®, USB, Ethernet, and SDIO. 
 Security Island Sub-System DMA

○ BCM 
○ TSP

 Video Decoder
 Video Encoder
 GPU Engine

○ Storing or fetching graphic data
 Neural Processing Unit
 Image Signal Processing Unit
 OVP

○ Offline Video Processing converts interlace video into progressive video. It works in a memory- to- 
memory fashion, which means both the input and output are stored in memories.
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Table 12 shows the connection levels of various host and target pairs. 

Full means the host can access full range of target without constraint. 

No Access means there is no logical connection for the host/target pair. 

7.1.1.  Address Map

Table 12. Host and Target Pair Connection Levels

Targets
DDR SDRAM Fast-Access Registers Low-Speed Registers

Hosts

CPU Full Full Full

AV DMA engine Full No Access No Access

Perif DMA Full Full Full

Security Island DMA Full Full Full

Video Decoder Full No Access No Access

Video Encoder Full No Access No Access

OVP Full No Access No Access

GPU Full No Access No Access

NPU Full No Access No Access

ISP Full No Access No Access

Table 13. System Memory Map

Address Range Host CPU
TSP/BCM/USB/PCI-e

/GE/eMMC/SDIO
All Other DMAs

0x0000000000 ~
0x0DFFFFFFF

DDR
(0~3.5GB)

DDR
(0~3.5GB)

DDR
(0~4GB)

0x0E00000000 ~
0x0EFFFFFFF

PCI-e PCI-e

0x0F00000000 ~
0x0F1FFFFFF

SPI SPI

0x0F20000000 ~
0x0FFFFFFFF

Register Register

0x1000000000 ~
0x1FFFFFFFFF

DDR
(0~4GB)

N/A N/A
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Table 14. Low-Speed Register Memory Map

Address Range in Hexadecimal Size

SPI Flash 0xF000_0000 ~ 0xF3FF_FFFF 64MByte

CoreSight Registers 0xF680_0000 ~ 0xF6FF_FFFF 8MByte

Encoder Registers 0xF700_0000 ~ 0xF73F_FFFF 4MByte

AVIO Registers 0xF740_0000 ~ 0xF75F_FFFF 2MByte

OVP Registers 0xF78C_0000 ~ 0xF78C_FFFF 64KByte

Decoder Registers 0xF760_0000 ~ 0xF77F_FFFF 2MByte

GIC400 Registers 0xF790_0000 ~ 0xF790_FFFF 64KByte

CPU Registers 0xF792_0000 ~ 0xF792_FFFF 64KByte

BCM Registers 0xF793_0000 ~ 0xF793_FFFF 64KByte

MCtrl Sub-system Registers 0xF794_0000 ~ 0xF794_FFFF 64Kbyte

AHB Bus Monitor Registers 0xF796_0000 ~ 0xF796_FFFF 64Kbyte

USB3.0 Controller Registers 0xF7A2_0000 ~ 0xF7A2_FFFF 64Kbyte

GPU Registers 0xF798_0000 ~ 0xF79F_FFFF 512Kbytes

TSP Registers 0xF7A4_0000 ~ 0xF7A7_FFFF 256Kbyte

EMMC Registers 0xF7AA_0000 ~ 0xF7AA_FFFF 64Kbyte

SDIO3.0 Controller Registers 0xF7AB_0000 ~ 0xF7AB_FFFF 64Kbyte

PBRIDGE Registers 0xF7B3_0000 ~ 0xF7B3_FFFF 64Kbyte

MTEST Registers 0xF7B4_0000 ~ 0xF7B4_FFFF 64Kbyte

Gigabit Ethernet Registers 0xF7B6_0000 ~ 0xF7B6_FFFF 64Kbyte

NPU Registers 0xF7BC_0000 ~ 0xF7BF_FFFF 256Kbyte

USB2.0 OTG Controller Registers 0xF7C0_0000 ~ 0xF7C7_FFFF 512Kbyte

SoC Registers 0xF7CA_0000 ~ 0xF7CA_FFFF 64Kbyte

Memory Controller Registers 0xF7CB_0000 ~ 0xF7CB_FFFF 64Kbyte

TSI Registers 0xF7CC_0000 ~ 0xF7CF_FFFF 256Kbyte

USB3 Phy Registers 0xF7D0_0000 ~ 0xF7DF_FFFF 1MB

PCI-E Phy Registers 0xF7E4_0000 ~ 0xF7E4_FFFF 64Kbyte

ApbPerif Registers 0xF7E8_0000 ~ 0xF7E8_FFFF 64Kbyte

Chip Control Registers 0xF7EA_0000 ~ 0xF7EA_FFFF 64Kbyte

Pulse Width Modulator Registers 0xF7F2_0000 ~ 0xF7F2_FFFF 64Kbyte

System Manager Registers 0xF7F8_0000 ~ 0xF7FF_FFFF 512Kbyte

MC DFI0 Control Registers 0xF800_0000 ~ 0xF87F_FFFF 8MB

MC DFI1 Control Registers 0xF880_0000 ~ 0xF8FF_FFFF 8MB

MPT Registers 0xF900_0000 ~ 0xF903_FFFF 256Kbyte

ISP Registers 0xF910_0000 ~ 0xF91F_FFFF 1MB
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Table 15. Fast-Access Register Memory Map

Address Range in Hexadecimal Address Space Size

Boot-Vector 0xFFFF_0000 ~ 0xFFFF_FFFF 64 Kbyte
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8. DDR Memory Controller

8.1.  Introduction
The SL1680 memory controller receives transactions from the SoC core. These transactions are queued 
internally and scheduled for “in-order” access to the SDRAM while satisfying the SDRAM protocol timing 
requirements, transaction priorities, and dependencies between the transactions. The memory controller in turn 
issues commands on the DFI interface to the PHY module, which launches and captures data to and from the 
SDRAM. 

The SL1680 memory controller is designed for ARM AXI bus protocols. It has 5 generic ports for different hosts 
in the SoC. Along with built in arbitration schemes, it also acts as a bus fabric and reduces the size and latency 
of the AXI fabric.

8.2.  Memory Controller Feature List
 DDR PHY Interface (DFI) support for easy integration with industry standard DFI 3.1-compliant PHYs 
 Dual-Channel x32 Bus Width to DRAM
 LPDDR4 Support
 Direct software request control or programmable internal control for ZQ short calibration cycles 
 Support for ZQ long calibration after self-refresh exit 
 Dynamic scheduling to optimize bandwidth and latency
 Read and write buffers in fully associative CAMs, configurable in powers of two, from 16 up to 64 reads 

and 64 writes
 Delayed writes for optimum performance on SDRAM data bus
 For maximum SDRAM efficiency, commands are executed out-of-order:

○ Read requests accompanied by a unique token (tag) from HIF
○ Read data returned with token (tag) for SoC core to associate read data with correct read request

 Hardware configurable and software programmable Quality of Service (QoS) support:
○ For three traffic classes on read commands - high priority reads, variable priority reads, and low 

priority reads
○ For two traffic classes on write commands - normal priority writes and variable priority writes
○ For port urgent and port throttling control

 If QOS support is not configured in the hardware:
○ Two traffic classes on read commands - high priority reads and low priority reads
○ One traffic class on write commands - normal priority writes

 Programmable SDRAM parameters
 Configurable maximum SDRAM data-bus width (denoted as "full data-bus width" below)
 Programmable support for all the following SDRAM data-bus widths:

○ Full data-bus width or
○ Half of the full data-bus width 

 Guaranteed coherency for write-after-read (WAR) and read-after-write (RAW) hazards 
 Write combine to allow multiple writes to the same address to be combined into a single write to 

SDRAM; supported for same starting address
 Paging policy selectable by configuration registers as any of the following:

○ Leave pages open after accesses, or
○ lose page when there are no further accesses available in the controller for that page, or
○ Auto-precharge with each access, with an optimization for page-close mode which leaves the page 

open after a flush for read-write and write-read collision cases
 Supports automatic SDRAM power-down entry and exit caused by lack of transaction arrival for a 

programmable time 
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 Supports self-refresh entry and exit 
 Support for dynamically changing clock frequency while in self-refresh 
 Leverages out of order requests with CAM to maximize throughput
 APB interface for the memory controller software accessible registers 
 Compatibility with the AMBA 4 AXI4 and AMBA 3 AXI protocols 
 Read reorder buffer with reduced latency options

8.3.  DDR Memory Controller Overview
The memory controller contains the following main architectural components:

 The AXI Port Interface (XPI) block: This block provides the interface to the application ports. It provides 
bus protocol handling, data buffering and reordering for read data, data bus size conversion (upsizing 
or downsizing), and memory burst address alignment. Read data is stored in a SRAM, read re-order 
buffer and returned in order, to the AXI ports. The SRAM may be instantiated as embedded memory 
external to the memory controller or implemented as flops within the memory controller

 The Port Arbiter (PA) block: This block provides latency sensitive, priority-based arbitration between the 
addresses issued by the XPIs (by the ports).

 The DDR Controller (DDRC) block: This block contains a logical CAM (Content Addressable Memory), 
which can be synthesized using standard cells. This holds information on the commands, which is used 
by the scheduling algorithms to optimally schedule commands to be sent to the PHY, based on priority, 
bank/rank status and DDR timing constraints. A bypass path is also provided

 The APB Register Block: This block contains the software accessible registers.

8.4.  Functional Description
The memory controller performs the following functions:

 Accepts requests from the SoC core with system addresses and associated data for writes.
 Performs address mapping from system addresses to SDRAM addresses (rank, bank, bank group, row).
 Prioritizes requests to minimize the latency of reads (especially high priority reads) and maximize page 

hits.
 Ensures that the SDRAM is properly initialized.
 Ensures that all requests made to the SDRAM are legal (accounting for associated SDRAM constraints).
 Ensures that refreshes and other SDRAM and PHY maintenance requests are inserted as required.
 Controls when the SDRAM enters and exits the various power-saving modes appropriately.
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8.5.  DFI - DDR PHY Interface

8.5.1.  Features
 Integrates DDRPHY IP
 Single channel and multiple ranks per DFI instantiation
 Supports LPDDR4
 Supports DFI3.1 and partial DFI4.0

○ Supports CA training, write leveling training, read gate training, read leveling
○ Automated hardware training for CA training, write leveling, read gate training and read leveling
○ Periodic training for write leveling and read gate training

 Supports 1:2 frequency ratio (PHY_CLK = 4xMC_CLK)
 Fully configurable address and data pinmuxing
 Supports x8, x16, x32
 Internal loopback engine for testing
 DBI generation and data inversion performed in the PHY
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8.5.2.  DFI System Overview

 DFI System has DFI interface to communicate with Memory Controller
 DFI System converts the Addr/Cmd and Data from DFI protocol to DDRPHY protocol
 Handles Initialization and training
 Handles Frequency Change
 Provide test logic interface to control PHY inputs during test mode
 Loopback engine runs independent of memory controller. Generates PRBS data to PHY and then 

compares and stores any errors/mismatches

Figure 16.  DFI System Block Diagram
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9. Digital Rights Management/Demultiplexer

9.1.  Overview
Secure Island SubSystem (SISS) has the following main blocks:

 BCM
 TSP
 Kilopass OTP

9.2.  BCM

9.2.1.  Feature List
The BCM unit can be instantiated either in FIPS 140-2/3 compliant mode, or in Non-FIPS (accelerator-only) 
mode. The FIPS mode uses a Hardware-Root-Of-Trust authorization scheme for authenticating the use of keys 
and provides the basis for secure, trusted operations. The FIPS mode contains intelligence in the form of 
firmware and behavior documented here. The Non-FIPS mode permits access to the crypto engines to 
accelerate cryptographic algorithms, but no key management or implication of trust is provided. Switching from 
FIPS to Non-FIPS mode requires no-overlapping internal plaintext BCM key structures. In addition to a slightly 
different memory map, the functionality provided by the trusted firmware within the FIPS mode of the BCM must 
be provided by a software stack exterior to the BCM, which is the BCM Client.

The BCM primitive instructions perform the following types of security operations:
 Key authorization, loading and wrapping
 Symmetric encryption and decryption
 Asymmetric encryption and decryption
 Digital Signature signing / verification
 Hashing and HMAC verification of messages
 High-quality random number generation
 Reading and writing of One-time Programmable (OTP) memory cells

9.2.2.  Configuration Options
The BCM allows for several interface configuration options:

 The target interface can be either a 64-bit AXI interface or a 32-bit AHB interface.
 The host interface can be either a 64-bit AXI interface or a 64-bit read/32-bit write AHB interface.
 The debug port can be either a DAP interface or a JTAG interface.

9.2.3.  Block Diagram
The BCM interface is made up mostly of two AXI interfaces. The AXI Host interface belongs to the DMA engine 
that moves bulk data in and out of DMA from the system memory area. The AXI Target interface belongs to the 
AXI2APB module, which is the agent for the main CPU to communicate with the BCM.
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Figure 17.  BCM Block Diagram
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9.3.  TSP
For more information, please see Section 10., Transport Stream Processor.

9.4.  Kilopass OTP
Functions included in this core are:

 16K bits OTP
 Un-programmed value of OTP bit is zero, programmed value is zero/one
 Double redundancy, each OTP bit is internally implemented with two cells, as long as one of the cells 

can be successfully programmed, output of the OTP bit = 1
 Built-in charge pump to provide programming power
 Built-in programming sequencer with (SMART programming algorithm)
 Synchronous OCP interface (x16 bit for read, x1 bit for program)
 Simplified interface for reading, programming and manufacturing test operations
 BIST (built-in self test) to cover:

○ Bit and word line integrity (TESTDEC) of memory array
○ Gate oxide integrity (Blank Check) of memory array
○ Test programming (WRTEST) of spare memory
○ Map failing Blank Check bits for 100% Blank Check manufacturing yield

The Kilopass OTP provides a synchronous, 16-bit-wide read-bus interface reading and a synchronous, 1-bit wide 
bus interface for programming. The Kilopass OTP data sheet defines the signals and protocol of these 
interfaces.
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10. Transport Stream Processor

10.1.  Overview
The transport stream processor (TSP) in SL1680 is designed for streaming and personal video recording (PVR) 
applications. It can capture, de-multiplex, descramble multiple transport streams (TS) from different tuners, and 
output the elementary streams (ES) ready for decoding into different buffers in DDR. It can also generate re-
scrambled partial transport streams for recording on a hard disc and play back the data being saved earlier.

TSP is based on Synaptics FIGO RISC processors and several functional hardware blocks. FIGO controls the 
main data flow, de-multiplex the TS, parses the ES, manages all the input/output/intermediary buffers and 
drives the hardware blocks. With different preloaded FIGO macrocode, TSP can support different applications. 
The hardware blocks exchange data with FIGO through the DTCM. TSI captures the incoming transport streams 
and saves the TS packets (after PID filtering) into DTCM. TSO reads data from DTCM and send it to the transport 
stream output. Section Filter helps find useful information from the PSI. Crypto engine provides hardware 
support for the descrambling and scrambling functions. Sync word detection (SWD) searches for sync word in 
the elementary streams.

TSP consists of two symmetric FIGO processors. Each FIGO has its own ITCM, DTCM, data streamer and HBO. All 
the other hardware blocks (Crypto Engine, SWD, section filter TSIs and TSOs) are shared between these two 
FIGOs.

Figure 18.  TSP Block Diagram
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10.1.1.  Standards
 ISO/IEC 13818-1 MPEG2 Systems MPEG2 transport stream
 DVB
 ATSC
 ARIB
 OpenCable
 WMDRM

10.1.2.  Functionalities
 Transport stream input buffering
 STC capturing
 PID filtering
 Transport stream de-multiplexing
 TS packet descrambling
 Section filtering
 PES parsing
 ES indexing
 TS packet re-scrambling
 Transport stream output

10.1.3.  Interfaces
 Eight serial transport stream input interfaces
 32-bit AHB target interface for register accessing
 64-bit AXI host interface for DMA
 32-bit APB target interface for key table programming
 Two different reference clocks for STC capturing
 Interrupts to Host processor
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10.2.  Function Description

10.2.1.  FIGO System
TSP consists of two symmetric FIGO processors.

10.2.1.1.  ITCM
Each FIGO has 16K instruction ITCM. 

10.2.1.2.  DTCM
Each FIGO has 32KB DTCM.

10.2.1.3.  Data Streamer
Data streamer is the bridge between FIGO DTCM and FIGO AXI host interface. Each FIFO has its own data 
streamer and its own AXI host interface. The two AXI interfaces are multiplexed into one in TSP top level.

10.2.1.4.  HBO FIFO Mapping
HBO provides FIFO interfaces between hardware blocks and DTCM. Each hardware block exchanges data with 
FIGO through one or more HBO FIFOs. Each FIFO has its own HBO and the two FIGO shares the same HBO 
configuration. Table 16 shows the list of HBO FIFOs of one FIGO.

Table 16. TSP_HBO_FIFO_ID

FIFO Name
FIFO 

ID
Direction

Consumer/
Producer

Description

DS_CMD 0 From DTCM Data streamer
Used by data streamer to load commands from 
DTCM

TSI0_PKT 1 To DTCM TSI0 Used by TSI0 to save TS packets into DTCM

TSI1_PKT 2 To DTCM TSI1 Used by TSI1 to save TS packets into DTCM

TSI2_PKT 3 To DTCM TSI2 Used by TSI2 to save TS packets into DTCM

TSI3_PKT 4 To DTCM TSI3 Used by TSI3 to save TS packets into DTCM

TSI4_PKT 5 To DTCM TSI4 Used by TSI4 to save TS packets into DTCM

TSO0_PKT 6 From DTCM TSO0 Used by TSO0 to load TS packets from DTCM

TSO1_PKT 7 From DTCM TSO1 Used by TSO1 to load TS packets from DTCM

SF_INPUT 8 From DTCM Section filter
Used by data section filter to load input data from 
DTCM

SF_OUTPUT 9 To DTCM Section filter
Used by data section filter to save output data into 
DTCM

CRYPTO_CMD 10 From DTCM Crypto engine
Used by Crypto engine to load commands queue 0 
from DTCM

CRYPTO_CMD_1 11 From DTCM Crypto engine
Used by Crypto engine to load commands queue 1 
from DTCM

CRYPTO_CMD_2 12 From DTCM Crypto engine
Used by Crypto engine to load commands queue 2 
from DTCM

TSI5_PKT 13 To DTCM TSI5 Used by TSI5 to save TS packets into DTCM

TSI6_PKT 14 To DTCM TSI6 Used by TSI6 to save TS packets into DTCM

TSI7_PKT 15 To DTCM TSI7 Used by TSI7 to save TS packets into DTCM
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10.2.1.5.  Hardware Accelerators Sharing Between FIGOs
Crypto Engine and section filter are shared by the two FIGOs dynamically. Each FIGO can send commands to 
these accelerators through its own HBO FIFO independently from the other FIGO. Each accelerator can obtain 
commands from HBO FIFOs of both FIGO. If both FIGOs send commands to the same accelerator at the same 
time, the accelerator serves one of them and then the other. The arbitration performed dynamically in hardware 
is transparent to FIGO firmware.

There are two SWDs in TSP, one for each FIGO. Both of the FIGOs use their own SWD without interfering with 
each other.

10.2.1.6.  TS Input/Output Sharing Between FIGOs
Each TS port (input or output) is connected to an HBO FIFO of one of the FIGOs. The connection is statically 
configured through registers. FIGO must set up the registers before it enables the TS port. Once started, FIGO 
should not change the connection until it stops the TS port and flushes all the pipeline. 

10.2.2.  Transport Stream Input (TSI)
The TSI module has the following functions: 

 Interface synchronization
 Sync byte detection
 Error detection for incomplete packet and wrong sync byte value
 PID filtering
 Incoming packet time stamping with local STC counter for video output clock tracking
 Generate packet information include captured STC, PID filter result, and error flags
 Pack packet data together with packet information and send into HBO FIFO

TSI8_PKT 16 To DTCM TSI8 Used by TSI8 to save TS packets into DTCM

SWID_CMD 17 From DTCM
Sync Word 
Detection

Used by sync word detection to load command from 
DTCM

SWD_RETURN 18 To DTCM
Sync Word 
Detection

Used by sync word detection to write return data 
into DTCM

TSI9_PKT 19 To DTCM TSI9 Used by TSI8 to save TS packets into DTCM

TSI10_PKT 20 To DTCM TSI10 Used by TSI8 to save TS packets into DTCM

TSI11_PKT 21 To DTCM TSI11 Used by TSI8 to save TS packets into DTCM

TSI12_PKT 22 To DTCM TSI12 Used by TSI8 to save TS packets into DTCM

Table 16. TSP_HBO_FIFO_ID (Continued)

FIFO Name
FIFO 

ID
Direction

Consumer/
Producer

Description
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10.2.2.1.  Operation Model
After power on, TSI remains in reset mode. Firmware must program the configuration registers and the PID 
table. After that, it can start TSI by clearing the reset register.

Once started, TSI keeps on pushing the packets received from either TS ports or TSO to TSI loopback path into 
the TS packet FIFO. Firmware must read packets from the FIFO. In loopback mode, the data integrity is 
guaranteed by hardware. The entire data path can become stalled if the TS packet FIFO is full. If the TS packets 
are arriving from the TS ports, hardware cannot guarantee the data integrity. Firmware should avoid the TS 
packet FIFO being full and be ready to handle the situation once it does happen. For further details, refer to 
Section 10.2.2.9., Output Buffer and Overflow Handling.

Firmware can stop TSI by set the reset register to one at any time. All the internal pipelines will be cleared, and 
all hardware states will go to idle immediately. Stopping TSI through the reset register does not affect other 
configuration registers. Old value will be kept, and firmware can set new value to them when TSI is stopped. It is 
possible that there are partial TS packets left in the TS packet FIFO. Firmware needs to flush the TS packet FIFO 
before restart TSI.

Firmware can restart TSI by clearing the reset register.

10.2.2.2.  Input/Output Packet Format
Structure of the input packet from the TS ports can be different from that of the TS packet saved into the TS 
packet FIFO. Firmware can set the preferred offset and size of the packet body in the input packet. The packet 
body is transferred into the TS packet FIFO. TSI appends 8-byte TSI packet info at the end of the output packet. 
Firmware can set the total size (must be a multiple of 8) of the packet in the TS packet FIFO. Padding bytes are 
inserted between the packet body and packet info to make the packet size match. Position of the sync byte is 
not necessarily at the beginning of the input TS packet. Firmware can configure the sync byte position relative to 
the start of the packet. This parameter is independent from the packet body offset.

Figure 19.  TSI Block Diagram
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Figure 20.  Input/Output packet format
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10.2.2.3.  TSI Packet Info Structure
The TSI packet info appended at the output packet tail includes a 42-bit STC value, some error flags, and an 8- 
bit pid_id. The pid_id is set by firmware for each entry of the PID Table. TSI copies the pid_id of the matching 
entry into packet info. Should firmware need additional pre-configured parameters associated with a certain 
PID, it builds up another table in the DTCM and looks up the table with the pid_id from the TSI packet 
information.

Table 17. TSI Packet Information Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspTsiPktInfo module

%unsigned 32 stc_lower

%unsigned 10 stc_upper

* Value of the captured STC 
counter value

%unsigned 6 reserved_0

%unsigned 8 pid_id

*
Copied from pid_id field of 
the matching entry in the 
PID table

%unsigned 1 reserved_1

%unsigned 1 error_async_fifo

*

Asynchronous FIFO error. 
This bit indicates that 
there is hardware errors 
related to TSI interface 
timing.

%unsigned 1 error_on_port

* Port tsError is asserted for 
this packet.

%unsigned 1 error_sync_byte

* Sync byte of the packet does 
not match the defined value.

%unsigned 1 error_under_sized

*
The packet from TS ports 
does not content enough 
bytes as defined.

%unsigned 1 error_data_dropped

*
TS data are dropped before 
this packet because of 
broken packet structure.

%unsigned 1 error_data_lost
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10.2.2.4.  Clocks and Synchronization
The stream processing logics in TSI work in two independent clock domains: the TS input clock and the TSP core 
clock.

The input TS control and data signals are sampled with either the rising edge or the falling edge (programmable) 
of the TS input clock: The sampled signals are synchronized into TSP core clock domain through asynchronous 
FIFO. All other logics work in the TSP core clock domain.

Any relationship between clocks must meet these constraints:
 In serial mode, the TSP core clock must be no slower than the TS input clock.
 In parallel mode, the TSP core clock must be no slower than 8 times the TS input clock. 

10.2.2.5.  Packet Boundary Generation and Sync Byte Detection
Depending on the availability and meaning of tsSync and tsValid signals, the boundary between TS packets can 
be generated in four modes. 

 Mode 0 is used when tsSync is available and it indicates the start of a packet.
 Mode 1 is used when tsSync is available and it indicates the sync byte of a packet. 
 Mode 2 is used when tsSync is not available and transition of tsValid from inactive to active can be 

used to indicate the start of a packet
 Mode 3 is used when no TS control signal can indicate either the sync byte or the start of a packet, and 

the internal sync byte detection logic is activated.

When the internal sync byte detection is enabled, it matches the incoming stream with the specified sync byte 
value. Once a match is found, it marks that byte as sync byte and skips matching for all the next n bytes, where 
n is the input packet size minus one. After that, it starts matching for the next sync byte. In parallel mode, sync 
byte value is compared with every valid incoming byte, while in serial mode comparison occurs at every valid bit 
position.

When the sync byte always starts at the first cycle after tsValid change from inactive to active, the detection 
logic can be programmed to only match at those boundaries instead of at every point. Turning on this option 
may increase the accuracy of the searching, but the detection logic still works without it.

In serial mode, TSI can handle both MSB first mode and LSB first mode.

*

Overflow happened during the 
capturing of this packet and 
some bytes are lost and 
stuffed with zeros.

%unsigned 1 error_packet_dropped

*

Overflow happened before the 
capturing of this packet and 
some packets are entirely 
dropped.

$ENDOFINTERFACE

Table 17. TSI Packet Information Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.2.6.  Error Detection and Error Handling
The error detection block checks every packet received for errors. The errors it checks include oversized packet, 
undersized packet, and wrong sync-byte value. 

Oversized errors occur when there are additional bits between two sync bytes. In this case, TSI drops all 
additional bits and set the error_data_dropped flag in the packet info of the second packet.

Undersized errors occur when there are not sufficient bits between two sync bytes. In this case, TSI combines 
the two TS packets into one and sets the error_under_sized flag in the packet info. 

Wrong sync-byte error occurs when the sync byte of a TS packet is different from the value set by firmware. TSI 
sets the error_sync_byte flag in packet info but does not change the packet itself. When multiple errors occur 
for the same packet, all the error flags are set.

10.2.2.7.  De-serialization
All the blocks before the de-sterilization block work in bit-stream mode. This block coverts the bit stream into 
byte stream. The input of this block is error free, guaranteed by the error-detection block. The start of packet is 
clearly signified, and the packet size is always the same as specified. Every eight consecutive bits received are 
put onto the 8-bit wide output bus. If the input stream is LSB first, the bits are swapped before output. 

10.2.2.8.  PID Filter
For each incoming TS packet, PID filter compares its PID and/or LTSID (if available) with all the valid entries in 
the PID table in order. Once it matches an entry, PID filter stops matching and saves the pid_id of the matching 
entry into packet info. The packet is saved together with the packet info into the TS packet FIFO. If it does not 
match with any entry, the packet is dropped.

Each TSI has its own PID table, but all the PID tables share the same physical RAM. In each TSI, a register 
communicates the starting address (physical address of the RAM) of its PID table. Once it receives a new TS 
packet, PID filter reads the first entry from that address. 

In each entry of the PID table, there is a last bit and a next field. The last bit informs the PID filter to finish, and 
the next field tells PID filter the address of the next entry. PID filter goes through the entire PID table following 
the next field until it reaches an entry with the last bit set to one. Firmware must set up the PID table before 
starting a TSI, but it can add/remove entries on the fly without stopping the TSI. The PID RAM sharing between 
different TSIs is also flexible. 

Firmware can re-allocate RAM entries between TSIs without stopping any of them. The only constraint is that the 
total entries of all the PID tables cannot exceed 256. The limitation is a result of the physical size of the RAM; 
therefore, it is very easy to expand. Each entry of the PID table (Table 18) is mapped into two 32-bit words and 
firmware accesses them through the register programming interface. 

Table 18 lists the definition of each PID table entry.

Table 18. PID Table Entry Definitions (Sheet 1 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspPidTbl module

%unsigned 1 last

*

0: jump to next entry of 
PID table after finishing 
this one.
1: this is the last entry 
of the PID table
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%unsigned 1 match_enable

*

0: Disable matching; this 
entry will not match any 
packet. Last and next 
field are still valid, PID 
filter will go to next 
entry if last bit is not 
set.
1: Enable pid and/or ltsid 
matching for this entry.

%unsigned 1 match_ltsid

%unsigned 1 match_pid

*

When match_ltsid is one 
and match_pid is zero, 
all packets with matching 
LTSID will be captured, 
regardless of their PID 
value.
When match_ltsid is zero 
and match_pid is one, all 
packets with matching PID 
will be captured, 
regardless of their LTSID 
value.
When both match_ltsid and 
match_pid are one, only 
packets that match both 
ltsid and pid will be 
captured.
When both match_ltsid and 
match_pid are zero, all 
packets will be captured 
regardless of their PID 
and LTSID value. 

%unsigned 1 stc_select

*

0: capture STC counter 
driven by stcClk0
1: capture STC counter 
driven by stcClk1

%unsigned 3 reserved_0

%unsigned 8 ltsid

* ltsid value

%unsigned 13 pid

* PID value

%unsigned 3 reserved_1

Table 18. PID Table Entry Definitions (Sheet 2 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.2.9.  Output Buffer and Overflow Handling
This output buffer serves three major functions: (1) buffering all the bytes in front of the PID, (2) matching the 
latency of the PID filter, and (30 tolerating the jitter on the TS packet FIFO interface. The depth of this buffer is 
designed to meet the requirements of these three functions. Therefore, as long as the TS packet FIFO in the 
HBO is not full, this buffer never overflows. 

An overflow of this buffer indicates that the speed of the de-multiplexing cannot catch up with the TS input 
speed. This error is a critical one and firmware must to avoid it, even by dropping less important packets 
voluntarily on the TS packet FIFO consuming side. Should overflow occur, an error_data_lost flag and/or 
error_packet_dropped flag is set in the packet info. The format of TS packet is maintained, but the payload of 
the packet may be corrupted.

10.2.2.10.  STC Time Stamping
There are two 42-bit STC counters driven by two independent STC clocks. Upon receiving the first byte of a TS 
packet, TSI captures the value of one of the STC counters and saves it into the packet info. Firmware can select 
different counters for packets with different PID. In each entry of the PID table, the stc_sellect bit specifies 
the STC counter to be used for the corresponding PID.

10.2.2.11.  Internal Loopback from TSO to TSI
A pair of TSI and TSO can be used together to form a loopback path from one TS packet FIFO to another. The 
purpose of this option is to use the PID filter inside TSI. 

To set up such a path, firmware programs all related registers in TSI and TSO, sets TSI to work in loop- back 
mode, releases the TSI reset and then releases the TSO reset. After that, firmware can push TS packets into the 
FIFO connected to TSO and read out from the FIFO on TSI the side. 

To break the loopback, firmware stops pushing packets to TSO, continues reading from TSI until it receives all 
the packets, sets the TSO reset and sets the TSI reset. 

Most of the front-end logic is not used in loopback mode, so only part of the registers must be programmed. 
Those include packet_format and global registers on the TSO side and packet_format, pid_filter and global 
registers on the TSI side.

Two such loopback paths are provided in TSP, from TSO0 to TSI0 and from TSO1 to TSI1. When a loop back path 
is set up, the related TSI and TSO ports can no longer be used.

%unsigned 8 next

* Address of the next PID 
table entry

%unsigned 8 pid_id

*

In case a packet match 
with this entry, TSI will 
save the value in this 
field into the packet 
info.

%unsigned 16 reserved_2

$ENDOFINTERFACE

Table 18. PID Table Entry Definitions (Sheet 3 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.3.  Transport Stream Output (TSO)
The TSO block reads TS packets from the DTCM through the HBO FIFO interface, strips the optional header 
padding and/or tail padding, generates the TS SYNC signal, synchronizes the byte stream into TS clock domain, 
serializes (in serial mode), and sends the data to the TS output ports.

10.2.3.1.  Operation Model
After power on, TSO remains in reset mode. Firmware must program the configuration registers and then start 
TSO by clearing the reset register. 

During run time, firmware must only push packets into the FIFO. To keep the integrity of the TS packet on the 
output ports, firmware pushes data into the TS packet FIFO packet-by-packet instead of beat-by-beat. It is 
possible that the FIFO goes empty. Once that occurs, there are bubbles between TS packets on TS output ports 
(tsoValid is 0).

Firmware can stop TSO by setting the reset register to one. The value of the reset register does not affect other 
configuration registers. The old value will is kept and firmware can set a new value to them. Synaptics suggests 
that firmware follow these steps to stop TSO cleanly:

1. Stop pushing packet into TS packet FIFO.

2. Wait until TS packet FIFO is empty.

3. Wait until TSO status registers indicate that internal pipeline in cleared.

4. Set the reset register to one.

If firmware resets the TSO in the middle of transferring, partial TS packets may be observed on the TS output 
port and there may be unfinished data remaining in the TS packet FIFO. Firmware must flush the TS packet FIFO 
before restarting TSO.

Firmware can restart TSO by clearing the reset register.

10.2.3.2.  Input Buffer
This 32-byte local buffer is used to reduce the impact of jitters on the TS packet FIFO interface. TSO starts 
transferring a packet only after this buffer is full to improve the consecutiveness of data transferring on the TS 
output ports within a packet.

Figure 21.  Transport Stream Output (TSO) Flow
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10.2.3.3.  TS Packet Format
The TS packet from the TS packet FIFO can be different from the TS packet sent out through TS ports. There can 
be optional header padding and tail padding. The size of TS packet in DTCM must be a multiple of eight. The size 
of padding and output packet can be any number. TSO Sync signal is generated for the first byte of the output 
packet.

10.2.3.4.  TS Clock Generation
The TS output clock is generated from the TS reference clock with a programmable clock divider. Available 
divisors are 1, 2, 3, 4, 5 …, 254, 255 and 256. When the divisor is an odd number, the duty cycle is (n-1) (n+1). 
The output data/control signals are synchronized to either positive edge or negative edge (configurable through 
register) of the TS output clock. For an invalid byte, the TS clock can be optionally gated.

10.2.4.  Section Filter
The hardware section filter is designed to offload the CPU from searching and matching section table headers in 
the transport streams. Up to 128 section filter rules can be programmed by software. The section filter 
hardware matches the incoming section data headers against these filter rules one by one. If a match is found 
the section filter copies the input data to the output FIFO, with the matched section ID field updated with the 
filtering result. If no match is found, the input data is ignored. When the output FIFO reaches to a 
preprogrammed threshold, an interrupt is generated to the CPU. 

Each of the individual section filter rules support up to a 32-bit range filtering or 1-to-256-bit exact pattern 
match filtering. Simple filtering rules can be cascaded to build rules that are more complicated. 

10.2.4.1.  Input and Output Packet Format
The input to data to section filters include section filter commands, the output data are section filter events 
packets. The input/ output data is from 64-bit wide FIFO, they can be read by the CPU through 32-bit register 
access. The depth of the command and event FIFO can be configured during initialization, by default they are all 
16 entries. Each entry is 8 bytes. The command and event packets share the same format, with the only 
difference being in event packets the match bit and filter ID field are updated. 

The total size of packet is 5 x 64 bits. The first 64-bit control word and the next 4 x 64 bits are section- header 
data to be matched.

The control word includes the following information: 
 13-bit PID
 3-bit TS port ID
 8-bit Table ID
 1-bit match result
 7-bit matched section filter ID

Figure 22.  TS Packet Format
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Each of the section filter rules can be configured to match PID, TS port ID, and Table ID first before searching 
through the section headers. 

The second part of the input data is the section data, the length of the input data is 4 x 8 bytes, the earlier FIFO 
entry contains the earlier bytes received in a packet, and the sequence of all the bytes in one FIFO entry is as 
follows: 

 fifoEntry0 = {packetB7, … packetB0}; 
 fifoEntry0 = {packetB15, … packetB8}; 
 fifoEntry0 = {packetB23, … packetB16}; 
 fifoEntry0 = {packetB31, … packetB24}; 

After filtering, the section filter outputs one 8-byte result through the output OCP FIFO. The format is exactly the 
same as TSCmdF, the TSCmdF.MATCH and TSCMD. The FLTID bit field is set according to the filtering result. The 
section data is always returned by the section filter after the TSCmdF. 

The default depth of the section filter I/O FIFO is 16x8 bytes each. These resources are shared with the 
demultiplexer internal and interface memory in a 16KB SRAM. 

10.2.4.2.  Section Filter Control
Software can control the section filter to perform the following rule-management functions: 

 Global enable and disable of all section filter rules.
 Individual enable and disable per section filter rule.
 Mechanism to initialize and reset the filter engine.
 Mechanism to add and remove a rule.
 Status to show the filter engine activity, through a status register, the software can get information 

which rule the section filtering is currently matching with, and what SRAM Address it is reading the rule 
from, and what state the section filter main state machine is in. 

The changes of the rules can only be made when the section filter input FIFO is empty and the main state 
machine is in idle state.

Table 19. Section Command Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSecCmd module

@ %unsigned 13 PID 0

%unsigned 3 TSID 0

%unsigned 8 TID 0

%unsigned 1 MATCH 0

* Not used in TSC, will be 
set by section filter

%unsigned 7 FLTID 0

* Indicates the ID of 
matched section filter ID

$ENDOFINTERFACE
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10.2.4.3.  Section Filter Rule Descriptor
All the section filtering rules can be programmed into the section filter rule SRAM by ARM. For each rule, there is 
a DW filter rule descriptor and rule data. The rule data can be 3DW to 9DW in size; each DW is 4 bytes in size. 

The total rule SRAM is 2K DW. Since the rule data have variable sizes, each of the rule descriptors has a field 
pointer to the start address of its associated rule data in the rule SRAM. All the rule descriptors have a fixed 
length of 2DW and are stored sequentially from address 0x0 of the rule SRAM. 

The rule descriptor includes the following information: 
 If the rule is a one-shot rule, it is disabled once a match is found unless the software turns it on again 

through the enable-register bit 
 If a match of the PID and TSID is necessary before the rule is applied, in this case, the target PID, TS 

port ID, and Table ID are included in the rule descriptor
 Rule SRAM address pointer to the associated rule data

Figure 23.  Section Filter Rule Descriptor
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Table 20. Section Filter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSecFilter module

@ HDR0 (P)

%unsigned 1 ONESHOT 0

* Enable one shot 
filtering

%unsigned 1 PIDCHECKEN 0

* Match PID before section 
filter

%unsigned 1 TIDCHECKEN 0

* Match PID before section 
filter

%unsigned 11 RULEID 0

* Pointer to the next RULE

@ HDR1 (P)

%unsigned 16 EXTPID 0

*

This bit field is used 
to match with the 
incoming TSCmdTSC {TSID, 
PID}, section filter 
will only be active when 
EXTPID matches

%unsigned 8 TID 0

* Table ID to be matched

$ENDOFINTERFACE
68 Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 



Astra™ SL1680 Embedded IoT Processor Functional Specification PN: 505-001414-01  Rev.A
10.2.4.4.  Section Filter Rule Data
Section filter rule data has the following data fields: 

 MODE-indicates one of the following modes for section filtering: inRange, outRange, positiveMatch, and 
negative Match

 BYTEOFFSET-byte offset to selection up to 4 double words from 8 double word section table header 
 BITOFFSET-offset within a byte for section header match, only used in positive/negative Match modes 
 LAST-indicates a rule is the last rule of a cascaded section filter rule 
 NXT-address pointer to the next rule in rule SRAM
 LEN-in positive/negative Match mode, this field specifies the length of a match pattern, from 1 to 4 

double words, if MODE is in/outRange, length of the filter is always 1 double word
 PATTERN-2DW to 8DW pattern and mask data

○ In in/outRange mode, the PATTERN is 2 double words long, with minimum value PATTERN(MIN) 
and maximum value PATTERN(MAX) 

○ In positive match or negative match mode, the PATTERN can be a variable (even) number of double 
words. The first half of the double words specifies the pattern to match PATTERN(COEFF), and 
second half of the double words specifies the mask bits PATTERN(MASK)

The MODE field specifies the 4 modes supported by each rule: 
 In range mode-In range match, up to 32 bits of the section data can be selected to compare with a 

range. Since the input section data is 32 bytes, the BYTEOFFSET and BITOFFSET fields are combined to 
select this 32-bit data from any bit boundary for range comparison. The filtering result is a match if the 
selected section header data is greater than or equal to minimum AND less than or equal to maximum 
specified by 2DW pattern: 
○ PATTERN(MAX) >= (SectionHeader >> (BYTEOFFSET*8+ BITOFFSET)) >= PATTERN(MIN); 
○ Out range mode-the filter result is a match if the selected section header data is less than 

minimum OR greater than maximum specified by a 2 DW pattern.
 (SectionHeader>>(BYTEOFFSET*8 +BITOFFSET)) > PATTERN(MAX) or 
 (SectionHeader>>(BYTEOFFSET*8+ BITOFFSET)) < PATTERN(MIN)

○ Positive match mode-in positive/negative Match mode, up to 16 bytes of section header data, 
selected by BYTEOFFSET, are compared against pattern with mask bits specified in the rule data. 
In exact match mode, the length of the selected section header data can vary from 1DW to 8DW. 
This length is specified by the LEN field in the rule data. 

○ All selected bits in section header data are equal to the non-masked pattern, while the masked 
pattern bits are ignored. 
 (SectionHeader>>(BYTEOFFSET*8)) & PATTERN(MASK) ==PATTERN(COEFF) & 

PATTERN(MASK)
○ Negative match mode-at least one bit of the selected bits in the section header data does not 

equal the specified pattern, while the masked pattern bits are ignored.
 (SectionHeader>>(BYTEOFFSET*8)) & PATTERN(MASK) !=PATTERN(COEFF) & 

PATTERN(MASK)

The NXT field is a rule SRAM address pointer used to cascade multiple rules into a filter chain. The LAST field is 
used to indicate it is the last rule of a chain. During the filtering, if any of the cascaded rules has a mismatch, 
the entire filter chain is considered no match and the filter engine moves on to the next rule chain.
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Table 21. Section Rule Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSecRule module

@ CTRL (P)

%unsigned 5 BYTEOFFSET

*
Byte offset into the 
section data the exact and 
range match is applied to

%unsigned 3 BITOFFSET

*

Bit offset within first 
byte the range comparison 
is applied, this field is 
ignored when MODE!=RANGE

%unsigned 1 STOPONMISS

*

Obsolete; 
The filtering stops 
whenever there is a miss, 
regardless of the value of 
this field.

%unsigned 1 LAST

%unsigned 11 NXT

%unsigned 2 MODE

: INRANGE 0x0

Section header is within 
(inclusive) the min and 
max range

: OUTRANGE 0x1

Section header is out 
(exclusive) of the min and 
max range

: PMATCH 0x2

* Section data are direct 
used to match with pattern

: NMATCH 0x3

* Section data are negated 
before match

%unsigned 4 LEN

*

If mode = RANGE, this 
field is ignored; else, it 
indicates length of the 
match filter in DW
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@ MINMASK (P)

%unsigned 32 VALUE

@ MAXCOEFF1DW (P)

%unsigned 32 VALUE

@ MAXCOEFF2DW (P)

%unsigned 32 VALUE

@ MAXCOEFF3DW (P)

%unsigned 32 VALUE

@ MAXCOEFF4DW (P)

%unsigned 32 VALUE

@ MAXCOEFF5DW (P)

%unsigned 32 VALUE

@ MAXCOEFF6DW (P)

%unsigned 32 VALUE

@ MAXCOEFF7DW (P)

%unsigned 32 VALUE

MAXCOEFF8DW (P)

%unsigned 32 VALUE

@ MAXCOEFF9DW (P)

%unsigned 32 VALUE

@ MAXCOEFF10DW (P)

%unsigned 32 VALUE

@ MAXCOEFF11DW (P)

%unsigned 32 VALUE

@ MAXCOEFF12DW (P)

%unsigned 32 VALUE

@ MAXCOEFF13DW (P)

%unsigned 32 VALUE

@ MAXCOEFF14DW (P)

%unsigned 32 VALUE

@ MAXCOEFF15DW (P)

%unsigned 32 VALUE

$ENDOFINTERFACE

Table 21. Section Rule Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.4.5.  Section Filter Resource
The section filter SRAM size is 2K DW. 

The maximum number of section filters is 128 which occupy 256 DW in the SRAM. The software is fully in 
control of the SRAM allocation reset. When fewer than 128 section filters are instantiated, some of the 256 DW 
(begins from high address) can be used to store section filtering rules as well. 

10.2.5.  Crypto Engine
The Crypto engine provides hardware acceleration of TS payload descrambling/scrambling. It has four 
interfaces, a register programming interface, six input HBO FIFOs to load commands (three for each FIGO), two 
DTCM random access interfaces (one for each FIGO) to access input/output data, and a 32-bit APB target 
interface for key programming.

Table 22. Section Table Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSecTbl

@ %unsigned 32 Word

$ENDOFINTERFACE

Figure 24.  Crypto Engine
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10.2.5.1.  Operation Model
The Crypto engine is driven by Crypto commands from firmware. Content of a Crypto command includes the type 
of Crypto function, parameters of Crypto function, the addresses/size of the source data, and addresses of the 
destination buffer. Once firmware prepares the input data, output buffer, and Crypto function key, it writes the 
command into the one of the command FIFOs. The Crypto engine loads the command from the command FIFO 
and based on the content of the command, it activates one of the Crypto blocks. The activated Crypto block then 
reads the input data and key, applies the Crypto function and writes back the output data. All the data/key 
accessing during the execution of a command goes through the DTCM interface. Once the Crypto engine 
finishes the execution of a command, it writes a 64-bit return value into the return address.

There are three independent command FIFOs for each FIGO. The Crypto engine reads commands from these 
FIFOs in parallel. If the commands from different FIFOs are targeting different Crypto blocks, they are executed 
immediately in parallel without blocking one another. If commands from different FIFOs are targeting the same 
Crypto block, they are executed sequentially in round-robin fashion.

All of the commands posted to the same command FIFO are executed in order. Data coherence is guaranteed 
by hardware. Firmware can keep posting commands as long as the command FIFO is not full. However, there is 
no guaranteed execution order between commands from different command FIFOs. Firmware ensures there is 
no data dependency for commands being posted to different FIFOs. Otherwise, there may be unexpected result.

The return address is used to confirm the execution of a command. The Crypto engine writes a 64-bit word into 
the return address after the execution of a command. The return address is 16-bit configuration register set by 
firmware.

The return data is a counter that counts all the commands been executed from that command FIFO. Each 
command FIFO has its own return address and command counter. 

10.2.5.2.  Crypto Command Definition
Each Crypto command is 128 bits long. Commands for all the Crypto functions share the same structure, but 
some fields are interpreted differently by different functions and some fields are only applicable to certain 
functions. 

Table 23. Crypto Command Entry Definitions (Sheet 1 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspCryCmd module

@ %unsigned 5 type

* Crypto function type

: Copy 0

: CRC 1

: INVDVBCSA2 2

: INVDVBCSA3 3

: AES 4

: INVAES 5

: TDES 6

: INVTDES 7

: C2 8

: INVC2 9

: WMMAC 10
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: INVWMMAC 11

: ARIBMULTI2 12

: INVARIBMULTI2 13

: RC4 14

: CSS 15

: ASA 16

%unsigned 2 reserved_0

%unsigned 1 write_back_iv

*

0: Crypto engine will not 
overwrite the iv_address
1: Crypto engine will 
overwrite the iv_address with 
the iv for next block after 
the execution of the command

%unsigned 8 parameter

*

Parameters of the Crypto 
function
For details, refer to the 
description of each Crypto 
block.

%unsigned 16 source_address

* Address of the input data in 
byte

%unsigned 16 input_size

*

size of input data in byte;
If input_size is 0, Crypto 
engine will not process any 
data. It will still increase 
the command counter and write 
out the return word.

%unsigned 16 destination_address

* Address of the output buffer 
in byte;

%unsigned 16 key_address

* address of the key

%unsigned 16 iv_address

* Address of the initial vector

%unsigned 16 key_address_2

* Address for the second key

Table 23. Crypto Command Entry Definitions (Sheet 2 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.5.3.  Crypto Return Definition
Crypto Engine writes a 64-bit return word to the return address after it finishes the execution a Crypto 
command.

%unsigned 16 parameter_1

*

Additional parameters of the 
Crypto function;
For details, refer to the 
description of each Crypto 
block.

%unsigned 8 reserved_1

$ENDOFINTERFACE

Table 24. Crypto Return Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspCryRtn module

%unsigned 16 command_count

*

Number of commands being 
executed.
The counter will wrap back to 
0 once it reaches 65536.
Firmware can set the initial 
value through register 
programming interface.

%unsigned 16 reserved_0

* This field will be filled with 
all zeros

%unsigned 16 error_command_count

* command_count of the last 
error command.

%unsigned 15 reserved_1

* This field will be filled with 
all zeros

%unsigned 1 error_command_flag

Table 23. Crypto Command Entry Definitions (Sheet 3 of 3)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.5.4.  Address Mapping
Crypto engine uses a 16-bit address to access the two FIGO DTCM and key tables.

DTCM is mapped to address 0 to 0x7fff and key tables are mapped to address 0x8000 to 0xffff. This mapping is 
different from the FIGO address mapping. For FIGO, DTCM is also mapped to address 0 to 0x7fff, but address 
0x8000 to 0xffff is used for configuration registers.

Each FIGO has its own DTCM and the commands from one FIGO can only access the DTCM associated with it. 
For the same address between 0 and 0x7fff, commands from queue 0, 1 and 2 point to DTCM of FIGO0 and 
commands from queue 3, 4 and 5 point to DTCM of FIGO1. The key tables are shared between the two FIGOs. 
Commands from all the queues refer to the same key tables.

Table 25 lists the differences among FIGO, Crypto engine and SWD address mapping.

Source data and destination data can only be stored in DTCM. Therefore, specifying source_address or 
destination_address to be bigger than 0x8000 causes the data accessing to be denied and yields unpredictable 
results.

Key and initial vector can be stored either in DTCM or in key tables. Hardware determines where to get the data 
based on the key_address and iv_address. For data in the key table, the accessibility is limited by the control 
word for each 64-bit entry. For data in DTCM, there is no such limitation.

Hardware will set this flag 
bit to one when key mismatch 
is detected for a Crypto 
command. The flag can only be 
cleared by firmware. The flag 
is not reset to zero by 
hardware after power on, so 
firmware should clear the flag 
before it sends the first 
Crypto command.

$ENDOFINTERFACE

Table 25. Differences of FIGO, Crypto Engine and SWD Address Mapping

Hosts Address 0~0x7fff Address 0x8000~0xffff

FIGO 0 DTCM 0 Configuration Register

Command from Crypto Engine Queue 0 1 2 DTCM 0 Key Tables

Command from SWD Queue 0 DTCM 0 Not Mapped

FIGO 1 DTCM 1 Configuration Register

Command from Crypto Engine Queue 3 4 5 DTCM 1 Key Tables

Command from SWD Queue 1 DTCM 1 Not Mapped

Table 24. Crypto Return Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.5.5.  Key Tables
Key tables are a set of register arrays to store the secret keys used for scrambling/descrambling. The keys 
stored in different tables are generated from different sources and used for different purposes. These tables 
include:

 TSP key table: Keys in this table are generated by the security processor in the SoC and used for 
general-purpose scrambling/descrambling functions.

For the Crypto engine, address 0x8000~0xffff are used for all the key tables.

TSP Key Table
The TSP key table is programmed by the external DRM system through the 32-bit APB target interface. In TSP, 
only the Crypto engine can access this table. FIGO and other hardware have no access to it.

Each entry of the key table stores 8 bytes of key data and some control fields. The control fields restrict the 
accessibility of the key data in that entry. Access to a certain entry is granted only when the type and parameter 
fields of the Crypto command match with those fields of the key table. Encryption and decryption of the same 
Crypto are treated as the same the type, although they are labeled with different crypto_type values. For 
example, if TspCryCmd.type is AES and TspKeyEntry.crypto_type is INVAES, the access is granted. The type of 
data being requested also must match the data_type field in the key table. Only key, initial vector, and second 
key are the allowed data types. Input and output data of a Crypto function cannot point to the key table.

If a non-valid request is detected, the Crypto command is not executed. The command_count in the Crypto 
return address is increased and the error_command_flag in the Crypto return address is set. Once the 
error_command_flag is set, firmware clears it. Hardware does not clear the error_command_flag after executing 
a valid command. The error_command_count field in the Crypto return address logs the command_count of the 
last command that issued the invalid key request.
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The Crypto engine can write the initial vector back to the key table only when the write_enable bit in the key 
table is set to one. This is the only way that Crypto engine can write to the key table. 

Table 26. TSP Key Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspKeyEntry module

%unsigned 32 key_lower

%unsigned 32 key_upper

* 64 bits key data of this 
entry

%unsigned 5 crypto_type

* Type of Crypto function

: Copy 0

: CRC 1

: INVDVBCSA2 2

: INVDVBCSA3 3

: AES 4

: INVAES 5

: TDES 6

INVTDES 7

C2 8

INVC2 9

WMMAC 10

INVWMMAC 11

ARIBMULTI2 12

INVARIBMULTI2 13

RC4 14

CSS 15

%unsigned 1 write_enable

*
0: disable write
1: enable Crypto engine to 
write to this entry
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The key table control fields are mapped only to the 32-bit APB interface. Therefore, the key table address 
mapping of the Crypto engine is different from that of the 32-bit APB interface.

%unsigned 2 data_type

*

Type of data requested by 
the Crypto function
0: key of Crypto function
1: initial vector of Crypto 
function
2: second key of Crypto 
function (multi 2 only)
3: reserved

: KEY 0

: IV 1

: KEY2 2

%unsigned 8 crypto_param

*

Parameter of the Crypto 
function;
Only effective bits are used 
for matching, reserved bits 
are ignored.

%unsigned 16 reserved_0

%unsigned 32 reserved_1

$ENDOFINTERFACE

Table 27. Crypto Engine Key Table Address Mapping

Key Table Entry
Offset Address on 

32-bit APB Interface
Offset Address of Crypto Engine

key data 0 0 0

control 0 8 N/A

key data 1 16 8

control 1 24 N/A

… … …

key data n 16*n 8*n

control n 16*n+8 N/A

Table 26. TSP Key Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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There are a total of 256 entries in the TSP key table.

10.2.6.  Command Dispatcher
When the command FIFO is not empty, the command dispatcher reads the Crypto command. Based on the 
content of the command, it activates one of the Crypto blocks and forward the command to that block.

10.2.7.  Crypto Blocks
When the command FIFO is not empty, the command dispatcher reads the Crypto command. Based on the 
content of the command, it activates one of the Crypto blocks and forward the command to that block.. 

10.2.7.1.  DTCM to DTCM Copy
This block is used to copy data from one address to another address in DTCM.  Applicable fields in the Crypto 
command include type, source_address, source_length, and destination_address. 

10.2.7.2.  CRC 8/16/32/64
This block is used to calculate the CRC value of the input data. 

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, key_address, and iv_address. 

The value of polynomial (with MSB omitted) is stored at key_address. Hardware fills the MSB with one.

Results are written to destination_address and iv_address (if write_back_iv is set to one).

Table 28. TSP Key Table for Crypto Engine

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspKeyTbl module

$TspKeyEntry key_entry MEM [256]

$ENDOFINTERFACE

Table 29. CRC Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspCrcParam

%unsigned 2 size

* Size of polynomial

: CRC8 0

: CRC16 1

: CRC32 2

: CRC64 3

%unsigned 6 reserved_0

$ENDOFINTERFACE
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10.2.7.3.  DVB-CSA-1 1.0/2.0
This block is used to descramble the input data following the DVB-CSA 1.0/2.0 standard. Applicable fields in the 
Crypto command include type, parameter, source_address, source_length, destination_address, and 
key_address.

For DVB-CSA 1.0, firmware turns on the conformance mechanism by setting the Conformance bit to one. For 
DVB-CSA 2.0, the Conformance bit is set to zero.

10.2.7.4.  DVB-CSA-1 3.0
This block is used to descramble the input data following the DVB-CSA 3.0 standard. Applicable fields in the 
Crypto command include type, parameter, parameter1, source_address, source_length, 
destination_address, and key_address. 

10.2.7.5.  ARIB-MULTI2/ARIB-MULTI2-1

This block is used to scramble or descramble the input data following the ARIB MULTI2 standard. 

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, key_address, iv_address, and key_address_2. 

The 64-bit data key is stored in key_address and the 256-bit system key is stored in key_address_2.

For ECB and CBC modes, input data size must be multiple of 8. For OFB and CTR modes, input can be any 
number of bytes.

For CTR mode, the last four bytes in IV are the counter and increase by one for each input word (8-byte). The 
remainder of the IV (the nonce) is kept the same for all input data.

Table 30. ARIB-MULTI2 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspMulti2Param

%unsigned 3 mode

* Mode of the Crypto 
function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

* All other values are 
reserved

%unsigned 5 round

*

Round number divided by 
4;
0 is mapped to 32.
For MULTI2 with round 
number of 32, this field 
should be set to 8.

$ENDOFINTERFACE
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10.2.7.6.  AES/AES-1

This block is used to descramble or scramble the input data with AES. 

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, key_address and iv_address. 

For ECB and CBC modes, input data size must be a multiple of 16. For OFB and CTR modes, input can be any 
number of bytes.

Table 31. AES Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspAesParam

%unsigned 3 Mode

* Mode of the Crypto function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

*

The last four bytes in IV are 
the counter and increase by one 
for each input word (16-byte). 
The rest of the IV (the nonce) 
is kept the same for all input 
data.

: RCBC 4

* RCBC mode as defined in DVB-
CPCM part 5

: CTR64 5

*

The last eight bytes in IV are 
the counter and increase by one 
for each input word (16-byte). 
The rest of the IV (the nonce) 
is kept the same for all input 
data.

: CTR128 6

*
The entire 16 bytes in IV are 
the counter and increase by one 
for each input word (16-byte).

* All other values are reserved

%unsigned 2 key_length

* Length of the Key

: AES128 0

: AES192 1

: AES256 2
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10.2.7.7.  TDES/TDES-1

This block is used to descramble/scramble the input data with TDES. 

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, key_address and iv_address.

For ECB and CBC modes, input data size must be a multiple of 8. For OFB and CTR modes, input can be any 
number of bytes.

For CTR mode, the last four bytes in IV are the counter and increase by one for each input word (8-byte). The 
remainder of the IV (the nonce) is kept same for all input data.

* All other values are reserved

%unsigned 3 reserved_0

$ENDOFINTERFACE

Table 32. TDES Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspTdesParam

%unsigned 3 Mode

* Mode of the Crypto 
function

: ECB 0

: CBC 1

: OFB 2

: CTR 3

* All other values are 
reserved

%unsigned 2 key_length

* Length of the key

: DES 0

* 64-bit key

: TDES 1

* 192-bit key

: TDES128 2

*
TDES with 128-bit key; 
key1 and key3 are the 
same

* All other values are 
reserved

%unsigned 3 reserved_0

Table 31. AES Parameter Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.7.8.  C2/C2-1

This block is used to descramble/scramble the input data with C2. 

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, and iv_address.

The 56-bit C2 key is passed as the IV. Hardware loads it from iv_address. For CBC mode and when 
write_back_iv is set, hardware writes the updated 56-bit key back to the iv_address. If the 56-bit key is stored 
in the key table, firmware ensures the TspKeyEntry.data_type is set to IV. 

Input data size for C2 must be a multiple of 8.

$ENDOFINTERFACE

Table 33. C2 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspC2Param

%unsigned 1 mode

* Mode of the Crypto 
function

: ECB 0

: CBC 1

%unsigned 7 reserved_0

$ENDOFINTERFACE

Table 32. TDES Parameter Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.2.7.9.  WMMAC
This block is used to calculate the CBC MAC based on an algorithm defined in Microsoft's Windows Media Digital 
Rights Management (WM DRM).

Applicable fields in the Crypto command include type, write_back_iv, parameter, source_address, 
source_length, destination_address, key_address and iv_address.

The input size must be a multiple of eight. If the load_state in parameter is set to one, hardware initializes the 
8-byte state with data in the iv_address; otherwise, it resets the state to zero. After the MAC calculation 
finishes, the 8-byte output is saved to the destination_address. If the write_back_iv is set to one, hardware 
also saves the output into iv_address. The 48-byte CBC key is loaded from the key_address.

When the command type is set to INVWMMAC, hardware first calculates the partial MAC value of the first 
(source_length - 8) bytes in the source buffer, and then uses the partial MAC and the last 8 bytes (full MAC) in 
the source buffer to regenerate the last 8 byte of the content. Firmware places the 48-byte MAC key into 
key_address and hardware calculates the inverse MAC key.

Table 34. WMMAC Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspWmmacParam

%unsigned 1 load_state

* 0: reset the state to 0
1: load state from iv_address

%unsigned 7 reserved_0

$ENDOFINTERFACE
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10.2.7.10.  RC4
This block is used to scramble the input data with RC4. Applicable fields in the Crypto command include type, 
write_back_iv, parameter, source_address, source_length, destination_address, key_address, and 
iv_address.

The 258-byte RC4 states (256 bytes of S plus two bytes of indexes, i and j) can be generated in two modes. In 
the first mode, firmware prepares the RC4 key in key_address and hardware generates the state with KSA. In 
this mode, the maximum key length supported is 32 byte. In the second mode, firmware prepares the state in 
iv_address and hardware loads it. For both modes, hardware stores the state back to iv_address if 
writeback_iv is set to 1. 

10.2.7.11.  CSS
This block is used to decrypt the stream data in DVD with CSS. 

Applicable fields in the Crypto command include type, source_address, source_length, 
destination_address, key_address, and key2_address.

Firmware prepares the 5-byte sector key in key_address and the 5-byte title key in key2_address. The 
source_address points to the fist byte to be decrypted, not the beginning of a sector.

Table 35. RC4 Parameter Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspRc4Param

%unsigned 1 init

*

0: load the state from 
iv_address
1: load key from key_address 
and run KSA to generate the 
state

%unsigned 5 key_length

*

Number of bytes in the key;
0 is mapped to 32;
Valid only when init bit is 
one.

%unsigned 2 reserved_0

$ENDOFINTERFACE
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10.3.  Sync Word Detection (SWD)

10.3.1.  Operation Model
FIGO firmware sends commands to SWD through the HBO FIFO. Based on the address specified in the 
command, SWD loads context data and inputs packet data from DTCM. Context data is concatenated with input 
data to form a signal stream. SWD matches the stream with sync word at each byte position. Once it finds a 
match, it stops matching and saves the index (offset to the source_address) of the last byte of the sync word 
into return FIFO. If no sync word is found in the packet, SWD indicates in the return data that no sync word was 
found.

The context_address is used to store the last several bytes in the previous packet. It is required because sync 
words may cross two packets. Although context is defined as a four-byte value, hardware needs only the last (n-
1, n = sync word length) bytes for the sync word matching. If the save_context bit in the SWD command is set, 
SWD overwrites the context_address with the new context value. If the sync word is found, SWD updates the 
last n bytes of context with sync word; otherwise (no sync word found), SWD updates the last (n-1) bytes of 
context with the last (n-1) bytes of the input stream (old context plus the input packet). If the input is the first 
packet and there is no context, firmware writes a default value into context_address to avoid a false match.

Firmware can use the default sync word ({three bytes of 0x00, 0x00 and 0x01}) or specify another sync word. If 
firmware uses a sync word other than default one, it must set the use_specified_sync_word bit in SWD 
command to one and write the length of the sync word into the sync_word_length field. Firmware also must 
write the value of the sync word into the context area, following the context value. When the specified sync word 
is less than four bytes, only the first few bytes are used. For example, if the sync word length is two, hardware 
uses bytes zero and one and ignores bytes two and three.

10.3.2.  SWD Command Definition
Each SWD command is 64 bits long. 

Table 36. SWD Command Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSwdCmd module

%unsigned 7 reserved_0

%unsigned 1 save_context

*

0: don’t overwrite the old 
context with the new context.
1: overwrite the old context 
with the new context.

%unsigned 1 use_specified_sync_word

*

0: use default sync word 
(0x000001) for matching.
1: use sync word specified in 
context area for matching.

%unsigned 2 sync_word_length
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*

Length of the sync word
Valid only when 
use_specified_sync_word is 
1.
1: one byte sync word
2: two byte sync word
3: three byte sync word
0: four byte sync word

%unsigned 5 reserved_1

%unsigned 16 context_address

* Address of the context;

%unsigned 16 source_address

* Address of the input data in 
byte

%unsigned 16 input_size

*
size of the input data in 
byte; 
0 is mapped to 65536

$ENDOFINTERFACE

Table 36. SWD Command Entry Definitions (Continued)

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array
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10.3.3.  SWD Context Definition
Each SWD context is 64 bits long. 

Table 37. SWD Context Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSwdCtx module

%unsigned 32 context

* Value of the context

%unsigned 32 sync_word

*

Value of the sync word;
Valid only when 
use_specified_sync_word in 
TspSwdCmd is one. Valid 
length of this field is 
defined by 
sync_word_length in 
TspSwdCmd. 
SWD only uses this field 
for matching, it does not 
change the value of this 
field.

$ENDOFINTERFACE
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10.3.3.1.  SWD Return Definition
SWD will write 64-bit return word to the return FIFO after it finishes the execution of a SWD command. 

10.3.3.2.  SWD Return Address Mapping
SWD shares the same address mechanism as Crypto engine, except that SWD has no access to the key table. 
For more information, see Section 10.2.5.4., Address Mapping.

Table 38. SWD Return Entry Definitions

Word Offset Word ID Type Bits Bit Field - Enums
Reset - 
Access

Array

$INTERFACE TspSwdRtn module

%unsigned 1 syncword_detected

*

0: no syncword is 
found in the input 
data
1: syncword is found 
in the input data

%unsigned 15 reserved_0

* This field will be 
filled with all zeros

%unsigned 16 syncword_position

*
Index of the last byte 
of the detected sync 
word

%unsigned 32 reserved_1

* This field will be 
filled with all zeros

$ENDOFINTERFACE
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11. Graphics Engine 

The Imagination™ graphics processing IP, included within the SL1680 SoC, is defined as a family of high-
performance GPU cores that deliver hardware acceleration for 3D graphics displays for next generation IoT 
devices.

The PowerVR™ Series9XEP Kioloa core is a reusable IP block designed to bring high quality graphics 
acceleration and GPU compute capability to System-on-Chip (SoC) designs for a wide range of target 
applications; for example, smart home and appliances, security, streaming, mobile computing and control 
systems.

11.1.  GPU Features and Supported Standards

11.1.1.  GPU Key Features
The PowerVR Series9XEP graphics processors are built around multi-threaded Unified Shading Clusters (USCs) 
which feature an ALU architecture with high SIMD efficiency, and support tile-based deferred rendering with 
concurrent processing of multiple tiles.

The Kioloa core has the following features:
 Base architecture, fully compliant with the following APIs:

○ OpenGL® ES™ 3.2

○ OpenCL™ 1.2EP

○ Vulkan® 1.1

○ Android™ NN HAL
○ Renderscript

 Tile-based deferred rendering architecture for 3D graphics workloads, with concurrent processing of 
multiple tiles.

 Asynchronous Fast 2D Renders.
 Multi-threaded Unified Shading Cluster (USC) engine incorporating pixel shader, vertex shader and GP- 

GPU (compute shader) functionality.
 USC incorporates an ALU architecture with high SIMD efficiency.
 Fully virtualized memory addressing (up to 64 GB address space), supporting unified memory 

architecture.
 Fine-grained task switching, workload balancing and power management.
 Advanced DMA driven operation for minimum host CPU interaction.
 Programmable high-quality image anti-aliasing.
 System Level Cache (SLC).
 Specialized Texture Cache Unit (TCU).
 Texture compression.
 Lossless data compression (PVRGC) - The PowerVR’s geometry compression, which is performed in the 

Geometry Processing phase of the 3D graphics workload.
 Lossless and/or lossy image compression (PVRIC) - the PowerVR’s frame buffer compression and 

decompression (FBCDC) algorithm.
 Dedicated processor for Series9XEP core firmware execution.

○ Single-threaded firmware processor with a 4KB instruction cache and a 2KB data cache.
 Support for GPU virtualization and Digital Rights Management (DRM) security.

○ up to 8 guest OSs supported.
○ separate IRQs per OS_ID.

 On-Chip Performance Counters, Power and Statistics Registers.
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11.1.2.  Unified Shading Cluster Features
 Two ALU pipelines.
 8 parallel instances per clock.
 Local data, texture and instruction caches.
 Variable length instruction set encoding.
 Full support for OpenCL™ atomic operations.
 Scalar and vector SIMD execution model.
 USC F16 Sum-of-Products Multiply-Add (SOPMAD) Arithmetic Logic Unit (ALU).
 Support for F16 data type in complex ALU.
 Complex and trigonometric instructions co-issued with F32/F16 instructions.

11.1.3.  3D Graphics Features
 Rasterization

○ Deferred Pixel Shading.
○ On-chip tile floating point depth buffer.
○ 8-bit stencil with on-chip tile stencil buffer.
○ Four maximum tiles in flight.
○ 32 Parallel depth/stencil tests per clock.
○ Two fixed-function rasterization pipelines.

 Texture Lookups
○ Load from source instruction support.
○ Texture writes enabled through the Texture Processing Unit.

 Filtering
○ Point, bilinear and tri-linear filtering.
○ Anisotropic filtering.
○ Corner filtering support for Cube Environment Mapped textures and filtering across faces.

 Texture Formats
○ PVRTC I and II compressed texture formats.
○ ASTC LDR compressed texture format support.
○ PVRIC lossless and/or lossy compression format support for non-compressed textures and YUV 

textures.
○ ETC
○ YUV planar support.
○ 10-bit sRGB and YUV format support.

 Resolution Support
○ Frame buffer max size = 4K × 4K
○ Texture max size = 16K × 16K.

 Anti-aliasing
○ Maximum 4× multi-sampling.

 Primitive Assembly
○ Early hidden object removal.
○ Vertex compression.
○ Tile acceleration.

 Render to Buffers
○ Twiddled format support
○ Multiple on-chip render targets (MRT)
○ Lossless and/or lossy Frame Buffer Compression (and Decompression)
○ Programmable Geometry Shader Support
○ Direct Geometry Stream Out (Transform Feedback)
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11.1.4.  Compute Features
 1, 2, and 3-dimensional compute primitives.
 Block DMA to/from USC Common Store (for local data).
 Per task input data DMA (to USC Unified Store).
 Conditional execution.
 Execution fences.

11.1.5.  FBCDC Features
 Frame Buffer Compression/Decompression (FBCDC) version 4.
 Additional Frame Buffer Compressor Tile Type of 32 x2 pixels (strided, and 24bpp or more only 

supported).

11.2.  GPU Integration Overview
Figure 25 shows the view of Kioloa core in the Synaptics SoC. The Kioloa (GPU) core and Host CPU work 
together to process the various workloads that are supported by the Kioloa core, while the Kioloa core needs 
access to a memory subsystem to fetch commands and data.

The SoC interconnect, or bus fabric, as shown in the Figure 25, consists of two key buses:
  Memory interconnect to allow the SoC modules access to system memory (for example, SDRAM, 

FLASH, and so on) via the memory controller.
  System bus to allow a host CPU to access configuration/status registers of various target IPs in the 

SoC, such as the Kioloa core.

Figure 25.  Kioloa core in SoC
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11.3.  GPU Bus Interface
This section describes the bus interface groups for an AXI bus protocol configured Kioloa core. There are two 
bus interface groups in the Kioloa design, the system bus interface and the memory bus interface. Each group is 
independent of the other in terms of the bus width and how they can operate.

11.3.1.  AXI Host Interface
This is an AXI host interface (AXI MEMIF). It consists of a single channel denoted as 0. A channel is a 128-bit 
wide port and is used to read and write the memory data from/to memory. The mapping of physical addresses 
generated from the core to the port is configurable according to Kioloa configuration registers.

Table 39. Features of GPU AXI Host Interface

Feature Characteristic

Number of memory interfaces 2

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock mem_clk

AXI type ACE Lite

Host or Target Host

Burst attribute
Max Burst: 4 beats
Incrementing (wrapped burst type is not supported)

Address bus width 32 bits

Data bus width 128 bits

Tag ID width 6 bits

Number of IDs 26

Max number of outstanding reads 64

Max number of outstanding writes 64

Combined number of outstanding reads and writes
128 combined read and write transactions.
The total number of outstanding tag IDs can be any mix of read 
and write at any one time.

Interleaving Write Interleaving is not supported

Sideband signals
AXI_ARUSER_MEMIF: internal tag id (read) AXI_AWUSER_MEMIF: 
internal tag id (write)
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11.3.2.  AXI SoC Interface
The SoC Interface (SOCIF) is an AXI Target interface. This interface is used to access the Kioloa control registers. 
It is a fixed 32-bit data interface.

The socif interface tag width is configurable and specified by the generic AXI_SOCIF_TAG_WIDTH.

The interface supports write byte masking and the byte mask does not apply to read accesses. This is so that 
only writes which the driver intends to make into the device are observed irrespective of the bus width. Fully 
masked writes to the SoC Interface are supported.

Table 40. Features of GPU AXI SoC Interface

Feature Characteristic

Allowable Bus / Core Clock Relationship Asynchronous Interface

Related to clock sys_clk

AXI type AXI3

Host or Target Target

Burst attribute Bursts are not supported on the SOCIF

Address bus width 32 bits

Data bus width 32 bits

Tag ID width 10 bits

Number of IDs 210

Max number of outstanding reads 64

Max number of outstanding writes 64

Interleaving Write Interleaving is not supported

Sideband signal N/A
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11.4.  Performance Characteristics
The performance characteristics of the Kioloa core are theoretical maximum performance with the architecture 
running at 100% efficiency.

Table 41. GPU Core Performance Characteristics

Feature Performance

Floating Point Operations (F32) 32 operations per clock

Floating Point Operations (F16) 64 operations per clock

Integer Operations 32 operations per clock

Geometry Performance 0.25 poly per clock

Texture performance 8 texels per clock

Pixel performance 8 pixel(s) per clock

OCL Compute Performance 1 task per 4 clocks

Maximum memory latency tolerance 300 core clock cycles
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11.5.  GPU Architecture Overview
Figure 26 shows the key modules of the GPU core.

The PowerVR Kioloa core processes a number of different workload types concurrently, namely:

 3D Graphics Workload, which involves processing vertex data and pixel data for rendering of 3D 
scenes.

 Compute Workload (GP-GPU), which involves general purpose data processing.
 2D Workload, which involves processing of pixel data for rendering 2D objects. The 2D workload is 

structured as a series of 2D render packets by the driver, and these are known as blits.

Note that for the Kioloa core the Compute Workload cannot run concurrently with any other workload. The 2D 
workload can run concurrently with the 3D workload.

3D graphics workloads are generally composed of vertex and pixel processing. The PowerVR Series9XEP 
architecture is based on tile-based deferred rendering and processes data in 2 phases. The first of these 
phases is the Geometry Processing Phase which involves vertex operations such as transformation and vertex 
lighting, as well as dividing a 3D scene into tiles. The next phase which involves pixel operations such as 
rasterization, texturing and shading of pixels, is referred to as the Fragment Processing Phase in the PowerVR 
Series9XEP architecture.

Figure 26.  GPU High-Level Architecture
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The Series9XEP architecture utilizes both programmable and fixed function pipelines to perform the various 
processing tasks required in the different types of workloads.

For performance scalability and power management purposes the PowerVR Series9XEP architecture is 
partitioned into various top-level blocks: SLC_SIDEKICK, RASCAL, and one or more DUSTs.

  SLC_SIDEKICK

This top-level block contains the firmware execution and high-level scheduling block, the MIPS micro- 
controller. The Memory Management Unit (MMU) and the SoC Interface (SOCIF) relate to memory 
access and SoC interfacing.

The System Level Cache (SLC) provides caching of all types of workload data, and converts sequences 
of memory requests from the various requesters in the Kioloa core into external memory transactions.

The SYSARB arbitrates between MIPS and SLC for access to the memory interface.

  RASCAL

This top-level block contains the fixed function units used by the Geometry Processing Phase. These 
include the Unified Vertex Store (UVS) which stores the vertices processed by the USCs in the Geometry 
Processing Phase, and the Tile Accelerator (TA) unit, which performs clipping, culling and generation of 
tiles.

To support the Fragment Processing Phase, the fixed function units, such as the Image Synthesis 
Processor (ISP) for hidden surface removal, Texture Shading Processor (TSP) for fetching the required 
data to enable pixel shading on the USCs, and the Pixel Back End (PBE) for transferring pixels to the 
frame buffer, are located in this top-level block.

The Parameter Management (PM) block is responsible for allocation and deallocation of memory 
required to hold tile related data structures (parameters) generated by the Geometry Processing Phase, 
which are then processed in the Fragment Processing Phase.

The Programmable Data Sequencer (PDS) controls the scheduling of USC tasks for 3D graphics and 
compute workloads. It selects among the various tasks from the relevant data hosts, which include the 
Vertex Data Host (VDH), the Pixel Data Host (PDH) and the Compute Data Host (CDH).

These data hosts are primarily responsible for fetching the tasks from memory for the 3D graphics and 
compute workloads.

This block also contains the 2D Data Host (TDH) which is used to support asynchronous processing of 
fast 2D renders.

Various infrastructure related units including the Texture Cache Unit (TCU), the USC Instruction Cache, 
and the MH_RC, which consists of the Request Arbiter (REQARB) and the Core Arbiter (COREARB), are 
located in this top-level block.

  DUST

This block contains the main programmable processing elements of the PowerVR Series9XEP 
architecture called the Unified Shading Clusters (USCs).

A USC is a multi-threaded programmable SIMD processor, which can simultaneously process pixel 
shader, vertex shader, and compute shader tasks.

The TPU is used for addressing textures in memory and applying filtering on the texture data fetched.
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11.5.1.  3D Graphics Workload Outline
An outline of the Kioloa architecture units involved with the 3D graphics workload is shown in Table 4, along 
with the associated 3D graphics operations.

Table 42. 3D Graphics Workload Outline

Host
Application initiates a render.

Vertex Processing

Client Driver writes 3D control stream to system memory and kicks the GPU.

Geometry 
Processing 

Phase

The firmware processor sets up the GPU and initiates the Geometry Processing 
Phase.

VDH, Vertex Data Host, fetches geometry and forwards to Programmable Data 
Sequencer.

PDS, Programmable Data Sequencer, creates “vertex tasks” and forwards to 
USCs.

USCs, Unified Shading Clusters, process geometry and forwards transformed 
data to the Geometry Processing Pipeline and Tiling Engine

GPP and TE, Geometry Processing Pipeline and Tiling Engine, groups the 
transformed-geometry into tiles and writes to a parameter buffer in system 
memory. Tile Processing

Fragment 
Processing 

Phase

The firmware processor initiates the Fragment Processing Phase.

PDH, Pixel Data Host, fetches tiles from the Parameter Buffer one-by-one.

ISP, Image Synthesis Processor, determines which fragments are visible in a tile. Hidden Surface

TSP, Texture and Shading Processor, reads the vertex data for triangles which 
are still visible via the Texture and Shading Parameter Fetch (TPF) and forwards 
to Texturing and Shading FPU (TFPU). The TFPU provides plane equations to the 
USC so that per pixel colors and texture coordinates may be delivered to the 
texture pipeline.

Removal and Depth/
Z Tests

PDS, Programmable Data Sequencer, creates pixel tasks and forwards to USC.

Fragment ProcessingUSC, Unified Shading Cluster, processes fragments and forwards final pixel 
values to PBE.

PBE, Pixel Back End, buffers all rendered data for a tile – writes a complete tile's 
worth of data to memory.

Pixel Processing
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11.5.2.  Compute Workload Outline
An outline of the Kioloa architecture units involved with the compute workload is shown in Table 43.

Table 43. Compute Workload Outline

Host

Application initiates an enqueue Kernel.

Compute driver writes kernel enqueue parameters to system memory and kicks the GPU.

Compute 
Workload

The firmware processor sets up the GPU and initiates the compute processing.

CDH, Compute Data Host, fetches parameter data, generates multiple kernel instances and forwards to 
PDS.

PDS, Programmable Data Sequencer, groups kernel instances into compute tasks and forwards to 
available USCs.

USCs, Unified Shading Clusters, execute the tasks, writing results of computation to system memory.
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11.6.  GPU Control Streams
One of the key concepts for controlling the Series9XEP core is control streams. Control streams are structures of 
control data stored in memory. There are essentially two types of control streams; workload control streams and 
internal control streams.

Control streams are stored in system memory that is shared between the host system and the Kioloa core. 
Further control of the Series9XEP core is provided through the use of control registers.

11.6.1.  Workload Control Streams
Series9XEP workload processing is controlled through the use of a control stream which is stored in system 
memory. At initiation of a workload, the Series9XEP device driver creates a series of data blocks in memory for 
that workload, which contains information, such as state data, triangle index lists, vertices, shader constants 
and instruction code. The workload control streams are also used when resuming from a context switch.

Workload control data is split into sections, where each section has a header which describes the type and 
format of the data which follows. In its simplest form, the structure of the input format consists of a stream of 
words; a Block Header followed by Block Data as shown in Figure 27.

11.6.2.  Internal Control Streams
Different parts of the Series9XEP core also communicate with each other using internal control streams. 

The Parameter Buffer, for example, is in system memory, and contains the intermediate 3D Display List 
Structure, which is the data used for communication between the Geometry Processing Phase and Fragment 
Processing Phase of a 3D workload.

Figure 27.  Example Workload Control Stream
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12. Neural Network Engine

The SL1680 integrates a Neural Processing Unit (NPU) based on intellectual property (IP) cores from 
VeriSilicon™, designed to accelerate artificial intelligence and machine learning applications. This section 
provides an overview of the features and capabilities of the NPU. For further details of the IP core and 
architecture, please contact VeriSilicon.

12.1.  Overview
The NPU in the Synaptics Astra SL1680 utilizes IP from VeriSilicon, with the following primary configuration:

 22NN core with 4224 INT8 MACs
 1MB SRAM

The main functional blocks of the NPU are described as follows: 
 Host Interface—Allows the NPU to communicate with external memory and the CPU through the AXI or 

AHB bus. In this block data crosses clock domain boundaries. 
 Memory Controller—An internal memory management unit that controls the block-to-host memory 

request interface. 
 Power Management—Provides top level controls for clock gating and power management. 
 Vision Front End—Inserts high level primitives and commands into the vision pipeline. 
 Neural Network Core—Provides parallel convolution MAC for recognition functions using integer 

operations.
 Tensor Processing Fabric—Provides data preprocessing and supports compression and pruning for 

multi-dimensional array processing for Neural Nets. 
 Compute Unit—SIMD processor programmable execution unit that perform as a Compute Unit for 

OpenCL. The NPU IP has 1 vec4 Parallel Processor Unit which also acts as 4 Processing Elements for 
OpenCL. 

 Vision Engine—Provides advanced image processing functions. For example, in one cycle, the Vision 
Engine can perform one MUL/ADD instruction or a dot product of two 16-component values. 

 Universal Storage Cache—Cache shared between the Vision Front End and the Parallel Processing Unit. 
A portion of this cache can be locked to stay on-chip.
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Figure 28.  NPU block diagram
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12.2.  Interface
Table 44. Interface

Feature VIP Support

AHB interface 32-bit

AXI interface 1 128-bit AXI / ACE-Lite interfaces for external memory access

Virtual memory support Yes

Code and data memory location 
restrictions

Unrestricted; arbitrary memory reads and writes

Physical address 32 bits

Secure Memory Management Yes, TrustZone

Resource locks with CPU Semaphore lock

Latency Hiding 256 VIP cycles
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13. Image Signal Processing (ISP)

13.1.  Introduction
The ispSS is an Image Signal Processor Sub System, which consists of two MIPI DPHY-RX IPs, two CSI-2 RX 
controllers, one ISP core and in-house designed MTR, dHub, rotation, downscalar and de-wrapper.

As a completed camera solution, the primary features are listed below: 
 MIPI Interface:

○ Compliant with MIPI Alliance Specification for D-PHY version 1.2, September 2014
○ Compliant with MIPI Alliance Specification for Camera Serial Interface 2(CSI-2), Version 1.2, 

January 2014
○ Support two DPHY-RX channels, one is 4 lanes, the other is 2 lanes
○ Each lane supports up to 2.5Gbps data rate

 ISP picture processing:
○ ISP baseline processing, including Defect pixel correction, Lens shading correction, De-mosaic, 

High Dynamic Range compression, Local tone mapping, AF & AE & AWB measurement, Spatial 
Noise Reduction, Temporal Noise Reduction, CAC, Color Noise Reduction, Color processing and 
Crop & Down Scalar. 

○ Up to 3 exposures staggered/DOL HDR merging
○ Picture rotation and de-warp

 Security:
○ Support content (sensor 0/1) aware security 
○ Support improved TrustZone® technology

 Low Power
○ Provide fine grained block/feature wise clock gating
○ Buses isolation for clock gated blocks

 Memory access interface:
○ Supports memory bandwidth reduction
○ AMBA AXI-4 compliant
○ 128 bits

 Program Interface:
○ AMBA AHB

The ispSS can be used to support both traditional one camera applications such as conference call, 
surveillance, computer vision, etc. It can also be used to support advanced two cameras applications such as 
3D vision, depth perception, panorama, and so on. 
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13.2.  Top Architecture

13.2.1.  ISP Top diagram 
ISP top diagram is a high integrated all-inclusive ISP sub system which supports all kinds of applications such as 
surveillance, video conference, AI and CV. It supports upper to 2 cameras with HDR 4K resolutions. Pixel rate 
supports up to 600 MHz. To meet the low power scenario, multi-level clock gating is used to reduce dynamic 
power.

The ISP sub-system is divided into five partitions, ispFE, ispCORE, ispBE, ispDMA and ispMISC.

13.2.1.1.  ISP Frontend 
ISP frontend in SL1680 is consist of DPHY 1.2 RX and CSI-2 receiver controller, which takes sensor raw data via 
MIPI lanes and feed it to ISP core. To support dual cameras applications, two MIPI CSI channels are 
implemented. One has four lanes, which supports up to 60Hz UHD video streaming. The other has two lanes to 
support up to 120Hz FHD video streaming. Via CSI-2 virtual channels, they can also deliver staggered. 

13.2.1.2.  ISP Core
ISP core performs all image signal concerned processing such as de-mosaic, de-noise, HDR merging, tone-
mapping, auto white balance, auto focus, auto exposure, and so on. 

13.2.1.3.  ISP Backend 
ISP backend is a Synaptics design, providing support for AI/CV applications. It provides features, such as picture 
rotation, de-warping, down-scaling and cropping.

13.2.1.4.  ISP DMA
ISP DMA controller converts and aggregates all internal streaming interface to DDR side AXI traffic. It also 
provides other add-on features such as shared DMA buffer, bandwidth compressor and latency meter and 
camera-based security.

13.2.1.5.  ISP MISC
ISP MISC implements configure bus decoder, BCM to support interrupt trigged DDR programming streams and 
top-level glue logics to generate clock, reset and interrupts.
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13.3.  ISP Clock Plan
Data-path between different domains are separated by async-fifo or DDR frame buffer. There are 12 functional 
or test concerned clocks in ispSS. The byteClks are from MIPI DPHY IP. Others are from external PLL. In the 
DPHY soft core, there are more DPHY internal clocks not listed here.

Although all ISP post-processing modules can use different clock separately, a shared beClk is used to simplify 
ispSS clock scheme. The backend downscalar module has its own clock because customers hope it can work as 
a scalar engine to run as faster as possible. 

Except for byteClk0 and byteClk1, other clock's frequency can be adjusted base on application's performance 
and power requirements.

Table 45. ispSSTop Main Clock

Name Source Range (MHz)
Frequency

(MHz)
Description

byteClk0 MIPI0
follow MIPI 

input
312.5 Generated by D4C1 DPHY, used to unload MIPI payload.

byteClk1 MIPI1
follow MIPI 

input
312.5

Generated by the second D4C1 DPHY, used to unload MIPI 
payload.

csiClk0 DPLL 74.25 ~ 594 600
It is used to convert MIPI raw data to pixel data. Maximum 600 
MHz to support up to 4K@60Hz pixel rate.

csiClk1 DPLL 74.25 ~ 297 300
It is used to convert MIPI raw data to pixel data. Maximum 300 
MHz to support up to 4K@30Hz pixel rate.

ispClk DPLL 74.25 ~ 594 600
isp8000 IP core clock. Maximum 600 MHz to support up to 
4K@60Hz pixel rate.

beClk DPLL 74.25 ~ 150 400
ISP post processing blocks' main clock. Maximum 400 MHz to 
support up to 4K@30Hz pixel rate.

refClk XTAL 25MHz 25 It is used for memory repair, scan and phyCfgClk.

Txclkesc DLL 2M ~ 20M* 200

It is used for both isp8000 IP AHB clock and clock source 
(Internal clock divider will divide it to clock between 2 to 
20MHz) as DPHY txclkesc. DPHY lane0 LPTX clock in external 
loop test mode.

sclClk DPLL 300 ~ 800 800

ISP post scaling down block's main clock. Since it is used as a 
co-processing engine, customer hopes it can run as fast as 
possible. So, the maximum clock is set to 800 MHz to balance 
both power and performance.

sysClk DPLL follow SOC 525 DMA and memory interface clock.

scanByteClk DPLL 312.5MHz 312.5
It is used for at-speed capture clock for DPHYRX0 & DPHYRX1 
byteclk loading.

cfgClk DPLL follow SOC 100 AHB and BIU configuration blocks' clock.
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13.4.  ISP Pixel Data Formats
Table 46 contains the details of the ISP Pixel data format. 

Table 46. ISP Data-path Block Pixel Format

Path Type Format Compress

D4C1CSI Interface
RAW-10, RAW-12, RAW-16

N/A
Stagger 2/3 virtual channel HDR

D4C1CSI Interface RAW-10, RAW-12, RAW-16 N/A

isp.MCM to/from DDR FrameBuffer RAW DWA-10, RAW QWA-12, RAW-16 Yes

isp.3DNR to/from DDR FrameBuffer RAW QWA-12 Yes

isp.SP2 to DDR FrameBuffer

YUV420 SP-8, SP-10

NoYUV422 Pack-8, Pack-10

YUV/RGB 444-8 (NHWC)

isp.MP to DDR FrameBuffer

YUV420 SP-8, SP DWA-10 Yes

YUV422 SP-8, SP DWA-10 Yes

YUV422 Pack-8 Yes

YUV422 Pack-10 No

YUV/RGB 444-8 (NHWC) No

RAW DWA-10, QWA-12, 16 (for debugging) No

isp.MP to be.Dnscl Interface

YUV422-8, -10

N/A1YUV420-8, -10

YUV/RGB 444-8

isp.SP1 to be.Tiling Interface

YUV422-8, -10

N/A1YUV420-8, -10

YUV/RGB 444-8

be.Tiling to DDR FrameBuffer

YUV420 SP-8, SP DWA-10 Yes

YUV420 SP-10 No

YUV420 SP-V8H8-8 Yes

YUV420 SP-V8H6-10 Yes

YUV422 SP-V8H8-8 Yes

YUV422 SP-V8H6-10 Yes

YUV422 Pack-8 Yes

YUV422 Pack-10 No

YUV/RGB 444-8 (NHWC) Yes

be.Dnscl from DDR FrameBuffer

YUV420 SP-8, SP DWA-10 Yes

YUV422 SP-8, SP DWA-10 Yes

YUV422 Pack-8 Yes

YUV422 Pack-10 No

YUV/RGB 444-8 (NHWC) Yes
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13.5.  ISP Power Consideration
To reduce dynamic power as much as possible, each functional block has clock gating control and bus isolation.

be.Dnscl to DDR FrameBuffer

YUV420 SP-8, SP-10

NoYUV422 Pack-8, Pack-10

YUV/RGB 444-8 (NHWC)

be.Dwarp from DDR FrameBuffer

YUV420 SP-V8H8-8 Yes

YUV420 SP-V8H6-10 Yes

YUV420 SP-V6H8-10 Yes

YUV422 SP-V8H8-8 Yes

YUV422 SP-V8H6-10 Yes

be.Dwarp to DDR FrameBuffer

YUV420 SP-V8H8-8

No

YUV420 SP-V8H6-10

YUV420 SP-8, SP-10

YUV422 SP-V8H8-8

YUV422 SP-V8H6-10

YUV422 Pack-8

YUV422 Pack-10

be.DeTile from DDR FrameBuffer

YUV420 SP-V8H8-8

No
YUV420 SP-V8H6-10

YUV422 SP-V8H8-8

YUV422 SP-V8H6-10

be.DeTile to DDR FrameBuffer

YUV420 SP-V8H8-8 Yes

YUV420 SP-V6H8-10 Yes

YUV420 SP-DWA-10 No

YUV420 SP-8 No

1. For pixel interfaces between ispCore and BE blocks, 420 signals are indeed supported by ispCore sending out 422 data, 
while BE blocks will ignore odd or even line chroma channel data to convert to 420 data. 

Table 46. ISP Data-path Block Pixel Format (Continued)

Path Type Format Compress
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14. Video Post Processing (VPP)

14.1.  Overview
The VPP (video post processing) module in SL1680 device loads up to 4 planes of video or graphics data from 
DRAM frame buffers at the desired refresh rate, converts various input format/resolution into target format and 
resolution, position and finally blends the associated planes to form following video outputs:

 HDMI TX output - up to UHD(3840x2160) resolution @ maximum refresh rate of 60P over HDMI2.1 
Transmitter

 MIPI TX output - up to UHD(3840x2160) resolution @ maximum refresh rate of 30P over MIPI-DSI 
Transmitter

 HDMI RX output - up to UHD(3840x2160) resolution @ maximum refresh rate of 60P over HDMI2.1 
Receiver

 Supports 12bpc video processing pipe
 Supports SDR to HDR conversion and vice-versa
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Figure 29 illustrates the VPP pipe-line structure in SL1680.

Figure 29.  High-level Block Diagram of the SL1680 VPP Engine
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The video post processing engine in SL1680 has the following stages: 
 Data loading 
 Format conversion 
 Scaling 
 Blending 
 Output 

In the data loading stage (dHub1), video and graphics data are loaded from DRAM buffers. For each of the input 
plane, there is one SRAM-based anti-jitter buffer to tolerate the DRAM bandwidth fluctuations. The allocation of 
the SRAM between planes can be re-configured for different applications through software programming. 

The VPP supports four plane inputs with format support as shown in Table 47.

1. Data Streaming Hub (dHub) is the multi-channel DMA Engine of SL1680.
BPC is Bits Per Component
BPP is Bits Per Pixel
MFR is Maximum Frame Rate

Table 47. VPP Supported Plane Inputs with Format Support

Plane Input Data Format BPC BPP Resolution MFR

Main Video

YUV444-Pack DWA 10 30 4K 60P

YUV422-SP DWA 10 20 4K 60P

YUV420-SP DWA 10 20 4K 60P

YUV444-Pack 8, 10 24, 30 4K 60P

YUV422-Pack 8, 10, 12 16, 20 4K 60P

ARGB8888 8 32 4K 60P

ARGB2101010 — 32 4K 60P

RGB888 Pack 8 24 4K 60P

RGB888 Planar 8 24 4K 60P

Main Video

YUV/IPT 4:2:0
(Tiled420SP-Progressive)

8, 10 12, 16 4K 60P

YUV/IPT 4:2:0 (420SP) 8, 10 12, 15 4K 60P

PIP (Video)/GFX0 (Graphics)

YUV 4:2:2-Pack 8, 10 16, 20 4K 60P

YUV 422-SP DWA 10 20 4K 60P

YUV444-Pack 8, 10 24, 30 4K 60P

YUV444-Pack DWA 10 30 4K 60P

YUV 4:2:0 (420SP) 8, 10 12, 15 4K 60P

YUV/IPT 4:2:0
(Tiled420SP-Progressive)

8, 10 12, 16 4K 60P

CLUT8 — 8 4K 60P

ARGB8888 8 32 4K 60P

RGB565 — 16 4K 60P

ARGB1555 — 16 4K 60P

ARGB4444 — 16 4K 60P

ARGB2101010 — 32 4K 60P

ARGB8332 — 16 4K 60P

RGB888 8 24 4K 60P
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SL1680 has six scalars in the scaling stage - the Main video (1d-Scalar), HDMI-Rx pipe (1d-Scalar), OVP 
scalar(1d-Scalar), PIP /Graphics (Graphics Scalar), Graphics (Graphics Scalar) planes can be scaled before they 
are selected for blending (blending stage).

In the blending stage, the main blender (CPCB0) can select any of the 3 input planes and blend them into one 
output (PROG0). The Z-order of the blending is completely programmable through the layer-to-plane selection 
inside the blenders. 

In the output stage, the output of main blenders (CPCB0) can be directed to HDMI or MIPI transmitter output 
port. MIPI transmitter output port optionally can be fed with data from one of Graphics scaling stage through 
output stage.

The VPP supports the following video output interfaces:
 HDMI 2.1 compliant, supports 480i/p, 576i/p, 720p, 1080i/p, 3840x2160p (4K60p)
 MIPI DSI compliant, supports up to 3840x2160p (4K30p)

GFX1 (Graphics)

CLUT8 — 8 4K 60P

ARGB8888 8 32 4K 60P

RGB565 — 16 4K 60P

ARGB1555 — 16 4K 60P

ARGB4444 — 16 4K 60P

ARGB2101010 — 32 4K 60P

ARGB8332 — 16 4K 60P

RGB888 8 24 4K 60P

GFX2 (Graphics)

CLUT8 — 8 4K 60P

ARGB8888 8 32 4K 60P

RGB565 — 16 4K 60P

ARGB1555 — 16 4K 60P

ARGB4444 — 16 4K 60P

ARGB2101010 — 32 4K 60P

ARGB8332 — 16 4K 60P

RGB888 8 24 4K 60P

Table 47. VPP Supported Plane Inputs with Format Support (Continued)

Plane Input Data Format BPC BPP Resolution MFR
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14.2.  VPP Functional Description
This section describes all the functions of VPP in detail. 

14.2.1.  Main Video Plane

14.2.1.1.  Feature List
 Input format

○ YUV422 packed 8/10/12-bit 
○ YUV(IPT)420 semi-planar raster scan 8/10-bit 
○ YUV(IPT)420 semi-planar tiled 8/10-bit
○ YUV444-Pack DWA 10-bit
○ YUV422-SP DWA 10-bit
○ YUV420-SP DWA 10-bit
○ YUV444-Pack, 8/10-bit
○ ARGB8888/ARGB2101010
○ RGB888 Pack
○ RGB888 Planar

 Rotation, Flip support:

 1D Scalar 
○ Input format 

 YUV444 12bit for SDR video path
 IPT444 12bit for EDR video path

○ Supports inline upscale
○ Supports inline/offline downscale

 Conversion between HDR and SDR: Various conversion between SDR and HDR is supported as shown 
in Table 48

Plane Input Data Format 90,180, 270 Degree Rotation

H-Flip

V-Flip

HV-Flip

Main Video

YUV444-Pack DWA 10-bit
YUV422-SP DWA 10-bit
YUV420-SP DWA 10-bit
YUV444-Pack, 8/10-bit
ARGB8888/ARGB2101010
RGB888 Pack
RGB888 Planar

No Yes

Main Video

YUV 4:2:2 No Yes

YUV/IPT 4:2:0 (Tiled420SP) Only for V4H6, V4H8 formats Yes

YUV/IPT 4:2:0 (420SP-Progressive) No Yes

Table 48. HDR and SDR Conversions

SDR HDR10 HLG

SDR N/A Yes Yes

HDR10 Yes N/A Yes
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HLG Yes Yes N/A

Table 48. HDR and SDR Conversions

SDR HDR10 HLG
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14.2.2.  PIP (Video)/Graphics Planes

14.2.2.1.  Feature List
 Two planes

○ One [GFX0] can be used for either graphic or PIP video
○ The other two [GFX1/2] are graphic only

 Graphic input formats - ARGB32 or ARGB32 with alpha-pre-multiplied, RGB565, ARGB1555, 
ARGB4444, ARGB2101010,ARGB8332, CLUT8 and RGB888
○ Up to 1920x1080 - when vertical scaling is enabled 
○ Up to 3840x2160 when vertical scaling is disabled (horizontal-only scaling or bypass) 

 PIP input formats 
○ YUV422 packed 8/10/12-bit 
○ YUV420 semi-planar raster scan 8/10/12-bit 
○ YUV420 semi-planar tiled scan 8/10-bit (Up to3840x2160)
○ YUV422 SP DWA 10-bit
○ YUV444 Pack DWA 10-bit
○ Up to 1920x1080 - when vertical scaling is enabled 
○ Up to 3840x2160 when vertical scaling is disabled (horizontal-only scaling or bypass) 
○ Progressive only. 

 GFX Scalar 
○ 4 channels for A, R, G and B 
○ Up to 1920x1080 - when vertical scaling is enabled 
○ Up to 3840x2160 when vertical scaling is disabled (horizontal-only scaling or bypass) 
○ Upscale Mode - 

 Maximum input resolution: 1920x1080 
 Maximum output resolution: 3840x2160 

○ DownScale Mode 
 Maximum input resolution:1920x2160 
 Maximum output resolution: 1920x2160

○ Horizontal-only upscale mode 
 Maximum input resolution: 3840x2160 
 Maximum output resolution: 3840x2160

○ Horizontal-only downscale mode
 Maximum input resolution: 3840x2160 
 Maximum output resolution: 3840x2160

○ Bypass (no scaling) mode
 Maximum input/output resolution: 3840x2160 
 Performance: one pixel per cycle 
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 Rotation Support:

14.2.3.  1D Scaler (Video Scalar)
The main features of the 1D Scaler include:

 Scaling the input frame to fit the display resolution or the user-specified resolution.
○ Interpolation, Reduction, 1:1
○ Supports video scaling.
○ Independent horizontal and vertical scaling ratios.

 Non-linear 3 zones scaling for preserving aspect ratio.
 Main scaler can convert progressive input to interlace output. For interlace output, scaler's vertical 

initial phase and vertical tap offset needs to be firmware programmed per frame (even and odd frames) 
based on input and output resolution.

 Main Video Plane
○ I/O Format

 YUV444, 12b'YUV444, 12b
 IPT444, 12b'IPT444, 12b

○ 1-D upscale
 Input up to 3840x2160
 Maximum output 3840x2160
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1920
 6 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1920
 32 phases

○ 1-D downscale
 Input up to 3840x2160
 Minimum output 640x480
 3 to 6 vertical taps; 5 to 8 horizontal taps
 32 phases

○ Offline support

The scaler loads the data from Format Conversion stage and outputs the scaled data to Blending stage directly.

Plane Input Data Format 90,180, 270 Degree Rotation

H-Flip

V-Flip

HV-Flip

PIP(Video)/GFX0(Graphics)

YUV 4:2:2 No Yes

YUV 4:2:0 (420SP) No Yes

YUV/IPT 4:2:0 
(Tiled420SP-Progressive)

Only for V4H6, V4H8 formats Yes

ARGB8888, RGB565, 
ARGB1555, ARGB4444, 
ARGB2101010, ARGB8332

No Yes

GFX1/GFX2 (Graphics)
ARGB8888, RGB565, 
ARGB1555, ARGB4444, 
ARGB2101010, ARGB8332

No Yes
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14.2.4.  Graphics Scalar
The main features of the Scaler include:

 General
○ 4 channels for A, R, G and B
○ alpha-pre-multiplied format is scaled as-is
○ 32 phases, with 10-bit coefficients (including sign bit)
○ coefficients stored in register file (48x80b)
○ Interpolation, Reduction, 1:1
○ Progressive input to Progressive/Interlaced output.
○ Independent horizontal and vertical scaling ratios.
○ 8-tap horizontal filter

 Non-linear 3 zones scaling for preserving aspect ratio.
 Upscale mode

○ Maximum input resolution: 1920x2160
○ Maximum output resolution: 3840x2160
○ Up-scale ratio: 1-to-1 to 1-to-6
○ 4-tap vertical filter for input width <=1440
○ 3-tap vertical filter for input width > 1440

 Downscale mode
○ Maximum input resolution: 1920x2160
○ Maximum output resolution: 1920x2160
○ Down-scale ratio: 1-to-1 to 6-to-1
○ 4-tap vertical filter

 Horizontal-only upscale mode
○ Maximum input resolution: 3840x2160
○ Maximum output resolution: 3840x2160
○ Up-scale ratio: 1-to-1 to 1-to-64

 Horizontal-only downscale mode
○ Maximum input resolution:3840x2160
○ Maximum output resolution:3840x2160
○ Down-scale ratio: 1-to-1 to 64-to-1

 Bypass (no scaling) mode
○ Maximum input/output resolution:3840x2160
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14.2.5.  Component Scalar
 OVP path

○ Used for transcoding or PIP display
○ I/O Format

 YUV420, 8/10b->YUV420, 8/10b
○ 1-D upscale

 Input up to 3840x2160
 Maximum output 3840x2160
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
 32 phases

○ 1-D downscale
 Input up to 3840x2160
 Minimum output 640x480
 Maximum output 1920x1080
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
 32 phases

 HDMI-Rx VIP pipe
○ Used for transcoding or MP/PIP display
○ Combined with YUV420/422/444 format conversion
○ I/O Format

 YUV420, 8/10/12bÆYUV420, 8/10/12b
 YUV422, 8/10/12bÆYUV420/422, 8/10/12b
 YUV444, 8/10/12bÆYUV420/422/444, 8/10/12b

○ 1-D upscale
 Input up to 3840x2160
 Maximum output 3840x2160
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
 32 phases

○ 1-D downscale
 Input up to 3840x2160
 Minimum output 640x480
 Maximum output 1920x1080
 3 vertical taps; 5 horizontal taps for input horizontal resolution bigger than 1152
 5 vertical taps; 8 horizontal taps for input horizontal resolution not bigger than 1152
 32 phases
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14.2.6.  CPCB (Overlay and Timing Generator)
The CPCB module mix video and graphics sources into a single image, and output that image according to the 
timing generator generated timings. The timing generator generates the video format timing reference signals 
to request pixel data from the processing pipeline and send to the output port

CPCB has its own Timing Generator (TG). The Timing Generator module provides all other modules inside that 
CPCB with timing reference signals. The basic TG registers that control the generated video format timing are: 

 VTOTAL: Total vertical lines including blank lines
 HTOTAL: Total horizontal pixels per line including blank pixels 
 HSYNC_START: Position where horizontal sync is activated with in a line in terms of pixel clocks
 HSYNC_END: Position where horizontal sync is de-activated with in a line in terms of pixel clocks 
 VSYNC_START: Position where vertical sync is activated with in a frame in terms of lines
 VSYNC_END: Position where vertical sync is de-activated with in a frame in terms of lines

Apart from the output timing, each plane has its own set of registers to specify the position and size within the 
total display canvas defined by the PL-8 registers in CPCB0:

 PL_X_start: Horizontal start position of the plane in terms of pixels
 PL_X_end: Horizontal end position of the plane in terms of pixels
 PL_Y_start: Vertical start position of the plane in terms of lines
 PL_Y_end: Vertical end position of the plane in terms of lines

14.2.6.1.  CPCB0 OSD Overlay
The following are the main features of CPCB0 overlay engine of SL1680:

 Can overlay up-to 3 input planes (2 video planes and 1 graphic planes): pl-1 (Main video), pl-2 (PIP/
GFX0), pl-3 (GFX1)

 Each input plane can be of any size
 Each input plane can be put in any location
 For graphic planes, programmable to take alpha from input (per pixel alpha) or from a programmable 

register (global alpha). For video planes, alpha is programmable from register (global alpha).
 Option to invert the usage of alpha.
 Supports border plane for each input plane: Each input plane has an associated border plane with solid 

color. The input plane is always above its border plane. The pixel data from input plane and the 
respective boarder plane are multiplexed before send to OSD Overlay (OO). The global Alpha value for 
boarder plane can be different from the input plane Alpha.

 Supports cropping for pl-1 (Main video), pl-2 (PIP/GFX0), pl-3 (GFX1) before blending
 Overlay happens in IPT/RGB domain.
 Programmable mapping from plane to overlay layers to facilitate flexible Z-order (order of blending).
 Support alpha-pre-multiplied format
 Alpha-PreMultiplied input format support
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Figure 30 is a detailed block diagram of the CPCB0 which consists of CSC in Main Video Plane and OSD overlay 
(OO).

Figure 30.  Detailed Block Diagram of CPCB0
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The final mixing of main video, PIP/Gfx0 and Gfx1 planes are done at OSD overlay block. Figure 31 illustrates 
the details of the basic overlay function (OSD Overlay - OO) that is used by CPCB0.

In Figure 31, multiplexer between video and their respective border planes indicate simple data selection 
between these planes without blending. The “Alpha Blender” module of OSD Overlay implements the following 
equation for alpha-blending. In the equations below, FGP is fore-ground plane and BGP is back-ground plane 
participating in the blending function:

Normal Mode operation:

Alpha Blender Output = alpha * FGP + (1 – alpha) * BGP (normal alpha sense)

                                        alpha * BGP + (1 – alpha) * FGP (inverted alpha sense)

Alpha pre-multiplied operation: This mode of overlay is used when graphic pixels are pre-multiplied with alpha 
(in normal alpha case) and 1-alpha (in inverted alpha case). 

Alpha Blender Output = FGP + (1-alpha) * BGP (normal alpha sense)

                                       FGP + alpha * BGP (inverted alpha sense)

Figure 31.  Block Diagram of Overlay Engine which is part of CPCB0
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Table 49 describes the source of different CPCB0 planes.

The order-of-overlay (Z-order) is completely programmable through the layer selection. Layer1 is the bottom-
most layer (above layer0 which is the base-plane), and layer3 is the top-most layer. There is a 3-bit select control 
provided for each of the 3 layers (layer1 to layer3). Any of the input planes can go to any of the layers. For 
example, the following shows one kind of Z-order:

 Layer1: pl-3 (Gfx1)
 Layer2: pl-1 (Main)
 Layer3: pl-2 (PIP/Gfx0)

There is a restriction of the input layer selections and plane routings for CPCBs: When one layer on CPCB is not 
used, it needs to be disabled by setting the layer control register to 7.

Table 49. Source of Different CPCB0 Planes

CPCB0 Plane Description Source

pl-0 Base plane Solid color from Register

pl-1 Main From video processing pipe

pl-2 PIP/Gfx0 From video processing pipe

pl-3 Gfx1 From video processing pipe

pl-4 Border for pl-0 (overall display canvas) Solid color from Register

pl-5 Border for pl-1 Solid color from Register

pl-6 Border for pl-2 Solid color from Register

pl-7 Border for pl-3 Solid color from Register
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14.2.7.  3D-HDMI Formatter

14.2.7.1.  Functional Description of 3D-HDMI Formatter
Following are the features which 3D-HDMI formatter supports:

 3D progressive, interlaced format.
 the following 3D formats:

○ Frame packing for progressive (HDMI 3D format).
○ Frame packing for interlaced (HDMI 3D format).
○ Field Alternative for interlaced (HDMI 3D format).

 Programmable View Signal generation using any of the following ways:
○ One Time Programming Mode.

 Hardware implements a register field which software loads, to indicate whether current frame 
is L/R(3D-P), Lodd/Rodd/Leven/Reven(3D-I) frame. Subsequent to loading H/W increments 
(modifies) this field on VDE (Active High) negative edge to generate View signal.

○ Continuous Programming Mode.
 Software provides a register field which is used by hardware to completely control View signal. 

Hardware loads this field into internal View signal on VDE negative edge.

Figure 32.  Structure (Frame Packing for Progressive Format)
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Figure 33.  Structure (Frame Packing for Interlaced Format) Vactive per (Lodd+Rodd+Leven+Reven)
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Figure 34.  Structure (Field Alternative for interlaced format) Vactive per (Lodd+Rodd,Leven+Reven)
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14.2.8.  Video Output Stage (VOP) – HDMI

14.2.8.1.  Feature List
 Input from overlay is IPT/RGB444 12-bit 
 TG is put after underflow-protection FIFO 
 Color space conversion to support YUV format 
 Down sampler to support YUV422 and YUV420 
 Support 640x480p, 720x480p, 720x576p, 3840x2160, 1080p, 1080i, 720p 
 DV EDR over HDMI for DV capable sink 

○ Pixel format is YUV(IPT)422 12bit
○ metaData is carried using one or more packets, each packet containing 128 bytes
○ Bit scrambling with luma/chroma data
○ metaData is transmitted bit-by-bit onto the LSB of each 12-bit Chroma sample 

 DV EDR over HDMI for HDR10/SDR sink
○ Pixel format is YUV422/YUV444 8/10-bit after DV dithering
○ DV metaData over HDMI 

 Interlaced output support 
○ No H/W interlacer
○ Software programs scalars to make the output height half of the input height; for 1080i, scalar 

output will be 1920x540
○ Software needs to adjust the initial phase for top and bottom fields differently 

 One display pipeline for HDMI-TX 

14.2.9.  Video Output Stage (VOP) – MIPI

14.2.9.1.  Feature List
 Input can be from any one of HDMI VOP, PIP/GFX0 plane, GFX1 plane, GFX2 plane
 Input is IPT/RGB444 12-bit 
 TG is put after underflow-protection FIFO 
 Color space conversion to support YUV format 
 Dither to support 8/10bpc
 Support 640x480p, 720x480p, 720x576p, 3840x2160, 1080p, 1080i, 720p 
 One display pipeline for MIPI-TX 
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14.3.  HDMI Transmitter
HDMI Tx supports the following features: 

 Video formats: 
○ All CEA-861-E video formats up to 1080p at 60 Hz and 720p/1080i at 120 Hz
○ Optional HDMI 1.4b video formats: (configuration dependent) 

 All CEA-861-E video formats up to 1080p at 120 Hz 
 HDMI 1.4b 4K x 2K video formats 
 HDMI 1.4b 3D video modes with up to 340 MHz (TMDS clock) 

○ Optional HDMI 2.0 video formats: (configuration dependent) 
 All CEA-861-E video formats 
 Dynamic Range and Mastering Infoframe (DRM, packet header 0x87) 

 Colorimetry: 
○ 24/30/36-bit RGB 4:4:4 
○ 24/30/36-bit YCBCR 4:4:4 
○ 16/20/24-bit YCBCR 4:2:2 
○ 24/30/36-bit YCBCR 4:2:0 

 Optional HDMI 1.4b supported Infoframes: 
○ Audio InfoFrame packet extension to support LFE playback level information 
○ AVI InfoFrame packet extension to support YCBCR Quantization range (Limited Range, Full Range) 
○ AVI InfoFrame packet extension to support Content type (Graphics, Photo, Cinema, Game) 
○ NTSC VBI InfoFrame packet extension to support the carriage of SCTE 127 [29] payloads 

containing VBI data
 Audio formats:

○ I2S
 Up to 192 kHz IEC60958 audio sampling rate 

○ For IEC61937 compressed audio 
 HDMI 2.0b: up to 1536 kHz 
 HDMI 1.4b: Up to 768 kHz 

 Pixel clock from 25MHz up to 600 MHz 
 Option to remove pixel repetition clock (prepclk) from HDMI Tx interface for an easy integration with 

third-party HDMI Tx PHYs
 Flexible synchronous enable per clock domain to set functional power down modes 
 I2C DDC, EDID block read mode 
 SCDC I2C DDC access 
 TMDS Scrambler to enable support for 2160p@60Hz with RGB/YCBCR 4:4:4 or YCBCR 4:2:2
 YCBCR 4:2:0 support to enable 2160p@60Hz at lower HDMI link speeds 
 Support for HDR10+, Dynamic HDR Metadata
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14.4.  HDMI Receiver
The HDMI-Rx supports the following features: 

 HDMI Compliance 
○ 2.0 

 SCDC I2C DDC access 
 TMDS Scrambler to enable support for 2160 p@60 Hz with RGB/YCbCr 4:4:4 or YCbCr 4:2:2 
 YCbCr 4:2:0 support to enable 2160 p@60 Hz at lower HDMI link speeds 
 Character Error Detection
 Multi-stream Audio Support (Multi-stream Audio Sample and One Bit Multi-stream) 
 Audio rates up to 1536 kHz for HBR audio

○ 1.4b 
 HDMI 1.4b has a maximum resolution to 4K × 2K (3840×2160 p@24 Hz/25 Hz/30 Hz and 

4096×2160 p@24 Hz), an HDMI Ethernet Channel (HEC), and introduces an Audio Return 
Channel (ARC), 3D Over HDMI, a new Micro HDMI Connector, expanded support for color 
spaces, with the addition of sYCC601, Adobe RGB and Adobe YCC601, and an Automotive 
Connection System. 

 It also supports several stereoscopic 3D formats including field alternative (interlaced), frame 
packing (a full resolution top-bottom format), line alternative full, side-by-side half, side-by-side 
full, 2D + depth, and 2D + depth + graphics + graphics depth (WOWvx), with additional top/
bottom formats added in version 1.4b.

○ For more information, you can find the specifications on the HDMI.org website.
 Supported video formats: 

○ RGB 4:4:4 
 8-bit normal color mode 
 10-, 12- deep color mode 

○ YCBCR 4:2:2 with 8-, 10-, and 12-bit color depth 
○ YCBCR 4:4:4 

 8-bit normal color mode 
 10-, 12- deep color mode 

○ YCBCR 4:2:0 with 8-, 10-, 12-, color depth 
○ All 3-D video formats (HDMI 1.4b) 
○ Up to 4K x 2K video formats (HDMI 1.4b) 
○ All CEA-861-F video formats (HDMI 2.0) 
○ All CTA-861-G video formats (HDMI 2.1) 

 Gamut metadata reception 
○ Gamut boundary descriptions and gamut metadata is carried using the Gamut Metadata Packet, 

and profiles P0, P1, P2, and P3 are supported. The following video formats must be accompanied 
with the transmission of the Gamut metadata: xvYCC601/xvYCC709/sYCC601/AdobeRGB/
AdobeYCC601 

 Receipt of compressed and uncompressed encoded audio data
○ L-PCM 
○ L-PCM multi-channel 
○ Standard bit-rate compressed audio 
○ High Bit-Rate (HBR) compressed audio
○ Multi-stream Audio (multi-stream audio sample and one-bit multi-stream) 
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14.5.  eARC-RX 
 eARC-RX Key Features

○ Supports the uncompressed audio up to 36.864 Mbps (for 192-kHz 8-channel 24-bit L-PCM)
○ Supports the compressed audio up to 24.576 Mbps
○ Backward compatible with HDMI 1.4 ARC
○ Supports error correction by BCH (32, 24) coding for compressed audio
○ Manages eARC channel control using a half-duplex
○ eARC common mode data channel; management includes discovery process, EDID
○ Biphase-mark coding for the differential mode audio channel and the bi-directional half-duplex 

common mode data channel 
○ Audio Interface to SoC

 8-channel I2S
 6-channel DSD
 S/PDIF 

14.6.  HDCP
 HDCP Compliance

○ 1.4 
 According to HDMI 2.1 Specification, support to this HDCP encryption/decryption method is 

not possible.
 For HDMI 2.0 and lower version Specifications, HDCP 1.4 content protection engine can be 

optionally configured as HDMI Repeater, supporting one or more downstream devices. 
○ 2.x 

 HDCP 2 Embedded Security Module IP interfaces with the HDMI-Rx Controller.
 Support HDMI streams up to 48Gbps (maximum data cipher throughput of 42.7Gbps for HDMI 

operation).
 Transmitter/Receiver and Repeater support.

14.7.  Video Input Processing

14.7.1.  Feature List
 Serve as input pipe for HDMI-Rx, offline scalar, and test path for HDMI-Tx
 Input resolution up to 3840x2160@60Hz
 Data format in DDR is YUV(IPT)422-pack 8/10/12-bit, YUV(IPT)420-SP 16-bit, YUV444-Pack 10/12-bit

14.8.  OVP Scalar Path

14.8.1.  Feature List
 1D frame-based processing on YUV420 domain with 10-bit precision
 Creates scaled frame buffer to be used by transcoding or PIP display
 Separate setting (phase/coefficient/ratio/…) for Y/C
 Input Formats: YUV422 Packed 12-bit, YUV420 semi-planar raster-scan or tiled 8/10-bit
 Output Formats: YUV420 semi-planar raster-scan 8/10-bit, YUV420 SP 10-bit DWA, RGB888 Planar
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14.9.  Pipeline Control
This section describes a few important aspects related to VPP such as DRAM Interface, VBI programming, 
Interrupts, and so on.

14.9.1.  Register Interface
All the VPP registers are accessible from CPU through internal AHB bus on 32bit boundary. It takes up 128KB 
address space in total. 

In some applications (for example, a smooth scaling effect coupled with synchronized graphics overlay 
animation), a large number of VPP register needs to be reprogrammed during the video blank time. In order to 
achieve this without heavy loading on CPU interrupt routine, SL1680 has a DMA-channel to program the VPP 
related registers. It helps to program the registers at the maximum speed. To use this feature, CPU prepares the 
register programming data in DRAM (address, data pairs) and then kick off the DMA programming channel 
during video blanking interval so that VPP registers are programmed in a seamless way without disturbing the 
output.

14.9.2.  DRAM Interface
VPP loads all frame data from DRAM. For HDMITX VOP, one DMA engines (dHub0/vppDHub) interface VPP to 
DRAM controller through 128-bit AXI bus at 600MHz. For MIPITX VOP, another DMA engines (dHub1/aioDHub) 
interface VPP to DRAM controller through 64-bit AXI bus at 400MHz.

14.9.3.  Interrupt Scheme
All the VPP related interrupts are segregated by dHub engines and sent to SoC Interrupt Controller (PIC) and 
routed to CPUs. The following VPP events can be turned on to generate interrupts:

 HDMITX/MIPITX VBI Start
 HDMITX/MIPITX Start of active-video event
 Offline Downscale Pipe or HDMIRx pipe (End of Frame Interrupt)
 OVP Pipe (End of Frame Interrupt)
 BCM Invalid Request Interrupt
 HDMITX Interrupt events (Controller, Sink Detect)
 HDMIRX Interrupt events (Controller, HPD)
 HDCP (ESM, TRNG)
 eARC (Rx)
 Audio Interrupts (I2S, SPDIFRx)
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14.10.  AVPLL
SL1680 uses four (2x-Audio, 2x-Video) AVPLL (Audio-Video PLL) to generate all the audio-video clocks. All the 
clock sources are generated through internal AVPLLs locked to a 25MHz crystal oscillator. All required 
frequencies for driving audio and video output from 20MHz to 594MHz can be generated through the AVPLL. 
The AVPLL is programmable with Fractional-N divider, it has a 24bit Fractional Divider Value. The AVPLL 
generated clock can be locked to the input source yet adjusted to a fine-degree of precision of near 1PPB 
resolution. The adjustment can be made through AVPLL register interface. The video output timing generators 
can be driven by independent clock source for each of HDMITX and MIPITX.
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15. Audio Input Output

15.1.  Overview
The main functions of the Audio input-output (AIO) module are: 

 To transmit the audio stream prepared in DRAM by firmware in supported audio formats (Output path 
from dHub) through I2S/SPDIF pins. 

 To receive different audio input streams through I2S/PDM/SPDIF pins, de-serialize, pack, and store in 
DRAM (Input paths to dHub).

Table 50. Audio Inputs/Outputs in SL1680

S.no Name Description 

1
Primary Audio Output
(PRI)

Up to 8 channel audio in I2S mode or 
2/4/6/8 Channel in TDM mode is transmitted through I2S pins. 
For this port, 4 I2S transmitter is enabled.

2 SPDIF Audio output. (SPDIF-TX)
SPDIF transmitter is connected to chip output. 
2 channel audio data are transmitted in IEC60958 mode or 8 channel 
compressed audio data are transmitted in IEC61937 mode. 

3 SEC Audio Output (SEC/BTo) 

2 channel audio in I2S mode or 
8 Channel in TDM mode or 
PCM mono Channel Output is transmitted through I2S pin.
For this port, 1 I2S transmitter is enabled.

4 HDMI audio output
HDMI-TX outputs up to 8 channel audio. HDMI-TX receives audio through 
HD-audio path which has customized 4 I2S transmitters. (up to 8 channel 
L-PCM audio or 2 channel compressed audio). 
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Table 51. Audio Output paths/ports in SL1680

S.no Name Description 

1 MIC1 Audio Input (MIC1).
Up to 8 channel audio in I2S mode or 
2/4/6/8 Channel in TDM mode can be received through I2S pins. 
For this port, 4 I2S receivers is enabled.

2 PDM Audio Input (PDM)

Up to 8 channel audio can be received in PDM format. 
Externally 2 I2S lines and 2 PDM lines are connected through 
multiplexers. 
For this port, 4 PDM receivers are enabled.

2a PDM Audio Input (DMIC)

Up to 8 channel audio can be received in PDM format (the ones 
mentioned in #2). These inputs go in DMIC which do PDM2PCM 
conversion and interleaving.
Externally, 2 I2S lines and 2 PDM lines are connected through 
multiplexers.
Three DMIC input comes from PDM lanes.
Fourth DMIC input can either come from DRAM or from a PDM lane.
For this port, 4 DMIC receivers are enabled.

3 DSD Audio Input (PDM)

Up to 6 channel audio can be received in DSD format from eARC-RX 
Controller.
DSD data format is same as PDM format. 3 PDM receivers are used for 
this port.

4 SPDIF Audio Input (SPDIF-RX)

SPDIF receiver is connected to chip input or eARC-Rx output. 2 channel 
audio data or Compress audio data are received from eARC-Rx output. 2 
channel audio data are received in IEC60958 mode or 8/6 channel 
compressed audio data are received in IEC61937 mode. 

5 MIC2 Audio Input (MIC2).

2 channel audio in I2S mode or 2/4/6/8 Channel in TDM mode can be 
received through I2S pins. 
PCM Mono audio can be received through I2S pin.
Externally 2 I2S lines and 2 PDM lanes are connected through 
multiplexers.
For this port, 1 I2S receivers is enabled.

6 MIC3 Audio input (HDMI-RX)

4 I2S lines of HDMIRX.
Up to 8 channel L-PCM audio or 2 channel compressed audio can be 
received through this port. Internally, 4 I2S receivers are enabled for this 
port.

7
MIC4 Audio Input (Pri Tx 
LoopBack)

Up to 8 channel audio in I2S mode or 2/4/6/8 Channel in TDM mode can 
be received through I2S pins. 
For this port, 4 I2S receivers are enabled.

8
MIC5 Audio Input (HDMI Tx 
LoopBack)

Up to 8 channel audio in I2S mode can be received through I2S pins. 
For this port, 4 I2S receivers are enabled.

9
MIC6 Audio Input 
(eARC RX I2S Input)

Up to 8 channel audio in I2S mode or 
8 channels TDM data on single lane or 32 channels on 4 lanes (32-bit on 
each lane) can be received from eARC-RX controller.
For this port 4 I2S receivers are enabled.
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Figure 35 is a functional block diagram of the AIO module.

For each input/output ports, there are audio FIFOs between the DMA channel and the Transmitter/Receiver 
block. In unexpected or error cases when underflow or overflow happens, an interrupt will be generated. All the 
FIFOs can be flushed by firmware. 

The SL1680 AIO module also has audio clock logic to generate the various sampling clocks (Bit-Clocks or BCLK) 
required for each port by dividing from Host Clock (MCLK). The source of MCLK is driven by the APLLs. 

The audio clock module generates the data BCLK for AIO module by dividing the input Host Clock (MCLK) by 1/
2/4/8/16/32/64/128. The desired BCLK clock frequency and polarity can be selected by programming the AIO 
registers. 

Figure 35.  Functional Block Diagram of AIO Module
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15.2.  Audio Clock Scheme 
Each audio transmitter and receiver of AIO has its own MCLK (host clock). Two independent clocks from APLL 
are used to generate these MCLKs. There are independent dividers for each MCLK to fine adjust their required 
frequencies. BCLKs are derived from MCLKs using another set of dividers. 

15.2.1.  Sampling Rate and Bit Clock 
The bit clock toggles once for each discrete bit of data on the data lines. The bit clock frequency is derived by 
the number of bits per channel, the number of channels, and the sampling rate. For example, stereo audio (2 
channels) with a sample frequency of 192 KHz and 16-bits per sample will have a bit clock frequency of 6.144 
MHz (192x2x16). The Word Strobe clock (LRCK) indicates whether Left Channel or Right Channel data is 
currently being sent to the device. Transitions on the LRCK also serve as a start-of-word indicator. The LRCK 
frequency is always the same as the audio sampling rate. The sampling size and sampling rate must be same 
within the same channel pair and the same port.

Table 52 shows the required BCLK frequency for supported audio sampling rates at 32FS/48FS/64FS.

To generate desired frequencies for audio clocks, APLL must be first configured to generate required MCLKs. 
AIO clock dividers must be programmed to generate correct BCLKs and LRCKs from MCLKs.

Table 52. Sampling Rate and Bit Clock Relationship (I2S)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

32*FS (2-Ch) 48*FS (2-Ch) 64*FS (2-Ch)

32 KHz 1.02 1.536 2.048

44.1 KHz 1.4112 2.1168 2.8224

48 KHz 1.536 2.304 3.072

96 KHz 3.072 4.608 6.144

192 KHz 6.144 9.216 12.288

Table 53. Sampling Rate and Bit Clock Relationship (For TDM Mode)

Sampling Rate

(FS)

Bit- clock frequency (MHz)

128*FS (4-Ch) 192*FS (6-Ch) 256*FS (8-Ch)

32 KHz 4.096 6.144 8.192

44.1 KHz 5.6448 8.4672 11.2896

48 KHz 6.144 9.216 12.288

96 KHz 12.288 18.432 24.576

192 KHz 24.576 36.864 49.152
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15.3.  Data Formats
The SL1680 I2S Transmitters and Receivers supports I2S mode, Left-Justified mode, Right-Justified mode, TDM 
Mode, PCM Mono, SPDIF mode and PDM mode.

The following sections provide brief description about each of the supported data formats.

15.3.1.  I2S Mode
In I2S mode, data is sent out “one” BCLK after the LRCK transition. In this mode left channel data are 
transmitted during the low period of LRCK and right channel data are transmitted during the high period of 
LRCK. Figure 3 shows the I2S mode.

15.3.2.  Left-Justified Mode 
In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK transition and 
data is aligned with the leading transitions on LRCK. In this mode left channel data are transmitted during the 
high period of LRCK and right channel data are transmitted during the low period of LRCK. Figure 37 shows the 
Left-Justified mode. 

Figure 36.  I²S Mode
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Figure 37.  Left-Justified Mode
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15.3.3.  Right-Justified Mode
In Figure 38, the Right-Justified format is very similar to the Left-Justified format, with the exception of the 
placement of channel data within the LRCK. In this mode, the data lines up with the right edge of LRCK 
transition and last bit of the data are transmitted one BCLK before the LRCK transition. 

As with the Left-Justified mode, left channel data is transmitted during the high period of LRCK and right 
channel data are transmitted during the low period of LRCK. Figure 38 shows the Right-Justified mode. 

15.3.4.  Time Division Multiplexed (TDM) Mode
The TDM format is typically used when communicating between integrated circuit devices on the same printed 
circuit board or on another printed circuit board within the same piece of equipment. For example, the TDM 
format is used to transfer data between the DSP and one or more analog-to-digital converter (ADC), digital-to-
analog converter (DAC).

The TDM format consists of three components in a basic synchronous serial transfer: the clock (BCLK), the data 
(DIN / DOUT) and the frame sync (LRCK). 
1. The BCLK for Transmit / Receive needed for 32bit resolution per channel: 

 256 Clocks: 8-Channel
 192 Clocks: 6-Channel
 128 Clocks: 4-Channel

Each 64 BCLK 2-Channel data is transmitted / received.

2. In I2S-TX, the LRCLK can be generated for 1-254 BCLK in an audio frame whereas in I2S-RX the module 
detects the low to high edge to start decoding the data.

3. The audio frame in TDM mode carries 2/4/6/8-Channels of data. 
4. The data is always in I2S / Justified Mode.

 In I2S mode, data is sent out one BCLK after the LRCK transition.
 In Left-Justified mode, there is no BCLK delay between the first data transmission and the LRCK 

transition and data is aligned with the leading transitions on LRCK. 
 It’s relatively apparent that the Right-Justified format is very similar to the Left-Justified format, with the 

exception that the placement of channel data within the LRCK. In this mode the data lines up with the 
right edge of LRCK transition and last bit of the data is transmitted one BCLK before the LRCK 
transition. 

Figure 38.  Right-Justified Mode
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Figure 39.  8-Channel TDM Mode Data

Figure 40.  6-Channel TDM Mode Data

 

Figure 41.  4-Channel TDM Mode Data
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Figure 42.  2-Channel TDM Mode Data
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15.4.  PCM Mono mode
PCM mono channel data is used specifically for transfer of chunk data indicative by a single pulse to start the 
data.

After the rising edge of the PCM_FR the data will be captured. The number of bits (Data resolution) which needs 
to be captured will be configurable between 8/16/24/32 Bits. Data is captured or sent on the falling edge. 

When transmitter is operating in Host Mode the frame width, that is, the occurrence of PCM_FR pulses can also 
be configured between 8 to 256. While transmitter is operating in Target Mode the frame width is defined by the 
Host Mode generating the PCM_FR, to take care of this there is a programming guideline to be followed. 

Figure 43 represents the data being sent by the transmitter.

15.5.  Pulse Density Modulation (PDM) Mode 
AIO module in SL1680 has a dedicated receiver to receive PDM digital input. In PDM mode, register 
configurable PDM clock is sent out from SL1680 to the PDM device to clock the data bits. The data bits are 
presented by the PDM device at the clock rate, either on the rising edge/falling edge or both. SL1680 samples 
the PDM data and stores in the DRAM. 

SL1680 supports both the PDM data transfer modes namely Classic PDM and Half Cycle PDM. In Classic PDM, 
the PDM device will present data on every rising (or falling) clock edge. In Half cycle PDM, the PDM device will 
present valid data on both the clock edges. SL1680 samples the PDM data either using the internal PDM clock 
edges or a programmable counter running on internal high-speed clock, also number of bits to store per frame 
is configurable using the register settings. 

PCM_IN/BCLK

PCM_FR/LRCK

1 2 3 ------ n-1 n

Mono Channel

MSB LSB MSB LSB
1 2 3 ------ n-1 n

8-256

Mono Channel

8-32

SD (Left-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (I2S-Justified)

1 2 3 ------ n-1 n
MSB LSB MSB LSB

1 2 3 ------ n-1 n

8-32

SD (Right-Justified)

Figure 43.  PCM Mono Mode Data

Figure 44.  Half-Cycle PDM
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15.6.  Direct Stream Digital (DSD) Mode
AIO module in SL1680 has a dedicated receiver to receive DSD digital input coming from eARC RX Controller. 
Like PDM, DSD is single bit audio format that uses pulse density modulation technique to encode audio. AIO 
uses a customized PDM receiver to receive DSD audio. DSD source sends clock - SCK_OUT - along with data 
and PDM receiver uses this clock to capture data.

Figure 45.  DSD Input from eARC RX Controller

SCK_OUT

DSDL_OUT[3:0] bit0 bit1 bit23 bit0 bit1 bit23... ...

DSDR_OUT[3:0] bit0 bit1 bit23 bit0 bit1 bit23... ...
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15.7.  S/P-DIF (IEC60958) Transmitter 
The S/P-DIF transmitter generates the S/P-DIF stream up to 192 KHz from the input data. This block operates 
on S/P-DIF Host Clock (MCLK) generated from the AVPLL or from external source.

The S/P-DIF module reads the input audio stream from DRAM using a dedicated DMA Channel and generates 
the serial S/P-DIF output. S/P-DIF functionality is divided among firmware and hardware. AIO hardware 
performs the following functions: 

 Sync preamble coding
 Parity bit generation
 Output channel coding in bi-phase-mark-code (BMC)

The functions performed by firmware are:
 Block and frame formats
 Validity flag, user data format, and channel status

Figure 46 shows the S/P-DIF frame format.

15.7.1.  S/P-DIF Internal Sub-frame Format 
AIO receives the S/P-DIF data from firmware in the following sub-frame format. Each sub-frame is 32-bits long 
as shown in Figure 47.

Figure 46.  S/P-DIF Frame Format

M Channel 1 W Channel 2 B Channel 1 W Channel 2 M Channel 1 W Channel 2 M

Frame 191 Frame 0 Frame 1

Sub-frame Sub-frame

X Y Z Y X Y X

Start of block

Figure 47.  S/P-DIF Internal Frame Format
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Word SYNCVUCPAux 

Data

M
S
B

L
S
B

Validity Flag
User Data
Channel Status
Parity Bit

  31                     -----                       12  11 – 8     7    6     5     4      3   -   0bits
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Bits 0 to 3 carry one of the three permitted preambles. AIO directly encode the received 4-bit data into the 
corresponding preamble sync words as shown in Table 54.

Bits 8 to 31 carry the audio sample word in linear 2’s complement representation. 

Bit 4 carries the validity flag associated with the audio sample word, this flag is set to logical 0 if the audio 
sample is reliable, and it is set to logical 1 if unreliable. Firmware maintains this bit. 

Bit 5 carries one bit of the user data channel associated with the audio channel transmitted in the same sub 
frame.

Bit 8 to 31 will carry data (unused LSBs bits are set to 0).

Table 54. Encoding for Preambles

Preamble Word Encoding [3:0]

B “0000”

M “0010”

W “0011” to “1111”
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16. Peripheral Sub-system

16.1.  Introduction
The Peripheral Sub-system integrates various standard interface controllers to provide connectivity between the 
SL1680 SoC and the variety of peripheral devices that can be attached to the SL1680 device.

16.2.  Description
Dedicated controllers handle the communication protocol for each of the standard interfaces of the SL1680 
device. All of the controllers have connection to an internal target bus interface for register programming. Most 
of the high speed interface controllers also include a built-in DMA, which enables them to access the SL1680 
system memory as a host.

There are also sixteen timers, three watchdog timers, and local programmable interrupt controllers (PICs) for 
the low-speed interface controllers.

Figure 48 is a diagram of the peripheral subsystem.
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Figure 48.  Peripheral Sub-system Block Diagram
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The integrated peripheral subsystem communicates with the SL1680 device SoC through the following three 
interfaces:

 32-bit target interface on the configuration bus running @ 100 MHz for system CPUs to access 
peripheral registers

 64-bit host interface on the data bus @400 MHz for PERIF DMAs to access system memories
 Interrupts to system CPUs

The peripheral subsystem supports the following external interfaces:
 1 USB 2.0 OTG with PHY
 1 SDIO host controller provides SDIO3.0 support
 1 eMMC controller provides eMMC5.1 support
 1 USB 3.0 with 3.0 and 2.0 PHY
 1 Gigabit Ethernet Controller with RGMII interface
 1 PCI-e 2.0 x2
 8 Serial Transport Stream Inputs
 2 I2C (TWSI)
 1 SPI
 4 PWM
 GPIO
146 Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 



Astra™ SL1680 Embedded IoT Processor Functional Specification PN: 505-001414-01  Rev.A
17. APB Components of Peripheral Interface

17.1.  General Purpose Input/Output (GPIO)

17.1.1.  GPIO as I/O Pins
In I/O mode, the SL1680 device can control the output data and direction of I/O pads. There are 56 GPIOs in 
the SoC power domain and 16 GPIOs in the SM power domain. GPIO pins are pin-shared with other interfaces. 
For more pin-sharing information, refer to the SL1680 Datasheet (PN: 505-001413-01). The output and input 
GPIO status can be accessed directly through memory-mapped registers. Each of the GPIO pins can be 
controlled independently as described in this chapter.

Figure 49 illustrates one of 56 GPIO pins. Each of the GPIO pins (N from 0 to 55) are mapped to registers as 
follows:

 GPIO 0-31 maps to apb_gpio_0 in the register manual 
 GPIO 32-55 maps to apb_gpio_1 0-23

Figure 49.  GPIO Block Diagram
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17.1.1.1.  Controlling the GPIO
The data and direction control for the signal are sourced from the data register (gpio_swporta_dr) and direction 
control register.

Under software control, the direction of the external I/O pad is controlled by a write to the data direction register 
(gpio_swporta_ddr) to control the direction of the GPIO pad.

The data written to the data register (gpio_swporta_dr) drives the output buffer of the I/O pad. External data are 
input on the external data signal, gpio_ext_porta. Reading the external signal register (gpio_ext_porta) shows 
the value on the signal, regardless of the direction. This register is read only.

17.1.1.2.  Reading External Signals
The GPIO PAD data on the gpio_ext_porta external signal can always be read through the memory-mapped 
register, gpio_ext_porta.

A read to the gpio_ext_porta register yields a value equal to that which is on the gpio_ext_porta signal, 
regardless of the direction.

17.1.1.3.  GPIO as Interrupt
GPIO can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The 
type of interrupt is programmable with one of the following settings:

 Active-high and level 
 Active-low and level 
 Rising edge
 Falling edge

The interrupts can be masked by programming the gpio_intmask register. The interrupt status can be read 
before masking (called raw status) and after masking.

The interrupts are also combined into a single interrupt output signal, which has the same polarity as the 
individual interrupts. To mask the combined interrupts, all individual interrupts have to be masked. The single 
combined interrupt does not have its own mask bit.

Whenever GPIO is configured for interrupts, the data direction must be set to Input for interrupts to be latched. 
If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no 
new interrupts are generated.

Figure 50 illustrates how the interrupts are generated and how the data flows. The signal names in the diagram 
correspond to either I/O signals or memory-mapped registers.
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The gpio_status register must be read in the interrupt service routine (ISR) to find the source of the interrupt.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the gpio_porta_eoi register for 
the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. 
Writing to the gpio_porta_eoi register has no effect on level-sensitive interrupts. If level-sensitive interrupts 
cause the processor to interrupt, then the ISR can poll the gpio_rawint status register until the interrupt source 
disappears, or it can write to the gpio_intmask register to mask the interrupt before exiting the ISR. If the ISR 
exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt repeatedly 
requests an interrupt until the interrupt is cleared at the source.

If the interrupt service routine reads the gpio_intr_status register to find multiple pending interrupt requests, 
then it is up to the processor to prioritize these pending interrupt requests. There are no restrictions on the 
number of edge-detected interrupts that can be cleared simultaneously by writing multiple 1s to the 
gpio_porta_eoi register.

Interrupt signals are internally synchronized to a system clock. Synchronization must occur for edge-detect 
signals. Edge-detected interrupts to the processor are always synchronous to the system bus clock. With level-
sensitive interrupts, synchronization is optional and under software control.

Figure 50.  GPIO Interrupt Block Diagram
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17.2.  Two-Wire Serial Interface (TWSI)

17.2.1.  Overview
The TWSI bus is a two-wire serial interface. The TWSI module can operate in both standard mode (with data 
rates up to 100 Kbps), and fast mode (with data rates up to 400 Kbps) and supports high-speed mode (with 
data rates up to 3.4Mps). The TWSI can communicate with devices only of these modes as long as they are 
attached to the bus. The TWSI serial clock determines the transfer rate. The TWSI interface protocol is set up 
with a host and target. The host is responsible for generating the clock and controlling the transfer of data. The 
target is responsible for either transmitting or receiving data to and from the host. The acknowledgment of data 
is sent by the device that is receiving data, which can be either the host or the target. The protocol also allows 
multiple hosts to reside on the TWSI bus, which requires the hosts to arbitrate for ownership.

The target each have a unique address that is determined by the system designer. When the host is 
programmed to communicate with a target, the host transmits a START condition that is then followed by the 
target address and a control bit (R/W) to determine if the host is to transmit data or receive data from the 
target. The target then sends an acknowledge (ACK) pulse after the address and the R/W bit is received to notify 
the host that the target has received the request. 

If the host (host-transmitter) is writing to the target (target-receiver), the receiver receives a byte of data. This 
transaction continues until the host terminates the transmission with a STOP condition. If the host is reading 
from a target, the target transmits a byte of data to the host, and the host then acknowledges the transaction 
with the ACK pulse. This transaction continues until the host terminates the transmission by not acknowledging 
the transaction after the last byte is received, and then the host issues a STOP condition or addresses another 
target after issuing a RESTART condition. This process is illustrated in Figure 51.

The TWSI is a synchronous serial interface. The data signal (SDA) is a bidirectional signal and changes only 
while the serial clock signal (SCL) is low, except for STOP, START, and RESTART conditions. The output drivers 
are open-drain or open-collector to perform wire-AND functions on the bus. The maximum number of devices on 
the bus is limited by only the maximum capacitance specification of 400 pF. Data is transmitted in byte 
packages.

Figure 51.  TWSI Start and Stop Condition
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17.2.2.  TWSI Protocols
The TWSI has the following protocols:

 START and STOP Condition 
 Addressing Target 
 Transmitting and Receiving   
 START BYTE Transfer 

17.2.2.1.  START and STOP Condition Protocol
When the bus is IDLE both the SCL and SDA signals are pulled high through external pull-up resistors on the 
bus. When the host is programmed to start a transmission on the bus, the host issues a START condition. This 
action is defined to be a high-to-low transition of the SDA signal while SCL is 1. When the host is programmed to 
terminate the transmission, the host issues a STOP condition. This action is defined to be a low-to-high 
transition of the SDA line while SCL is 1. Figure 52 shows the timing of the START and STOP conditions. When 
data is being transmitted on the bus, the SDA line must be stable when SCL is 1.

17.2.2.2.  Addressing Target Protocol
There are two address formats, the 7-bit address format and the 10-bit address format. During the 7-bit address 
format, the first seven bits (7:1) of the first byte set the target address and the LSB bit (bit 0) is the R/W bit as 
shown in Figure 53. When Bit 8 is set to 0, the host writes to the target. When Bit 8 (R/W) is set to 1, the host 
reads from the target. Data is transmitted to the most significant bit (MSB) first. During 10-bit addressing, two 
bytes are transferred to set the 10-bit address. The transfer of the first byte contains the following bit definition. 
The first five bits (7:3) notify the targets that this is a 10-bit transfer followed by the next two bits (2:1), which set 
the targets address bits 9:8, and the LSB bit (Bit 8) is the R/W bit. The second byte transferred sets bits 7:0 of 
the target address. Figure 54 shows the 10-bit address format, and Table 55 defines the special purpose and 
reserved first byte addresses.

Figure 52.  START and STOP Condition
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Table 55. TWSI Definition of Bits in the First Byte

Target Address R/W Description

0000 000 0
General Call Address. The TWSI module places the data in the receive buffer and issues a 
general call interrupt.

0000 000 1 START byte. For more information, refer to START BYTE Transfer Protocol.

0000 001 X CBUS address. The TWSI module ignores these accesses.

0000 010 X Reserved.

0000 011 X Reserved.

0000 1XX X High-speed host code (for more information, refer to Host Arbitration).

1111 1XX X Reserved.

1111 0XX X 10-bit target addressing.

Figure 53.  7-Bit Address Format
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Figure 54.  10-Bit Address Format

S

S = Start condition
R/W = Read/Write Pulse
ACK = Acknowledge

‘1’ ‘1’ ‘1’ ‘1’ ‘0' A9 A8 R/W A7 A6 A5 A4 A3 A2 A1 A0 ACK

Reserved for 10-bit 
Address

sent by target sent by target

ACK
152 Copyright © 2024 Synaptics Incorporated. All Rights Reserved. 



Astra™ SL1680 Embedded IoT Processor Functional Specification PN: 505-001414-01  Rev.A
17.2.2.3.  Transmitting and Receiving Protocol
All data is transmitted in byte format, with no limit on the number of bytes transferred per data transfer. After 
the host sends the address and R/W bit or the host transmits a byte of data to the target, the target-receiver 
must respond with the acknowledge signal. When a target-receiver does not respond with an acknowledge 
pulse, the host aborts the transfer by issuing a STOP condition. The target leaves the SDA line high so the host 
can abort the transfer. If the host-transmitter is transmitting data as shown in Figure 55, then the target-
receiver responds to the host-transmitter with an acknowledge pulse after every byte of data is received.

If the host is receiving data as shown in Figure 56, then the host responds to the target-transmitter with an 
acknowledge pulse after a byte of data has been received, except for the last byte. This process is how the host-
receiver notifies the target-transmitter that this is the last byte. The target- transmitter relinquishes the SDA line 
after detecting the No Acknowledge so that the host can issue a STOP condition.

When a host is programmed to not relinquish the bus with a STOP condition, the host can issue a repeated start 
condition. This is identical to a START condition except it occurs after the ACK pulse. The host can then 
communicate with the same target or a different target.

Figure 55.  Host-Transmitter Protocol
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Figure 56.  Host-Receiver Protocol
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17.2.3.  START BYTE Transfer Protocol
The START BYTE transfer protocol is set up for systems that do not have an on-board dedicated TWSI hardware 
module. When the TWSI is addressed as a target, it always samples the TWSI bus at the highest speed 
supported so that it never requires a START BYTE transfer. However, when the TWSI is a host, it supports the 
generation of START BYTE transfers at the beginning of every transfer should a target device require it. The 
START BYTE protocol consists of seven 0's being transmitted followed by a 1, as illustrated in Figure 57, and 
allows the processor that is polling the bus to under-sample the address phase until 0 is detected. Once the 
micro-controller detects a 0, it switches from the under-sampling rate to the correct rate of the host.

The START BYTE procedure is as follows:
1. Host generates a START condition

2. Host transmits the START byte (0000 0001)

3. Host transmits the ACK clock pulse

4. No target sets the ACK signal to 0

5. Host generates a repeated START (Sr) condition

A hardware receiver does not respond to the START BYTE because it is a reserved address and resets after the 
Sr (restart condition) is generated.

17.2.4.  Multiple Host Arbitration and Clock Synchronization
The TWSI bus protocol allows multiple hosts to reside on the same bus. When two or more hosts try to transfer 
information on the bus at the same time, they must arbitrate and synchronize the SCL clock.

This section explains the following topics:
 Host arbitration
 Clock synchronization

17.2.4.1.  Host Arbitration
Arbitration occurs on the SDA line, while the SCL line is 1. The host, which transmits a 1 while the other host 
transmits 0, loses arbitration and turns off its data output stage. The host that lost arbitration can continue to 
generate clocks until the end of the byte transfer. If both hosts are addressing the same target device, the 
arbitration could go into the data phase.

For high-speed mode, the arbitration cannot enter into the data phase because each host is programmed with a 
different high-speed host code. Because the codes are unique, only one host can win arbitration, which occurs 
by the end of the transmission of the high-speed host code.

Figure 57.  Start Byte Transfer
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17.2.4.2.  Clock Synchronization
All hosts generate their own clock to transfer messages. Data is valid only during the high period of SCL clock. 
Clock synchronization is performed using the wired-AND connection to the SCL signal. When the host transitions 
the SCL clock to 0, the host starts counting the low time of the SCL clock and transitions the SCL clock signal to 
1 at the beginning of the next clock period. However, if another host is holding the SCL line to 0, then the host 
goes into a HIGH wait state until the SCL clock line transitions to 1. All hosts then count off their high time and 
the host with the shortest high time transitions the SCL line to 0. The hosts then count out their low time and the 
one with the longest low time forces the other host into a HIGH wait state. Therefore, a synchronized SCL clock 
is generated. Optionally, targets may hold the SCL line low to slow down the timing on the TWSI bus.

17.2.5.  Operation Model
The TWSI interface operates under the following model:

1. Disable the interface by writing 0 to the IC_ENABLE register.

2. Program speed (standard or fast), addressing (7 or 10-bit) and host/target modes by writing to the 
IC_CON register.

3. If acting as a host, program the target address into IC_TAR. If acting as a target, program the target 
address into IC_SAR.

4. Program the SCL high and low duty cycles by using the IC_SS_SCL_HCNT and IC_SS_SCL_LCNT 
registers for standard-speed mode, and IC_FS_SCL_HCNT and IC_FS_SCL_LCNT for fast-speed mode.

5. Program all required interrupt masks by using the IC_INTR_MASK register. 

6. Enable the interface by writing 1 to the IC_ENABLE register.

7. To transmit onto the TWSI bus, write to the IC_DATA_CMD register. Bit[7:0]= Data Bit[8]= Command (0 
= write, 1 = read).

8. To read data received on the TWSI bus, read from the IC_DATA_CMD register. Bit[7:0]= Data.

17.3.  Timers
There is one timer in the SM power domain, and one timer in the SL1680 SoC power domain. Each of the timers 
has sixteen separate programmable counters. All these counters can be programmed separately.

Each counter counts down from a programmed value and generates an interrupt when the count reaches zero.

The counters in SoC are driven by a 200 MHz clock. The counters in SM are driven by a 10 to 30 MHz clock. The 
width of these counters is 32 bits.

The initial value for each counter (that is, the value from which it counts down) is loaded into the counter using 
the appropriate load count register (TimerNLoadCount). Two events can cause a counter to load the initial count 
from its TimerNLoadCount register:

 The counter is enabled after being reset or disabled. 
 The counter counts down to 0.

All interrupt status registers and end-of-interrupt registers of the counters can be accessed at any time. When a 
counter counts down to 0, it loads one of two values, depending on the timer operating mode:

 User-defined count mode - Counter loads the current value of the TimerNLoadCount register. Use this 
mode for a fixed, timed interrupt. Designate this mode by writing a 1 to bit 1 of TimerNControlReg.

 Free-running mode - Counter loads the maximum value, which depends on the counter width (that is, 
the TimerNLoadCount register is comprised of 32 bits, all of which are loaded with 1s). The timer 
counter wrapping to its maximum value allows time to reprogram or disable the counter before another 
interrupt occurs.
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17.4.  Watchdog Timers (WDT)
The SL1680 device integrates three watchdog timers (WDT) in the SoC power domain and three WDT in the SM 
power domain. The WDT is used to prevent system lock-up that can be caused by conflicting parts or programs 
in a SoC.

The WDT in a SoC power domain is driven by the Register Configuration Clock at 200 MHz. The WDT in a SM 
power domain is driven by the System Manager Clock at 10 to 30 MHz.

This section describes the functional operation of the WDT and contains the following sections:
 Counter 
 Interrupts
 System Resets
 Reset Pulse Length
 Timeout Period Values

The generated interrupt is passed to an interrupt controller. The generated reset is passed to the SL1680 global 
module, which in turn generates a reset for the components in the system. The WDT can be reset independently 
of the other components

17.4.1.  Counter
The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero, 
depending on the output response mode selected, either a system reset or an interrupt occurs. When the 
counter reaches zero, it wraps to the selected timeout value and continues decrementing. The counter can be 
restarted to its initial value, which is programmed by writing to the restart register at any time. The process of 
restarting the watchdog counter is sometimes referred to as “kicking the dog.” As a safety feature to prevent 
accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

Figure 58.  Example Watchdog Timer
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17.4.2.  Interrupts
The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When 
a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the 
WDT generates an interrupt when the first timeout occurs. If it is not cleared by the time a second timeout 
occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches 
zero, an interrupt is not generated.

Figure 59 shows the timing diagram of the interrupt being generated and cleared. The interrupt is cleared by 
reading the Watchdog Timer Interrupt Clear register (WDT_EOI) in which no kick is required. The interrupt can 
also be cleared by a “kick” (watchdog counter restart).

17.4.3.  System Resets
When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register 
(WDT_CR), the WDT generates a system reset when a timeout occurs. Figure 60 shows the timing diagram of a 
counter restart and the generation of a system reset.

If a restart occurs at the same time the watchdog counter reaches zero, a system reset is not generated.

The length of the reset pulse is the number of clock cycles for which a system reset is asserted. When a system 
reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the 
system is reset. A counter restart has no effect on the system reset once it has been asserted.

The WDT Timeout period is not fully programmable. However, the software can select from a set of supported 
timeout periods. 

Figure 59.  Interrupt Generation
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Figure 60.  Counter Restart and System Restart
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17.5.  Serial Peripheral Interface
This section describes the functional operation of the Serial Peripheral Interface (SPI) and contains the following 
sections:

 SPI Overview
 Transfer Modes
 Operation Modes

17.5.1.  Overview
SPI is a four-wire, full-duplex serial protocol. There are four possible combinations for the serial clock phase and 
polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of the target 
select signal or the first edge of the serial clock. The target select line is held High when the SPI is idle or 
disabled.

The protocol allows for serial targets to be selected or addressed using either hardware or software. When 
implemented in hardware, serial targets are selected under the control of dedicated hardware select lines. The 
number of select lines generated from the serial-host is equal to the number of serial-targets present on the 
bus. The serial-host device asserts the select line of the  serial-target before data transfer begins. This 
architecture is illustrated in Figure 61.
                         

Figure 61.  Hardware Target Selection
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17.5.2.  Clock Ratios
The frequency of the SPI serial input clock (SPI_CLK) is 200 MHz. The maximum frequency of the bit-rate clock 
(SCLK_OUT) is one-half the frequency of SPI_CLK, which allows the shift control logic to capture data on one 
clock edge of SCLK_OUT and propagate data on the opposite edge (see Figure 62). The SCLK_OUT line toggles 
only when an active transfer is in progress. At all other times it is held in an inactive state, as defined by the 
serial protocol under which it operates.

The frequency of SCLK_OUT can be derived from the following equation:

Fscl kout= Fssiclk/Sckdv

The SCKDV is a bit field in the programmable register, BAUDR, holding any even value in the range 0 to 65,534. 
If SCKDV is 0, then SCLK_OUT is disabled.

A summary of the frequency ratio restrictions between the bit-rate clock (SCLK_OUT/SCLK_IN) and the SPI 
peripheral clock (spi_clk) is described as:

Host: Fspi_clk >= 2 × (maximum Fsclk_out)

17.5.3.  Transmit and Receive FIFO Buffers
The FIFO buffers used by the SPI are internal D-type flip-flops that have a depth of 64. The widths of both 
transmit and receive FIFO buffers is fixed at 16 bits due to the serial specifications which state that a serial 
transfer (data frame) can be 4 to 16 bits in length. Data frames that are less than 16 bits in size must be right- 
justified when written into the transmit FIFO buffer. The shift control logic automatically right-justifies receive 
data in the receive FIFO buffer.

Each data entry in the FIFO buffers contains a single data frame. It is impossible to store multiple data frames in 
a single FIFO location (for example, two 8-bit data frames cannot be stored in a single FIFO location). If an 8-bit 
data frame is required, the upper 8 bits of the FIFO entry are ignored or unused when the serial shifter transmits 
the data.

Note: The transmit and receive FIFO buffers are cleared when the SPI is disabled (SPI_EN=0) or when it is 
reset (PRESETN).

The transmit FIFO is loaded by write commands to the SPI data register (DR). Data are popped (removed) from 
the transmit FIFO by the shift control logic into the transmit shift register. The transmit FIFO generates a FIFO 
empty interrupt request (SPI_TXE_INTR) when the number of entries in the FIFO is less than or equal to the FIFO 
threshold value. The threshold value, set through the programmable register TXFTLR, determines the level of 
FIFO entries at which an interrupt is generated. The threshold value allows for early indication to the processor 
that the transmit FIFO is nearly empty. A transmit FIFO overflow interrupt (spi_txo_intr) is generated for attempts 
to write data into an already full transmit FIFO.

Figure 62.  Maximum SCLK_OUT/SPI_CLK Ratio
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Data are popped from the receive FIFO by read commands to the SPI data register (DR). The receive FIFO is 
loaded from the receive shift register by the shift control logic. The receive FIFO generates a FIFO-full interrupt 
request (SPI_RXF_INTR) when the number of entries in the FIFO is greater than or equal to the FIFO threshold 
value plus 1. The threshold value, set through programmable register RXFTLR, determines the level of FIFO 
entries at which an interrupt is generated.

The threshold value allows for early indication to the processor that the receive FIFO is nearly full. A receive FIFO 
overrun interrupt (SPI_RXO_INTR) is generated when the receive shift logic attempts to load data into a 
completely full receive FIFO. However, this newly received data are lost. A receive FIFO underflow interrupt 
(SPI_RXU_INTR) is generated for attempts to read from an empty receive FIFO. This alerts the processor that the 
read data are invalid.

17.5.4.  SPI Interrupts
The SPI supports combined interrupt requests which can be masked. The combined interrupt request is the 
ORed result of all other SPI interrupts after masking. SPI interrupts are active-high. The SPI interrupts are 
described as follows:

 Transmit FIFO Empty Interrupt (SPI_TXE_INTR) - Set when the transmit FIFO is equal to or below its 
threshold value and requires service to prevent an underrun. The threshold value, set through a 
software-programmable register, determines the level of transmit FIFO entries at which an interrupt is 
generated. This interrupt is cleared by hardware when data are written into the transmit FIFO buffer, 
bringing it over the threshold level.

 Transmit FIFO Overflow Interrupt (SPI_TXO_INTR) - Set when an access attempts to write into the 
transmit FIFO after it has been completely filled. When set, data written from the APB is discarded. This 
interrupt remains set until the transmit FIFO overflow interrupt clear register (TXOICR) is read.

 Receive FIFO Full Interrupt (SPI_RXF_INTR) - Set when the receive FIFO is equal to or above its 
threshold value plus 1 and requires service to prevent an overflow. The threshold value, set through a 
software-programmable register, determines the level of receive FIFO entries at which an interrupt is 
generated. This interrupt is cleared by hardware when data are read from the receive FIFO buffer, 
bringing it below the threshold level.

 Receive FIFO Overflow Interrupt (SPI_RXO_INTR) - Set when the receive logic attempts to place data 
into the receive FIFO after it has been completely filled. When set, newly received data are discarded. 
This interrupt remains set until the receive FIFO overflow interrupt clear register (RXOICR) is read.

 Receive FIFO Underflow Interrupt (SPI_RXU_INTR) - Set when an access attempts to read from the 
receive FIFO when it is empty. When set, zeros are read back from the receive FIFO. This interrupt 
remains set until the receive FIFO underflow interrupt clear register (RXUICR) is read.

 Multi-Host Contention Interrupt (SPI_MST_INTR). The interrupt is set when another serial host on the 
serial bus selects the SPI host as a serial-target device and is actively transferring data. This informs 
the processor of possible contention on the serial bus. This interrupt remains set until the multi-host 
interrupt clear register (MSTICR) is read.

 Combined Interrupt Request (SPI_INTR) - OR'ed result of all the above interrupt requests after masking. 
To mask this interrupt signal, mask all other SPI interrupt requests.

17.5.5.  Transfer Modes
The SPI operates in the following four modes when transferring data on the serial bus:

 Transmit and Receive 
 Transmit only
 Receive only
 EEPROM Read

The transfer mode (TMOD) is set by writing to control register 0 (CTRLR0).

Note: The transfer mode setting does not affect the duplex of the serial transfer. TMOD is ignored for 
Microwire transfers, which are controlled by the MWCR register.
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17.5.5.1.  Transmit and Receive
When TMOD = 2'b00, both transmit and receive logic are valid. The data transfer occurs as normal according to 
the selected frame format (serial protocol). Transmit data are popped from the transmit FIFO and sent through 
the transmitted line to the target device, which replies with data on the received line. The receive data from the 
target device is moved from the receive shift register into the receive FIFO at the end of each data frame.

17.5.5.2.  Transmit Only
When TMOD = 2'b01, the receive data are not valid and should not be stored in the receive FIFO. The data 
transfer occurs as normal, according to the selected frame format (serial protocol). Transmit data are popped 
from the transmit FIFO and sent through the transmitted line to the target device, which replies with data on the 
received line. At the end of the data frame, the receive shift register does not load its newly received data into 
the receive FIFO. The data in the receive shift register is overwritten by the next transfer. Mask the interrupts 
originating from the receive logic when this mode is entered.

17.5.5.3.  Receive Only
When TMOD = 2'b10, the transmit data are not valid. When configured as a target, the transmit FIFO is never 
popped in Receive Only mode. Data from a previous transfer is retransmitted from the shift register. The data 
transfer occurs as normal according to the selected frame format (serial protocol). The receive data from the 
target device is moved from the receive shift register into the receive FIFO at the end of each data frame. Mask 
interrupts originating from the transmit logic when this mode is entered.

17.5.5.4.  EEPROM Read
When TMOD = 2'b11, the transmit data is used to transmit an opcode or an address to the EEPROM device. 
Typically, this requires three data frames (8-bit opcode followed by 8-bit upper address and 8-bit lower address). 
During the transmission of the opcode and address, no data is captured by the receive logic (as long as the SPI 
host is transmitting data on its transmitted line, data on the received line is ignored). The SPI host continues to 
transmit data until the transmit FIFO is empty. Therefore, there should be enough data frames in the transmit 
FIFO to supply the opcode and address to the EEPROM. If more data frames are in the transmit FIFO than are 
required, then read data is lost. When the transmit FIFO becomes empty (all control information has been sent), 
data on the receive line (rxd) is valid and is stored in the receive FIFO. The serial transfer continues until the 
number of data frames received by the SPI host matches the value of the NDF field in the CTRLR1 register + 1.

17.5.6.  Operation Modes
 Operation Mode
 Serial-Host Mode

17.5.6.1.  Operation Mode
The SPI interface operates under the following model:

1. Disable the interface by writing 0 to the SPIENR register. 

2. Program the baud rate setting into the BAUDR register

3. Set the transfer modes, clock phase and polarity, data frame size, and number of data frames by 
writing to the CTRLR0 and CTRLR1 registers.

4. Program all required interrupt masks by using the IMR register. 

5. Enable the interface by writing 1 to the SPIENR register.

6. Enable the preferred target select line by writing to the SER register. 

7. To transmit onto the SPI bus, write to the DR register

8. To read data received from the SPI bus, read from the DR register.
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17.5.6.2.  Serial-Host Mode
This mode enables serial communication with serial-target peripheral devices. The SPI initiates and controls all 
serial transfers. Figure 63 is an example of the SPI configured as a serial host with all other devices on the serial 
bus configured as serial targets.
                         

The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is 
disabled (SPI_EN = 0), no serial transfers can occur and sclk_out is held in “inactive” state, as defined by the 
serial protocol under which it operates.

17.5.7.  Data Transfers
Data transfers are started by the serial-host device. When the SPI is enabled (SPI_EN=1), at least one valid data 
entry is present in the transmit FIFO and a serial-target device is selected. When actively transferring data, the 
busy flag (BUSY) in the status register (SR) is set. Wait until the busy flag is cleared before attempting a new 
serial transfer.

The BUSY status is not set when the data are written into the transmit FIFO. This bit is set only when the target 
has been selected and the transfer is underway. After writing data into the transmit FIFO, the shift logic does not 
begin the serial transfer until a positive edge of the sclk_out signal is present. The delay in waiting for this 
positive edge depends on the baud rate of the serial transfer. Before polling the BUSY status, first poll the TXE 
status (waiting for 1) or wait for BAUDR * spi_clk clock cycles.

Figure 63.  SPI Host Device
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17.5.8.  Serial Peripheral Interface (SPI) Protocol
With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the 
serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) 
and clock polarity (SCPOL) values. The data frame can be 4 to 16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the target select 
signal. The first data bit is captured by the host and target peripherals on the first edge of the serial clock; 
therefore, valid data must be present on the transmitted and received lines prior to the first serial clock edge. 
Figure 64 is a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for 
configuration parameters SCPOL = 0 and SCPOL = 1.

The following signals are illustrated in the timing diagrams in this section: sclk_out serial clock from SPI host 
(host configuration only) sclk_in serial clock from SPI target (target configuration only) ss_0_n target select 
signal from SPI host (host configuration only) ss_in_n target select input to the SPI target ss_oe_n output enable 
for the SPI host/target txd transmit data line for the SPI host/target rxd receive data line for the SPI host/target.

Figure 64.  SPI Serial Format (SCPH = 0)
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18. SD Host

The SL1680 device integrates SDIO controller and SDIO PHY.

18.1.  SDIO Host Controller Features
 Supports SD memory and SDIO digital interface protocol
 Compliant with SD HCI specification
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for SD mode

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 3.3v and 1.8v
 Supports independent controller, target Interface and host Interface clock
 Supports gating of controller base clock if host controller is inactive
 Supports context aware functional clock gates
 Applications can gate the target interface clock if host controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs
○ Supports interrupt enabling and masking

 Supports tuning
○ SD Tuning using CMD19 (SD)
○ Mode 1 Re-Tuning - host driver maintains the re-tune timer
○ Fully Software driven Tuning/Re-tuning operations
○ Auto-tuning or Mode 3 Re-tuning

 Supports 4-bit interface
 Supports UHS-I mode
 Supports Default Speed (DS), high-speed (HS), SDR12, SDR25, SDR50 and SDR104 
 Supports SDIO read wait
 Supports SDIO card interrupts in both 1-bit and 4-bit modes
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 SD Specifications Part A2 SD Host Controller Standard Specification Version 4.20, August 2015
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18.2.  SDIO PHY Features
 Supports SDR104, DDR50 and legacy modes
 Voltage signaling (LVS) host and SDIO (3.3V and 1.8V)

○ JESD8-7a (1.8 V) and JESD8c.01 (3.3 V)
 Six I/O signals for each dwc_emmc_sd_phy3318 instance

○ SD or eMMC (4-bit data) operation: Single dwc_emmc_sd_phy3318 instance
○ Each I/O signal independently operates at 1.8 V or 3.3 V

 Three delay lines
 Each delay line consists of the following delay chains

○ A 128-stage variable delay chain 
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334 MHz and data rate up to 667 MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 3.3 V and 1.8 V power supplies
 Three functional receivers per I/O pad

○ 3.3 V receiver
○ 1.8 V Schmitt trigger
○ 1.8 V comparator receiver

 Power supply requirements for 3.3 V and 1.8 V I/O signaling
○ 3.3 V
○ 1.8 V
○ Low-voltage power supply

 SD Specifications Part A2 SD Host Controller Standard Specification, Version 4.20, September 2013
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19. eMMC

The SL1680 device integrates eMMC controller and eMMC PHY.

19.1.  eMMC Host Controller Features
 Uses the same SD-HCI register set for eMMC transfers
 Supports eMMC protocols including eMMC 5.1
 Supports SD-HCI Host version 4 mode or less
 Supports the following data transfer types for eMMC modes:

○ PIO
○ SDMA
○ ADMA2
○ ADMA3

 Packet Buffer Depth is 512
 Internal FIFO Depth is 16
 Maximum Outstanding Read Requests is 8
 Maximum Outstanding Write Requests is 8
 Supports 1.8v.
 Supports independent controller, target interface and host interface clocks
 Supports gating of controller base clock if host controller is inactive
 Support context aware functional clock gates
 Applications can gate the target interface clock if host controller is inactive
 Interrupt Outputs

○ Combined and separate interrupt outputs 
○ Supports interrupt enabling and masking

 Supports Command Queuing Engine (CQE) and compliant with eMMC CQ HCI
○ Programmable scheduler algorithm selection of task execution
○ Supports data prefetch for back-to-back WRITE operations

 Supports tuning
○ eMMC Tuning using CMD21 (eMMC)
○ Mode 1 Re-Tuning - host driver maintains the re-tune timer
○ Fully software driven tuning/re-tuning operations
○ Auto-tuning or Mode 3 re-tuning

 Supports 4-bit/8-bit interface
 Supports legacy, high-speed SDR, high-speed DDR, HS200, and HS400 speed modes
 Supports boot operation and alternative boot operation
 AHB Target Interface

○ Supports 32-bit data width and address width
○ Transfer size (width) used for target interface can be less than data bus width

 AXI Host Interface
○ Supports 32-bit address and data width
○ Complies with the AMBA 3 AXI for Host Port specification

 JEDEC eMMC 5.1 Specification - JESD84-B51, February 2015
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19.2.  eMMC PHY Features
 Compliant with eMMC 5.1 with backwards compatibility (HS400 and legacy modes)

○ JESD8-7a (1.2 V/1.8 V)
 Six I/O signals for each dwc_emmc_phy1812 instance

○ eMMC (4-bit data) operation: Single dwc_emmc_phy1812 instance
○ eMMC (8-bit data) operation: Two dwc_emmc_phy1812 instances

 Three delay lines
 Each delay line consists of the following delay chains:

○ A 128-stage variable delay chain 
○ A 128-stage fixed delay chain

 Glitch-free, power-sequence free operations
 Hi-Z I/O pad power-up default state
 Clock speeds up to 334 MHz and data rate up to 667 MB/s
 SPI operation
 Open drain applications
 ESD protection for I/O signals and for 1.8 V/1.2 V power supply
 eMMC (1.8 V/1.2 V) PHY has four functional receivers per I/O pad:

○ 1.8-V Schmitt trigger
○ 1.2-V Schmitt trigger
○ 1.8-V comparator receiver
○ 1.2-V comparator receiver

 Power supply requirements
○ 1.8 V I/O signaling: 1.8 V and a low-voltage digital power supply
○ 1.2 V I/O signaling: 1.2 V and a low-voltage digital power supply

19.3.  DigiLogic-Specific Features
 Capability to enable or disable DLL
 Locked output to the controller/SoC
 Capability to select half-cycle or full-cycle locking with reference to the RefClk
 Once “locked”, Digilogic works in a low-bandwidth mode to validate “locked Phase” correctness. If the 

DigiLogic cannot attain the lock, it provides an error output
 Code update on target delay line without causing glitches on dataStrobe
 Offset for tweaking the target delay code
 Cut-off clock to host delay line when not used
 Configurable WAIT cycle post phase code change before sampling PD output
 Configurable delay line stages
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20. Pulse Width Modulator (PWM) 

20.1.  Overview
The Pulse Width Modulator (PWM) provides the capability to generate a high resolution periodic digital signal 
with programmable duty-cycles to control off-chip devices. It has 4 separate channels that are independently 
configurable as shown in Figure 65.

pwmClk runs @ 100 MHz.

The PreScaler module pre-divides the input clock if a longer periodic signal is needed.

Read-only counter registers are provided via pwmCh01Ctr and pwmCh23Ctr registers for debug. The counters 
reside within the Modulator block, meaning that they are clocked by divClk, not the original input pwmClk.

 Maximum terminal count supports 65535
 Duty cycle is programmed via the pwmCh*Duty registers
 Terminal count is programmed via the pwmCh*TCnt registers
 If duty cycle is 0, modOut always be low
 If duty cycle is >= terminal count, modOut is always high
 modOut can be inverted by setting the polarity inversion register, pwmCh*Pol 
 Maximum divider factor supports 4096

Figure 65.  PWM Block Diagram
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(divider) Modulator Polarity

pwmClk divClk modOut pwmOut

Figure 66.  Waveform
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21. USB 2.0 Host

The SL1680 device integrates USB OTG 2.0 controller and USB 2.0 PHY.

21.1.  USB Controller Features
 Support OTG 2.0 mode
 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of 

operation, in accordance with the UTMI+ Level 3 specification
 Support for the following speeds

○ High-Speed (HS, 480-Mbps)
○ Full-Speed (FS, 12-Mbps) 
○ Low-Speed (LS, 1.5-Mbps) 

 Multiple options available for low power operations
 Multiple DMA/non-DMA mode access support on the application side
 Supports the Scatter Gather DMA operation in both Device and Host mode
 Supports Periodic OUT Channel in Host mode
 Total Data FIFO RAM Depth is 4288
 Enable dynamic FIFO sizing
 Largest Rx Data FIFO Depth is 4288
 Largest Non-Periodic Host Tx Data FIFO Depth is 4288
 Largest Host mode Periodic Tx Data FIFO Depth is 4288
 Non-Periodic Request Queue Depth is 8
 Host Mode Periodic Request Queue Depth is 16
 Width of Transfer Size Counters is 19
 Width of Packet Counters is 10
 Label Largest Device Mode Tx Data FIFO N Depth are 4288
 Supports different clocks for AHB and the PHY interfaces for ease of integration
 Supports up to 5 bidirectional endpoints, including control endpoint 0.
 Low speed is not supported for DWC_otg as a device with a UTMI+ PHY.
 Supports Session Request Protocol (SRP)
 Supports Host Negotiation Protocol (HNP)
 Supports up to 8 host channels. 
 Supports the external hub connection in Host Buffer DMA mode.
 Includes automatic ping capabilities
 Supports the Keep-Alive in Low-Speed mode and SOFs in High/Full-Speed modes
 AHB Target interface for accessing Control and Status Registers (CSRs), the Data FIFO, and queues
 Supports only 32-bit data on the AHB
 Supports Little-endian or Big-endian mode
 Supports INCR4, INCR8, INCR16, INCR, and SINGLE transfers on the AHB Target interface
 Supports Split, Retry, and Error AHB responses on the AHB Host interface. Split and retry responses are 

not generated on the AHB Target interface
 Software-selectable AHB burst type on AHB Host interface in DMA mode

○ If INCR4 is chosen, the controller only uses INCR/INCR4, or Single
○ If INCR8 is chosen, the controller normally uses INCR8, but at the beginning and at the end of a 

transfer, it can use INCR or Single, depending on the size of the transfer
○ If INCR16 is chosen, controller normally uses INCR16, but at the beginning and at the end of a 

transfer, it can use INCR or Single, depending on the size of the transfer
 Handles the fixed burst address alignment. For example, INCR16 is used only when lower addresses 

[5:0] are all 0.
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 Generates AHB Busy cycles on the AHB Host interface
 Takes care of the 1KB boundary breakup

21.2.  USB PHY Features
 Implements low-power dissipation while active, idle, or on standby
 Provides parameter override bits for optimal yield and interoperability
 Fully integrates high-, full-, and low-speed (Host mode only) termination and signal switching
 Implements one parallel data interface and clock for high-, full-, and low-speed (Host mode only) USB 

data transfers
 Requires minimal external components-single resistor on TXRTUNE and single resistor on VBUS0 (if the 

PHY’s VBUS0 pin is used)
 Provides on-chip PLL to reduce clock noise and eliminate the need for an external clock generator
 Supports off-chip charge pump regulator to generate 5 V for VBUS
 Provides Built-in Self-Test (BIST) circuitry to confirm high-, full-, and low-speed operation
 Provides extensive test interface
 Provides 5v tolerance on D+ and D- lines for 24 hours

 Fully integrates 45-Ω termination, 1.5-kΩ pull-up and 15-kΩ pull-down resistors, with support for 
independent control of the pull-down resistors

 Supports 480-Mbps high-speed, 12-Mbps full-speed, and 1.5-Mbps low-speed (Host mode only) data 
transmission rates

 Supports 8/16-bit unidirectional parallel interfaces for HS, FS, and LS (Host mode only) modes of 
operation, in accordance with the UTMI+ specification

 Provides dual (HS/FS) mode host support
 Implements SYNC/End-of-Packet (EOP) generation and checking
 Implements bit stuffing and unstuffing, and bit-stuffing error detection
 Implements Non-Return to Zero Invert (NRZI) encoding and decoding
 Implements bit serialization and deserialization
 Implements holding registers for staging transmit and receive data
 Implements logic to support suspend, sleep, resume
 Supports USB 2.0 test modes
 Implements VBUS threshold comparators
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22. 10/100/1000 Mbps (Gigabit) Ethernet Controller

The SL1680 device implements one 10/100/1000 Mbps Ethernet port with RGMII interface brought onto pads. 
The Wake-On-LAN feature will be supported through the external interrupt from RGMII PHY to System Manager 
block.

22.1.  Functional Overview
The 10/100/1000 Mbps Ethernet controller in SL1680 device handles all functionality associated with moving 
packet data between local memory and an Ethernet port. It integrates the MAC function and a RGMII Interface. 
It is fully compliant with the IEEE 802.3 and 802.3u standards.

The controller speed and duplex mode is auto negotiated through the signaling with external PHY and does not 
require software intervention. The port also features 802.3x flow-control mode for full-duplex and backpressure 
mode for half duplex.

Integrated address filtering logic provides support for up to 8K MAC addresses. The address table resides in 
DRAM with proprietary hash functions for address table management. The address table functionality supports 
Multicast as well as Unicast address entries.

The Ethernet controller integrates powerful DMA engines, which automatically manage data movement between 
buffer memory and the controller and guarantee the wire-speed operation on the port. There are two DMA for 
the SL1680 Ethernet controller-one dedicated for receive and the other for transmit.

22.2.  Features
The 10/100/1000 Mbps Ethernet port provides the following features:

  IEEE 802.3 compliant MAC Layer function
  10/100/ 1000 Mbps operation - half and full duplex
  RGMII Specification version 2.6 support to communicate with an external Gigabit PHY
  Flow control features:

○ IEEE 802.3x flow-control for full-duplex operation mode
○ Backpressure for half duplex operation mode
○ Frame bursting and frame extension in 1000 Mbps half-duplex operation

  Internal and external loopback modes
  Full-duplex operation

○ IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input 
de-assertion

  Half-duplex operation:
○ CSMA/CD Protocol support
○ Flow control using backpressure support 
○ Frame bursting and frame extension in 1000 Mbps half-duplex operation

  Preamble and start of frame data (SFD) insertion in Transmit path
  Preamble and SFD deletion in the Receive path
  Automatic CRC and pad generation controllable on a per-frame basis
  Automatic Pad and CRC Stripping options for receive frames
  Flexible address filtering modes, such as:

○ Up to 15 additional 48-bit perfect (DA) address filters with masks for each byte
○ Up to 15 48-bit SA address comparison check with masks for each byte
○ 128-bit Hash filter (optional) for Multi-cast and Unicast (DA) addresses
○ Option to pass all Multi-cast addressed frames
○ Promiscuous mode to pass all frames without any filtering for network monitoring
○ Pass all incoming packets (as per filter) with a status report
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 Programmable frame length to support Standard or Jumbo Ethernet frames with up to 16 KB of size
 Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)
 Option to transmit frames with reduced preamble size
 Separate 32-bit status for transmit and receive packets
 Receive module for checksum off-load for received IPv4 and TCP packets encapsulated by
 the Ethernet frame (Type 1)
 Enhanced Receive module for checking IPv4 header checksum and TCP, UDP, or ICMP
 checksum encapsulated in IPv4 or IPv6 datagrams (Type 2)
 MDIO host interface for PHY device configuration and management
 Standard IEEE 802.3az-2010 for Energy Efficient Ethernet
 CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement, 

and deletion in transmitted frames with per-frame control
 Programmable watchdog timeout limit in the receive path
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23. PCI-e 2.0

23.1.  Overview
The SL1680 device implements a PCI-e® subsystem that function as root complex (RC) with 2 physical lanes 
and up to Gen2 speeds (5Gbps). A PCI-e subsystem has inbound and outbound address translation to map the 
external PCI-e devices address map to internal system memory map. 

23.2.  Functional Overview
The PCI-e subsystem in SL1680 handles all functionality associated with moving data between SoC and 
external PCI-e devices. The PCI-e subsystem includes PCI-e controller, PHY, and Reference clock generator.

 PCI-e controller implements all the PCI-e protocol layers, transaction layer, data link layer
 PCI-e PHY Implements the 2 lane TX/ RX SERDES and PCS functionality, and supports speeds up to 

Gen 2
 Reference clock generator includes a PLL and differential output buffer which is used to supply 

100MHz PCI-e specification-compliant reference clock to external devices (endpoints)

All the data movement is done using TLPs in PCI-e. 

Outbound packets are generated at the PCI-e controller boundary when there are AXI target transactions 
received from CPU or other hosts. When PCI-e receives the inbound packets from attached endpoints they are 
converted into SoC system memory address map, and transactions are generated on AXI host interface. 

23.2.1.  Features
  PCI-e Root Complex Mode
  Supports all non-optional features of PCI Express Base Specification, Revision 2.0, Version 1.0
  Support for the following optional features of the specifications:

○ PCI Express Active State Power Management (ASPM)
○ PCI Express Advanced Error Reporting (AER)
○ ARI Forwarding 

  Supports up to 2 Lanes Gen1 and Gen2 (x1 or x2)
  Internal Address Translation units for inbound and outbound transactions
  Embedded DMA for inbound requests and completions
  Automatic Lane Flip and Reversal
  Manual Lane Flip
  Maximum payload sizes up to 512 Bytes
  Supports Legacy and MSI Interrupt
  ECRC Generation and Checking
  Active State Link PM Support - L0s and L1
  100MHz Reference Clock with PCI-e Standard SSC support
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24. USB 3.0 Host 

24.1.  Overview
The USB3 host controller provides highly power-efficient operation, higher performance, and extensibility to 
support new USB3 specification. It is compliant with xHCl which ultimately replaces UHCI/OHCI/EHCI and 
provides an easy path for new USB specification and technologies.

The host controller supports all USB respective speeds which includes SuperSpeed and USB2 HS/FS. 

24.1.1.  Features
 64 bits AXI host system bus interface

○ One AXI host
○ 8 outstanding read requests and 8 outstanding write requests for each read and write client

 32-bit AHB target register programming interface
 32-bit addressing
 Up to 127 devices
 Up to 1024 interrupts
 xHCI1.1 compatible

○ Aggressive power management
○ Clean software and Hardware interface
○ Memory access optimization
○ Interrupt Moderation

 Descriptor caching for predictable performance in high latency systems
 Concurrent IN and OUT transfers to get full 8Gbps duplex throughput
 Concurrent USB3.0/2.0/1.1 traffic

○ Designed so that USB2.0 devices do not degrade the overall throughput
○ Net BW increased to 8.48Gbps

 Up to 32K event ring segment table
 Configurable TRB cache memory to enhance predictable performance

○ 4, 8, TRB per EP
○ Up to 32 EPs concurrently (4, 8, 16, 32)

 Dynamic FIFO memory allocation for endpoints
 Endpoint FIFO sizes that are not powers of 2, to allow the use of contiguous memory locations
 LPM protocol in USB 2.0 and Link U1, U2, U3 states for USB 3.0
 Hardware controlled LPM support
 Software controlled standard USB Commands
 Hardware controlled USB bus level and packet level error handling
 Low MIPS requirement

○ Driver involved only in setting up transfers and high-level error recovery
○ Hardware handles data packing and routing to a specific pipe

 PIPE clock and SuperSpeed core clock shutdown and recovery in power-down mode and wake-up
 Features specified in USB3 specification
 Features specified in USB2 specification for HS/FL
 32 bits/125 MHz PIPE interface to PHY
 8 bits/60 MHz or 16 bits/30 MHz UTMI interface
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25. Video Codec

25.1.  Video Decoder
The video decoder is a multiple format ultra high-definition (UHD) video decoder. It supports decoding of major 
video formats in ultra high definition. It is capable of decoding multiple video streams with various resolutions 
and formats simultaneously.

Figure 67 shows the interactions between the video decoder subsystem and other components in a conceptual 
video playback system. The video decoder subsystem decodes the compressed video elementary streams to 
produce the reconstructed video frames in YUV format for display or further processing. Both the input video 
elementary stream and output frames are stored in DRAM.

The video decoder subsystem contains the following two standard interfaces for communicating with the rest of 
the system, as shown in Figure 68. There is one CPU control interface for video decoder internal register and 
SRAM access, and one DRAM Data interface for video decoder to access compressed, decompressed video, 
and intermediate data buffers.

Figure 67.  Video Decoder Sub-system in a Video Playback System
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Besides these two interfaces, the video decoder also has an interrupt connection to the SoC CPU. The interrupt 
is used to communicate with the CPU regarding the video decoder's internal status and events that may require 
the CPU's intervention.

25.1.1.  Supported Video Decode Formats

The video decoder can switch between video streams with any supported format and resolutions. The stream 
switching should only take place at the frame boundary. There is no limitation to the number of simultaneous 
streams the video decoder can support, as long as the total performance requirements are within performance 
constrains of the video decoder.

The video decoder has a built-in error resilience function. Video bitstream errors can be handled inside the 
video decoder without high level application's intervention.

Table 56. Supported Video Decode Formats

Feature Description

H.265 (HEVC) Main, Main 10 Profiles, up to Level 5.1, UHD 10-bit @ 60 fps

H.264 (AVC) Constrained Baseline, Main, High, Stereo High Profiles, up to Level 5.2,UHD @ 60 fps

AV1 Main Profile, up to Level 5.1, UHD 10-bit @ 60 fps

VP9 Profile 0 and Profile 2, up to UHD 10-bit @ 60 fps

VP8 Version 2 (WebM), up to FHD @ 60 fps

MPEG-2 Main Profile, up to High Level, FHD @ 60 fps

Figure 68.  Top Level Interfaces to Video Decoder Sub-system
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25.2.  Video Encoder

25.2.1.  Supported Video Encode Formats

Table 57. Supported Video Encode Formats

Feature Description

H.264 (AVC) Constrained Baseline, Main, High Profiles, I/P frames only up to Level 4.2, FHD @ 60 fps

VP8 Version 2 (WebM), up to FHD @ 60 fps
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26. References
 SL1680 Embedded IoT Processor Datasheet (PN: 505-001413-01)

Provides a feature list and overview describing the SL1680. It also provides the pin description, pin 
map, mechanical drawings, and electrical specifications.
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