
Introduction to the
Data-Oriented
Technology Stack
for advanced Unity
developers

U N I T Y 2 0 2 2 L T S E D I T I O N ⟶ E - B O O K

Contents

Introduction . 4

About performance . 5

DOTS and the Entity Component System 9

The C# job system . 9

Scheduling and completing jobs 11

Job safety checks and dependencies 11

The Burst compiler . 12

Collections . 14

Mathematics . 15

Entities (ECS) . 15

Archetypes . 16

Chunks . 17

Queries . 18

Job system integration . 19

Subscenes and baking . 20

Streaming . 22

EntityComponentSystemSamples Github 22

Entities Graphics . 25

Physics . 26

Netcode for Entities . 26

Authoritative server . 26

Client-side prediction . 27

Character Controller . 28

What’s on the DOTS roadmap? . 29

Evaluating DOTS for your project 30

Made with DOTS .31

Made with DOTS: Bare Butt Boxing, by Tuatara Games . 32

Made with DOTS: Histera, by StickyLock Games 33

Made with DOTS: V Rising, by Stunlock Studios 34

Made with DOTS: Zenith: The Last City, by Ramen VR . . 35

Made with DOTS: Megacity Metro sample 36

Appendix: Concepts related to ECS . 37

Memory allocation and garbage collection 37

Multithreaded programming . 39

Memory and CPU cache . 40

Costs of object-oriented programming 42

Data-oriented design . 45

4 of 49 | unity.com© 2024 Unity Technologies

Introduction

This guide explains the potential performance benefits of Unity’s Data-Oriented Technology
Stack (DOTS). It provides a high-level overview of each of the packages and features included
in the stack, as well as explaining some of the core concepts related to, and impacted by,
design-oriented design (DOD). It doesn’t go into the details of the API’s, but you will find links
throughout to many new DOTS tutorials and other learning resources where you can learn
more .

Our goal with the e-book is to provide you with the knowledge you need to make an informed
decision about whether your Unity project will benefit from using some or all of the DOTS
features .

Author and expert contributors

This e-book was created from a collaboration between Unity DOTS engineers and external
experts . The main author is Brian Will, a senior software engineer at Unity . Other experts who
contributed to this guide are:

 — Nik Lever, real-time 3D and Unity educator

 — Steve McGreal, software engineer

 — Daniel Kierkegaard Andersen, software engineer, Unity

 — Laurent Gibert, director, product management, Unity

https://unity.com/releases/lts

5 of 49 | unity.com© 2024 Unity Technologies

If you’re an experienced game developer then you know that performance optimization on
target platforms is a task that runs through the entire development cycle . Maybe your game
performs nicely on a high-end PC, but what about the low-end mobile platforms you’re also
aiming for? Do the frames take much longer than others, creating noticeable hitches? Are
loading times annoyingly long, and does the game freeze for full seconds every time the player
walks through a door? In such a scenario, not only is the current experience subpar, but you’re
effectively blocked from adding more features: more environment detail and scale, mechanics,
characters and behaviors, physics, and platforms .

What’s the culprit? In many projects it’s rendering: textures are too large, meshes too complex,
shaders too expensive, or there’s ineffective use of batching, culling, and LOD .

Another common pitfall is excessive use of complex mesh colliders, which greatly increase the
cost of the physics simulation . Or, the game simulation itself is slow . The C# code you wrote
that defines what makes your game unique – that might be taking too many milliseconds of
CPU time per frame .

So how do you write game code that is fast, or at least not slow?

In previous decades, PC game developers could often solve this problem by just waiting . From
the 1970’s and into the 21st century, CPU single-threaded performance generally doubled
every few years (a phenomenon known as Moore’s law), so a PC game would “magically” get
faster over its life cycle . In the last two decades, however, CPU single-threaded performance
gains have been relatively modest . Instead, the number of cores in the CPU have been
growing and even small handheld devices like smartphones today feature several cores .
Moreover, the gap between high-end and low-end gaming devices has widened, with a large
chunk of the player base using hardware that is several years old . Waiting for faster hardware
no longer seems like a workable strategy .

About performance

https://unity.com/releases/lts
https://unity.com/resources/ultimate-guide-to-profiling-unity-games?isGated=false
https://en.wikipedia.org/wiki/Moore%27s_law

6 of 49 | unity.com© 2024 Unity Technologies

| Introduction | About performance | DOTS and the Entity Component System |

The question to ask, then, is “Why is my CPU code slow in the first place?” There are several
common pitfalls:

 — Garbage collection induces noticeable overhead and pauses: This occurs because the
garbage collector serves as an automatic memory manager that manages the allocation
and release of memory for an application . Not only does garbage collection incur
CPU and memory overhead, it sometimes pauses all execution of your code for many
milliseconds . Users might experience these pauses as small hitches or more intrusive
stutters .

 — The compiler-generated machine code is suboptimal: Some compilers generate much
less optimized code than others, with results varying across platforms .

 — The CPU cores are insufficiently utilized: Although today’s lowest-end devices have
multi-core CPUs, many games simply keep most of their logic on the main thread
because writing multithreaded code is often difficult and prone to error .

 — The data is not cache friendly: Accessing data from cache is much faster than fetching
it from main memory . However, accessing system memory may require the CPU to sit
and wait for hundreds of CPU cycles; instead, you want the CPU to read and write data
from its cache as much as possible .

The simplest way to arrange this is to read and write memory sequentially, and so
the most cache-friendly way to store data is in tightly-packed, contiguous arrays .
Conversely, if your data is strewn non-contiguously throughout memory, accessing it
will typically trigger many expensive cache misses; the CPU requests data that is not
present in the cache memory and instead needs to fetch it from the slower main memory

 — The code is not cache friendly: When code is executed, it must be loaded from system
memory if it’s not already sitting in cache . One strategy is to favor calling a function in as
few places as possible to reduce how often it must be loaded from system memory . For
example, rather than call a particular function at various places strewn throughout your
frame, it’s better to call it in a single loop so that the code only needs to be loaded at
most once per frame .

 — The code is excessively abstracted: Among other issues, abstraction tends to create
complexity in both data and code, which exacerbates the aforementioned problems:
managing allocations without garbage collection becomes harder; the compiler may not
be able to optimize as effectively; safe and efficient multithreading becomes harder, and
your data and code tend to become less cache-friendly . On top of all this, abstractions
tend to spread around performance costs, such that the whole code is slower, leaving
you with no clear bottlenecks to optimize .

https://unity.com/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals

7 of 49 | unity.com© 2024 Unity Technologies

| Introduction | About performance | DOTS and the Entity Component System |

All of the above ailments are commonly found in Unity projects . Let’s look at these more
specifically:

 — Although C# allows you to create manually-allocated objects (meaning objects which
are not garbage collected), the default norm in C# and most Unity projects is to use
C# class instances, which are garbage collected . In practice, Unity users have long
mitigated this issue with a technique called pooling (even though pooling arguably
defeats the purpose of using a garbage-collected language in the first place) . The
main benefit of object pooling is the efficient reuse of objects from a preallocated pool,
eliminating the need for frequent creation and deallocation of objects .

 — In the Unity Editor, C# code is normally compiled to machine code with the Mono
Compiler . For standalone builds you can generally get better results using IL2CPP (C#
Intermediate Language cross-compiled to C++), but this brings some downsides, like
longer build times and making mod support more difficult .

 — It’s common that Unity projects run all their code on the main thread, partly because
doing so is what Unity makes easy:

 — The Unity event functions, such as the Update() method of MonoBehaviours, are
all run on the main thread .

 — Most Unity APIs can only be safely called from the main thread .

 — The data in a typical Unity project tends to be structured as a bunch of random objects
scattered throughout memory, leading to very poor cache utilization . Again, this is
partly because it’s what Unity makes easy:

 — A GameObject and its components are all separately allocated, so they often end
up in different parts of memory .

 — The code in a typical Unity project tends to not be cache friendly:

 — Conventional C# and Unity’s APIs encourage an object-oriented style of code,
which tends towards numerous small methods and complex call chains . Unlike a
data-oriented approach it’s not very hardware friendly .

 — The event functions of every MonoBehaviour are invoked individually, and the
calls are not necessarily grouped by MonoBehaviour type . For example, if you
have 1000 Monster MonoBehaviours, each Monster is updated separately and not
necessarily along with the other Monsters .

 — The object-oriented style of conventional C# and many Unity APIs generally lead to
abstraction-heavy solutions . The resulting code then tends to have inefficiencies laced
throughout that are hard to disentangle and isolate .

https://unity.com/
https://unity.com/how-to/use-object-pooling-boost-performance-c-scripts-unity
https://docs.unity3d.com/Manual/IL2CPP.html
https://en.wikipedia.org/wiki/Video_game_modding

8 of 49 | unity.com© 2024 Unity Technologies

| Introduction | About performance | DOTS and the Entity Component System |

For more background information on these issues, see the appendix at the end of this guide
that covers the following concepts:

 — Memory allocation and garbage collection

 — Multithreaded programming

 — Memory and CPU cache

 — Object-oriented programming and abstraction

 — Data-oriented design

https://unity.com/

9 of 49 | unity.com© 2024 Unity Technologies

DOTS and the Entity
Component System

Unity’s Entity Component System (ECS) is the data-oriented architecture that underpins DOTS
packages and technologies . ECS delivers a high level of control and determinism over data in
memory and runtime process scheduling in Unity .

ECS for Unity 2022 LTS comes with two compatible physics engines, a high-level Netcode
package, and a rendering framework to render large amounts of ECS data to Unity’s
Scriptable Render Pipelines (SRP), including the Universal Render Pipeline (URP) and the High
Definition Render Pipeline (HDRP). It’s compatible with GameObject data, allowing you to
leverage systems that as of Unity 2022 LTS, do not natively support ECS, such as animation,
navigation, input, or terrain .

This section focuses on the features of DOTS and how they facilitate writing code that avoids
the CPU performance pitfalls outlined in the prior section .

The best starting place for learning about the specific DOTS packages is the
EntityComponentSystemSamples Github, which includes explanatory reading and videos,
along with many samples .

However, before you dive into the samples, let’s look at the features and packages that make
stack .

The C# job system
The C# job system provides an easy and efficient way to write multithreaded code that helps
your application take advantage of all available CPU cores .

Unlike the other features of DOTS, the job system is not a package but rather is included in
the Unity core module .

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/index.html
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master
https://docs.unity3d.com/Manual/JobSystemOverview.html

10 of 49 | unity.com© 2024 Unity Technologies

| About performance | DOTS and the Entity Component System | Made with DOTS |

Because MonoBehaviour updates are executed only on the main thread, many Unity games
end up running all of their game logic on just one CPU core . To take advantage of additional
cores, you could manually spawn and manage additional threads, but doing so safely and
efficiently can be very difficult .

For an easier alternative, Unity provides the C# job system:

 — The job system maintains a pool of worker threads, one for each additional core of the
target platform . For example, when Unity runs on eight cores, it creates one main thread
and seven worker threads .

 — The worker threads execute units of work called jobs . When a worker thread is idle, it
pulls the next available job from the job queue to execute .

 — Once a job starts execution on a worker thread, it runs to completion (in other words,
jobs are not preempted) .

A profile showing Burst-compiled jobs utilizing the potential of the CPU and running across many worker threads .

https://unity.com/

11 of 49 | unity.com© 2024 Unity Technologies

| About performance | DOTS and the Entity Component System | Made with DOTS |

// A simple example job that multiplies the
// elements of two arrays.
// Implementing IJob makes this struct a job type.
struct MyJob : IJob
{
 // A NativeArray is “unmanaged”, meaning it
 // isn’t garbage collected.
 public NativeArray<float> Input;
 public NativeArray<float> Output;
 // The Execute method is called when the
 // job system executes this job.
 public void Execute()
 {
 // Multiply every value in Output by the
 // corresponding value in the Input array.
 for (int i = 0; i < Input.Length; i++)
 {
 Output[i] *= Input[i];
 }
 }
}

Scheduling and completing jobs

 — Jobs can only be scheduled (meaning, added to the job queue) from the main thread,
not from other jobs .

 — When the main thread calls the Complete() method on a scheduled job, it waits for the
job to finish execution (if it hasn’t finished already) .

 — Only the main thread can call Complete() .

 — After Complete() returns, you can be sure that the data used by the job is once again safe
to access on the main thread and safe to be passed into subsequently scheduled jobs .

Job safety checks and dependencies

In multithreaded programming, ensuring safety and managing dependencies between threads
are critical for avoiding race conditions, data corruption, and other concurrency issues . It’s
beyond the scope of this guide to explain these pitfalls . The key takeaway is to understand
how the job system handles safety checks and dependencies:

 — For guaranteed isolation, each job has its own private data that the main thread and
other jobs can’t access .

https://unity.com/

12 of 49 | unity.com© 2024 Unity Technologies

 — However, jobs may also need to share data with each other or the main thread . Jobs
that share the same data should not execute concurrently because this creates race
conditions . So the job system “safety checks” throw errors when you schedule jobs that
might conflict with others .

 — When scheduling a job, you can declare that it depends upon prior scheduled jobs . The
worker threads will not start executing a job until all of its dependencies have finished
execution, allowing you to safely schedule jobs that would otherwise conflict .

 — For example, if jobs A and B both access the same array, you could make job B
depend upon job A . This ensures job B will not execute until job A has finished,
thus avoiding any possible conflict .

 — Completing a job also completes all of the jobs it depends upon, directly and indirectly .

Many Unity features internally use the job system, so you will see more than just your own
scheduled jobs running on the worker threads in the Profiler .

Note that jobs are intended only for processing data in memory, not performing I/O (input
and output) operations, such as reading and writing files or sending and receiving data over
a network connection . Because some I/O operations may block the calling thread, performing
them in a job would defeat the goal of trying to maximize utilization of the CPU cores . If you
want to do multithreaded I/O work, you should call asynchronous APIs from the main thread or
use conventional C# multithreading .

To learn about jobs, start with the jobs tutorial in the samples repo (there is also a version on
Unity Learn) .

The Burst compiler
As stated earlier, C# code in Unity is by default compiled with Mono, a JIT (just-in-time)
compiler or, alternatively with IL2CPP, an AOT (ahead of time) compiler which generally gives
better runtime performance and may be better supported on some target platforms .

The Burst package provides a third compiler that performs substantial optimizations, often
yielding dramatically better performance than Mono or even IL2CPP . Using Burst can greatly
improve the performance and scalability of a heavy computation problem, as the following
images illustrate:

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Tutorials/Jobs
https://learn.unity.com/tutorial/65b3de6bedbc2a59a499d5b9?uv=2022.3&projectId=65b3d3cfedbc2a5399ce3740#
https://learn.unity.com/tutorial/65b3de6bedbc2a59a499d5b9?uv=2022.3&projectId=65b3d3cfedbc2a5399ce3740#
https://docs.unity3d.com/Manual/Mono.html
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://docs.unity3d.com/Manual/IL2CPP.html
https://en.wikipedia.org/wiki/Ahead-of-time_compilation
https://docs.unity3d.com/Packages/com.unity.burst@latest

13 of 49 | unity.com© 2024 Unity Technologies

Understand, however, that Burst can only compile a subset of C#, so a lot of typical C#
code can’t be compiled with it . The main limitation is that Burst-compiled code can’t access
managed objects, including all class instances . As this excludes most conventional C# code,
Burst compilation is only applied selectively to designated parts of code, such as jobs:

Top image: From the jobs tutorial, the FindNearest updates, compiled with Mono, take 342 .9 ms .
Bottom image: From the same jobs tutorial, the FindNearestJob, compiled with Burst, takes 1.4 ms.

// The BurstCompile attribute marks this job to be Burst-compiled.
[BurstCompile]
struct MyJob : IJob
{
 public NativeArray<float> Input;
 public NativeArray<float> Output;

 public void Execute()
 {
 for (int i = 0; i < Input.Length; i++)
 {
 Output[i] *= Input[i];
 }
 }
}

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Tutorials/Jobs

14 of 49 | unity.com© 2024 Unity Technologies

As described in this video, the performance gains of Burst come from the use of SIMD (a
technique used to perform the same operation on multiple data elements simultaneously)
and better awareness of aliasing (when two or more pointers or references refer to the same
memory location), among other techniques .

Collections
The Collections package provides unmanaged collection types, such as lists and hash maps
which are optimized for usage in jobs and Burst-compiled code .

By “unmanaged”, it’s meant that these collections are not managed by the C# runtime or
garbage collector; you are responsible for explicitly deallocating any unmanaged collection
that you create by calling its Dispose() method once it’s no longer needed .

Because these collections are unmanaged, they don’t create garbage collection pressure, and
can be safely used in jobs and Burst-compiled code .

The collection types fall into a few categories:

 — The types whose names start with Native will perform safety checks . These safety
checks will throw an error:

 — If the collection is not properly disposed of .

 — If the collection is used with jobs in a way that isn’t thread-safe .

For expert users, Burst provides a few advanced features, such as intrinsics and the Burst Inspector (pictured above), which shows the generated assembly code .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://youtu.be/WnJV6J-taIM?t=432
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Aliasing_(computing)
https://docs.unity3d.com/Packages/com.unity.collections@2.4/manual/index.html
https://www.jetbrains.com/help/dotmemory/Analysis_Overview_Page.html#high-gc-pressure
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/csharp-burst-intrinsics.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/editor-burst-inspector.html

15 of 49 | unity.com© 2024 Unity Technologies

 — The types whose names start with Unsafe perform no safety checks .

 — The remaining types which are neither Native or Unsafe are small struct types with no
pointers, so they are not allocated at all . Consequently, they need no disposal and have
no potential thread-safety issues .

Several Native types have Unsafe equivalents . For example, there is both NativeList and
UnsafeList, and both NativeHashMap and UnsafeHashMap, among other pairs . For the sake
of safety, you should prefer using the Native collections over the Unsafe equivalents when
you can .

Mathematics
The Mathematics package is a C# math library that, similar to Collections, is created for
Burst and the job system to be able to compile C#/IL code into highly efficient native code . It
provides you with:

 — Vector and matrix types, such as float3, quaternion, float3x3 .

 — Many math methods and operators that follow HLSL-like shader conventions .

 — Special Burst compiler optimization hooks for many methods and operators .

See this Unity .Mathematics cheat sheet for more information .

Note that most types and methods of the old UnityEngine .Mathf library are usable in Burst-
compiled code, but the Unity .Mathematics equivalents will perform better in some cases .

Entities (ECS)
The Entities package provides an implementation of ECS, an architectural pattern composed
of entities and components for data and systems for code .

In short, an entity is composed of components, where each component is usually a C# struct .
Like with GameObjects, an entity’s components can be added and removed over its lifetime .

Unlike with GameObjects, an entity’s components do not usually have their own methods .
Instead, in ECS, each “system” has an update method that is invoked usually once per frame,
and these updates will read and modify the components of some entities . For example, a
game with monsters might have a MonsterMoveSystem whose update method modifies the
Transform components of every monster entity .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.mathematics@1.3/manual/index.html
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/EntitiesSamples/Docs/cheatsheet/mathematics.md
https://docs.unity3d.com/Packages/com.unity.entities@1.2/manual/index.html
https://en.wikipedia.org/wiki/Entity_component_system

16 of 49 | unity.com© 2024 Unity Technologies

Archetypes

In Unity’s ECS, all entities with the same set of component types are stored together in the
same “archetype”. For example, say you have three component types: A, B, and C. Each unique
combination of component types is a separate archetype, e.g.:

 — All entities with component types A, B, and C, are stored together in one archetype .

 — All entities with component types A and B are stored together in a second archetype .

 — All entities with component types A and C are stored in a third archetype .

Adding a component to an entity or removing a component from an entity moves the entity to
a different archetype .

In Unity’s ECS, all entities with the same set of component types are stored together in the same “archetype” .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

17 of 49 | unity.com© 2024 Unity Technologies

Chunks

Within an archetype, the entities and their components are stored in blocks of memory called
chunks . Each chunk stores up to 128 entities, and the components of each type are stored in
their own array within the chunk . For example, in the archetype for entities having component
types A and B, each chunk will store three arrays:

 — One array for the entity ID’s

 — A second array for the A components

 — And a third array for the B components

The ID and components of the first entity in a chunk are stored at index 0 of these arrays, the
second entity at index 1, the third entity at index 2, and so on .

A chunk’s arrays are always kept tightly packed:

 — When a new entity is added to the chunk, it’s stored in the first free index of the arrays .

 — When an entity is removed from the chunk, the last entity in the chunk is moved to fill
in the gap (an entity is removed from a chunk when it’s being destroyed or moved to
another archetype .)

How chunks work in Unity’s ECS architecture

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

18 of 49 | unity.com© 2024 Unity Technologies

Queries

A primary benefit of the archetype- and chunk-based data layout is that it allows for efficient
querying and iteration of the entities .

To loop through all entities having a certain set of component types, an entity query first finds
all archetypes matching that criteria, and then it iterates through the entities in the archetypes’
chunks:

 — Since the components in the chunks reside in tightly packed arrays, looping through the
component values largely avoids cache misses .

 — Since the set of archetypes tends to remain stable throughout most of a program, the set
of archetypes matching a query can usually be cached to make the queries even faster .

// A simple example system.
public partial struct MonsterMoveSystem : ISystem
{
 [BurstCompile]
 public void OnUpdate(ref SystemState state)
 {
 // Query that loops through all entities with
 // a LocalTransform, Velocity, and Monster component
 foreach (var (transform, velocity) in
 SystemAPI.Query<RefRW<LocalTransform>, RefRO<Velocity>>()
 .WithAll<Monster>())
 {
 // Update the transform position from the
 // velocity (factoring in delta time)
 transform.ValueRW.Position +=
 velocity.ValueRO.Value * SystemAPI.Time.deltaTime;
 }
 }
}

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

19 of 49 | unity.com© 2024 Unity Technologies

Job system integration

As long as entity component types are unmanaged, they can be accessed in Burst-compiled
jobs. Two special job types are provided for accessing entities: IJobChunk and IJobEntity.

// A simple example system that schedules an IJobEntity.
public partial struct MonsterMoveSystem : ISystem
{
 [BurstCompile]
 public void OnUpdate(ref SystemState state)
 {
 // Create and schedule the job.
 var job = new MonsterMoveJob {
 DeltaTime = SystemAPI.Time.DeltaTime
 };
 job.ScheduleParallel();
 }
}
// A Burst-compiled job that processes every entity that has
// a LocalTransform, Velocity, and Monster component.
[WithAll(typeof(Monster))]
[BurstCompile]
public partial struct MonsterMoveJob : IJobEntity
{
 public float DeltaTime;
 // Because we wish to modify the LocalTransform, we use ‘ref’.
 // We only wish to read the Velocity, so we use ‘in’.
 public void Execute(ref LocalTransform, in Velocity)
 {
 transform.Position += velocity.Value * DeltaTime;
 }
}

For ease of use, systems can automatically handle job dependencies and job completion
across systems .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

20 of 49 | unity.com© 2024 Unity Technologies

Subscenes and baking

Unity ECS uses subscenes instead of scenes to manage the content of your application . This
is because Unity’s core scene system is incompatible with ECS .

While entities can’t be directly included in Unity scenes, a feature called baking allows for
loading entities from scenes and converts the GameObjects and MonoBehaviour components
into entities and ECS components .

You can think of subscenes as scenes that are nested inside others and are processed by
baking, which re-runs every time you edit a subscene . For every GameObject in a subscene,
baking creates an entity, the entities get serialized into a file, and it’s these entities that are
loaded at runtime when the subscene is loaded, not the GameObjects themselves .

Which components get added to the baked entities is determined by the “bakers” associated
with the GameObject components . For example, bakers associated with the standard graphics
components, like MeshRenderer, will add graphics-related components to the entity. For your
own MonoBehaviour types, you can define bakers to control what additional components get
added to the baked entities .

Left: inspecting a GameObject and right: inspecting an entity that was baked from the GameObject

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

21 of 49 | unity.com© 2024 Unity Technologies

// This entity component type represents an energy shield with hit points,
// maximum hit points, recharge delay, and recharge rate.
public struct EnergyShield : IComponentData
{
 public int HitPoints;
 public int MaxHitPoints;
 public float RechargeDelay;
 public float RechargeRate;
}
// A simple example authoring component.
// An authoring component is just an ordinary MonoBehaviour
// that has a defined Baker class.
public class EnergyShieldAuthoring : MonoBehaviour
{
 public int MaxHitPoints;
 public float RechargeDelay;
 public float RechargeRate;
 // The baker for our EnergyShield authoring component.
 // This baker is run once for every EnergyShieldAuthoring
 // instance that’s attached to any GameObject in a subscene.
 class Baker : Baker<EnergyShieldAuthoring>
 {
 public override void Bake(EnergyShieldAuthoring authoring)
 {
 // The TransformUsageFlags specify which
 // transform components the entity should have.
 // The None flag means that it doesn’t need transforms.
 var entity = GetEntity(TransformUsageFlags.None);
 // This simple baker adds just one component to the
entity.
 AddComponent(entity, new EnergyShield
 {
 HitPoints = authoring.MaxHitPoints,
 MaxHitPoints = authoring.MaxHitPoints,
 RechargeDelay = authoring.RechargeDelay,
 RechargeRate = authoring.RechargeRate,
 });
 }
 }
}

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/

22 of 49 | unity.com© 2024 Unity Technologies

On the one hand, it’s inconvenient in simple cases to not be able to add entities directly in
scenes, but on the other hand, the baking process can be useful in more advanced cases .
Baking effectively separates authoring data (the GameObjects that you edit in the Editor) from
runtime data (the baked entities), so what you directly edit and what gets loaded at runtime
don’t have to match 1-to-1 . For example, you could write code to procedurally generate data
during baking, which would spare you from paying the cost at runtime .

Streaming

Particularly for large detailed environments, it’s important to be able to load and unload
many elements efficiently and asynchronously as the player or camera moves around the
environment . In a large open world, for example, many elements must be loaded in as they
come into view, and many elements must be unloaded as they go out of view . This technique
is also referred to as streaming .

Entities are far more suited for streaming than GameObjects because entities consume less
memory and processing overhead, and they can be serialized and deserialized much more
efficiently .

EntityComponentSystemSamples Github
The EntityComponentSystemSamples Github repository includes many samples that introduce
both basic and advanced DOTS features . The readme file for each sample collection provides
further details but here’s a brief description of some selected samples .

Some of the samples in the Github repo are reproduced in a new Unity Learn course on DOTS,
Get acquainted with DOTS . See the links under each sample to the Unity Learn tutorial it’s
featured in (if applicable) .

The HelloCube samples are a beginner-friendly entry point for DOTS and demonstrate the
most fundamental concepts of the Entities API, such as creating and destroying entities,
adding and removing components, and systems that access the entities . Get a breakdown
of the sample’s content in the HelloCube walkthrough video or go through the step-by-step
HelloCube tutorial on Unity Learn .

The baking samples demonstrate baking, which serializes entity data at build time to be
loaded from scenes at runtime .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.entities@1.2/manual/streaming-scenes.html
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master
https://learn.unity.com/tutorial/65bbbee8edbc2a1bb56409d4?uv=2022.3&projectId=65b3d3cfedbc2a5399ce3740#
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/HelloCube
https://youtu.be/32TLgtA9yUM
https://learn.unity.com/tutorial/65b3d4f2edbc2a5860dd5d96?uv=2022.3&projectId=65b3d3cfedbc2a5399ce3740
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Baking
https://docs.unity3d.com/Packages/com.unity.entities@1.2/manual/baking.html

23 of 49 | unity.com© 2024 Unity Technologies

The Kickball sample demonstrates more basics of Entities but with a bit more gameplay
than HelloCube . Controls allow the player to move the orange capsules, spawn yellow balls,
and kick the balls away from the capsules . The gray cylinders are obstacles that block the
movement of the capsules and balls . You can also see the Kickball walkthrough video .

A screenshot from the Kickball tutorial

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Tutorials/Kickball
https://www.youtube.com/watch?v=P6_3L7RTcm0

24 of 49 | unity.com© 2024 Unity Technologies

A scene from the Firefighters sample

A screenshot from the Tanks tutorial

In the Tanks sample, tanks move on a plane, spin their turrets, and shoot colored projectiles
bringing the job system and entities together in one sample . Your objective is to spawn
moving tanks that shoot cannonballs from a spinning turret . Tanks are destroyed when hit
by a cannonball and the player controls the movement of one tank . Check out the Tanks
walkthrough video or follow along in the Tanks tutorial on Unity Learn .

In the Firefighters sample, a fire spreads across a field, and bots form bucket brigade lines
to douse the fire . It’s a more advanced tutorial that brings many concepts together so we
recommend doing the above tutorials first . The project was covered in four sessions as part of
the DOTS bootcamp .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Tutorials/Tanks
https://www.youtube.com/watch?v=jAVVxoWU5lo
https://www.youtube.com/watch?v=jAVVxoWU5lo
https://learn.unity.com/tutorial/65b3e48fedbc2a611fc291a7?uv=2022.3&projectId=65b3d3cfedbc2a5399ce3740
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/EntitiesSamples/Assets/Tutorials/Firefighters
https://unity.com/resources/dots-boot-camp-day-1

25 of 49 | unity.com© 2024 Unity Technologies

Entities Graphics
The Entities Graphics package provides components and systems for rendering entities via
the Universal Render Pipeline (URP) or the High Definition Render Pipeline (HDRP). Entities
Graphics is built around the BatchRendererGroup API .

The Entities Graphics samples demonstrate various graphics features, such as light probes
and lightmaps, material property overrides, and LODs .

An Entites .Graphics sample scene in the EntityComponentSystemSamples repository

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.entities.graphics@latest
https://blog.unity.com/engine-platform/batchrenderergroup-sample-high-frame-rate-on-budget-devices
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master/GraphicsSamples/URPSamples
https://github.com/Unity-Technologies/EntityComponentSystemSamples

26 of 49 | unity.com© 2024 Unity Technologies

Physics
The Unity Physics package provides rigid body simulation and collision checks .

Unity Physics supports swapping in alternate “backends” while maintaining the same surface
level API, allowing you to swap physics implementations without changing your own code or
assets .

The default backend provided in the package is deterministic, meaning that given the same
initial conditions and inputs, it will produce the same results .

The Havok Physics package provides an alternative backend based on the proprietary Havok
Physics engine that powers many industry-leading AAA games .

The Physics samples illustrate many features of the package, including colliders, mass and
motion properties, material properties, events, joints and motors, and more .

Netcode for Entities
The Netcode for Entities package is one of two netcode solutions provided by Unity . Unlike
the other solution, Netcode for GameObjects, Netcode for Entities uses an authoritative server
and supports client-side prediction, making it better suited for fast-paced competitive games .

Authoritative server

Rather than splitting authority of what is happening in the game across the player machines,
an authoritative server runs the full game simulation itself and dictates what is happening in
the game . The clients send player input to the server, the server updates the game simulation,
and the server sends new snapshots of the game state back to the clients . This is the simplest
way to implement networked game logic and the one least prone to exploitation by cheaters .

A Physics sample scene in the EntityComponentSystemSamples repository

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.physics@1.2/manual/index.html
https://docs.unity3d.com/Packages/com.havok.physics@1.2/manual/index.html
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/PhysicsSamples/README.md
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/manual/index.html
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://github.com/Unity-Technologies/EntityComponentSystemSamples

27 of 49 | unity.com© 2024 Unity Technologies

Client-side prediction

Since it takes time for data sent from the server to reach the clients, the state which the client
has received always lags behind the server . For many elements in a game, this lag might be
acceptable, but for others, like the player’s character, such lag can ruin the feel of the game
and make it difficult to play .

Client-side prediction can solve this problem . For designated elements like the player’s
character, the client will attempt to predict the state a fraction of a second into the future . As
long as these predictions match the state on the server accurately and consistently enough,
the game will feel much more like a zero-lag experience .

On top of these two core features, Netcode for Entities can also scale better than Netcode for
GameObjects and provides better means to optimize bandwidth .

A good introduction to Netcode for Entities is the Netcode for Entities samples repository .
These samples demonstrate many basic and advanced features, including syncing, connection
flows, integration with Unity Physics, and more . Start with the Networked Cube tutorial, which
covers:

 — Establishing a connection with the server .

 — Communicating with the server .

 — Spawning synchronized entities on the server .

 — Creating standalone builds of the server and client .

 — Running the server and a client in Play mode within the Editor.

The Networked Cube tutorial running in the Editor and as a standalone build

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/NetcodeSamples/README.md
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/manual/networked-cube.html

28 of 49 | unity.com© 2024 Unity Technologies

ECS Network Racing sample

The ECS Network Racing sample is a lobby-based multiplayer car racing sample featuring
Unity Physics and Vivox voice chat .

Character Controller
The CharacterController package provides an ECS-based implementation of first- and third-
person character controllers that work with Unity Physics and Netcode for Entities . The
controllers support various common character behaviors, like sprinting and double jumping .
You can also try the CharacterController tutorial and samples for more learning examples .

The ECS Network Racing Sample features car racing multiplayer mechanics

The character controller package is available in the Unity Asset Store .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/ECS-Network-Racing-Sample
https://unity.com/products/vivox-voice-chat
https://docs.unity3d.com/Packages/com.unity.charactercontroller@latest
https://github.com/Unity-Technologies/CharacterControllerSamples

29 of 49 | unity.com© 2024 Unity Technologies

What’s on the DOTS roadmap?
The core DOTS packages are production-ready but a few of the complementary DOTS-based
systems are still in development. At the time of writing (spring 2024) here is the status of
related systems .

Animation
Unity is developing a skinned mesh animation system to work with entities, but, as of the time
of writing this guide, it’s not yet available in current versions of Unity .

In the meantime, the most common solution is to render animated characters as GameObjects
whose transforms and animation states are synced from entities . In other words, the game
simulation is fully implemented in entities, but presentation of the animated characters is done
with GameObjects (for a simple demonstration of the idea, see the “AnimateGameObject”
sample in the sample repository) . This solution does require some extra coding and induces
some overhead, but it should suffice for most games .

Alternatively, some game makers and asset developers have implemented their own custom
animation solutions . The community offers several different solutions of which some are
available on the Unity Asset Store .

User Interfaces

There is currently no ECS-based UI system . Instead, ECS-based games can use the
existing GameObject-based UI Toolkit (see the Firefighters tutorial for a simple example of
coordination between UI Toolkit and ECS). To learn more about using UI Toolkit in your games
see the following advanced resources:

 — User interface design and implementation in Unity

 — UI Toolkit Sample – Dragon Crashers

 — QuizU – A UI Toolkit sample

 — QuizU article series on Discussions

Reference the DOTS roadmap to keep up to date on the latest plans for Unity ECS and DOTS .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/tree/master
https://assetstore.unity.com/?q=ECS%20animation&orderBy=1
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/EntitiesSamples/Assets/Tutorials/Firefighters/README.md
https://unity.com/resources/user-interface-design-and-implementation-in-unity?isGated=false
https://assetstore.unity.com/packages/essentials/tutorial-projects/ui-toolkit-sample-dragon-crashers-231178
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607
https://unity.com/roadmap/unity-platform/dots

30 of 49 | unity.com© 2024 Unity Technologies

Evaluating DOTS for your project
If your code is causing CPU bottlenecks, you can consider reimplementing it as Burst-
compiled jobs . Not only will Burst-compiled code often run multiple times faster than the
Mono- or even IL2CPP-compiled equivalent, jobs allow you to split your workloads across all
cores of the CPU .

The good news is that Burst-compiled jobs can usually be integrated into the majority of
existing projects with relative ease, even if a project otherwise makes no use of DOTS . Aside
from possibly having to copy data into and out of unmanaged collections, rewriting existing
code as Burst-compiled jobs generally requires no significant code restructuring .

This is less true for the Entities package . While it’s sometimes possible to selectively integrate
entities for implementing specific features, ECS architecture tends to impose its own code
structure on the whole project .

Here are four good reasons for why you might want to build a new project using Entities:

 — The project will have many static elements, such as for rendering a large, detailed
environment . The original Megacity project demonstrates a complex environment made
out of entities .

 — The project will have many dynamic elements with computationally heavy behaviors . A
real-time strategy game, for example, often needs to compute pathfinding for hundreds
or thousands of units .

 — You prefer the ECS way of structuring data and code, which is arguably easier to reason
about and maintain than the more common object-oriented alternative . At the very least,
ECS generally makes it easier to profile and identify bottlenecks .

 — The project is a competitive multiplayer game with fast action, such as a shooter, and
requires authoritative servers and client-side prediction for a good player experience (as
stated above, these features are supported in Netcode for Entities but not Netcode for
GameObjects) .

On the other hand, many games are bottlenecked primarily on the GPU, in which case Entities
and the rest of the DOTS packages and related technologies might not help much because
DOTS only improves CPU efficiency . Still, if DOTS can help you do the same amount of work
in less CPU time, that leaves more headroom for additional features, and extra headroom can
also help greatly if you later decide to target lower-powered devices .

The following section highlights some of the games that use Unity ECS and DOTS
technologies .

| About performance | DOTS and the Entity Component System | Made with DOTS |

https://unity.com/
https://www.youtube.com/watch?v=KgcU2HBOXAw

31 of 49 | unity.com© 2024 Unity Technologies

Over the last several years, development teams have seen their multiplatform games benefit
from using DOTS packages and technologies . As you’ll learn from the following excerpts from
customer stories, each team carefully thought through how their game could benefit from
DOTS before deciding to implement it .

You’ll find more Unity customer stories and profiles in the Unity Resources hub .

Made with DOTS

https://unity.com/releases/lts
https://unity.com/resources

32 of 49 | unity.com© 2024 Unity Technologies

Made with DOTS: Bare Butt Boxing, by Tuatara Games

Tuatara Games built Bare Butt Boxing using Unity’s DOTS from the very start of development .
“Since this is our first game as a new team, we wanted to do early access with a foundation
strong enough for us to pivot the design into the right direction,” says software engineer
Hendrik du Toit . “DOTS allowed us to modularize our systems in a way that we can test
gameplay ideas without weeks of rewriting code .”

Tuatara’s data-oriented design approach simplifies iteration and allows them to be flexible with
optimization . “Having ECS means we can adjust runtime data layout easily without impacting
serialized data,” says game programmer Ewan Argouse .

“ECS has helped us to divide the game into multiple layers without trouble . The game design
can be simple and related to the simulation directly, and we can create systems on top of that
to present it nicely…thanks to that, the presentation can be complex while our simulation can
be client-predicted without being too heavy on the CPU .”

- Ewan Argouse, game programmer, Tuatara Games

Bare Butt Boxing by Tuatara Games, made with Unity, available for PC and console

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://tuataragames.com/games/bare-butt-boxing
https://unity.com/case-study/bare-butt-boxing

33 of 49 | unity.com© 2024 Unity Technologies

Histera by StickyLock Games, made with Unity, and available for PC via Steam Early Access

Made with DOTS: Histera, by StickyLock Games

“Histera started out as an extraordinary idea, and that was to innovate the FPS genre as a
whole . How we’ve done that is…through the ‘glitch’ . . .the glitch is our main USP . (It) basically
takes a section of the map and changes that to a completely new era . So you can go from a
prehistoric era up to a future era and it will completely change the layout as well .

The reason we chose to go with DOTS was that at the time, we were looking at networking
solutions, however there weren’t a lot of options for us . Since we’re going with a first-person
shooter game, we knew that peer-to-peer wouldn’t be the reliable option for us . We wanted a
dedicated game server option . There was a Unity blog detailing the release of Unity Netcode
and DOTS…they also released a few samples . And when we looked into those, we got quite
intrigued because they showcased that we would be able to make an FPS with the tech .

Once we dove deeper into those (DOTS) packages, we found that it was very interesting
for us from a developer perspective…it was a completely new paradigm . Instead of being
object-oriented, it was data-oriented…after a lot of talking and discussing, we wanted to push
forward and invested in our knowledge on DOTS and ECS .”

- Jamel Ziaty, producer, StickyLock Games

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.youtube.com/watch?v=Plb5LlABHhk
https://histera.com/

34 of 49 | unity.com© 2024 Unity Technologies

Made with DOTS: V Rising, by Stunlock Studios

When Stunlock Studios set out to build V Rising, they realized quickly that the scale of their
vision would require a different design pattern from their previous titles . “We wanted the world
to feel alive with lots of destructibles and interactables,” says cofounder and technical director
Rasmus Höök.

Höök started experimenting with DOTS “because its use cases seemed to fit perfectly with
the problems we were trying to solve .” Using DOTS and ECS, Stunlock decreased server strain
and minimized client CPU resources, resulting in more concurrent players, lowered system
requirements, and a robust tech stack that can scale up to meet Stunlock Studios’s creative vision .

“ECS offers a significant advantage with its clear separation between Editor data and runtime
data . When working in the Editor, we create authoring prefabs, which are essentially standard
GameObjects with MonoBehaviors . However, these prefabs are solely for editing purposes
and are not directly used in the game itself . Instead, they go through a process called baking
where they are converted into runtime components . Since the authoring prefabs are only used
in the Editor it allows us to add functionality and data to them to improve the workflow without
worrying about cluttering the actual game .

Because of this, we can freely modify and optimize the runtime components without impacting
the Editor data . This separation has greatly helped us maintain a complex project like V Rising .”

– Rasmus Höök, technical director, Stunlock Studios

V Rising by Stunlock Studios, made with Unity, available for PC

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.stunlock.com/
https://www.youtube.com/watch?v=HgCLe16Gmos

35 of 49 | unity.com© 2024 Unity Technologies

Made with DOTS: Zenith: The Last City, by Ramen VR

As systems-based games, MMOs require strong, scalable technical foundations . Early in
development, Ramen VR organized Zenith’s systems using MonoBehaviors, but running logic
hundreds of times across hundreds of identical GameObjects was inefficient .

They leveraged Unity’s ECS framework to avoid the drawbacks of object-oriented
programming. “An MMO is a great application for ECS,” [CTO Lauren] Frazier notes. “Zenith
requires thousands of Entities to coexist at the same time, and ECS allows us to run at scale .”

In the new workflow, every “actor” GameObject (players, mobs, collectibles) has a
corresponding ECS Entity . The ECS runs through GameObjects and checks for relevant tags,
triggering logic whenever they’re found .

“It was nice to be able to pick the workflow appropriate to the situation . We could have done
pure Objects or pure Entities – but I don’t think you should have to choose,” says Frazier .“

– Lauren Frazier, CTO, Ramen VR

Zenith: The Last City, by Ramen VR, made with Unity, available on PC and console VR

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://zenithmmo.com/
https://unity.com/case-study/zenith-the-last-city

36 of 49 | unity.com© 2024 Unity Technologies

Made with DOTS: Megacity Metro sample

Unity’s Megacity Metro sample is a multiplayer and mobile-focused spin on the original
Megacity sample. Megacity Metro is built with URP, Entities, Netcode for Entities, and Unity
Physics, and runs on a range of devices, from low-end mobile to high-end console platforms .
It supports competitive cross play for over 100 players and showcases Unity Gaming Services
like Authentication, Game Server Hosting, Matchmaker, and Vivox.

You can learn more about Megacity Metro and download the project here .

The Megacity Metro sample

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://unity.com/solutions/gaming-services
https://unity.com/resources/megacity-metro

37 of 49 | unity.com© 2024 Unity Technologies

The data-oriented elements of DOTS make it more hardware friendly than the object-oriented
programming approach you know from Monobehaviour projects . It can help to have a good
understanding of some key concepts related to, and impacted by, DOD that are normally less
relevant for your C# programming in Monobehaviour-based projects .

Memory allocation and garbage collection
In modern operating systems, programs run as separate processes, where the memory of
each process is managed by the operating system . When a process wants more memory, it
has to request it from the operating system, upon which the operating system will give the
process a contiguous block of memory . This is called memory allocation .

When a process is terminated, the operating system will reclaim the memory, freeing it up to
be used elsewhere . For long-running programs, however, it often makes sense for the program
to hand back blocks of memory which it is no longer using . This is called memory deallocation
or freeing . In simple short-lived programs, it’s often sufficient to only allocate memory without
ever freeing it . However, if a long-running program continues to make new allocations but
neglects to ever free them, the program might end up using an unreasonable amount of
memory . These situations are called memory leaks, and can lead to worse performance and
instability .

Appendix: Concepts
related to ECS

https://unity.com/releases/lts

38 of 49 | unity.com© 2024 Unity Technologies

Programs often use their own internal allocators, which can work in the following way:

1 . The program allocates a large block of memory from the operating system .

2 . The program’s own internal allocator tracks which ranges within the block are currently in
use .

3 . When the program needs more memory, it requests it from the internal allocator rather
than from the operating system .

4 . When these internally allocated blocks of memory are no longer needed, the program
should notify its allocator to free the memory .

Internal allocators have some advantages .

 — Unlike allocating and deallocating from the operating system, allocating and deallocating
from an internal allocator does not generally require expensive system calls .

 — A program can use multiple custom allocators to better accommodate different use
cases: Some allocators are more appropriate for small, short-lived allocations, while
other allocators are more appropriate for large, long-lived allocations . For example, a
so-called “arena allocator” frees all of its allocations at the same time, so its internal logic
and bookkeeping can be very simple and cheap .

In many of today’s popular languages, including C#, the runtime uses a garbage collector that
will scan memory to find unused allocations and free them . Compared to manual allocation,
this automated way is more convenient and makes memory leaks and other memory-related
issues easier to avoid . On the downside, garbage collection incurs overhead and requires
interrupting the program execution, which may cause noticeable pauses that negatively affect
the player experience .

In DOTS, entities and the native collections are unmanaged, meaning they are not allocated or
managed by the runtime or its garbage collector:

 — For entities, the memory is allocated and freed for you by the EntityManager, so your
entities only leak memory if you neglect to destroy them when they are no longer
needed . In practice, such cases tend to be noticeable, so this mistake is easy to detect
and correct .

 — For the native collections, DOTS provides several allocators with different trade-offs .
The Allocator .Temp allocator, for example, provides very cheap allocations that are
disposed of automatically at the end of the frame or the job in which it was allocated .
The Allocator .Persistent allocator, in contrast, provides more expensive allocations that
live indefinitely until manually freed . Unlike allocations from Allocator .Temp, allocations
from Allocator .Persistent can be large, and passed into jobs . Other allocators include
Allocator .TempJob and the WorldUpdateAllocator .

See the documentation on Unity’s garbage collector for more information .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://docs.unity3d.com/Manual/performance-garbage-collector.html

39 of 49 | unity.com© 2024 Unity Technologies

Multithreaded programming
Most modern CPUs have more than one core, and putting these additional cores to work can
greatly boost performance of a game that is CPU heavy . However, multithreading can be
difficult and unsafe because it requires a lot of low-level manual programming that might be
unfamiliar territory for many C# developers . In DOTS, the C# job system helps you write safe
multithreaded code in a way that is easy and that avoids common pitfalls, but this section
should help you understand the underlying issues .

When a process is spawned by the operating system, it starts off with a single thread of
execution . Through system calls, a process can spawn additional threads which will belong to
the same process and thus share the same memory .

Each logical core of the CPU can run one thread at a time, and the operating system controls
which threads run on which cores and when . At any time, the operating system can interrupt
a running thread and suspend it so that another thread can use the core . When two threads
access the same resource (namely data), the danger is that one thread mutates the resource
when the other thread is not expecting it to . In general, a thread should only read and modify
a shared resource within a “critical section” – a span of code within which the thread has
exclusive access to the shared resource .

To control access across threads, a shared resource is governed by some kind of
synchronization primitive, such as a mutex . However, these synchronization primitives
generally require all threads that use them to follow a strict protocol, and failing to do so can
make the primitives ineffective or hang the program .

Another issue is that certain system calls may block the calling thread, meaning suspend its
execution . For example, when a thread invokes a system call to read a file, the data probably
isn’t yet sitting in memory, so it must be copied off a device into memory first before the
system call can return . Because the wait for the data may be very long (in CPU terms), the
operating system may block the calling thread while the data is being loaded, and another
thread can run on the CPU core in the meantime . Only once the data is ready will the operating
system unblock the thread and allow it to resume execution .

One use case, then, for multithreading is to do longer-running blocking operations on
“background threads”, such as reading files and writing files, while continuing to do work
on the “main thread” . An interactive program, for example, may want to load a file in the
background while the main thread still responds to user input and redraws the screen .

In other cases, you may simply want to split a program’s CPU workload across multiple cores
to get the work done faster . Data compression, for example, is very CPU intensive, so it can
usually benefit from multithreading .

A consideration to keep in mind is that the CPU cores must contend with each other for use of
the storage devices, system memory, and other system resources . For example, if two threads
try to concurrently access memory, they cannot do so at the same moment but instead must
take turns . Fortunately, these overlaps are resolved at the hardware level, but the problem

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://docs.unity3d.com/6000.0/Documentation/Manual/JobSystem.html
https://en.wikipedia.org/wiki/Event_(synchronization_primitive)

40 of 49 | unity.com© 2024 Unity Technologies

remains that each thread’s memory access slows down the overlapping memory access of all
other threads . Particularly then, for a task which requires heavy amounts of memory access
relative to CPU computation, splitting the work across multiple threads will tend to reap
diminishing returns .

For example, you might assume that a task split across 10 threads should run 10 times faster
than the same task running on just one thread, but this theoretical limit is rarely achieved in
practice, thanks to memory contention . Instead, 10 threads might more realistically get you
perhaps a 5-7x boost (though, again, this depends upon the specific scenario). In fact, if the
task requires a high ratio of memory access relative to computation work, the performance
might improve by using fewer threads, because the fewer the number of threads the less
memory contention .

Memory and CPU cache
Most of today’s CPUs have one to three levels of cache, usually designated L1, L2, and L3 .

When the CPU executes an instruction that reads an address of system memory, the hardware
first checks if a copy of the data at that address is sitting in the L1 cache . If not, the hardware
then checks L2 cache (if it exists), and then L3 cache (if it exists) . If no copy currently sits in
any cache the hardware will actually read system memory itself . Upon reading the data, the
hardware will copy it into a portion of the lower cache levels, e .g ., data read from L3 will be
copied into L1 and L2, and data read from system memory will be copied into all cache levels .
This caching strategy makes sense because when an address is read, it’s usually likely that the
same address will be read again shortly thereafter . By copying the data into cache, the data
can likely be read directly from cache the next time it is needed .

Of course, not all of system memory can fit in cache: Each level of cache is smaller than the
one above it, and the largest cache is still much smaller than all of system memory . Therefore,
when a portion of memory is copied into cache, it must overwrite some other portion of
memory that was previously cached .

When data is read from cache, it’s called a “cache hit” . When data must be read from system
memory itself because a copy is not currently cached, it’s called a cache miss .

The precise performance characteristics of caches varies greatly among different chips but
roughly, L1 will be at least a few times faster than L2, L2 will be at least an order of magnitude
faster than L3, and L3 will be at least twice as fast as system memory . In total, the CPU will
likely access data in L1 cache at least two orders of magnitude faster than it will access
data in system memory . Because the speed gap between lower cache levels and system
memory is so great, minimizing the number of cache misses triggered in your program is a key
performance consideration .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/

41 of 49 | unity.com© 2024 Unity Technologies

Thanks to a hardware feature called prefetching, the simplest and most effective way to
minimize cache misses is to access addresses of memory sequentially rather than jumping
around randomly . Therefore, cache-efficient data structures store their elements tightly-
packed and contiguous in memory . In other words, the data is stored in arrays .

When you start reading memory addresses in sequence, the hardware notices this pattern
and will start reading ahead and copying the memory into cache, in the expectation that you’ll
keep going . This may end up as a bit of wasted effort in cases where the extra data isn’t
needed, but in cases where you are reading through an array, this prefetching behavior will put
data in cache right before the CPU needs it . So aside from a possible initial cache miss when
you read the first bytes of an array, an array can be read without triggering cache misses . As
the CPU train speeds along, the tracks are laid right in front of the train, just in time .

Managed C# objects like GameObjects and MonoBehaviours are separately instantiated, and
therefore might end up stored in different parts of memory . Consequently, traversing through
many managed objects typically requires jumping around memory and thus triggering many
cache misses .

In DOTS, entities and their components are tightly packed in contiguous arrays by design,
allowing them to be sequentially traversed with minimal cache misses .

See this talk by Scott Meyers for further information about memory and cache: CPU Caches
and Why You Care .

Levels of cache; Source: https://tech4gamers.com

Processor

Processor Core

Functional Units

Registers

L1 Cache

L2 Cache

L3 Cache (Shared)

Local Memory

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.youtube.com/watch?v=jrmZIgVoQw4&t=91s
https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=WDIkqP4JbkE
https://tech4gamers.com

42 of 49 | unity.com© 2024 Unity Technologies

Costs of object-oriented programming
A common challenge with object-oriented programming (OOP) is its many definitions. Some
insist that OOP is all about inheritance, or polymorphism, or encapsulation, or the combination
of the three, while others offer less conventional theories . Here is the definition according to
Wikipedia:

“Object-oriented programming (OOP) is a programming paradigm based on the concept
of objects, which can contain data and code: data in the form of fields (often known as
attributes or properties), and code in the form of procedures (often known as methods) . In
OOP, computer programs are designed by making them out of objects that interact with one
another .” – Wikipedia

In other words, an object-oriented program is composed of interacting “objects”, where each
object is an encapsulated unit of data and code that has some degree of autonomy and
independence from the others . Much like the programs on a network cooperate by sending
each other messages, the objects in an object-oriented program cooperate by invoking each
others’ methods, and in fact, it’s the interactions of the objects that really defines object-
oriented programming, not the individual objects themselves .

The theoretical benefits of OOP include:

 — Composability: Programs made out of objects can be incrementally assembled and
modified .

 — Reconfigurability: Features can be easily added, removed, and modified by inserting,
removing, and replacing objects .

 — Code reuse: Objects can be easily reused between programs.

 — Intuitiveness: Real-world things and processes naturally correspond to objects.

 — Abstraction: Objects allow the programmer to solve problems at a high-level without
being distracted by low-level details .

Steve Jobs elaborated on this last point in an interview in the June 16, 1994 edition
of Rolling Stone:

“Objects are like people . They’re living, breathing things that have knowledge inside
them about how to do things and have memory inside them so they can remember
things . And rather than interacting with them at a very low level, you interact with them
at a very high level of abstraction, like we’re doing right here .

Here’s an example: If I’m your laundry object, you can give me your dirty clothes and
send me a message that says, “Can you get my clothes laundered, please .” I happen to
know where the best laundry place in San Francisco is . And I speak English, and I have
dollars in my pockets . So I go out and hail a taxicab and tell the driver to take me to this
place in San Francisco . I go get your clothes laundered, I jump back in the cab, I get
back here . I give you your clean clothes and say, “Here are your clean clothes .”

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.rollingstone.com/culture/culture-news/steve-jobs-in-1994-the-rolling-stone-interview-231132/

43 of 49 | unity.com© 2024 Unity Technologies

You have no idea how I did that . You have no knowledge of the laundry place . Maybe
you speak French, and you can’t even hail a taxi . You can’t pay for one, you don’t have
dollars in your pocket . Yet I knew how to do all of that . And you didn’t have to know any
of it . All that complexity was hidden inside of me, and we were able to interact at a very
high level of abstraction . That’s what objects are . They encapsulate complexity, and
the interfaces to that complexity are high level .”

Performance costs of OOP

On the downside, OOP tends to incur a number of performance costs:

 — Scattered data layout: OOP code is often split into many small objects, and the data
often ends up scattered throughout memory (which leads to cache inefficiencies, as
discussed in prior sections) .

 — Excessive abstraction: Object-oriented design often encourages layers of delegation,
where the higher levels defer the real work to lower levels, resulting in many objects and
methods that do little actual work .

 — Complex call chains: Thanks to the many layers of abstraction and a preference for
small functions, call chains get very complex .

 — Virtual calls: Not only do virtual dispatch tables incur overhead over regular function
calls, virtual calls cannot normally be inlined (though some JIT compilers may do so at
runtime)

 — Bad allocation patterns: The complex code paths that OOP encourages often make it
difficult to reason about object lifetimes, so OOP code tends to rely upon frequent, small
allocations and garbage collection rather than more efficient alternatives .

 — One-at-a-time processing: Because the code which directly manipulates an object is
part of the object itself, there’s a natural tendency in OOP to process objects one-by-one
rather than in large batches .

Structural costs of OOP

Even if we’re happy to sacrifice optimal performance for the sake of making programs easier to
write and maintain, OOP can also have shortcomings in those areas as well. Here are a few:

1 . Entangling your data and code makes both of them messier and more complicated .

It is often claimed that OOP prioritizes data over code:

“Object-oriented programming (OOP) is a computer programming model that organizes
software design around data, or objects, rather than functions and logic. […] OOP
focuses on the objects that developers want to manipulate rather than the logic
required to manipulate them .”

– Alexander S. Gillis, What is Object-Oriented Programming, published on TechTarget
Network .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP

44 of 49 | unity.com© 2024 Unity Technologies

However in reality, OOP entangles data and code together: If an object’s capabilities must
directly follow from its data and vice versa, what an object can do is integral to its definition
and can’t be separated from the object’s data .

This entanglement often leads to questionable design choices, such as:

 — Objects with code that really should just have data .

 — Objects with data that really should just have code .

 — Objects that group data together for the purposes of code .

 — Objects that group code together for the purposes of data .

 — Code that is split across objects for the sake of data .

 — Data that is split across objects for the sake of code .

2 . Replacing concentrated complexity with scattered complexity increases the overall
complexity .

According to the rules of object-oriented design, an object with too many “responsibilities”
should be broken up into smaller objects . However, when you break up large things into
smaller pieces, you may end up just scattering the complexity around rather than reducing the
overall complexity . In fact, a code base with many small pieces often makes it hard to discern
what purpose any one piece of data or code serves and hard to find the parts of code relevant
to a given feature .

So while object-oriented design aims to bring clarity to your code as long as you correctly
delegate responsibilities amongst a properly designed set of objects, the object-oriented
design process can itself often be burdensome and fraught with conjecture, and the typical
resulting program structures become excessively fractured .

3 . Objects make it difficult to track which code accesses which data

Understanding a program ultimately boils down to understanding its data and how that data
gets transformed . The easier it is to reason about the data, the easier it is to reason about
the program . Whether adding features or fixing bugs, the programmer needs to be able to
determine which code affects a given piece of data and, from the other perspective, which
data is affected by a given piece of code .

In an object-oriented program, the more connected the objects, the more difficult it is to
make these determinations . Although object encapsulation may keep direct access to a piece
of data private, any indirectly connected object may have indirect access through some
path of public method calls . For example, when debugging why a value is being incorrectly
set, identifying all relevant paths of code may require a lot of detective work . In contrast, in
a strictly procedural program, identifying all paths of code that may affect a piece of data
usually requires considering many fewer possibilities (as long as the program does not use
global variables recklessly) .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/

45 of 49 | unity.com© 2024 Unity Technologies

Data-oriented design
The term data-oriented design (DOD) was coined in the 2000’s to describe a set of ideas
emerging at the time among some game programmers and others interested in high
performance software . No one source has the authoritative definition of data-oriented design,
but these resources perhaps come the closest:

 — “Data-Oriented Design and C++” and Building a Data-Oriented Future: Two talks by Mike
Acton

 — Data-Oriented Design: A book by Richard Fabian

 — Data-Oriented Design Resources: A collection of links about DOD

Here, rather than give a theoretical account, we’ll just distill DOD into several points of
practical advice .

Design your data before designing your code

The central premise of DOD is that data is at least as important as code . At both the macro
and micro level, programs are ultimately about transforming and producing data .

So the nature of your data should dictate the structure of your code rather than the other way
around . This is true not just at the beginning of a project but at all stages, so when adding or
changing features, you should first reevaluate the structure of your data before restructuring
the code .

Note that this conflicts with object-oriented design, where objects inextricably link data and
code together . Mixing the design of data with concerns about code complicates the design
process and often leads to suboptimal design choices . Conversely, allowing data the freedom
to change without immediate concern for code simplifies the design process and typically
produces simpler, more optimal data .

Prefer simple data

As a general tendency, simple data leads to simple and efficient code . In particular, you should
favor arrays over hierarchical structures and graph structures: Arrays are the simplest way to
store many elements of data, and sequentially looping through flat arrays is the most efficient
way to access memory .

You should also be careful about creating connections between elements of data (via pointers
and array indexes) that aren’t necessary . Correctly maintaining these connections complicates
your code, and traversing connections requires suboptimal random lookups .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=u8B3j8rqYMw
http://www.dataorienteddesign.com/dodbook/
https://github.com/dbartolini/data-oriented-design

46 of 49 | unity.com© 2024 Unity Technologies

Think of your code as a data pipeline

Once you have a rough draft design of your data, the next question is what transformations
your data must undergo:

 — In a server, client requests and database data are transformed into server responses .

 — In a compiler, source code is transformed into machine code or some kind of
intermediate code .

 — In an audio encoder, audio data of one form is transformed into another .

 — In a video game, the user input and game state of one tick is transformed into a new
game state, which is then transformed into a new rendered frame .

Of course, these macro-level transformations break down into a number of substeps, but the
goal remains the same: For some beginning state of the data, you simply need to connect the
dots to reach the expected end state . The code can then be naturally structured as a “data
pipeline” in which each step transforms or produces data to be handed to later steps of the
pipeline .

This description of programming may sound too simple and obvious, but compared to other
theories of how to make software, it offers great clarity . Once you have well-defined start
and end points, figuring out exactly how to get from point A to B is a very concrete, tractable
problem, and each separate transformation can be written and rewritten independently from
the rest .

This model makes working solutions not only easier to create but also easier to optimize:

First, identifying bottlenecks in a sequential series of steps is as simple as profiling all the
steps . A minority of steps will usually account for most of the cost, giving you a clear idea of
where optimizations would be most impactful . Therefore, it’s important to consider the cost
vs gains when prioritizing your optimization efforts and being pragmatic in your performance
optimization process .

Second, the pipeline model makes it easier to find optimization opportunities. Very often you
will find cases where:

 — Certain data should be transformed into an intermediate form that lends itself to more
efficient processing by later steps .

 — Data that is redundantly produced by multiple steps should instead be cached once in
an earlier step .

 — Separate steps that access the same data should wholly or partly be consolidated into
fewer steps to reduce the overhead of repeated access .

 — Some elements of data that are processed one-by-one should instead be processed en
masse, which generally leads to more efficient memory access, less branching, and less
function call overhead, among other efficiencies .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://blog.unity.com/engine-platform/profiling-in-unity-2021-lts-what-when-and-how
https://blog.unity.com/engine-platform/profiling-in-unity-2021-lts-what-when-and-how

47 of 49 | unity.com© 2024 Unity Technologies

Lastly, a data pipeline lends itself to parallelization: As long as you have clear separation
of which steps touch which data, it’s easy to identify which steps can be safely processed
concurrently .

Measure, estimate, and budget performance at all stages of
development

A common mistake in game development is waiting to fix performance at the end of a project .
Late optimization work is both costly and risky because:

 — Many optimizations are harder to do late in the project .

 — Late optimization takes an unpredictable amount of time and effort .

 — Late optimization might fail to achieve acceptable results .

Instead of waiting, the healthier practice is to concern yourself with performance from
the very beginning of a project . Even if you’re willing to tolerate suboptimal performance
throughout your prototyping and beta phases, you should at the very least continuously
reestimate the needs of your project and establish a performance budget . How much memory,
CPU, GPU, storage space, and network bandwidth can you afford for each feature and for
the game as a whole? Do the target numbers differ across your target platforms? These are
questions that you should reassess at all stages of development .

To learn more about profiling check out our 70+ page Ultimate guide to profiling Unity games
which brings together advanced knowledge and advice from external and in-house Unity
experts on how to profile an application in Unity, manage its memory, and optimize its power
consumption from start to finish .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://unity.com/resources/ultimate-guide-to-profiling-unity-games

48 of 49 | unity.com© 2024 Unity Technologies

Prefer specific solutions over abstractions

In programming, “abstractions” are generalized solutions that hide internal details behind
simplified exteriors . Abstractions come in various forms, including functions, objects, libraries,
frameworks, programming languages, and even game engines .

While some degree of abstraction is sensible, excessive enthusiasm for abstraction can cause
problems:

 — A major reason to use off-the-shelf abstractions, like libraries, frameworks, or game
engines, is that they can spare you from difficult and time-consuming implementation
work . However, a cost of this convenience is often awkward mismatches between
the provided solution and your specific needs . Ultimately, bending an off-the-shelf
abstraction to your purposes may actually end up being more work than just writing your
own specific solution .

 — Abstractions often incur many hidden performance costs, like heavy memory footprint or
CPU overhead, costs which are paid ultimately for the sake of features you may not even
be using .

 — In your own implementations, it’s tempting to create an abstract solution that generalizes
beyond your current needs in anticipation that it may be useful later in the project . More
often than not, however, this kind of speculative work ends up creating more work than
it solves, and the resulting solution is often suboptimal (or at least hard to optimize) .
Abstractions, in fact, may actually make change more difficult when you later find that
your requirements no longer neatly fit the abstraction .

Instead of worrying about how your requirements might change later, you’re almost always
better off solving for your current requirements as you currently understand them . Embrace
iteration: You won’t fully understand your problem until you’ve tried to solve it, and you can
simply wait to change your code later after your requirements actually change . What they say
about writing in general applies to writing code: Good writing is rewriting. And what makes
code easy to rewrite better than anything else? Simplicity .

If you feel tempted to abstract, the best advice is to wait: Solve for at least a few specific
cases first, and only then consider combining their solutions into an abstraction . As Richard
Fabian writes:

“Data-oriented design is current . It is not a representation of the history of a problem or
a solution that has been brought up to date, nor is it the future, with generic solutions
made up to handle whatever will come along . Holding onto the past will interfere with
flexibility, and looking to the future is generally fruitless as programmers are not fortune
tellers . It’s the opinion of the author that future-proof systems rarely are .”

Summed up as a warning: premature abstraction is the root of all evil .

| DOTS and the Entity Component System | Made with DOTS | Appendix: Conceptsrelated to ECS

https://unity.com/
https://www.dataorienteddesign.com/dodbook/node2.html#:~:text=Data%2Doriented%20design%20is%20current,handle%20whatever%20will%20come%20along.

unity .com

https://unity.com/

	_fuv6lpyq7726
	_5tlo359uzg7c
	_9tc70ujgfaz1
	_t7n3a82eea4e
	_50ioui40j9xj
	_hsiwmdk6ad3
	_b03oc1z7p3j4
	_bbbnega2jfcu
	_6qpm4w7wc2pc
	_wn1ht4fijsu8
	_h3i2e0527k46
	_npgmii9eakwr
	_ttvldaa30vas
	_cowzwcss1yx7
	_93ihtwtmvada
	_gm56bnw9qnf7
	_2vjlcxm39wr3
	_3fmf8pylj70o
	_f52ezblrdd8s
	_ce2acv78f7o
	_m1bvih5ssrq2
	_a9q5b1awxzh5
	_5rv2avodvh14
	_31affqw9b1is
	_eh6u2tth5eat
	_v54w6q8fmg30
	_ze5pzqb5os4m
	_fxnik2jkyqcv
	_5scyvtpb33gl
	_qcthkg19cfdy

	Botón 3:
	Página 4:
	Página 5:
	Página 9:
	Página 31:
	Página 37:

