
© 2025 Unity Technologies

 ⟶ E - B O O K

Tips to increase
productivity
with Unity 6

Contents

Introduction. . 7

Editor workflows . . 8

Customize your preferred keyboard shortcuts easily. . . . 8

Work with multiple Inspectors. . 10

Define your own preferred default settings with Presets .11

Unclutter your scene view with Scene visibility. 13

Avoid selecting the wrong objects in your Scene view . . 15

Preview your assets directly in the Inspector 17

Speed up your search in projects 18

Expose debug data in the Inspector 20

Use Custom Gizmos and icons for visual debugging 21

Leverage nested prefabs and prefab
variant workflows. . 22

Create curved paths with ease using the
Splines package . . 25

Customize your builds with Build Profiles. 26

Capture smooth game footage with the
Recorder package. . 27

Editor workflow tips . . 28

More resources. . 34

2D . . 35

Sprites. . 35

Avoid duplicated assets when packing sprites 35

Structure your folders to maintain consistency. 36

Bring your pixel art directly to Unity with
Aseprite Importer . . 36

Bring your frame-by-frame animations from
Aseprite to Unity . . 37

Speed up the roundtrip import process with the
PSD Importer. . 38

Easier rule tiles with Tilemap Editor in Unity 6.1. 39

Avoid texture bleeding or small gaps between tiles 40

Use the 2D Inverse Kinematics system to create
natural movements. . 42

Simulate IES profiles with 2D lights. 43

Create rich free-form 2D environments with
2D Sprite Shape . . 44

Custom Sprite Sort Axis. . 45

Create custom lighting with Sprite Custom
Lit shaders. . 45

Reduce overdraw of transparency pixels. 47

Minimize unused areas with the Sprite Editor 48

Organize your project sprites and animation with
Sprite Libraries . . 48

Modifying Sprite Shapes control points 49

Swap sprites conveniently from the contextual menu. . . 50

Graphics and
art assets. . 52

Light leaks with light probes . . 52

Configure specific lights for specific GameObjects
with Rendering Layers . . 53

Add details to meshes with the Decal Projector 54

Convert custom shaders from the Built-In Render
Pipeline to URP. . 54

Create color grading with LUT Textures. 55

Create realistic lens effects and stylized looks
with lens flares . . 57

Manage shader variants. . 58

Create variants of a material. . 59

Planning asset groups to improve your
asset workflow . . 59

Automate and speed up your import pipeline with the
AssetPostProcessor API. . 60

Use Prefab Variants for more efficient team work. 61

Asset considerations for XR or mobile development. 61

Populate large textured areas optimally with trim sheets .63

Export to your 3D models to scale when working in
AR and VR. . 63

Shader Graph for URP and HDRP projects. 65

UI Toolkit. . 66

Design your interface with a visual reference 66

Iterate faster with PSD Importer when working
with Photoshop files . . 67

Use emojis in your game . . 67

Use the built-in emojis included with a device’s OS 68

Show additional info relative to the Visual Element on
UI Builder. . 70

Reach more markets with integrating localization
early on . . 70

Add stylization throughout the interface
with Gradients. . 71

Animate UI with USS transitions. 72

Visualize resolved styles bounding boxes in the Editor. . 72

Reuse UXML files as templates to speed up
your workflow. . 73

More resources. . 74

Developer workflows . . 75

Awaitable class. . 75

Enhance your Inspector window with attributes 76

Create your own custom windows and Inspectors 79

Create custom menus. . 80

Speed up the Enter Play time. . 80

Customize the default Script templates. 81

Distribute content to your players on demand
with Addressables . . 81

Create conditionally compiled code with
Preprocessor directives. . 82

Use ScriptableObjects to separate data from logic. 83

Promote script modularity with Assembly Definitions. . . 86

Upgrade to the Input System. . 88

Profiling tools . . 88

Animation curves . . 91

Reduce processing power with object pooling 92

More resources. . 92

IDEs and debugging . . 93

Pause execution with Debug.Break. 93

Save an if statement with Debug.Assert. 93

Use Debug.Log with context. . 94

Make important messages stand out with Rich Text. . . . 94

Strip Debug Log from your builds. 94

Troubleshoot Physics by visualizing your raycasting. . . . 94

Use Debug.isDebugBuild for development builds. 95

Set Application.SetStackTraceLogType 95

Customize your log. . 95

Speed up your workflows with Visual Code shortcuts . . 95

Configure your Console Log Entry for
improved readability. . 96

More resources. . 96

DevOps workflows . . 97

Unity Version Control tips . . 97

Asset Manager . . 102

Unity Build Automation. . 105

Unity Build Server. . 109

Sample projects . . 110

Resources for all Unity users. . 111

© 2025 Unity Technologies 7 of 111 | unity.com

Introduction

This guide provides numerous tips on how to work faster with Unity’s toolsets, regardless
if you’re an artist or a programmer. It covers new features in Unity 6 along with time-saving
steps and workflows that have been a part of Unity for years.

When you work in Unity every day, whether you work on your own or in a team, each second
or mouse click adds up. We want you to be able to waste less time and be more productive.
Whether you’re a new or experienced Unity developer, this guide can help you speed up
workflows in every stage of your game development.

Go to the Unity 6 web page, or to the New in Unity 6.0 and New in Unity 6.1 sections of the
Unity documentation to get the full story of its new features and capabilities.

We hope you find this guide helpful.

https://unity.com/releases/lts
https://unity.com/releases/unity-6
https://docs.unity3d.com/Manual/WhatsNewUnity6.html
https://docs.unity3d.com/Manual/WhatsNewUnity61.html

© 2025 Unity Technologies 8 of 111 | unity.com

Editor workflows

Customize your preferred keyboard shortcuts easily
The Shortcuts Manager is an interactive visual interface to help you view, customize, and
manage Editor hotkeys. It enables you to assign shortcuts to different contexts such as Global,
Scene view, or specific Editor tools, and visualize existing bindings for any tools that you use
frequently. You can also import/export shortcut profiles across the team or devices.

The Shortcuts Manager

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ShortcutsManager.html

© 2025 Unity Technologies 9 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Access the Shortcuts Manager from Unity’s main menu:

	— On Windows and Linux, select Edit > Shortcuts.

	— On macOS, select Unity > Shortcuts.

Common Shortcuts

Here are some common default shortcuts:

Action Windows Mac

Frame Selected F

Duplicate Items Ctrl D ⌘ D

Delete GameObject Shift Del ⌘ Del

View/Move/Rotate/Rect/Transform Q

W

E

R

T

Toggle Pivot Mode Z

Toggle Pivot Rotation X

Vertex Snap V

Snap Ctrl ⌘

Isolate selected objects in the Scene view Shift H

Toggle Maximize SpaceShift

Edit Prefab in Context P

https://unity.com/releases/lts

© 2025 Unity Technologies 10 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Common Editor shortcuts

Work with multiple Inspectors
The Focused Inspector window allows you to have multiple Inspector windows at the same
time to display the properties for a specific GameObject, component, or asset. It always
displays the properties of the item you opened it for, even if you select something else in the
Scene.

Right-click on a GameObject or component, and choose Properties. This reveals a floating
Inspector window that you can reposition, dock, or resize like any other window.

A Focused Inspector comparing two GameObjects

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/InspectorFocused.html?

© 2025 Unity Technologies 11 of 111 | unity.com

| Introduction | Editor workflows | 2D |

You can also focus on a specific component of a GameObject, requiring less screen space.

Define your own preferred default settings with Presets
Presets enable you to customize and reuse the default state of components or assets in your
Inspector. When you create a Preset, Unity captures the current settings of a component or
asset and saves them as a .preset asset.

You can then apply this configuration to other components or assets of the same type.

Use Presets to enforce standards or to apply reasonable defaults to new assets. This ensures
consistent standards across your team, so commonly overlooked settings don’t impact your
project’s performance.

The Preset icon is highlighted here in red.

Opening multiple Focused Inspectors at the same time
allows you to reference multiple GameObjects while
making changes to the Scene or make easy side-by-
side comparisons.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Presets.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/Presets.html?

© 2025 Unity Technologies 12 of 111 | unity.com

| Introduction | Editor workflows | 2D |

To create a preset:

1.	 Click the Preset icon to the top right of the component.

2.	 Click Save current to… to save the Preset as an asset.

3.	 Click one of the available Presets to load a set of values.

In this example, the Presets contain different Import Settings for 2D textures depending on usage (albedo, normal, or utility).

Other practical ways to use Presets:

	— Create a GameObject with default values: Drag and drop a Preset asset into the
Hierarchy window to create a new GameObject with the corresponding component filled
in with Preset values.

	— Associate a specific Type with a Preset: In the Preset Manager (Project Settings >
Preset Manager), specify one or more Presets per Type. Creating a new component will
then default to the specified Preset values.

	— Use filters to select among multiple Presets: You can create multiple Presets for the
same Type and use the filters) in the Preset Manager to determine which Preset is
applied.

https://unity.com/releases/lts

© 2025 Unity Technologies 13 of 111 | unity.com

| Introduction | Editor workflows | 2D |

	— Save and reuse manager settings: Use Presets for a Manager window, so the settings
can be reused; for example, if you plan to reapply the same Tags and Layers or Physics
settings. Presets can reduce setup time for your next project.

Unclutter your scene view with Scene visibility
As your Scene grows larger, you can temporarily hide specific objects to make selecting and
editing your GameObjects easier.

Instead of deactivating the GameObjects (which can lead to unintended behavior), you can
use Scene visibility controls to toggle visibility in the Scene view. Click the eye icon next to a
GameObject in the Hierarchy window to toggle Scene visibility. This hides the object from the
Scene view without affecting its active state or in-game visibility.

Hide objects in the Scene view using Scene visibility controls.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/SceneVisibility.html

© 2025 Unity Technologies 14 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Note that the status icons may change in the Hierarchy, depending on whether parent or child
objects become hidden.

Icon Status

The GameObject is visible, but some of its children are hidden.

The GameObject is hidden, but some of its children are visible.

The GameObject and its children are visible, but they only appear when you
hover over the GameObject.

The GameObject and its children are hidden.

Toggle the Scene view control bar on or off to override the global Scene visibility.

You can also use the Isolation View to concentrate on a specific object and its children. Select
the GameObject in the Hierarchy window and press Shift + H to toggle it on and off. This
overrides your other Scene visibility settings until you exit.

https://unity.com/releases/lts

© 2025 Unity Technologies 15 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Isolation View allows you to edit a GameObject without distractions.

Remember that you can always use the Shift + spacebar shortcut to maximize the viewport
and hide the rest of the Editor as well.

You can also work with multiple scenes in Unity if you need to create large streaming worlds,
or want to effectively manage multiple scenes at runtime. You can bake data in multiple
scenes simultaneously, such as lightmaps, NavMesh data, and occlusion culling data. Also,
you can edit multiple scenes using scripts within the Editor or at runtime.

Avoid selecting the wrong objects in your Scene view
Unity allows you to control whether specific GameObjects can be selected in the Scene view,
similar to how you manage Scene visibility.

You can toggle the Pickability state of a GameObject using the Scene visibility toolbar to block
specific GameObjects from being selected in the Scene view. This is useful to avoid selecting
and editing an unintended GameObject in large and complex scenes.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/MultiSceneEditing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/bakemultiplescenes.html
https://docs.unity3d.com/6000.0/Documentation/Manual/bakemultiplescenes.html
https://docs.unity3d.com/6000.0/Documentation/Manual/scriptmultiplescenes.html

© 2025 Unity Technologies 16 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Hierarchy pickability

Because you can toggle pickability for a whole branch or a single object, some GameObjects
may be pickable but have children or parents that are not. The following icons differentiate
their status.

Icon Status

You can pick the GameObject, but you cannot pick some of its children.

You cannot pick the GameObject, but you can pick some of its children.

You can pick the GameObject and its children (only appears when you hover
over the GameObject).

You cannot pick the GameObject or its children.

https://unity.com/releases/lts

© 2025 Unity Technologies 17 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Preview your assets directly in the Inspector
The Asset Preview is the visual panel in the Unity Editor, found in the bottom of the Inspector
window, that allows you to see a preview or thumbnail of an asset, such as 3D models,
materials, or textures. It provides a quick, interactive way to evaluate assets visually while
working in the Editor.

For 3D assets, like models or prefabs, you can click and drag on the Asset Preview at the
bottom of the Inspector window to rotate the object and inspect it from different angles. Use
this to quickly check the asset’s geometry, materials, or orientation without adding it to a
scene.

If the Asset Preview appears too small, you can resize it by dragging the separator above the
preview area in the Inspector window.

For assets like animated models, the Asset Preview often shows a simple default animation if
one exists on the asset. Use this to quickly assess motion and rigging.

Unity can also display thumbnails (smaller versions of the Asset Preview) directly in the
Project window. Enable this by switching your Project window to the Two Column Layout
and adjusting the preview slider at the bottom. This makes it easier to visually browse and
organize assets.

The Asset Preview window in the Happy Harvest sample

https://unity.com/releases/lts

© 2025 Unity Technologies 18 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Speed up your search in projects
There are several ways for you to search efficiently in Unity across assets, scene objects,
menu items, packages, APIs, settings, etc. Besides the search functionality in the Hierarchy
and Project views, you can also use the search button icon in the main menu bar or use the
hotkey Ctrl + K on Windows or Cmd + K on macOS to activate it.

Use the hotkey or Help menu to launch QuickSearch.

This opens a search window where it’s easy to filter your search.

The Search window

https://unity.com/releases/lts

© 2025 Unity Technologies 19 of 111 | unity.com

| Introduction | Editor workflows | 2D |

The middle section shows a list of queries available for the currently selected search area.
You can click on any query to execute it. When searching for names, you can also search by
type. Use the dropdown to select Type or the t: shorthand syntax, e.g., t:scene (to search all
scenes) or t:texture (to search all textures).

Additionally, the Search window lets you visualize objects in various ways: Compact list view,
big list view or multiple sizes of grid icons. You can also display objects in a table.

See the QuickSearch guide to learn more about searching both inside and outside of Unity.

Use the Query Builder to create custom search filters

If you’re working with complicated search queries and you need more help when exploring
your project, use the Query Builder workflow. It can be activated with the builder toggle (see
puzzle button next to the Search Field).

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.quicksearch@3.0/manual/index.html

© 2025 Unity Technologies 20 of 111 | unity.com

| Introduction | Editor workflows | 2D |

The Query Builder

Save time by creating and saving custom queries for common tasks. For example, if you
frequently need to find prefabs by certain tags or locate unused assets, define a reusable
query to automate this process. The Query Builder is also integrated with the Editor, and no
longer a package, so that you can streamline workflows for your development team.

Expose debug data in the Inspector
You can toggle each GameObject’s Inspector between Normal and Debug mode. Click the
More Items (⁝) button to open the context menu and choose the desired mode. When using
the Debug mode, all serialized fields, including private ones, hidden references, and internal
Unity data are exposed in the Inspector. This can be useful for troubleshooting or inspecting
components beyond their standard public interface.

Inspector Debug mode

https://unity.com/releases/lts

© 2025 Unity Technologies 21 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Use Custom Gizmos and icons for visual debugging
Gizmos are visual overlays that appear in the Scene view, helping you locate and identify
GameObjects during development. They can be especially useful for visualizing non-rendered
elements like triggers, spawn points, or scripts.

You can modify the icons for a GameObject using the Select Icon menu to your liking. Choose
Other to define your own icon.

Use the drop-down in the Inspector to switch gizmos.

You can also create gizmos with scripts and make them interactive. For example, a gizmo
could help you define a volume or area of influence for a custom component.

In this example, a script changes the gizmo based on a selection.

https://unity.com/releases/lts

© 2025 Unity Technologies 22 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Use the Gizmos dialogue in the Scene control bar to toggle specific gizmos or globally enable/
disable all of them.

See Creating Custom Gizmos for Development for usage examples. Also, review the APIs for
Gizmos and Handles.

Leverage nested prefabs and prefab variant workflows
Prefabs allow you to save and reuse fully configured GameObjects and lets you build your
scenes flexibly and efficiently. However, you can do so much more with prefabs. You can nest
prefabs, create prefab variants, or use prefabs to instantiate GameObjects at runtime.

Nested prefabs allow you to parent prefabs to one another. You can now create a larger
Prefab, such as a building, composed of smaller prefabs for the rooms and furniture. This
makes it efficient to split development of your assets over a team of multiple artists and
developers, who can all work on different parts of the content simultaneously.

An example of nested prefabs in the Dragon Crashers sample project

A prefab variant allows you to derive a prefab from other prefabs, much like inheritance in
object-oriented programming. To change the variant, just override certain parts without worry
of impacting the original. You can also remove all modifications and revert to the base prefab
at any time.

Alternatively, if you want to change all of your variants at once, apply changes directly onto
the base prefab itself.

https://unity.com/releases/lts
https://learn.unity.com/tutorial/creating-custom-gizmos-for-development-2019-2?uv=2019.4?
https://docs.unity.cn/ScriptReference/Gizmos.html?
https://docs.unity.cn/ScriptReference/Handles.html?

© 2025 Unity Technologies 23 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Prefab variants in the Dragon Crashers sample project

To replace one or many prefabs in a scene with another prefab, press Ctrl (on Windows) or
Cmd (on macOS) and drag the new prefab onto the old ones.

https://unity.com/releases/lts

© 2025 Unity Technologies 24 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Replacing a prefab in the Hierarchy window

https://unity.com/releases/lts

© 2025 Unity Technologies 25 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Create curved paths with ease using the
Splines package
The Splines package allows you to create and edit spline-based paths directly within the
Editor. Splines are useful for defining smooth, curved paths that can drive elements such as
roads, rivers, rails, camera tracks, or any path-based visual or gameplay element.

Examples of use cases for splines, left to right: A road through a forest, an animation path, tube meshes; find other samples showcasing all
the possibilities in the Splines Package Manager page once it’s installed

The handles and controls for splines in Unity resemble vector or 3D drawing tools from well-known DCC applications.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.splines@latest

© 2025 Unity Technologies 26 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Once you’ve created a spline, both programmers and artists can use it in interesting ways. For
example, programmers can read points of the spline and use them in the game logic with the
APIs.

Check out the How to get started with the splines package video tutorial to learn how to use
the Splines package to solve common spline use cases, animate a GameObject’s position and
rotation along a spline, and instantiate prefabs along a spline to create environments.

Customize your builds with Build Profiles
The Build Profile workflow is a new way to configure builds in Unity 6. This new workflow
supports multiple configurations for any platform, each with different settings.

Create custom Build Profiles in Unity 6 to efficiently configure different build settings for
specific platforms or needs (e.g., debugging, testing, production). This allows you to quickly
switch between build configurations that optimize your workflow.

Use the Scripting Defines and Player Settings Overrides options within Build Profiles to set
build-specific configurations, such as enabling debug tools or customizing splash images, and
share these easily with your team through version control.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.splines@2.8/api/index.html
https://youtu.be/IJbH5OZa_is
https://docs.unity3d.com/Manual/BuildSettings.html

© 2025 Unity Technologies 27 of 111 | unity.com

| Introduction | Editor workflows | 2D |

More resources:

	— What you need to know about Build Profiles in Unity 6

	— Everything you need to know about Build Profiles in Unity 6 | Unite 2024

Capture smooth game footage with the
Recorder package
The Unity Recorder package allows you to capture and export data from your project during
Play Mode. This is useful for recording gameplay, cinematics, or other runtime sequences as
video files, image sequences, or animation data.

You can find the Recorder window in the Unity Editor main menu under Window. When you
open the Recorder window, Unity restores the values from the last recording session, allowing
for a quick restart or adjustments.

You can capture images or footage with a transparent background. Unity Recorder can
capture the alpha channel and output transparency under certain conditions that depend on
the render pipeline you’re using and the Recorder settings.

The Unity Recorder window

https://unity.com/releases/lts
https://discussions.unity.com/t/what-you-need-to-know-about-build-profiles-in-unity-6/1605803
https://youtu.be/BlVsi2cSJ88?list=PLX2vGYjWbI0TV4Di9Uhg22OkOH41VcVez
https://docs.unity3d.com/Packages/com.unity.recorder@latest
https://docs.unity3d.com/Packages/com.unity.recorder@latest
https://docs.unity3d.com/Packages/com.unity.recorder@5.1/manual/RecordingAlpha.html

© 2025 Unity Technologies 28 of 111 | unity.com

| Introduction | Editor workflows | 2D |

Editor workflow tips
1.	 Use the [HelpURL] attribute to link the question mark icon in your Inspector to your

documentation or other resources. When clicked from the Inspector it will open the
specified URL in the user’s default browser.

https://unity.com/releases/lts

© 2025 Unity Technologies 29 of 111 | unity.com

| Introduction | Editor workflows | 2D |

2.	 Save a few mouse clicks each day. Hold Shift + Alt + A (Windows) or Shift + Option + A
(macOS) to activate or deactivate the currently selected GameObject.

Activate or deactivate the selected GameObject.

3.	 Unity allows you to customize the numbering scheme of GameObjects. Find it in the
Project Settings in the Editor tab. Define the options for the naming here as well as the
padding and spacing of the instance number.

Numbering Scheme

4.	 Cut and paste GameObjects in the Hierarchy window. You can also Paste As Child from
the context menu.

Paste As Child

https://unity.com/releases/lts

© 2025 Unity Technologies 30 of 111 | unity.com

| Introduction | Editor workflows | 2D |

5.	 Use the F shortcut to frame the selected object in Scene view. In Play mode, press Shift
+ F to lock onto a selected GameObject that is moving.

6.	 Display UVs, normals, tangents, and other Mesh information in the Inspector preview.

The Inspector preview

7.	 Use the Layers menu to toggle off the visibility of any Layers (such as UI) that may
obscure your Scene view. Lock a Layer to avoid changing its state accidentally.

Toggle and edit Layers

https://unity.com/releases/lts

© 2025 Unity Technologies 31 of 111 | unity.com

| Introduction | Editor workflows | 2D |

8.	 If you frequently select the same objects in your scene, use the hotkey combos under
Edit > Selection to quickly save or load a selection set.

Load and Save Selections

9.	 Use the EditorOnly tag to designate GameObjects that will not appear in a build of the
application.

EditorOnly tag

https://unity.com/releases/lts

© 2025 Unity Technologies 32 of 111 | unity.com

| Introduction | Editor workflows | 2D |

10.	 Change colors in the Editor via Unity > Preferences > Colors to find certain UI elements
or objects more quickly. Adjust the Play mode tint to remind yourself when Play mode is
active, so you don’t lose any changes you intended to save on exit.

Play mode tint

https://unity.com/releases/lts

© 2025 Unity Technologies 33 of 111 | unity.com

| Introduction | Editor workflows | 2D |

11.	 When you set up cameras, use GameObject > Align With View to line up your Game
camera with the Scene camera. Or, if you’re matching the other way around, use Align
View to Selected to align the Scene camera with another camera in the Hierarchy.

Align With View option

12.	 You can generate a list of shader variants that the Editor uses in the Scene: Go to
Edit > Project Settings > Graphics. See how many shaders and variants you have under
“Shader Loading”. Select Save to asset… to create a shader variant collection asset.

Graphics window

https://unity.com/releases/lts

© 2025 Unity Technologies 34 of 111 | unity.com

| Introduction | Editor workflows | 2D |

13.	 Double-click any tab (Project, Scene, Game, etc.) to go full screen in the Editor.

Double-click on Scene

After double-clicking on Scene

More resources
For more quick productivity tips make sure to check out the following resources:

	— Speed up your workflows in Unity with these keyboard shortcuts

	— Scalable art assets - 6 tips for improving workflows

	— Top tips for scripting in Unity 2022 LTS

https://unity.com/releases/lts
https://youtu.be/DSdtOrLlyyo
https://youtu.be/qZ5NmyoxKRk
https://youtu.be/InLmgSOJg3M

© 2025 Unity Technologies 35 of 111 | unity.com

2D

Sprites
A 2D project uses Sprites to create its visuals. These potentially contain different Texture
assets and may thus require many draw calls if not batching properly.

To optimize resources, use a Sprite Atlas (Asset > Create > Sprite Atlas) which will allow
batching sprites using the same material and packed texture.

Avoid duplicated assets when packing sprites
In 2D URP, sprites can contain normal maps or mask maps which you might also want to pack
in a Sprite Atlas. This is important for performance and quality reasons, such as memory
optimization, draw call reduction, and loading efficiency.

If you add folders to the Sprite Atlas, make sure they only contain the normal sprite or albedo
texture. Normal maps and mask maps will automatically be added to their respective atlases
that you can view in the drop-down list. Otherwise, they would be added unnecessarily to the
normal pack atlas, taking up space in it.

Having neatly organized atlases for normal maps or mask maps allow you to fine-tune
compression settings for each one. For example, normal maps can be half of the resolution,
while the normal sprites can be in full resolution, or any other adjusting that you need based
on the platform you’re developing for.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/sprite/sprite-landing.html

© 2025 Unity Technologies 36 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

The three types of atlases when packing 2D sprites

Structure your folders to maintain consistency
Folder structure within 2D sprites makes it easier to locate and manage assets, helps manage
memory by organizing assets by load time, provides a clear separation of different game
elements, and more.

Here’s a common folder structure to help organize the folders your Unity project:

	— Sprites/Characters/[CharacterName]/Animations

	— Sprites/UI/[MenuType]/Elements

	— Sprites/Environment/[LevelName]/Background

	— Sprites/Effects/[EffectType]

	— Sprites/Common/SharedElements

Bring your pixel art directly to Unity with Aseprite
Importer
Aseprite, a sprite editor and pixel art tool, has become an industry-standard DCC app for pixel
artists.

With Unity Aseprite Importer, you don’t have to export hundreds of .PNG sprites individually;
you can add your .aseprite file directly to your project.

https://unity.com/releases/lts
https://www.aseprite.org/

© 2025 Unity Technologies 37 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Work directly in Aseprite, click Save, and instantly see the changes in Unity. The Importer
includes drag and drop support for .aseprite files, automatic setup of GameObjects and
Animation clips so they’re ready to use, and a comprehensive 2D feature set integration.

In Unity 6, we enabled auto-generation of Tilemap assets from .aseprite files containing
tilemaps. Changes to the source propagate down automatically.

The Aseprite Importer in the Unity Project window: This section of the Unite 2024 talk Say hello to new 2D workflows and AI enhancements
demonstrates the Aseprite Importer in action

Bring your frame-by-frame animations from Aseprite to
Unity
One of the most helpful tips for using the Aseprite Importer in Unity is to keep your Aseprite
files well-organized with Tags and Slices before importing, as these features allow smooth
and automatic handling of animations and sprite slicing directly in the Editor.

For example, use tags such as “Idle”, “Walk”, etc., to define and organize animations, and use
Slices by marking specific areas of your sprite or separate parts, such as head, weapon, etc.
This can help with streamlining the importing process and save you time.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.aseprite@2.0/manual/AsepriteFeatures.html
https://youtu.be/JUs6pPk_y8I?t=1050

© 2025 Unity Technologies 38 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

An imported animation into Unity from Aseprite

Speed up the roundtrip import process with the PSD
Importer
The PSD Importer imports Adobe Photoshop files into Unity and generates a prefab of sprites
based on the imported source file.

You can speed up the importing process for 2D sprites, UI elements, or any other Photoshop-
made asset with the PSD importer. Traditionally, artists would export every layer in a
Photoshop file, as a .png file to use in Unity, and then they’d have to reexport .png files with
every change. This is no longer needed, as Unity supports the layered .psd format.

Animated characters made for 2D, where each limb or part is in a different layer, can be
imported to Unity for 2D Animation. It will set up the character so that you can rig it and
animate it later.

If every PSD layer is meant to be a standalone sprite, you can uncheck the Character Rig
option, removing the prefab object, and get a simple sliced sprite with all the layers usable as
standalone sprites.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@latest

© 2025 Unity Technologies 39 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Ensure that you import your layered PSD files with the PSD Importer, and not the default texture importer, so that you have access to all the
importer features.

See more helpful tips in action in this From Photoshop to Unity with PSD Importer video
tutorial.

Easier rule tiles with Tilemap Editor in Unity 6.1
Unity’s Tilemap system stores and handles Tile Assets for creating grid-based 2D levels, which
makes it easy to create and iterate on level design cycles within Unity.

One of the challenges when working with tiles is to create all the neighbouring tiles assets
and assign them to a Rule Tile Asset. In Unity 6.1, a new option, called AutoTile, simplifies this
process. Load a tile sheet, select the inner areas for it, and save it to generate a tile asset that
you can use in your tile palette.

https://unity.com/releases/lts
https://youtu.be/b2bIh8WPsi4
https://docs.unity3d.com/Manual/tilemaps/tilemaps.html
https://docs.unity3d.com/Manual/tilemaps/tiles-for-tilemaps/tile-asset-reference.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@4.3/manual/AutoTile.html

© 2025 Unity Technologies 40 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

AutoTile example

Avoid texture bleeding or small gaps between tiles
With all the effort put into art and tilemaps, you’ll want to avoid the appearance of bleeding or
small gaps in between tiles due to interpolation and smoothing of edges (this isn’t an issue in
pixel art games, where sprites are not smoothed).

If you’re not using a tile sheet then we recommend packing the sprites with Sprite Atlas to help
smoothen seams, and with internal sorting in the TilemapRenderer. This will provide better
project organization, performance, and creative control. Some default settings can work for
most sprites but tilemaps might require a bit more tweaking. Features like avoiding rotation of
sprites when packed or alpha dilation helps tiles maintain their sharp edges.

https://unity.com/releases/lts

© 2025 Unity Technologies 41 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Alpha Dilation option in the Sprite Atlas

In the left image you can see some bleeding edges on tiles, which was fixed by adjusting settings in the Sprite Atlas.

https://unity.com/releases/lts

© 2025 Unity Technologies 42 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Use the 2D Inverse Kinematics system to create
natural movements
Unity comes with a complete solution for skeletal animation called 2D Animation. Use Unity’s
2D Inverse Kinematics (IK) system for rigging movement. Use IK to create natural and dynamic
movements, such as bending knees or reaching out, without manually adjusting each bone.

Using 2D IK during the animation process for the main character in the Happy Harvest sample project

Carefully design bone hierarchies in the Sprite Editor to ensure proper control. For example,
parent the hand bone to the arm bone. Test the hierarchy with simple animations to ensure
that any adjustments to a higher-level bone also affect its children properly.

Use Animation Blend Trees for smooth transitions between animations like walking, running,
or idle states based on variables like speed or input direction. This results in natural-looking
animations without abrupt changes between states.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.animation@10.1/manual/index.html
https://docs.unity3d.com/Manual/class-BlendTree.html

© 2025 Unity Technologies 43 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Simulate IES profiles with 2D lights
It’s common in 3D software to simulate the fall-off of lights with IES profiles, for example in
HDRP. Unity’s 2D light system is very flexible with easy-to-configure parameters like light
colors, intensity, fall-off, and blending effects. If you want to be more precise about the fall-off
effect of a light source, use a light of the type sprite and use your custom-made light effect.

Using a sprite with a halo around a hanging lamp in the Happy Harvest sample project

Get more tips on 2D lighting from this article by Martin Reinmann of Odd Bug Studio, and this
page on 2D light and shadow techniques in the Universal Render Pipeline.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@17.3/manual/IES-Profile.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@latest
https://unity.com/how-to/use-2d-lights-unity-set-mood
https://unity.com/how-to/2d-light-shadow-techniques-in-the-universal-render-pipeline
https://unity.com/how-to/2d-light-shadow-techniques-in-the-universal-render-pipeline

© 2025 Unity Technologies 44 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Create rich free-form 2D environments with
2D Sprite Shape
2D Sprite Shape gives you the freedom to create rich free-form 2D environments with a visual
and intuitive workflow. It tiles sprites along a shape’s outline, automatically deforming and
swapping them based on the outline angle.

One example of how 2D Sprite Shape is used in the Dragon Crashers 2D sample project

Sprite Shape also autogenerates a Polygon Collider 2D if you want to use paths or shapes with
the Physics 2D system.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@latest
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721

© 2025 Unity Technologies 45 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Custom Sprite Sort Axis
Sort your sprites based on your preferred direction. This can be helpful if you have a number
of sprites within the same layer and sorting order and you need to resolve the sorting in a
particular way. For example, imagine a card game where the individual cards overlap a bit and
you want the card at the bottom of the screen to be rendered on top of the others.

In URP, in the 2D Renderer Asset, select General > Transparency Sort Mode, and choose
Custom Axis. For example, use (0, 1, 0) for the Transparency Sort Axis to sort along the Y
axis from top to bottom.

Transparency Sort Mode and Sort Axis example; check this video tutorial for other tips (based on a previous Unity version but still applicable)

Create custom lighting with Sprite Custom Lit shaders
If you’re looking to create lighting effects that are independent of global scene lights, consider
using a Sprite Custom Lit shader.

It’s one of the techniques used for creating the visual effects in the sample Gem Hunter Match.
This shader substitutes for scene lighting, allowing the team to modify the 2D light texture
information and control the lighting on each piece. The result is creative illumination of the
sprites, like the shimmery effect that moves over the pieces.

The light position data is moved into the shader, eliminating the need for actual light objects in
the scene, which also helps to keep it neat. The encapsulated per-object lighting in the shader
works well for better isolation and editing at scale and improves performance where batching
is possible.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/2DSorting.html?
https://youtu.be/DCAH1rlwAr4
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/2d-customlit.html?q=2D%20Light%20Texture%20Node
https://assetstore.unity.com/packages/essentials/tutorial-projects/gem-hunter-match-2d-sample-project-278941?srsltid=AfmBOooadOZjioYC6PvkW2TtVNwMJWpBI-4__2E5RoT90ZgvhXpKSDf-

© 2025 Unity Technologies 46 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

The Sprite Custom Lit Shader in Gem Hunter Match

Learn how the team used the Custom Sprite Lit Shader for full creative control with per-object
lighting on 2D sprites in the Find a treasure trove of lighting and visual effects in our new
match-3 sample Gem Hunter Match blog post.

https://unity.com/releases/lts
https://unity.com/blog/engine-platform/2d-puzzle-match-3-sample-gem-hunter-match
https://unity.com/blog/engine-platform/2d-puzzle-match-3-sample-gem-hunter-match

© 2025 Unity Technologies 47 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Reduce overdraw of transparency pixels
Avoid overdrawing of pixels to improve performance. Switch the Mesh Type to Tight (default
option) in the Import Settings. Merge overlapping graphics in a single sprite whenever
possible, and try to disable sprites that could be in a background layer with no use in the
game. This reduces the overdraw area and potential overlap with neighboring sprites.

Reduce overdraw between sprites.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/class-TextureImporter.html?

© 2025 Unity Technologies 48 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Minimize unused areas with the Sprite Editor
You can also define a custom outline around each sprite using the 2D Sprite Editor; this can
minimize the unused areas when packing the sprites and avoid overdraw.

The Sprite Editor with a custom outline

Organize your project sprites and animation with Sprite
Libraries
Make use of the Sprite Libraries to easily organize your sprites for level design and multi-part
characters.

Sprite Libraries are different from Sprite Atlases that are designed to group for rendering
performance. However, because Sprite Libraries, Sprite Atlases, and Addressables are
compatible, you can use them in combination to keep your larger projects organized.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/SpriteOutlineEditor.html?
https://docs.unity3d.com/Manual/SpriteEditor.html?
https://docs.unity3d.com/Packages/com.unity.2d.animation@12.0/manual/SL-Asset.html

© 2025 Unity Technologies 49 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

The Sprite Library Editor window

Modifying Sprite Shapes control points
The Sprite Shape can help you design organic 2D terrain, creating hills, dynamic roads, trails,
racetracks, or bodies of water, as well as decorative elements.

You can also create gameplay features – combine with Unity 2D physics to create interactive
regions (e.g., destructible terrain or deformable platforms) that can adapt and reshape in real
time.

You can modify the control points of the sprite shape; the API gives you access to the points
at runtime or Editor time. This has a performance cost, but when it’s carefully integrated it can
give your game an extra edge.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@12.0/manual/SSController.html
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@12.0/api/UnityEngine.U2D.SpriteShapeGeometryModifier.html

© 2025 Unity Technologies 50 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

Modifying Sprite Shapes control points in the Dragon Crashers - 2D URP sample project.

Swap sprites conveniently from the contextual menu
The Sprite Resolver is a component that works alongside the 2D Sprite Library system and
provides functionality to dynamically swap between different sprite visuals at runtime.

It allows you to change the sprite of a GameObject without manually assigning it in the
Inspector, enabling more powerful and flexible sprite management for your projects.

Here are some of the best use cases for the Sprite Resolver:

	— Character customization systems

	— Dynamic facial expressions or moods for NPCs or characters

	— Environmental sprite changes based on seasons or in-game events

	— Visual upgrades or degradations of objects

	— Streamlining sprite swaps in animations for greater efficiency and organization

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.animation@12.0/manual/SL-Resolver.html

© 2025 Unity Technologies 51 of 111 | unity.com

| Editor workflows | 2D | Graphics and art assets |

In Unity 6 you can make use of Sprite Resolvers in the Inspector window, as well as in the
Editor layout.

The Sprite Resolver component in the Sprite Library

https://unity.com/releases/lts

© 2025 Unity Technologies 52 of 111 | unity.com

Graphics and
art assets

Light leaks with light probes
Light leaks often occur when geometry receives light from a light probe that isn’t visible to the
geometry, for example due to the light probe being on the other side of a wall.

This is a complex topic, but here are a few techniques that could help fix light leaks:

	— Create thicker walls

	— Add an Adaptive Probe Volumes Options Override to your scene

	— Enable Rendering Layers

	— Adjust Baking Set properties

	— Use a Probe Adjustment Volume

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/probevolumes-troubleshoot-light-leaks.html#thickerwalls
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/probevolumes-troubleshoot-light-leaks.html#volume
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/probevolumes-troubleshoot-light-leaks.html#layers
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/probevolumes-troubleshoot-light-leaks.html#probevolumesettings
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/probevolumes-troubleshoot-light-leaks.html#probevolumeadjustment

© 2025 Unity Technologies 53 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

An example of a light leak

Configure specific lights for specific GameObjects with
Rendering Layers
The Rendering Layers feature lets you configure certain lights to affect only specific
GameObjects.

With the Custom Shadow Layers property, you can configure certain GameObjects to cast
shadows only from specific lights (even if those lights do not affect the GameObjects).

Rendering Layers in the URP Global settings

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/features/rendering-layers.html?
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/features/rendering-layers.html#shadow-layers

© 2025 Unity Technologies 54 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Add details to meshes with the Decal Projector
The Decal Projector component provides you with a great way of adding detail to a mesh. Use
them for elements such as bullet holes, footsteps, signage, cracks, and more.

Because they use a projection framework, they conform to an uneven or curved surface. To
use a Decal Projector with URP, you need to locate your Renderer Data asset and add the
Decal Renderer Feature.

A Decal Projector in the Scene view

Convert custom shaders from the Built-In Render
Pipeline to URP
Refer to this table in the URP documentation to see how each URP shader maps to its Built-In
Render Pipeline equivalent.

Once you select one or more of the converters, either click Initialize Converters or Initialize
And Convert. Whichever option you choose, the project will be scanned and those assets that
need converting will be added to each of the converter panels.

If you choose Initialize Converters you can limit the conversions by deselecting the items
using the checkbox provided for each one. At this stage, click Convert Assets to start the
conversion process. If you choose Initialize And Convert, the conversion starts automatically

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@17.3/manual/decal-projector-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/upgrading-your-shaders.html?

© 2025 Unity Technologies 55 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

after the converters are initialized. Once it’s complete you might be asked to reopen the scene
that is active in the Editor.

The Render Pipeline Converter

Create color grading with LUT Textures
The Color Grading effect alters or corrects the color and luminance of the final image that
Unity produces. You can use this to alter the look and feel of your project.

Use the Lookup Texture and Contribution settings to control how the Color Grading effect
operates in the post-processing effect that you need to add to your Volume settings.

The Lookup Texture and Contribution settings in Color Lookup

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/urp/post-processing-color-lookup.html

© 2025 Unity Technologies 56 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Volume blending between multiple Low Dynamic Range (LDR) lookup textures is supported but
only works correctly if they’re the same size. For this reason, it’s recommended to stick to a
single LUT size for the whole project (256x16 or 1024x32).

Setting the LUT size in the URP Asset settings

Using various LUT textures

https://unity.com/releases/lts

© 2025 Unity Technologies 57 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Create realistic lens effects and stylized looks
with lens flares
A lens flare is an artifact that appears when bright light is shining onto a camera lens. A lens
flare can appear as one bright glare or as numerous colored polygonal flares matching the
aperture of the camera.

Get familiar with lens flares by installing the samples from the Package Manager. This will add
a set of predefined Flare assets to include lens flare effects. It also contains a test scene to
browse lens flares and help you build your own.

The lens flare samples come with presets ranging from realistic lens effects to more stylized looks, example using the HDRP sample scene.

Lens flares are made out of Lens Flare Elements. Each element represents the different
artifacts that the flare produces. The element’s shape can be a polygon, circle, or a custom
image.

The element parameters allow you to tweak the Color, Transform position, and deformation, or
how it’s positioned, colored, and scaled when the flare element is part of a Lens Flare effect with
multiple elements. Remember that if it’s attached to a light source, the flare elements can use
the tint color, making it possible to reuse the same Flare asset with many different light sources.

Watch this SIGGRAPH talk to learn more about how lens flares work.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.0/manual/lens-flare-data-driven-component.html
https://youtu.be/p48rNiJBFG0

© 2025 Unity Technologies 58 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Manage shader variants
To reduce build size and time manage shader variants carefully. Use #pragma shader_feature
instead of #pragma multi_compile when variants are only needed by specific materials.
shader_feature variants are stripped unless used by materials or enabled at runtime, while
multi_compile variants are always included. Check the keywords in the shader’s Inspector.

Keywords section in the Universal Render Pipeline/Lit (Shader) window in the Gem Hunter Match sample

https://unity.com/releases/lts

© 2025 Unity Technologies 59 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Create variants of a material
With Material Variants, you can create templates or material prefabs. Based on a base
template, you can create variants that share common properties with the template material
and override only the properties that differ. If you change common and non-overridden
properties in the template material, the changes automatically reflect in the variant material.
You can also lock certain properties on materials so they can’t be overridden in the variants.

An example of Material Variants; these all share the same base material and only differ in the color property

In a more complex setup, you can create variations of a Material Variant. The material
inheritance hierarchy promotes reusability and improves iteration speed and scalability of
material authoring in your project.

Planning asset groups to improve your asset workflow
As part of the preproduction planning, you and your team should agree on aspects of the
asset workflow, such as the list of required assets to be created, the budget for them based
on your project’s technical requirements, and the development cost.

One way you can group required level elements is the following:

	— Large elements: These elements can’t be authored with unique textures but must use
tiling or modular elements, such as walls, the ground, cliffs, roofs of buildings, and so on.

	— Medium-sized props: These are props that have unique texture sheets, like barrels,
crates, rocks, and doors.

	— Highly repetitive, small elements: Think of items used to ground objects or convey
scale, including pebbles, leaves, screws, and bolts.

https://unity.com/releases/lts

© 2025 Unity Technologies 60 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Planning asset production by type, size, and shape

Budget the time, poly count, and texture resolution of each asset, and prioritize the tasks
accordingly. Then create non-essential assets and reduce the number of essential assets to
the bare minimum.

Automate and speed up your import pipeline with the
AssetPostProcessor API
In a production involving thousands of assets, avoid relying on manually configuring the
specifications of each asset from the Inspector.

To automate the process of validating asset files, use the AssetPostProcessor API. This helps
you hook into the import pipeline and run scripts prior to, or after, importing assets; just add
assets for the scripts to make the necessary changes. You can change the settings from a
single script that will automatically reapply the changes to the assets in the project.

From left to right: Examples of the mood board, concept art, prefab assets, directory, and naming standards using the AssetPostProcessor,
and final visuals for the Megacity demo by Unity

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/AssetPostprocessor.html?
https://www.youtube.com/watch?v=758hd52A_RE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=empowering-creative-teams&utm_content=technical-artist-guide-21-lts-ebook

© 2025 Unity Technologies 61 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Use Prefab Variants for more efficient team work
Another critical aspect of the asset import workflow is the creation of prefabs from 3D models.
Directly converting the FBX model into a prefab during production isn’t recommended as it
will break the prefab if changes are made to the FBX file, such as hierarchy changes in the
geometry. This will require you to replace all the instances of it in the scene with an updated
version. The solution to this problem lies in Prefab Variants.

Prefab Variants enable the scene-independent production of your art assets, making them
ideal to use while prototyping. They are recommended for collaborative iteration while building
the game world. They offer the benefit of regular prefabs, like making variations of the
original model, but also act as a “weak” reference to the FBX model prefab. This allows you
to conveniently add, split, or remove model elements without having to recreate the prefab.
Production artists can make changes to the FBX models, and the Prefab Variant will update
accordingly. Prefab Variants also allow artists to see art changes in context without altering
the project itself.

At the same time, consider using Nested Prefabs to facilitate collaboration on the scene.

A recommended Prefab Variant workflow for productions with many collaborators

Asset considerations for XR or mobile development
Decisions that you take early on in the process of creating or sourcing the art assets for your
XR or mobile games can save you time later in the development cycle. From small props to
characters, follow these tips for efficient art asset creation.

	— Start with a clear concept of what you want to create. Concepts can be illustrated with
something as simple as hand drawings, particularly at an early stage, to quickly plan out
interactions or visuals.

	— In larger studios you might have a concept artist that can bring ideas to life; for
individuals or small teams AI can help portray your idea.

	— Use 3D modeling software (like Blender or Autodesk’s Maya or 3ds Max) to build your
model. Keep poly count (number of polygons) in mind for performance, especially for
mobile AR. You can create high-poly models initially, and then optimize them later.

https://unity.com/releases/lts

© 2025 Unity Technologies 62 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

	— Set the pivot point of the model in your 3D modeling software so that its orientation
matches that of Unity. Below is an example of how to set the pivot point in 3ds Max,
which uses the z-axis as the up axis.

Adjusting the up axis

	— You can also correct the orientation of a model in Unity with these two steps:

a.	 Create an empty GameObject in the Hierarchy.

b.	 Nest your model within this GameObject, ensuring its position is set to 0,0,0 across all
axes to achieve perfect centering.

This method results in your model being anchored to a parent GameObject that
maintains a neutral rotation of 0 across all axes. It also guarantees the model is oriented
correctly with the z-axis facing forward and maintains a uniform scale of 1 on all axes.
Additionally, you can also try the Bake Axis Conversion option in the Importer.

	— Apply textures to give your model a realistic or stylized look. Consider using UV mapping
for detailed textures. Depending on what your aesthetic is for your game you might
require PBR Textures.

	— Physically based (PBR) shaders in Unity typically involve two main components: Metallic-
roughness workflow and Specular-glossiness workflow, each handling different aspects
of material properties. The result is a more lifelike and dynamic visual appearance,
enhancing the realism of 3D scenes and objects in Unity-based games or simulations.

https://unity.com/releases/lts

© 2025 Unity Technologies 63 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Populate large textured areas optimally with trim sheets

Use trim sheet for various meshes across an environment.

A trim sheet is a texturing tool used in 3D modeling and game development. It consists of
a single texture containing a variety of trim patterns and details, like moldings, edges, and
borders.

You can use trim sheets for optimizing game performance, as it reduces the number of
individual textures required, while still allowing for visually complex and varied designs on the
models.

Export to your 3D models to scale when working in AR
and VR
You can prototype and model your 3D meshes in your preferred DCC or directly in Unity with
ProBuilder, which is included in the Package Manager. You can mock up levels, scale objects,
test how they look in Unity, and export, once the scale is correct, for further refinement to
later bring them back to Unity.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.probuilder@6.0/manual/index.html

© 2025 Unity Technologies 64 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

In Unity, the measurement scale is intuitively designed, where 1 unit corresponds precisely to
1 meter. To gauge the scale of your imported assets, simply introduce a cube GameObject into
your scene. This cube, with dimensions of 1m x 1m x 1m, serves as an immediate and accurate
reference for assessing the scale of any asset. When creating your environments and props
the key is to balance aesthetics and performance, ensuring a smooth and engaging AR/VR
experience.

You can prototype levels with ProBuilder and then export them with FBX Exporter to 3D modeling software to tweak them.

https://unity.com/releases/lts

© 2025 Unity Technologies 65 of 111 | unity.com

| 2D | Graphics and art assets | UI Toolkit |

Shader Graph for URP and HDRP projects
Creating Lit and/or Unlit shaders in Shader Graph can help ensure your assets are more easily
adaptable to use in both URP and HDRP projects. In Shader Graph you can define the render
pipeline in the Master Node but keep the logic intact, making it easier to have shaders that
work in both pipelines.

Master stack

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.3/manual/index.html

© 2025 Unity Technologies 66 of 111 | unity.com

UI Toolkit

Design your interface with a visual reference
Enabling the Canvas background can help you visualize your element styling over a color or
background image. Select the UXML file in the Hierarchy pane and then choose a Canvas
background that approximates the final UI interface to judge style changes in context.

The Canvas background provides a few different options:

	— Background Color: Represents a specific shade or hue of the game environment

	— Image: For choosing a sprite or texture as the background (useful for replicating mockup
screens or reference art)

	— Camera: Displays the current gameplay in the background, enabling you to see the UI in
context of the actual game

https://unity.com/releases/lts

© 2025 Unity Technologies 67 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

The Canvas of a UXML document: Use the Color and Image options to adjust its appearance.

Iterate faster with PSD Importer when working with
Photoshop files
Unity will automatically refresh the sprites included in a multi-layered PSD file every time
you save the file with the PSD Importer used to import it into your project. This allows you
to create a quick placeholder and iterate on it while viewing changes in the Game view. This
can be a great time saver, and improve the quality of the work, by letting you see it in context
without swapping files or needing support from a fellow developer in your team.

Use emojis in your game
You can include sprites like emojis in your text via rich text tags. To use them, you’ll need to
use a sprite asset similar to the Gradient asset.

When importing multiple sprites, pack them into a single atlas to reduce draw calls. Make sure
that the sprite atlas has a suitable resolution for your target platform.

Import the sprites, create the Sprite Asset inside Assets/Resources, and adjust the info of each glyph as needed.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-sprite.html

© 2025 Unity Technologies 68 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

Use the built-in emojis included with a device’s OS
If you are targeting a specific runtime platform, such as iOS or Android, you can make use
of the system’s built-in emoji font instead of including the source font in your project. This
can save memory and eliminate the need to package a large collection of emojis with your
application.

These are the steps to use OS emojis in your project:

1.	 Create a Font asset from the font that your target system uses. On iOS the font is called
Apple Emoji (used in this example), and on Android it’s called Noto Color Emoji (currently
only COLRv0 is supported). Make sure the Font Asset is of the type Color, and then set
the atlas population mode to Dynamic OS which doesn’t require you to include the source
font in your asset saving space.

2.	 Ensure Clean Dynamic Data On Build is checked on the Font Asset

3.	 Enable Parse Escape Sequences on UI Builder and enter the desired emojis using the
emoji keyboard from MacOS or Windows or in UTF format, for example, you would
introduce a smiley as \U0001F601. You can check the UTF of each emoji in the Character
Table of the Font Asset.

4.	 The build running on MacOS displays the emojis according to the OS font.

5.	 We can observe that in our test, the build size is smaller than the standalone emoji
font proving that it was not included in the project but still being used to render the
appropriate emojis.

https://unity.com/releases/lts
https://github.com/googlefonts/noto-emoji/blob/main/fonts/NotoColorEmoji.ttf

© 2025 Unity Technologies 69 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

https://unity.com/releases/lts

© 2025 Unity Technologies 70 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

Show additional info relative to the Visual Element on
UI Builder
Click the vertical ellipsis (⁝) in the Hierarchy header to further visualize the UI elements.

In the Hierarchy pane, additional information appears next to the element Type. The #options-
bar Name selector and .options-bar Style Class selector appear when checked.

Filter for different selectors in the Hierarchy.

You might notice that some selectors begin with the .unity- prefix. These are default styles
that apply to all elements. Any defined selectors will override these values.

Reach more markets with integrating localization
early on
You can simplify the localization process by integrating the Localization package with UI
Toolkit. This integration lets you provide region-specific content for your players, no matter
where they might be.

Use the Game View Locale drop-down to preview the UI in different languages, ensuring
elements display correctly in each Locale.

Use the Game View Locale drop-down to preview the localization.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@latest

© 2025 Unity Technologies 71 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

Add stylization throughout the interface with Gradients
In UI Toolkit you can apply Gradients via the <gradient> tag. Make sure Rich Text is enabled
and see the changes take effect inside UI Builder or in the Game view.

1.	 Create a gradient color asset via Create > Text Core > Gradient Color. Make sure to
place this file inside Assets/Resources or any subfolder under Resources.

2.	 Create a Text Settings asset to refer to from the Panel Settings. In the asset look for
Color Gradient Presets, and indicate the folder or subfolder inside Resources where
the asset is.

3.	 Add the following rich text tags inside UI Builder: <color=white><gradient=”testC
olorGradient”>Gradient Test</gradient></color>.

The color tag restores the font color to white so the gradient looks as intended, while
the referred gradient has to match the asset name created in step 1. Make sure Rich
Text is enabled.

4.	 You can see the changes take effect inside UI Builder or in the Game view.

Using the <gradient> tag in UI Toolkit

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-color-gradient.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-text-setting-asset.html

© 2025 Unity Technologies 72 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

Animate UI with USS transitions
For visual elements, animations don’t require additional code because pseudo-classes
(:active, :inactive, :hover, etc.) can have their own selectors. Whenever a pseudo-class
triggers a style change, any defined transitions will automatically animate the change.

For example: A button can grow or shrink when hovered over (:hover), clicked (:active), or
elements can fade out or become invisible based on user interaction or other events.

Those changes of states are triggered by user actions but you can arbitrarily change the
pseudo-class :enabled and :disabled which will manually trigger the USS animations relative to
those pseudoclasses. This gives you an option to trigger animations at your will from code.

An example of a USS transition animation

Visualize resolved styles bounding boxes in the Editor
Use bounding boxes to identify layout issues, alignment problems, and interactively debug
your UI structure within the Editor.

To visualize resolved bounding boxes using UI Toolkit, go to Window > UI Toolkit -> Debugger
to open the UI Toolkit Debugger. Then use the Pick Element tool to select your UI element
and enable the Show Layout feature. This option displays bounding boxes and layout
information directly on top of your UI in the Game view.

https://unity.com/releases/lts

© 2025 Unity Technologies 73 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

The UI Toolkit Debugger includes several handy features to help debug your UI.

Reuse UXML files as templates to speed up your
workflow
UXML files can be used similar to prefabs. For example, you could have a project with a UXML
layout that contains an item icon and count number that you need to spawn many times inside
an inventory.

If you right-click on any UXML you get the option to create a Template, which can later be
added to any other visual element in the Hierarchy pane or instantiated from code. Once
created you can find it in your Library and Project view.

https://unity.com/releases/lts

© 2025 Unity Technologies 74 of 111 | unity.com

| Graphics and art assets | UI Toolkit | Developer workflows |

Templates are reusable UXML and are available in the Library pane in the Project tab

More resources
Download the e-book Create scalable and performant UI with UI Toolkit in Unity 6 to get in-
depth instructions on how to create UI with UI Toolkit across a wide range of devices.

A sample project accompanies the e-book. UI Toolkit Sample – Dragon Crashers is available
in the Unity Asset Store. The UI Toolkit sample demonstrates how you can leverage UI Toolkit
for your own applications. This demo involves a full-featured interface over a slice of the 2D
project Dragon Crashers, a mini-RPG, using the Unity 6 UI Toolkit workflow at runtime.

Additionally, make sure to check out the QuizU project on the Unity Asset Store and the
supporting articles:

	— The UI Toolkit sample project QuizU

	— QuizU: State patterns for game flow

	— QuizU: Managing menu screens in UI Toolkit

	— QuizU: The Model View Presenter pattern

	— QuizU: Event handling in UI Toolkit

	— QuizU: UI Toolkit performance tips

https://unity.com/releases/lts
https://unity.com/resources/scalable-performant-ui-uitoolkit-unity-6?isGated=false
https://assetstore.unity.com/packages/essentials/tutorial-projects/ui-toolkit-sample-dragon-crashers-231178
https://assetstore.unity.com/packages/essentials/tutorial-projects/ui-toolkit-sample-dragon-crashers-231178
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607
https://discussions.unity.com/t/quizu-state-pattern-for-game-flow/309255
https://discussions.unity.com/t/quizu-managing-menu-screens-in-ui-toolkit/310272
https://discussions.unity.com/t/quizu-the-model-view-presenter-pattern/311043
https://discussions.unity.com/t/quizu-event-handling-in-ui-toolkit/312447
https://discussions.unity.com/t/quizu-ui-toolkit-performance-tips/312451

© 2025 Unity Technologies 75 of 111 | unity.com

Developer workflows

Awaitable class
Unity 6 introduces the Awaitable class, a lightweight, allocation-free type designed
specifically to support C# async/await workflows within Unity. It provides a performance-
friendly alternative to coroutines. It makes it easier for you to write asynchronous code that
integrates cleanly with Unity’s frame-based update cycle.

using UnityEngine;

using System.Threading.Tasks;

public class LogWithDelay : MonoBehaviour

{

 private async void Start()

 {

 Debug.Log(“Message 1”);

 await Task.Delay(1000); // Wait 1 second

 Debug.Log(“Message 2”);

 await Task.Delay(1000); // Wait another second

 }

}

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Awaitable.html

© 2025 Unity Technologies 76 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Enhance your Inspector window with attributes
Unity has a variety of attributes that can be placed above a class, property, or function to
indicate special behavior such as creating headers, spacing, or ranged fields in the Inspector.

Attributes affecting the Inspector fields

C# contains attribute names within square brackets. These are some common attributes you
can add to your scripts.

Attribute Description Example

SerializeField This forces Unity to
serialize a private field
and makes it visible in
the Inspector.

[SerializeField]

private GameObject m_myObject;

Range This attribute takes
a float or int variable
restricted to a specific
range. The field
appears as a slider in
the Inspector.

[Range(1,6)]

public int IntegerRange;

[Range(0.2f, 0.8f)]

public float m_floatRange;

HideInInspector This hides a variable
in the Inspector while
serializing it.

[HideInInspector]

public Int p = 5;

https://unity.com/releases/lts

© 2025 Unity Technologies 77 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

RequireComponent This automatically adds
required components
as dependencies to
avoid setup errors.

Note: This attribute
only checks the
moment that the
component is added to
a GameObject.

// PlayerScript requires the
GameObject to have a Rigidbody

[RequireComponent(typeof(Rigidbo
dy))]

public class PlayerScript:
Monobehaviour

{

 private Rigidbody m_rBody;

 void Start()

 {

 m_rBody =

 GetComponent<Rigidbody>();

 }

}

Tooltip This shows a tooltip
when the user hovers
a mouse over a field in
the Inspector.

public class PlayerScript:
Monobehaviour

{

 [Tooltip(“Health value between
0 and 100.”)]

 int m_health = 0;

 }

Space This adds a small space
between your fields
(without any additional
text) to create visual
separation between
your fields.

[Space(10)] // 10 pixel of spacing
added

int p = 5;

Header This adds some bold
text and spacing to help
organize your variables
in the Inspector. Only
add this to the first field
that you want to belong
to the group.

public class PlayerScript:
Monobehaviour

{

 [Header(“Health Settings”)]

 private int m_health = 0;

 private int m_maxHealth = 100;

 [Header(“Shield Settings”)]

 private int m_shield = 0;

 private int m_maxShield = 0;

}

https://unity.com/releases/lts

© 2025 Unity Technologies 78 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Multiline This makes the string
editable with the
multiline text field. Pass
in an optional int to
designate the number
of lines.

Tip: Use this for
annotating scripts with
notes to yourself or
another user.

[Multiline]

public string textToEdit;

[Multiline(20)]

public string m_moreTextToEdit;

SelectionBase This is useful for
selecting an otherwise
empty GameObject
whose children may
contain meshes.
Add the attribute
to any component
on the base object.
When picking objects
in the Editor, the
GameObject containing
the [SelectionBase]
attribute gets selected
rather than the
children.

// add this to the base GameObject

[SelectionBase]

public class PlayerScript:
Monobehaviour

{

}

ColorUsage The [ColorUsage]
attribute lets you
control what colors can
be selected in a color
field. You can enable
HDR and/or disable
the alpha channel,
depending on the
parameters.

public ColorUsageAttribute(bool
showAlpha, bool hdr, float
minBrightness, float
maxBrightness, float
minExposureValue, float
maxExposureValue);

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ColorUsageAttribute.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ColorUsageAttribute.html

© 2025 Unity Technologies 79 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

RunOnce Need to automatically
run a function only
once when your project
starts? Using the static
standard with the
[RuntimeInitialization]
attribute is an easy
way to do it. Use it
Performing one-time
project setup logic
like a boatloader as
demonstrated in the
QuizU sample.

public RuntimeInitializeOnLoadMeth
odAttribute(RuntimeInitializeLoadT
ype loadType);

This is just a small sample of the numerous attributes available. Do you want to rename
your variables without losing their values? Or invoke some logic without needing an empty
GameObject? You can even create your own PropertyAttribute to define custom attributes for
your script variables. See the Scripting API for a complete list of attributes.

Create your own custom windows and Inspectors
One of Unity’s most powerful features is its extensible Editor. We recommend that you use the
UI Toolkit package to create Editor UIs such as custom windows and custom Inspectors.

A custom Editor modifies how the MyPlayer script displays in the Inspector.

See Creating user interfaces (UI) for more detail on how to implement custom Editor scripts
using either UI Toolkit or IMGUI. For a quick introduction to UI Toolkit, watch the Getting
Started with Editor Scripting tutorial.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RuntimeInitializeOnLoadMethodAttribute.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RuntimeInitializeOnLoadMethodAttribute.html
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607
https://docs.unity3d.com/ScriptReference/Serialization.FormerlySerializedAsAttribute.html
https://docs.unity3d.com/ScriptReference/Serialization.FormerlySerializedAsAttribute.html?
https://docs.unity3d.com/ScriptReference/Serialization.FormerlySerializedAsAttribute.html?
https://docs.unity3d.com/ScriptReference/RuntimeInitializeOnLoadMethodAttribute.html?
https://docs.unity3d.com/ScriptReference/RuntimeInitializeOnLoadMethodAttribute.html?
https://docs.unity3d.com/ScriptReference/PropertyAttribute.html
https://docs.unity3d.com/ScriptReference/AddComponentMenu.html?
https://docs.unity3d.com/Packages/com.unity.ui.builder@1.0/manual/index.html?
https://docs.unity3d.com/ScriptReference/Editor.html?
https://docs.unity3d.com/Manual/UIToolkits.html?
https://www.youtube.com/watch?v=mTjYA3gC1hA
https://www.youtube.com/watch?v=mTjYA3gC1hA

© 2025 Unity Technologies 80 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Create custom menus
Unity includes a simple way to customize Editor menus and menu items, the MenuItem
attribute. You can apply this to any static method in your scripts.

If you have functions for your project that you will use frequently, organize them into menu
items. This allows you to build a basic user interface with just a single PropertyAttribute
modifier.

The MenuItem attribute creates a simple interface to attach the static method (Take Screenshot).

Speed up the Enter Play time
When you enter Play mode, your project starts and runs as it would in a build. Any changes
you make in the Editor during Play mode reset when you exit Play mode.

Unity performs two significant actions every time you enter Play mode:

	— Domain Reload: Unity backs up, unloads, and recreates scripting states.

	— Scene Reload: Unity destroys the Scene and loads it again.

These two actions take more and more time as your scripts and scenes become more
complex.

If you don’t plan on making any more script changes, the Enter Play Mode Settings (Edit >
Project Settings > Editor) can save you a bit of compile time. Unity gives you the option to
disable either Domain Reload, Scene Reload, or both. This can speed up entering and exiting
Play mode.

https://unity.com/releases/lts

© 2025 Unity Technologies 81 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Just remember that if you do plan on making further script changes, you need to reenable
Domain Reload. Likewise, if you modify the Scene Hierarchy, you should reenable Scene
Reload. Otherwise, unexpected behavior could result.

The effects of disabling the Reload Domain and Reload Scene settings.

Customize the default Script templates
Do you find that you make the same changes every time you create a new script? Do you
instinctively add a namespace or delete the update event function? Save yourself a few
keystrokes and create consistency across the team by setting up the script template for your
preferred starting point.

Every time you create a new script or shader, Unity uses a template stored in %EDITOR_
PATH%\Data\Resources\ScriptTemplates:

	— Windows: C:\Program Files\Unity\Editor\Data\Resources\ScriptTemplates

	— Mac: /Applications/Hub/Editor/[version]/Unity/Unity.app/Contents/Resources/
ScriptTemplates

There are also templates for shaders, other behavior scripts, and assembly definitions.

For project-specific script templates, create an Assets/ScriptTemplates folder. Copy the script
templates into this folder to override the defaults.

You can also modify the default script templates directly for all projects, but make sure that
you back up the originals before making any changes.

Distribute content to your players on demand with
Addressables
Addressables and Asset Bundles are powerful tools to structure your game in logical blocks
that can then be exported separately and added to the main executable whenever needed.

https://unity.com/releases/lts

© 2025 Unity Technologies 82 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

They are used to load and unload assets, to configure, build, and load asset bundles that you
can then distribute to your players on demand. The Addressables system is built on top of
Asset Bundles, taking care of dependencies resolution and bundle loading for you.

Before initializing the Addressables system in a Unity project

If you’re new to Addressables, make sure you check out the Get started page in Unity
Documentation.

Tips for effective asset management:

	— Leverage Addressables from the start and ensure that every new asset is registered as
an Addressable.

	— Aim to group assets by how often they are loaded and used together, instead of
organizing them by type. This will improve runtime memory usage, reduce boot time, and
as a result improve game retention as well.

	— Aim for small bundles because it leads to shorter dependency chains and lower runtime
memory usage.

Read more in the Effective asset management in Unity with Addressables article.

Create conditionally compiled code with Preprocessor
directives
The platform-dependent compilation feature allows you to conditionally compile and execute
code based on the target platform, Unity version, or scripting backend.

This can be useful when you write cross-platform code, optimize for device-specific behavior,
or manage version-specific APIs.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.addressables@latest
https://discussions.unity.com/t/effective-asset-management-in-unity-with-addressables/1621379
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html?

© 2025 Unity Technologies 83 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

You can supply your own custom #define directives when testing in the Editor. Open the Other
Settings panel of the Player settings, and navigate to Scripting Define Symbols.

Scripting Define Symbols in Script Compilation

Use ScriptableObjects to separate data from logic
ScriptableObjects can help you promote clean coding practices by separating data from
logic. This means it’s easier to make changes without causing unintended side effects, which
improves testability and modularity. They’re also useful when you’re collaborating with non-
programmers like artists and designers; they can edit game data without touching code.

Dragon Crashers demonstrates a typical use case. A UnitInfoData class inherits from
ScriptableObject. Each of its instances contains the unit’s name, sprite, and health settings.
This data remains constant over the course of gameplay, making it especially suitable for
storage inside a ScriptableObject.

A ScriptableObject defines a data container object.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/class-PlayerSettings.html?
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721?srsltid=AfmBOopmhanu88Rl9j-UGuKBtd2XAO7seF87QpqMFTkaKZhmBXWDlAio

© 2025 Unity Technologies 84 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

The CreateAssetMenu attribute generates a context menu item to help you generate a ScriptableObject asset. Each unit has additional
ScriptableObjects for sound effects and special abilities.

With the assets created in the project window, you can fill in the correct values using the
Inspector: Unit Name, Unity Avatar (Sprite), and Total Health.

Use the Inspector to fill out values for the ScriptableObject asset. These values won’t change during gameplay.

A GameObject (like the UnitController in this case) can then reference the ScriptableObject
asset. If the scene suddenly fills with units, the data on the ScriptableObject asset does not
duplicate, saving memory.

https://unity.com/releases/lts

© 2025 Unity Technologies 85 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

The Monobehaviour object (UnitController, shown above) refers to the ScriptableObject data asset in the project.

Save memory and stay organized with ScriptableObjects. Set static data and settings in the asset in the project just once, even if you have
lots of GameObjects.

https://unity.com/releases/lts

© 2025 Unity Technologies 86 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Even if you add a thousand instances of a prefab to your scene, they still refer to the same
data stored in your asset. Setting up the set of values just once guarantees consistency.

As your game scales up with more unit types, simply create more ScriptableObject assets
and swap them out appropriately. Maintain your gameplay data just by tweaking the centrally
stored assets.

ScriptableObjects don’t replace keeping persistent data for the rest of your application’s save
files, where the data may change during gameplay. It’s a workflow suited more for storing your
static gameplay settings and default values. Unlike parsing data from JSON or XML, reading a
ScriptableObject asset won’t generate garbage (and, as a bonus, it’s faster).

More resources on ScriptableObjects:

	— Create modular game architecture with ScriptableObjects in Unity

	— ScriptableObjects Paddle Ball demo project

	— ScriptableObject documentation

Promote script modularity with Assembly Definitions
An assembly is a compiled C# code library that groups related types and resources into a
single, logical unit. In Unity, you can manage your assemblies using Assembly Definition Files
(.asmdef). Organizing your scripts into custom assemblies promotes modularity and reusability
while also decreasing compilation time. It prevents them from getting added to the default
assemblies automatically and limits which other scripts they can access.

If you’re cleaning up your projects with Assembly Definitions and your Editor scripts are put
into your builds, then create an Assembly Definition in your Editor folder and set it to include
only the Editor Platform.

https://unity.com/releases/lts
https://blog.unity.com/games/persistent-data-how-to-save-your-game-states-and-settings
https://resources.unity.com/games/create-modular-game-architecture-with-scriptable-objects-ebook?ungated=true
https://github.com/UnityTechnologies/PaddleGameSO
https://docs.unity3d.com/Manual/class-ScriptableObject.html?

© 2025 Unity Technologies 87 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Assembly Definitions settings in the Inspector

https://unity.com/releases/lts

© 2025 Unity Technologies 88 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Upgrade to the Input System
If you haven’t upgraded already, make sure to check out the Input System package which is
a newer, more flexible system than the Input Manager, which allows you to use any kind of
Input Device to control your Unity content. It’s referred to as “The Input System Package”, or
just “The Input System”. It also supports rebindable controls, input action assets, and cleaner
separation between input and gameplay logic giving you significant advantages over the
legacy system.

To get started check out the following resources:

	— Prototype mobile games faster with the Input System in Unity 6 | Unite 2024

	— Get up and running with the Input System

	— Unity Input System 7-video tutorial series

Profiling tools

Optimize your memory performance with Memory Profiler

The Memory Profiler lets you capture and analyze memory usage in your project to identify
leaks, reduce memory spikes, and optimize runtime performance. Use it to take memory
snapshots during key moments (e.g. scene loads, after long play sessions) and compare them
to track down objects that aren’t being released properly.

When you create resources in code make it a habit to name them in your Memory Profiler.
Also, remember to release anything you allocated to avoid leaks.

A snapshot of the Memory Profiler

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.inputsystem@latest
https://youtu.be/ptvjumIHxYg
https://discussions.unity.com/t/get-up-and-running-with-the-input-system/1620267/4
https://youtube.com/playlist?list=PLX2vGYjWbI0RpLvO3B7aH-ObfcOifMD20&si=e1hudCEOHvfDH7Bt
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html

© 2025 Unity Technologies 89 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Use the ProfilerMarker to pinpoint performance critical code

Instead of only seeing performance data aggregated under general markers like
BehaviourUpdate, you can isolate and measure the exact execution time of your specific
functions. Use the ProfilerMarker to mark up script code blocks as a way to increase the detail
level of profiling runs. The information is then displayed in the CPU Profiler and can also be
captured with the Unity Recorder. This provides you with a detailed breakdown of where time
is spent in your specific code sections, making it easier to identify performance bottlenecks
and optimize the code.

using UnityEngine;

using Unity.Profiling;

public class UnityTips : MonoBehaviour {

 private static readonly ProfileMarker SetupProfileMarker = new Pro-
fileMarker(“Setup”);

 private static readonly ProfileMarker ExpensiveProfileMarker = new
ProfileMarker(“Expensive”);

 public void UpdateLogic() {

 SetupProfileMarker.Begin();

 // Setup your performance heavy things, Initializers, and so
on...

 SetupProfileMarker.End();

 using (ExpensiveProfileMarker.Auto()) { //This starts and ends
automatically

 // More expensive things here.

Get a performance audit on your project

Use the Project Auditor (introduced as a package in Unity 6.1) to analyze your projects
performance, maintain best practices, and identify potential issues and bottlenecks.

With a few clicks you can scan your entire project and get a detailed report about
inefficiencies, such as heavy scripting calls, unused assets, excessive entity counts, and more.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@latest
https://unity.com/blog/unity-6-1-is-now-available

© 2025 Unity Technologies 90 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

Project Auditor Summary view

The reports generated are categorized by severity, such as errors, warnings, and informational
insights making it easy to focus on addressing errors and warnings first, such as over-
allocation of memory or excessive garbage collection.

It’s generally recommended to run the Project Auditor at key stages of development (e.g.,
before milestones, beta releases, final builds), so that you can catch performance bottlenecks,
unused assets, or outdated code early, preventing problems from growing larger as your
project scales.

You can customize the Project Auditor using custom rules and filters. For example, exclude
certain scripts or assets from analysis that are meant to be unused and experimental, or make
specific rules for your build targets, resolution, text compression, or other project settings to
ensure they are optimized for your “budgets” .

https://unity.com/releases/lts

© 2025 Unity Technologies 91 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

using UnityEngine;

public class LerpComparison : MonoBehaviour

{

 [SerializeField] private float start = 0f;

 [SerializeField] private float end = 10f;

 [SerializeField] private float t = 1.5f;

 private void Start()

 {

 // Clamps t to [0, 1]
 float clamped = Mathf.Lerp(start, end, t);

 // Uses full t value

 float unclamped = Mathf.LerpUnclamped(start, end, t);

 // Outputs 10

 Debug.Log($”Mathf.Lerp: {clamped} (t = {t})”);

 // Outputs 15

 Debug.Log($”Mathf.LerpUnclamped: {unclamped} (t = {t})”);

 }

}

An example of using custom lerp in Unity

Use AnimationCurve for more than just animation

AnimationCurves are typically used to animate the value of component properties in
AnimationClip, but you can use them to dynamically drive any float value.

Animation Curves can be edited within the Inspector either as public variables, or when
serialized. You can save, export, or load them in Edit mode or at runtime. Editable tangents
make it possible to control the shape of the curve between the keys.

Animation curves

Control interpolation with the custom lerp function

By default, Mathf.Lerp(a, b, t) clamps the interpolation factor t between 0 and 1, meaning it
won’t return values outside the range between a and b. If you need values to overshoot (t >
1) or undershoot (t < 0), use Mathf.LerpUnclamped(a, b, t) instead. This gives you full control
over the interpolation and allows for effects like extrapolation or momentum-based motion.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Component.html
https://docs.unity3d.com/ScriptReference/AnimationClip.html
https://docs.unity3d.com/Manual/EditingCurves.html

© 2025 Unity Technologies 92 of 111 | unity.com

| UI Toolkit | Developer workflows | IDEs and debugging |

An Animation Curve property in the Inspector: Clicking on it opens the Curve Editor, where you can adjust the curve and save it into your own
library by selecting the cog icon.

Check out the blog post Animation Curves, the ultimate design lever for more practical tips
and examples of using AnimationCurves in your project.

Reduce processing power with object pooling
Object pooling is a design pattern that can enhance performance optimization by reducing the
processing power required of the CPU to run repetitive create and destroy calls. Instead, with
object pooling, existing GameObjects can be reused over and over.

How you use object pools will vary by application. A good general rule is to profile your code
every time you instantiate a large number of objects, since you run the risk of causing a GC
spike.

If you detect significant spikes that put your gameplay at risk of stuttering, consider using an
object pool. Just remember that object pooling can add more complexity to your codebase
due to the need to manage the multiple life cycles of the pools. Additionally, you may also end
up reserving memory your gameplay doesn’t necessarily need by creating too many premature
pools.

Learn more about object pooling from the e-book Level up your code with design patterns and
SOLID and its companion sample project that’s available for free from the Unity Asset Store.

More resources
	— Use a C# style guide for clean and scalable game code (Unity 6 edition)

	— The Unity game designer playbook

	— Create modular game architecture in Unity with ScriptableObjects

	— Effective asset management in Unity with Addressables

	— What you need to know about Build Profiles in Unity 6

https://unity.com/releases/lts
https://unity.com/blog/games/animation-curves-the-ultimate-design-lever
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html
https://unity.com/resources/design-patterns-solid-ebook?isGated=false
https://unity.com/resources/design-patterns-solid-ebook?isGated=false
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616
https://unity.com/resources/c-sharp-style-guide-unity-6?isGated=false
https://unity.com/resources/game-designer-playbook?isGated=false
https://unity.com/resources/create-modular-game-architecture-with-scriptable-objects-ebook?isGated=false
https://discussions.unity.com/t/effective-asset-management-in-unity-with-addressables/1621379
https://discussions.unity.com/t/what-you-need-to-know-about-build-profiles-in-unity-6/1605803

© 2025 Unity Technologies 93 of 111 | unity.com

IDEs and debugging

Pause execution with Debug.Break
If you want to check certain values in the Inspector when the application is difficult to pause
manually you can use Debug.Break to pause the execution in your code.

Save an if statement with Debug.Assert
Debug.Assert checks a condition at runtime and logs an error message to the console if the
condition you entered returns false. Unlike Debug.Log, which always runs, assertions are
meant to flag unexpected states and can be more effective for validating assumptions in your
code.

// You can save the if statement in release...

if (health > maxhealth)

{

 Debug.LogError(“Current health is greater than maxhealth!”, this);

}

//... by using an assertion

Debug.Assert(health < maxhealth, “Current health is greater than max-
health!”, this);

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Debug.Break.html?

© 2025 Unity Technologies 94 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Use Debug.Log with context
When using Debug.Log, you can pass in an object (typically a GameObject or component) as a
second parameter. This links the log message to that object in the Console, so when you click
the message, Unity highlights the associated object in the Hierarchy.

Debug.Log(“Enemy spawned”, gameObject);

Make important messages stand out with Rich Text
Unity’s Console supports a subset of Rich Text (like , <i>, <color>, etc.) in Debug.Log
messages. You can use these to highlight, color-code, or emphasize parts of your log output,
making important messages stand out during development.

Debug.Log(“<color=red>Error:</color> Player health is critically
low!”);

Strip Debug Log from your builds
Unity does not strip the Debug logging APIs from non-development builds automatically. Wrap
your Debug Log calls in custom methods and decorate them with the [Conditional] attribute.

Removing the corresponding Scripting Define Symbol from the Player Settings compiles out
the Debug Logs all at once. This is identical to wrapping them in #if… #endif preprocessor
blocks.

See this General Optimizations guide for an example.

Troubleshoot Physics by visualizing your raycasting
Troubleshooting physics? Debug.DrawLine and Debug.DrawRay can help you visualize
raycasting by drawing a line between specified start and end points.

 void Start()

 {

 // draw a 5-unit white line from the origin for 2.5 seconds

 Debug.DrawLine(Vector3.zero, new Vector3(5, 0, 0), Color.
white, 2.5f);

 }

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Debug.Log.html?
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/StyledText.html
https://docs.unity3d.com/ScriptReference/Debug.Log.html?
https://docs.unity3d.com/Manual/class-Debug.html?
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity7.html
https://docs.unity3d.com/ScriptReference/Debug.DrawLine.html?
https://docs.unity3d.com/ScriptReference/Debug.DrawRay.html?
https://docs.unity3d.com/ScriptReference/Debug.DrawLine.html
https://docs.unity3d.com/ScriptReference/Debug.DrawLine.html
https://docs.unity3d.com/ScriptReference/Vector3-zero.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Vector3.html
https://docs.unity3d.com/ScriptReference/Color-white.html
https://docs.unity3d.com/ScriptReference/Color-white.html
https://docs.unity3d.com/ScriptReference/Color-white.html

© 2025 Unity Technologies 95 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Use Debug.isDebugBuild for development builds
Use Debug.isDebugBuild to check if the application is running as a Development Build. This
allows you to conditionally execute debug-only code, such as logging, diagnostics, or test
utilities, without affecting release builds.

if (Debug.isDebugBuild)
{
 Debug.Log(“Running in Development Build mode.”);
}

Set Application.SetStackTraceLogType
Use Application.SetStackTraceLogType or the equivalent checkboxes in PlayerSettings to
decide which kinds of log messages should include stack traces. Stack traces can be useful,
but they are slow and generate garbage.

Stack Trace in PlayerSettings in the Editor window

Customize your log
The Logger API allows you to create and configure custom Logger instances for more
advanced or modular logging. While you can use the built-in Debug.unityLogger, creating your
own logger gives you finer control over log formatting, filtering, and output channels:

var logger = new Logger(Debug.unityLogger.logHandler);
logger.Log(LogType.Log, “Custom log message”);

Speed up your workflows with Visual Code shortcuts
If you use Visual Code as the IDE of choice, these shortcuts may prove useful:

	— Windows

	— Mac

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Debug-isDebugBuild.html?
https://docs.unity3d.com/ScriptReference/Application.SetStackTraceLogType.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Logger.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Debug-unityLogger.html
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

© 2025 Unity Technologies 96 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Configure your Console Log Entry for improved
readability
By default, the Console Log Entry shows two lines. For improved readability, you can configure
this to be more streamlined with one or multiple lines depending on your preferences (see
image below).

The Console Log Entry options allows you to set the number of lines in your log.

More resources
	— How to debug game code with Roslyn Analyzers

	— How to run automated tests for your games with the Unity Test Framework

	— Speed up your debugging workflow with Microsoft Visual Studio Code

	— How to debug your code with Microsoft Visual Studio 2022

	— Testing and quality assurance tips for Unity projects

https://unity.com/releases/lts
https://unity.com/how-to/debugging-with-rosyln-analyzers
https://unity.com/how-to/automated-tests-unity-test-framework
https://unity.com/how-to/debugging-with-microsoft-visual-studio-code
https://unity.com/how-to/debugging-with-microsoft-visual-studio-2022
https://unity.com/how-to/testing-and-quality-assurance-tips-unity-projects

© 2025 Unity Technologies 97 of 111 | unity.com

DevOps workflows

Unity Version Control tips
Unity Version Control (UVCS) is a scalable, engine-agnostic version control and source code
management tool for game development studios of all sizes.

If you’re already using Unity Version Control with Unity 6, here are some of the latest updates
and tips that your team could use in your day-to-day work.

Work on multiple branches in parallel, without losing your work, with Shelve
and Switch

Starting with UVCS package version 2.7.1, you can use shelvesets to temporarily save your
current changes when switching between branches, to make sure your unfinished work is
safely stored and easily accessible.

https://unity.com/releases/lts
https://unity.com/solutions/version-control-systems
https://unity.com/solutions/source-code-management
https://unity.com/solutions/source-code-management
https://docs.unity3d.com/Packages/com.unity.collab-proxy@2.7/changelog/CHANGELOG.html

© 2025 Unity Technologies 98 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

In your Unity Version Control window, right-click the branch you’d like to switch to and select
Switch workspace to this branch.

The Handle pending changes window

Then choose whether you want to carry your changes or leave them behind temporarily. The
Shelves option provides great flexibility by allowing you to revisit your changes, re-apply
them, and share them with your team.

The Shelves tab in the Unity Version Control window

https://unity.com/releases/lts

© 2025 Unity Technologies 99 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Declutter your branches view with the Hide/Unhide feature

When your project’s branches view becomes cluttered, you can use the global Hide/Unhide
feature to hide branches directly from the context menu, making them invisible for your entire
team across all UVCS platforms (Unity plugin, Unity Dashboard, or the Desktop application).

You can make Hidden branches visible again by using the “strikethrough eye” icon or from the
context menu of the Hidden branches list (see images below).

The strikethrough eye icon in Unity Version Control

The “Unhide” option in the branch context menu

Avoid losing asset data with the exclusive lock option

The UVCS plugin for the Unity Editor allows you to lock an asset to prevent others from
modifying it. This helps the team to avoid losing any work-in-progress data and removes the
merge operation for files that can’t be merged.

https://unity.com/releases/lts

© 2025 Unity Technologies 100 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

To enable the lock support go to Configure rules in the File locks tab.

The Configure rules option in the File locks tab

Then configure the repository, the destination branch (usually the main branch), and the file
extensions you want in order to enable the lock support.

The Create Lock Rule in Unity Version Control

https://unity.com/releases/lts

© 2025 Unity Technologies 101 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

To avoid conflicts, make sure to check out the assets before making changes.

The Checkout option from the Unity Version Control context menu

If you want to learn more about the smart locks system check out the Smart Locks page.

Protect your changes with “Enable manual checkout for Unity Assets”

When working with unmergeable assets, the UVCS Unity plugin will automatically check out a
file after you modify and save it. This workflow leaves room for someone else to lock the same
file without your changes.

To avoid this from happening, go to the UVCS plugin settings via clicking on the gear icon, and
select the option Enable manual checkout for Unity Assets.

The Enable Manual Checkout for Unity Assets option

https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/devops/manual/smart-locks

© 2025 Unity Technologies 102 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

This preference makes the asset read-only until it’s explicitly checked out. When you click the
Checkout option in the Inspector, your file becomes editable and you’ll get the exclusive lock
to change it.

The Checkout option in the Inspector

Asset Manager
If you’re looking for a digital asset management system to manage your assets, such as
models, textures, audio files, etc., then check out Unity’s Asset Manager. It supports over 70
file formats to help teams centralize, organize, discover, and use assets seamlessly across
projects.

Use the Asset Manager via the web interface or through the Editor integration, depending on
your needs.

https://unity.com/releases/lts
https://unity.com/products/asset-manager
https://docs.unity.com/cloud/en-us/asset-manager/supported-file-types
https://docs.unity.com/cloud/en-us/asset-manager/supported-file-types

© 2025 Unity Technologies 103 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Manage, view, and organize your assets in your preferred browser

The web interface enables asynchronous, speedy collaboration among all team members and
stakeholders involved in your projects. Through the web interface, you can create and manage
collections, move assets between collections or projects, and track changes with version
history.

You can easily upload single or multiple files while adding relevant collections and tags,
making it straightforward to structure your assets and collaborate with your team to review
and improve them. You can enrich assets with custom metadata, where admins, owners, and
managers can define new metadata fields – like text, Boolean, and numeric field types – while
all users can add tags, including AI-suggested tags, for overall better organization.

Working with assets in the web interface of the Asset Manager

The Dependency Viewer reveals asset relationships at a glance, showing what each asset
needs and what depends on it. Both upstream and downstream dependencies are available in
the Dependency Viewer.

https://unity.com/releases/lts
https://docs.unity.com/cloud/en-us/asset-manager/asset-dependencies

© 2025 Unity Technologies 104 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

An example of asset dependencies in the Dependency Viewer

Manage assets without any disruptions in the Editor

The Unity Asset Manager package integrates with the Unity Editor, allowing you to manage
assets without disrupting your workflow. After installing it, you can upload assets to, and
import them from, the Unity Cloud, as well as access assets from all your projects through the
Editor’s search interface.

The in-Editor solution also makes it easier to reuse prefabs, scripts, and other cross-project
components, speeding up iteration time and enabling teams to focus on better workflows and
optimization.

Accessing the Asset Manager from the Unity Editor

https://unity.com/releases/lts

© 2025 Unity Technologies 105 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

To help you locate specific assets efficiently, make sure to filter by creator, status, type,
update time or import status. The plugin automatically detects dependencies across assets.
For example, if multiple prefabs use the same material, only one instance of the material is
uploaded. This ensures optimized storage and prevents unnecessary duplication.

Learn more about the Unity Asset Manager from the following resources:

	— Video tutorial: A quick guide to the Asset Manager in Unity

	— Unity Learn: Unity Asset Manager: Quick start guide

	— Article: Introduction to Asset Manager transfer methods in Unity

Unity Build Automation
Unity DevOps Build Automation, formerly known as Cloud Build, is a turnkey continuous
integration and deployment (CI/CD) solution that can execute and deploy builds in the cloud. It
empowers you to build and release more often for higher-quality, more innovative releases.

Build Automation can be connected to any source control repository in a matter of minutes
and set up to execute builds manually or automatically once any change is committed to
version control. Build Automation also supports multiple platforms including iOS, Android,
Windows, and Unity Web, eliminating the need to maintain unique build infrastructure for every
platform.

As of Unity 6.1, Build Automation is now fully integrated with the Editor and you can run quick
validation builds from local branches with your build automation settings.

Share and reuse build settings across your teams

You can install the Build Automation package from the Build Profiles window or from the
Package Manager.

Once you install the package, a new section labeled Build Automation Settings will appear
under your selected profile. These settings allow you to define how Unity automates your
builds.

https://unity.com/releases/lts
https://youtu.be/d9gUrNP_NQ0
https://learn.unity.com/tutorial/unity-asset-manager-guide
https://unity.com/resources/asset-manager-transfer-methods
https://unity.com/blog/unity-6-1-is-now-available

© 2025 Unity Technologies 106 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

The Build Automation Settings section in your Build Profiles window

For Android, iOS, and other platforms that require credentials, you’ll have to configure the
credentials in the Unity Dashboard. To create new credentials, click on the New button next to
the Credentials drop-down.

This opens a new window in the Build Automation dashboard where you can create a new set
of credentials. To learn more about credentials and app signing make sure to check out the
Unity Build Automation documentation.

Credentials configurations window in the Unity Dashboard

https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/devops/manual/build-automation/sign-build-artifacts/sign-an-ios-application

© 2025 Unity Technologies 107 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Once you save your credentials, go back to the Build Profiles window and click on Refresh
list. You should see the credentials in the drop-down list. The build settings are automatically
saved to your build profile, which means you can reuse and share across your team.

Test work in progress with Shelve and Build

Once you’ve configured your settings, and you’re ready to run a build, click the Cloud Build
button in your build profile. Unity will then begin processing your build in the cloud.

Cloud Build settings in your build profile

https://unity.com/releases/lts

© 2025 Unity Technologies 108 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

If you have pending changes in your project, you’ll be prompted with the option to Shelve and
Build. This allows you to build your local changes without pushing them to the main repository
which is ideal for testing work in progress.

 Shelve and Build pending changes

If you have no pending changes, Unity will create a build using the latest commit from the
branch you currently have checked out.

Track build progress, troubleshoot, and download results with Build History

As soon as the build begins, the Editor will open the Build History window where you can
monitor its progress and the build status. This view provides logs and access to the build
artifacts, allowing you to troubleshoot or download results easily.

Build History window

https://unity.com/releases/lts

© 2025 Unity Technologies 109 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

Each status is color-coded for quick visibility and allows you to take actions, e.g., rerun failed
builds or download the log. Check out this documentation page to get a full overview of what
each status symbol means.

Share build artifacts links with your team members

Once builds are successfully completed, you can download the build artifacts or share links
with team members.

Download build artifacts for successful builds

For failed builds, you can download the logs for further inspection.

Learn more about Build Automation from the Getting started with Build Automation in Unity
video tutorial and the Unity Build Automation: Quick start guide tutorial on Unity Learn.

Unity Build Server
If you want to streamline and automate the process of building, compiling, and packaging
Unity projects, especially across larger teams and organizations, try Unity Build Server.

This is a license management tool that enables floating build licenses for Unity, allowing
multiple machines to build without requiring a full Unity Editor license for each machine. It is a
great addition to your automated build pipeline and continuous integration (CI) environments.

To start using Unity Build Server, you can deploy the Unity Licensing Server software on a
central server in your network and add your Unity Build Server licenses to this server. Then,
you can configure each build machine to request a build license from the Build Server when it
needs to build a project.

The Unity Licensing Server that is used in the Build Server solution can support more than
one type of subscription on the same server. Customers can use the same server to distribute
floating licenses to the developers using a Unity Enterprise Floating or a Unity Industry
Floating subscription. See an example in the image below.

https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/devops/manual/build-automation/check-build-results/overview
https://youtu.be/DV_TCXtl35I
https://learn.unity.com/tutorial/unity-build-automation
https://unity.com/products/unity-build-server

© 2025 Unity Technologies 110 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

You can learn more about the requirements for Unity Build Server, how to set it up, and how to
get started from the Unity Licensing Server documentation.

Two active subscriptions: Unity Build Server (for build machines) and Unity Enterprise Floating (for developers).

Sample projects
From sample projects that provide game interfaces that showcase UI Toolkit and UI Builder
workflows, or samples demonstrating various design patterns and project architecture, as well
as those that showcase capabilities of 2D lighting and visual effects in the Universal Render
Pipeline (URP) in Unity 6, we’ve got you covered with these projects.

	— Happy Harvest - 2D Sample Project

	— Gem Hunter Match - 2D Sample Project

	— Dragon Crashers - UI Toolkit Sample Project

	— QuizU - A UI Toolkit sample

	— Paddle Game ScriptableObjects

https://unity.com/releases/lts
https://docs.unity.com/licensing/en-us/manual
https://assetstore.unity.com/packages/essentials/tutorial-projects/happy-harvest-2d-sample-project-259218
https://assetstore.unity.com/packages/essentials/tutorial-projects/gem-hunter-match-2d-sample-project-278941
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492?target=_blank
https://github.com/UnityTechnologies/PaddleGameSO

© 2025 Unity Technologies 111 of 111 | unity.com

| Developer workflows | IDEs and debugging | DevOps workflows

	— Level up your code with design patterns and SOLID

	— C# Code style guide

	— Fantasy Kingdom

	— Shader Graph samples

	— VFX Learning Templates Sample Content

	— URP 3D sample

	— HDRP sample scene

	— HDRP Time Ghost

	— VR Multiplayer Template

	— MR multiplayer template

	— UGS samples

Resources for all Unity users

You can download many more e-books for advanced Unity developers and creators from the
Unity best practices hub. Choose from over 30 guides, created by industry experts, and Unity
engineers and technical artists, that provide best practices for efficient game development
with Unity’s toolsets and systems.

You’ll also find tips, best practices, and news on the Unity Blog and Unity community forums,
as well as through Unity Learn and the #unitytips hashtag.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616
https://github.com/thomasjacobsen-unity/Unity-Code-Style-Guide
https://unity.com/demos/fantasy-kingdom
https://docs.unity3d.com/Packages/com.unity.shadergraph@latest
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@latest
https://unity.com/demos/urp-3d-sample
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@latest
https://unity.com/demos/time-ghost
https://docs.unity3d.com/Packages/com.unity.template.vr-multiplayer@latest
https://docs.unity3d.com/Packages/com.unity.template.mr-multiplayer@1.0/manual/index.html
https://docs.unity.com/ugs/solutions/manual/Welcome
https://unity.com/how-to
https://unity.com/how-to
https://unity.com/blog
https://discussions.unity.com/
https://learn.unity.com/

unity.com

https://unity.com/releases/lts
https://unity.com/

	Introduction
	Editor workflows
	Customize your preferred keyboard shortcuts easily
	Work with multiple Inspectors
	Define your own preferred default settings with Presets
	Unclutter your scene view with Scene visibility
	Avoid selecting the wrong objects in your Scene view
	Preview your assets directly in the Inspector
	Speed up your search in projects
	Expose debug data in the Inspector
	Use Custom Gizmos and icons for visual debugging
	Leverage nested prefabs and prefab variant workflows
	Create curved paths with ease using the
Splines package
	Customize your builds with Build Profiles
	Capture smooth game footage with the
Recorder package
	Editor workflow tips
	More resources

	2D
	Sprites
	Avoid duplicated assets when packing sprites
	Structure your folders to maintain consistency
	Bring your pixel art directly to Unity with Aseprite Importer
	Bring your frame-by-frame animations from Aseprite to Unity
	Speed up the roundtrip import process with the PSD Importer
	Easier rule tiles with Tilemap Editor in Unity 6.1
	Avoid texture bleeding or small gaps between tiles
	Use the 2D Inverse Kinematics system to create
natural movements
	Simulate IES profiles with 2D lights
	Create rich free-form 2D environments with
2D Sprite Shape
	Custom Sprite Sort Axis
	Create custom lighting with Sprite Custom Lit shaders
	Reduce overdraw of transparency pixels
	Minimize unused areas with the Sprite Editor
	Organize your project sprites and animation with Sprite Libraries
	Modifying Sprite Shapes control points
	Swap sprites conveniently from the contextual menu

	Graphics and
art assets
	Light leaks with light probes
	Configure specific lights for specific GameObjects with Rendering Layers
	Add details to meshes with the Decal Projector
	Convert custom shaders from the Built-In Render Pipeline to URP
	Create color grading with LUT Textures
	Create realistic lens effects and stylized looks
with lens flares
	Manage shader variants
	Create variants of a material
	Planning asset groups to improve your asset workflow
	Automate and speed up your import pipeline with the AssetPostProcessor API
	Use Prefab Variants for more efficient team work
	Asset considerations for XR or mobile development
	Populate large textured areas optimally with trim sheets
	Export to your 3D models to scale when working in AR and VR
	Shader Graph for URP and HDRP projects

	UI Toolkit
	Design your interface with a visual reference
	Iterate faster with PSD Importer when working with Photoshop files
	Use emojis in your game
	Use the built-in emojis included with a device’s OS
	Show additional info relative to the Visual Element on
UI Builder
	Reach more markets with integrating localization
early on
	Add stylization throughout the interface with Gradients
	Animate UI with USS transitions
	Visualize resolved styles bounding boxes in the Editor
	Reuse UXML files as templates to speed up your workflow
	More resources

	Developer workflows
	Awaitable class
	Enhance your Inspector window with attributes
	Create your own custom windows and Inspectors
	Create custom menus
	Speed up the Enter Play time
	Customize the default Script templates
	Distribute content to your players on demand with Addressables
	Create conditionally compiled code with Preprocessor directives
	Use ScriptableObjects to separate data from logic
	Promote script modularity with Assembly Definitions
	Upgrade to the Input System
	Profiling tools
	Animation curves
	Reduce processing power with object pooling
	More resources

	IDEs and debugging
	Pause execution with Debug.Break
	Save an if statement with Debug.Assert
	Use Debug.Log with context
	Make important messages stand out with Rich Text
	Strip Debug Log from your builds
	Troubleshoot Physics by visualizing your raycasting
	Use Debug.isDebugBuild for development builds
	Set Application.SetStackTraceLogType
	Customize your log
	Speed up your workflows with Visual Code shortcuts
	Configure your Console Log Entry for improved readability
	More resources

	DevOps workflows
	Unity Version Control tips
	Asset Manager
	Unity Build Automation
	Unity Build Server
	Sample projects
	Resources for all Unity users

