
V E R S I O N C O N T R O L
A N D P R O J E C T
O R G A N I Z A T I O N
B E S T P R A C T I C E G U I D E

U N I T Y F O R G A M E S

2 0 2 0 LT S E D I T I O N

E - B O O K

Contents

Introduction. . .4

Source.control.vs.version.control. . .5

Foundational.concepts . . .6

Why use version control? . 6

Centralized vs distributed version control 7

Centralized . 7

Distributed . 8

Typical workflow . 9

Key terms . 10

Best.practices.for.organizing.a.Unity.project.12

Project organization . 12

Folder structure . 12

Empty folders . 19

The .meta file . 20

Naming standards . 21

Workflow optimization . 22

Split up your assets . 22

Presets . 22

Code standards . 24

Version.control.systems. . .27

Git . 27

Perforce (Helix Core) . 30

Apache Subversion . 31

Plastic SCM . 32

Comparison .34

Setting.up.Unity.to.work.with.version.control 35

Editor project settings . 35

Perforce Helix Core . 35

Plastic SCM . 37

Git and other solutions . 39

What to ignore . 39

Working with large files . 40

Best.practices.for.version.control. . 42

Commit little, commit often . 42

Keep commit messages clean . 42

Avoid indiscriminate commits .43

Get the latest .43

Know your toolset . 45

Feature branches and Git Flow . 46

Pull requests . 48

Summary. . 49

Additional.resources.. . .51

4.of.52.| unity .com© 2022 Unity Technologies

Introduction
Software development becomes a different beast when you move from working
on your own to with a team . Where do you store the project so that every team
member has access to it? What happens if more than one person works on the
same file at the same time? Programmers often understand the concepts behind
source control, but what about artists and other non-technical team members?
How can you minimize the amount of support they need from programmers, so
they don’t have to worry about doing something wrong?

Source control, or version control, can be a daunting topic for game developers
and creators, especially if you’re not from a technical background . But it doesn’t
need to be that way . There are a number of tools that integrate with Unity to
help your team work effectively with versioning .

This guide explains the key concepts of version control and compares some
of the different version control systems (VCS) available . It provides tips and
tricks you can use when setting up your Unity project to help ensure team
collaboration is smooth and efficient . Finally, you’ll pick up some version control
best practices for working successfully in a team .

https://unity.com/

5.of.52.| unity .com© 2022 Unity Technologies

Source.control.vs.
version.control
In the beginning of computing, all software development was pure code . Even
as 3D graphics evolved, everything was still described as code . As such, the
term “source control” was used to describe the systems in place to manage the
project's contents, while the term source code management, or SCM, was given
as a label for those tools .

Moving into the modern era of software and game development, we now work
with a lot more than just the source code . 3D model formats, such as FBX,
textures, materials, audio files, and more, mean that SCMs now have to handle
more than just text file changes . The term “source control” no longer covers
what we need, and thus “version control system” or VCS, became a more apt
description and is now the common label given to the tools used .

The terms can still be used interchangeably . However, when talking about Unity
projects that often deal with large binary assets, version control and VCS are most
accurate, so that’s how they’ll be referred to throughout the rest of the guide .

Three of the main version control systems that work best with Unity are Plastic
SCM, Git, and Perforce Helix Core . This guide presents the benefits and
shortcomings of these systems when working as a team on a Unity project .

 1 Plastic SCM joined the Unity family in 2020, which means that these tools are closely integrated into the Unity Editor .

https://unity.com/
https://unity.com/solutions/source-code-management
https://blog.unity.com/news/codice-software-joins-unity-technologies-to-bring-version-control-to-real-time-3d-workflows?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

6.of.52.| unity .com© 2022 Unity Technologies

Foundational.concepts
This section covers some of the core concepts of version control . If you don't
know your commit from your push, read this section to learn about the core
concepts and terminology of version control .

How version control works

Version control allows you to keep a historical record of your entire project . It
brings organization to your work and enables teams to iterate efficiently . But how?

Project files are stored in a shared database called a repository, or “repo .” You
backup your project at regular intervals to the repo, and if something goes wrong,
you can revert back to an earlier version of the project .

With a VCS, you can make multiple individual changes and “commit” them as a
single group for versioning . This commit sits as a point on the timeline of your
project, so that if you need to revert back to a previous version, everything from
that commit is undone . You can review and modify each change grouped within a
commit or undo the commit entirely .

With access to the project’s entire history, it’s easier to identify which changes
introduced bugs, restore previously removed features, and easily document
changes between your game or product releases .

What’s more, because version control is typically stored in the cloud or on a
distributed server, it supports your development team’s collaboration from
wherever they’re working – an increasingly important benefit as remote work
becomes commonplace .

Why use version control?

Aside from the reasons mentioned above, version control is useful for making
experimental changes . You can add a new feature in your local version of the
project, and if things don’t work out, you just revert your changes to go back to
working on a clean, functional version of the project .

You can iterate on experimental ideas, and if you need to help out on a major issue
in the main project, version control allows you to save your changes for a later
date . Then you can get your local version back to the main branch to help out with
whatever needs to be worked on . Once you’re done, you can restore and carry on
with the experimental work .

Most version control systems prevent you from accidentally overwriting work that
someone else in your team has done . As you commit your work to the repository,
you will also need to “pull” the latest updates from the repository . This allows you
to check that someone else hasn’t been working on the same file as you . This is
the dreaded “merge conflict,” one of the things that can be scary to people who
are not used to version control . However, merge conflicts can usually be resolved
easily once you understand the tools .

https://unity.com/

7.of.52.| unity .com© 2022 Unity Technologies

Centralized vs distributed version control

For the most part, version control systems fall into one of two categories:
centralized or distributed . Depending on which kind of version control system
you work with, some of the terms outlined below will apply, some won’t, and
some may even have a different meaning . Let’s take a look at the differences
between these two categories .

Centralized.

The first key difference between centralized and distributed systems is where
the repo resides . Many companies choose the centralized option to keep the
servers hosting their proprietary software on-site . Source control security is
often an important factor in choosing this kind of system . A centralized system
doesn’t have to mean on-site servers since the repo can still be hosted in the
cloud, but this setup is less common than in distributed systems .

The other key difference between the two approaches is how users deploy
their changes to the repo . Centralized version control is often seen as the more
straightforward option . When working with a centralized repo, changes are
fetched from and sent to the repository directly . This process is called updating
from and committing to the repo .

The downside to this setup is that users must be connected to the server to
submit any work . To avoid conflicts, users can lock files for modification . This
is known as checking out the file, and it prevents anyone else from committing
changes until the file is checked back in .

In a centralized workflow, a user only ever has the latest version of the project
files on their workstation, and the server holds the project’s entire history .

https://unity.com/

8.of.52.| unity .com© 2022 Unity Technologies

Distributed.

In a distributed workflow, there is still a single location where the repo lives,
usually on a cloud service such as GitHub, but users clone the entire project
history to their workstation . This allows users to work on their own local copy
and commit changes quickly since they don’t need to be connected to a central
server . To send those changes so others can access them later, the user needs
to push them to the server and pull any other changes down . However, they don’t
need to be always working with the latest files like on a centralized system .

Working this way allows you to create a group of changesets that perhaps
equate to a larger feature before pushing them up for the rest of your team . In
fact, it’s encouraged to commit little and often, but we will get to those best
practices later on .

File locking is still available in some distributed workflows, however, it’s less
common since you can handle merges more easily . By pulling the latest
changes from the server to your local project, you can compare anyone else’s
changes to your own to be sure there are no conflicts before pushing your
changes to the repo .

While the distributed approach is often preferred, it also has a few
disadvantages . Firstly, having the entire project history on local machines takes
up a lot of space, especially for teams working with binary file types . Git has an
option called Large File Storage (LFS), which converts the history of certain files
to text pointers, offloading some of the weight . However, other files have the
entire history, and repos can end up with a load of old or stale test data . Studios
working with small M2 drives may then find the size of the repo gets bloated
with old versions, overloading their drives .

https://unity.com/

9.of.52.| unity .com© 2022 Unity Technologies

Secondly, as developers don’t have to stay in contact with a central server, they
can end up working in isolation for long periods . Their local version can become
quite detached from the main repository, and when it comes time to merge their
changes back in, this may be more work than they bargained for .

Throughout this book, we’ll focus on three main version control systems, and it’s
worth keeping in mind which workflow each supports:

 — Git – distributed

 — Perforce – centralized

 — Plastic SCM – both

Typical workflow

Centralized

1 . Update your working copy with changes from the server

2 . Make your changes

3 . Commit your changes to the central server

Distributed

1 . Pull any remote changes into your local repo

2 . Make changes

3 . Commit changes

4 . Perform steps 2 and 3 as many times as you like

5 . Push all commits back to the remote repo

https://unity.com/

10.of.52.| unity .com© 2022 Unity Technologies

Key terms

Term Explanation

Working copy Your local version of the project . Sometimes also called a
checkout or workspace . You make changes to your working
copy, and, when you’re happy with them, commit them to
the repository .

Commit/check in A commit encodes file modifications . A centralized workflow
sends those changes to the server and is more commonly
called checking in . In a distributed workflow, it adds them to
the changeset that needs to later be pushed to the server .

Pull/update/
check out

Pulling or updating retrieves the latest changes available
on the server . Check out is the more common term when
working in a centralized workflow .

Locking Locking a file prevents it from being edited by another
user . You are telling the server, “I’m working on this; please
don’t make any other changes .” Locking is generally not
supported in distributed workflows .

Clone In a distributed workflow, cloning a repo is how you initially
get a copy of the project and its entire history onto your
local machine .

Tags Tags are special notes that can be added to a commit .
They are often used to mark a point in time where a build
was made .

Branch A branch creates a new copy of the codeline, which can
then be worked on in parallel . This allows someone to
work on parts of the project in isolation, for example a new
feature, without affecting the main line of development .

Merge Merging can happen either when a branch is finished and
needs to be merged back into the main line, or even just
when two people make changes around the same time .
The two changesets will need to be compared and merged
together to create the new working copy . Most merges can
be handled automatically .

https://unity.com/

11.of.52.| unity .com© 2022 Unity Technologies

Term Explanation

Conflict A conflict is what happens when merges cannot be handled
automatically . This usually results from two people making
changes to the same lines of code or the same binary file .

Code conflicts can usually be resolved by comparing the
text and working out which changes should be accepted, or
even whether both can be brought together in a way .

For binary files, such as Unity scenes or Prefabs, merging a
conflict becomes a lot trickier . However, sometimes a quick
conversation with the other contributor is the easiest way
to resolve what changes make the most sense to keep .

Pull request When work on a branch is complete, it’s good practice to
open a pull request . This signals to the rest of your team
that work on that branch is complete and ready to be
merged back into the main line . This system gives team
leads and/or seniors a chance to review the changes before
accepting them back into the main branch .

Head Head refers to the latest commit on your working copy .

Reset/revert Depending on your VCS, reset or revert can be used to
discard all your local changes back to their state at the head .

Index The Git index is a file that describes all the current changes
you have in your working copy . These changes sit in what’s
known as the staging area, where you can select which
changes you want to add to your next commit .

Git stash If you have some changes that aren’t ready yet for a
commit, but you need to move onto some different work,
you can use a stash to save those changes in a temporary
file and reset your working copy back to head .

https://unity.com/

12.of.52.| unity .com© 2022 Unity Technologies

Best.practices..
for.organizing.a.
Unity.project
Regardless of which VCS you choose, there are several things to consider
that will help streamline your version control workflow when working in Unity .
First, let’s take a look at some of the different ways your team can work
together effectively .

Project organization

Folder.structure

Here’s what a typical Unity project folder structure looks like . Remember, in
the Editor, you can switch your view in the Project window between one and
two columns .

One-column and two-column Project window views

https://unity.com/

13.of.52.| unity .com© 2022 Unity Technologies

Although there is no single way to organize your project, in general,
follow these recommendations .

 — Document your naming conventions and folder structure . A style guide
and/or project template makes your files easier to find and organize . Pick
what works for your team, and make sure everyone is on board with it .

 — Be consistent with your naming convention . Don’t deviate from your
chosen style guide or template . If you do need to amend your naming
rules, parse and rename your affected assets all at once . In cases where
the changes affect a large number of files, consider automating the
update using a script .

 — Don’t use spaces in file and folder names . Unity’s command line tools
have issues with path names that have spaces . Use CamelCase as an
alternative for spaces .

 — Separate testing or sandbox areas . Create a separate folder for non-
production scenes and experimentation . Subfolders with usernames can
divide your work area by team member .

 — Avoid extra folders at the root level . In general, store your content files
within the Assets folder . Don’t create additional folders at the project’s root
level unless it’s absolutely necessary .

 — Keep your internal assets separate from third-party ones . If you are using
assets from the Asset Store or other plug-ins, odds are they have their
own project structure . Keep your assets separate .

Note: If you find yourself modifying a third-party asset or plug-in for your
project, then version control can really help you out when you need to get the
latest update for the plug-in. Once the update is imported, you can look through
the diff to find where your modifications may have been overwritten and
reimplement them.

https://unity.com/

14.of.52.| unity .com© 2022 Unity Technologies

Eample.1

Assets
+---Art
| +---Materials
| +---Models
| +---Textures
+---Audio
| +---Music
| \---Sound
+---Code
| +---Scripts # C# scripts
| \---Shaders # Shader files and shader graphs
+---Docs # Wiki, concept art, marketing material
+---Level # Anything related to game design in Unity
| +---Prefabs
| +---Scenes
| \---UI

While there is no set folder structure, here are a couple of examples of how
you might set up your Unity project . These structures are based on splitting up
your project by asset type . The Asset Types manual page describes the most
common assets in greater detail . You can use the Template or Learn projects as
an example of organizing your folder structure . While you’re not limited to these
folder names, they should give you a good starting point .

Eample.2

+---Art
| +---Materials
| +---Models
| +---Music
| +---Prefabs
| +---Sound
| +---Textures
| +---UI
+---Levels
+---Src
| +---Framework
| \---Shaders

https://unity.com/
https://docs.unity3d.com/Manual/AssetTypes.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

15.of.52.| unity .com© 2022 Unity Technologies

If you download one of the Template or Starter Projects from the Unity Hub,
you’ll find that those projects have their subfolders split up based on asset
type, as seen in the image below .

Depending on which template you’ve chosen, you should see subfolders that
represent several common assets .

Templates available to download in the Unity Hub

Asset.Type Explanation

Animations Animations contain animated motion clips and their
controller files . These can also contain Timeline assets for
in-game cinematics or rigging information for procedural
animation .

Audio Sound assets include audio clips as well as the mixers used
for blending the effects and music .

Editor This contains scripted tools made for use with the Unity
Editor but not appearing in a target build .

Fonts This folder contains the fonts used in the game .

Materials These assets describe surface shading properties .

Meshes Store models created in an external digital content creation
(DCC) application here .

Particles The particle simulations in Unity, created either with the
Particle System or Visual Effect Graph .

Prefabs These are reusable GameObjects with prebuilt Components .
Add them to a scene to build .

https://unity.com/

16.of.52.| unity .com© 2022 Unity Technologies

Defining a good project structure in the beginning will avoid version control
issues later . If you move assets from one folder to another, many VCS will see
that as just deleting one file and adding another, rather than the file being
moved . This loses the history of the original file .

Asset.Type Explanation

Scripts All user-developed code for gameplay appears here .

Settings These assets store render pipeline settings, such as for
the High Definition Render Pipeline (HDRP) and Universal
Render Pipeline (URP) .

Shaders These programs run on the GPU as part of the
graphics pipeline .

Scenes Unity stores small, functional portions of your project into
Scene assets . They often correspond to game levels or part
of a level .

Textures Image files can consist of texture files for materials and
surfacing, UI overlay elements for user interface, and
lightmaps to store lighting information .

ThirdParty If you have assets from an external source like the Asset
Store, keep them separated from the rest of your project
here . This makes updating your third-party assets and
scripts easier .

Third-party assets may have a set structure that cannot
be altered .

The sample scene with the HDRP template includes several asset folders .

https://unity.com/

17.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM can handle file moves within Unity and maintains the history of any
file that’s moved . However, it’s essential that when you move a file, you do it in
the Unity Editor so that the .meta file moves with the asset file .

Once you’ve decided on a folder structure for your projects, use an Editor script
to reuse the template and create the same folder structure for all projects
moving forward . When it’s placed in an Editor folder, the script below will create
a root folder in Assets matching the "PROJECT_NAME" variable . Doing this
keeps your own work separate from third-party packages .

Tracking file movements

https://unity.com/

18.of.52.| unity .com© 2022 Unity Technologies

using UnityEditor;
using UnityEngine;
using System .Collections .Generic;
using System .IO;

public class CreateFolders : EditorWindow {

 private static string projectName = "PROJECT_NAME";
 [MenuItem("Assets/Create Default Folders")]
 private static void SetUpFolders()
 {
 CreateFolders window = ScriptableObject .CreateInstance<CreateFolders>();
 window .position = new Rect(Screen .width/2, Screen .height/2, 400, 150);
 window .ShowPopup();
 }

 private static void CreateAllFolders()
 {
 List<string> folders = new List<string>
 {
 "Animations",
 "Audio",
 "Editor",
 "Materials",
 "Meshes",
 "Prefabs",
 "Scripts",
 "Scenes",
 "Shaders",
 "Textures",
 "UI"
 };

 foreach (string folder in folders)
 {
 if (!Directory .Exists("Assets/" + folder))
 {
 Directory .CreateDirectory("Assets/" + projectName + "/" + folder); } }

 List<string> uiFolders = new List<string>
 {
 "Assets",
 "Fonts",
 "Icon"
 };

 foreach (string subfolder in uiFolders)
 {
 if (!Directory .Exists("Assets/" + projectName + "/UI/" + subfolder))
 {
 Directory .CreateDirectory("Assets/" + projectName + "/UI/" + subfolder);
 }
 }

 AssetDatabase .Refresh();
 }

 void OnGUI()
 {
 EditorGUILayout .LabelField("Insert the Project name used as the root folder");
 projectName = EditorGUILayout .TextField("Project Name: ", projectName);
 this .Repaint();
 GUILayout .Space(70);
 if (GUILayout .Button("Generate!")) {
 CreateAllFolders();
 this .Close();
 }
 }
}

https://unity.com/

19.of.52.| unity .com© 2022 Unity Technologies

Empty folders

Empty folders like those shown in the previous images can present a bit of an
issue in version control – so only create the folders for what you need . With
Git and Perforce, empty folders are ignored by default . If these project folders
are set up and someone attempts to commit them, they’ll be unable to until
something is placed in the folder .

Note: A common workaround is to place a “.keep” file inside an empty folder.
This is enough for the folder to then be committed to the repository.

Go to menu > Assets > Create Default Folders .

Creating empty folders at the start of your project will help keep your teamwork organized and efficient .

https://unity.com/

20.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM can handle empty folders . Directories are treated as entities by
Plastic SCM and have a version history associated with them .

This is a point to note when working in Unity . Unity generates a .meta file for
every file in the project, including folders . With Git and Perforce, a user can
easily commit the .meta file for an empty folder, but the folder itself won’t end
up under version control . When another user gets the latest changes, there will
be a .meta file for a folder that doesn’t exist on their machine, and Unity will then
delete the .meta file . Plastic SCM avoids this issue by including empty folders
under version control .

The .meta file

Unity generates a .meta file for every other file inside the project, and while it’s
typically inadvisable to include auto-generated files in version control, the .meta
file is a little different . Visible Meta Files mode should be turned on in the Version
Control window (unless you’re using the built-in Plastic SCM or Perforce modes) .

While the .meta file is auto-generated, it also holds a lot of information about
the file with which it’s associated . This is common with assets that have import
settings, such as Textures, meshes, audio clips, etc . When you change any
import settings on these files, the changes are written into the .meta file, not the
asset file . This is why you commit the .meta files to your repository, so everyone
works with the same file settings .

Turn on Visible Meta Files when working with Git .

Changes to a .meta file when import settings were adjusted on a file

https://unity.com/

21.of.52.| unity .com© 2022 Unity Technologies

Naming standards

Agreeing on standards doesn’t stop with project folder structure . Setting a naming
standard for GameObjects in a scene or Prefabs inside project folders can make things
easier for your team to understand when you end up working in one another’s files .

Though there is no definitive naming standard for GameObjects, consider the following .

Standard Example

Use.descriptive.names,.and.don’t.
abbreviate . Use names that you will
remember several months from now .
Consider whether another person will
understand your notation, and choose
names that you can pronounce and
remember . Be aware that abbreviations and
spelling mistakes can create confusion .

largeButton, LargeButton, or leftButton

NOT:

lButton

Use.Camel.case/Pascal.case . Avoid
spaces in your object names . Camel case
or Pascal case improve readability (and
typing accuracy according to this study) .

OutOfMemoryException,
dateTimeFormat,

NOT: Outofmemoryexception,
datetimeformat

Use.underscores.(or.hyphens).sparingly .
Avoid underscores and hyphens in
general . However, they can be useful in
certain circumstances . Prefixing a name
with an underscore puts it alphabetically
first . You can also use underscores to
denote variants of a specific object .

Active States:
EnterButton_Active, EnterButton_Inactive

Texture Maps:
Foliage_Diffuse, Foliage_Normalmap

Level of Detail:Building_LOD1,
Building_LOD0

Use.number.suffixes.to.denote.a.
sequence . Likewise, don’t suffix with a
number if it’s not part of a list .

For a path, name the nodes:

Node0, Node1, Node2, etc .

Follow.the.design.document.naming . If your design document names locations
like HighSpellTower or RedDragonLair,
use those exact spellings .

https://unity.com/
https://en.wikipedia.org/wiki/Camel_case
http://www.cs.loyola.edu/~binkley/papers/icpc09-clouds.pdf

22.of.52.| unity .com© 2022 Unity Technologies

Workflow optimization

Aside from how and where you keep your assets inside the Assets folder, there
are several design and development choices you can make to help speed up
your workflow, especially when you’re using version control .

Split.up.your.assets

Large, single Unity scenes do not lend themselves well to collaboration .
Break your levels into many smaller scenes so that artists and designers can
collaborate better on a single level while minimizing the risk of conflicts .

At runtime, your project can load scenes additively using SceneManager .
LoadSceneAsync passing the LoadSceneMode .Additive parameter mode .

Additionally, break work up into Prefabs where possible . If you need to make
changes later, you can change the Prefab rather than the scene it’s used in to
avoid conflicts with anyone working on the scene . Prefab changes can often be
easier to read when doing a diff under version control .

And if you end up with a scene conflict, Unity also has a built-in YAML (a human-
readable, data-serialization language) tool specifically for merging scenes and
Prefabs . For more information, see Smart merge in the Unity documentation .

Presets.

This feature allows you to customize the default state of anything in your
Inspector . Creating a Preset lets you copy the settings of a component or asset,
save it as an asset, then apply the same settings to another item later .

Use Presets to enforce standards or to apply reasonable defaults to new assets .
This ensures consistent standards across your team, so commonly overlooked
settings don’t impact your project’s performance .

Click the Preset icon to the top right of the component . Click Save current to… to save
the Preset as an asset . Click one of the available Presets to load a set of values .

The Preset icon is highlighted here in red .

https://unity.com/
https://docs.unity3d.com/Manual/SmartMerge.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://docs.unity3d.com/2020.3/Documentation/Manual/Presets.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-multiplatform&utm_content=improving-workflows-unity-2020-lts-ebook?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

23.of.52.| unity .com© 2022 Unity Technologies

Other handy ways to use Presets include:

.— Create.a.GameObject.with.defaults: Drag and drop a Preset asset
into the Hierarchy to create a new GameObject with the corresponding
component that includes Preset values .

.— Associate.a.specific.Type.with.a.Preset: In the Preset Manager
(Project Settings > Preset Manager), specify one or more Presets
per type . Creating a new component will then default to the specified
Preset values .

 — Pro tip: Create multiple Presets per type, and rely on the filter to
associate the correct Preset by name .

.— Save.and.load.manager.settings:.Use Presets for a Manager window so
the settings can be reused . For example, if you plan to reapply the same
tags and layers or physics settings, Presets can reduce setup time for
your next project .

In this example, the Presets contain different Import Settings for 2D textures depending on usage
(albedo, normal, or utility) .

https://unity.com/

24.of.52.| unity .com© 2022 Unity Technologies

Code standards

Coding standards will also help keep your team’s work consistent and make it
easier for developers to swap between different areas of your project . Again,
there are no set-in-stone rules here . You need to decide what is best for your
team – but once you’ve decided, stick with it .

As an example, namespaces can help organize your code better . They allow
you to separate modules inside your project and avoid conflicts with third-party
assets where class names may end up repeating .

When using namespaces in your code, break your folder structure up by the
namespace for better organization .

A standard header is also a good practice . Including a standard header in your
code template will help to document the purpose of a class, the date it was
created, and even who created it . All of this is information that could easily get
lost in the long history of a project, even when using version control .

Unity employs a template script to read from whenever you create a new
Monobehaviour in the project . Every time you create a new script or shader,
Unity uses a template stored in
%EDITOR_PATH%\Data\Resources\ScriptTemplates:

 — Windows: C:\Program Files\Unity\Editor\Data\Resources\ScriptTemplates

 — Mac: /Applications/Hub/Editor/[version]/Unity/Unity .app/Contents/
Resources/ScriptTemplates

The default Monobehaviour template is this one:
81-C#.Script-NewBehaviourScript .cs .txt

There are also templates for shaders, other behavior scripts, and
assembly definitions .

For project-specific script templates, create an Assets/ScriptTemplates folder,
and copy the script templates into this folder to override the defaults .

You can also modify the default script templates directly for all projects, but
make sure you back up the originals before making any changes . Each version
of Unity has its own template folder, so when you update to a new version, you
need to replace the templates again .

https://unity.com/

25.of.52.| unity .com© 2022 Unity Technologies

The original 81-C# Script-NewBehaviourScript .cs .txt file looks like this:

using System .Collections;
using System .Collections .Generic;
using UnityEngine;

#ROOTNAMESPACEBEGIN#
public class #SCRIPTNAME# : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {
 #NOTRIM#
 }

 // Update is called once per frame
 void Update()
 {
 #NOTRIM#
 }
}
#ROOTNAMESPACEEND#

There are two keywords that may be helpful:

.— #SCRIPTNAME#.indicates the filename entered or the default filename
(for example, NewBehaviourScript) .

.— #NOTRIM#.ensures that the brackets contain a line of whitespace .

You can also use your own keywords and replace them with an Editor script
implementing the OnWillCreateAsset method .

https://unity.com/

26.of.52.| unity .com© 2022 Unity Technologies

Use the header in the script above inside your script template, and any new
script will be created with a header that shows its date, the user who created it,
and the project to which it originally belonged . This is useful should you reuse
the code in future projects .

// /*---
// ---
// Creation Date: #DATETIME#
// Author: #DEVELOPER#
// Description: #PROJECTNAME#
// ---
// ---*/

using UnityEngine;
using UnityEditor;

public class KeywordReplace : UnityEditor .AssetModificationProcessor {

public static void OnWillCreateAsset (string path)
 {
 path = path .Replace(" .meta", "");
 int index = path .LastIndexOf(" .");
 if (index < 0)
 return;

 string file = path .Substring(index);
 if (file != " .cs" && file != " .js" && file != " .boo")
 return;

 index = Application .dataPath .LastIndexOf("Assets");
 path = Application .dataPath .Substring(0, index) + path;
 if (!System .IO .File .Exists(path))
 return;

 string fileContent = System .IO .File .ReadAllText(path);

 fileContent = fileContent .Replace("#CREATIONDATE#", System .DateTime .Today .
ToString("dd/MM/yy") + "");
 fileContent = fileContent .Replace("#PROJECTNAME#", PlayerSettings .product-
Name);
 fileContent = fileContent .Replace("#DEVELOPER#", System .Environment .User-
Name);

 System .IO .File .WriteAllText(path, fileContent);
 AssetDatabase .Refresh();
 }
}

https://unity.com/

27.of.52.| unity .com© 2022 Unity Technologies

Version.control.
systems
Now that you’re familiar with some of the key terms and concepts in version
control and project organization, it’s time to introduce some of the key players .
Of course, no one solution is best for everyone . There are many things to
consider when choosing which VCS to use in your team . Hopefully, by the end
of this book, you’ll have all the information you need to make that decision .

Git

Open source, free, and flexible, Git is one of the most popular version control
systems around . However, as a distributed setup it can be daunting to non-
technical users .

Developed in 2005 by Linus Torvalds to control the Linux kernel development,
it’s remained well-maintained and open source since . Git as a platform is a
command line-only tool . But many different GUIs have been developed for it,
making the system more accessible to users .

There are a few popular GIT GUI clients .

Fork: Fast and friendly . It’s technically free, but occasionally asks you to pay .

Fork

https://unity.com/
https://git-scm.com/
https://git-fork.com/

28.of.52.| unity .com© 2022 Unity Technologies

GitKraken: This offers a more visual and accessible way of working with Git with
an intuitive UI as well as the flexibility to switch between a GUI or a CLI terminal .

GitKraken

Visual Studio Code

Visual Studio Code

Visual Studio Code: VS Code has source control integration built in, and with all the
extensions available, you can avoid using a separate program altogether .

Visual Studio: As with VS Code, Visual Studio also has Git controls built in and
includes a GitHub extension .

https://unity.com/
https://www.gitkraken.com/
https://code.visualstudio.com/
https://visualstudio.microsoft.com/
https://marketplace.visualstudio.com/items?itemName=GitHub.GitHubExtensionforVisualStudio

29.of.52.| unity .com© 2022 Unity Technologies

SourceTree: Part of the Atlassian product group SourceTree is a free Git client
for Windows and Mac that can also help you visualize and manage your Git
repositories easily .

Sublime Merge: This system excels in offering tools for speeding up code
reviews with side-by-side diffs and syntax highlighting . It’s a lightweight,
high-performance client .

Git features strong branching and merging capabilities, but it can’t handle
large binary files as effectively as other solutions on the market . Git Large File
Storage (LFS) goes some way to rectifying this .

Since Git is a distributed client, the entire repository and complete history is
on the developer’s machine . This makes actions such as switching branches or
reverting back to a point in history extremely quick . If you’re working on a large
project with multiple features and release branches, a Git workflow can save
countless hours .

SourceTree

Sublime Merge

https://unity.com/
https://www.sourcetreeapp.com/
https://www.sublimemerge.com/

30.of.52.| unity .com© 2022 Unity Technologies

There can often be some confusion between Git and GitHub . GitHub is a hosting
service for Git repositories, but you can use Git without using GitHub . That said,
GitHub is a very popular service because there is a free version (with some
limitations), and it doesn’t require any custom server setups .

Unity has released their C# editor and engine code to the public on GitHub .
This is incredibly useful when you need to know how some functions work or
how to replicate a feature of the Editor inside your own project .

GitHub also has its own Git GUI, GitHub Desktop . When working in Unity, you
can also use the GitHub for Unity package to bring the Git tools directly into the
Unity Editor .

As mentioned, GitHub isn’t the only hosting service available for your Git
projects . You can also use Bitbucket (from Atlassian) or GitLab, which have
many more DevOps features available to them, or one of the many other hosting
services available .

Check out this talk from Unite Now 2020 on how to get started with Git and Unity .

Perforce (Helix Core)

Helix Core is an enterprise-level version control system used by large game
studios such as Electronic Arts and Ubisoft . These studios use Perforce because
it features centralized repos that are most often hosted on their own servers .
It does not feature visual repos, so its adoption might be more challenging for
non-technical developers, but in larger studios there will be DevOps and Release
Engineers to help manage the code base . Plus, as an enterprise solution, it
includes a global support team .

Helix Core can also be used by small teams . In fact, it’s free for teams of up to
five users and 20 workspaces . And you can still deploy to the cloud through
solutions like Amazon AWS or Azure .

GitHub

https://unity.com/
https://github.com/
https://github.com/Unity-Technologies/UnityCsReference
https://desktop.github.com/
https://unity.github.com/
https://bitbucket.org/product
https://about.gitlab.com/
https://www.youtube.com/watch?v=ISW2nS_v3Ic&t=753s
https://www.perforce.com/products/helix-core
https://www.perforce.com/products/helix-core/install-enhanced-studio-pack-aws
https://www.perforce.com/products/helix-core/install-enhanced-studio-pack-azure

31.of.52.| unity .com© 2022 Unity Technologies

Because Helix Core handles large files exceptionally well, it can be a popular option
for Unity projects . There is also built-in Unity Editor integration that’s covered in a
later section .

To learn more about integrating your Unity workflow with Helix Core, check out this
Perforce blog post .

Apache Subversion

Like Git, Apache Subversion (known as SVN) is a free and open-source version
control system . Unlike Git, it’s a centralized VCS that can handle large binary files .
However, it’s still a command line system that requires one of the many third-party
GUI clients to be a bit more user friendly . One such client is SmartSVN .

Before Git LFS, SVN was a popular choice when working in Unity . As a centralized
solution, it was simpler to work with and, as mentioned, better for working with
large files . Where SVN falls behind the other tools is when you start to use
branches and need to merge between them . Merging in SVN has many pains,
especially when it comes to conflicts – or even false conflicts – between files . A
merge operation that would take minutes in another VCS may take hours to go
through manually in SVN .

For more information on setting up Unity to work with SVN, check out the
Unity documentation .

Helix Core P4V interface

SmartSVN GUI

https://unity.com/
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control
https://subversion.apache.org/
https://www.smartsvn.com/download/
https://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

32.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM

Plastic SCM is a flexible version control system that supports programmers and
artists alike . It excels at handling large repos and binary files, and as both a file-
based and changeset-based solution, it gives you the capability to download
only the specific files you’re working on, rather than the entire project build .

Plastic SCM offers hosting, the actual VCS tools, and a GUI client as part of the
same solution . Small teams of up to three users can sign up for the free Cloud
Edition of Plastic SCM and get up to 5GB of cloud storage, along with access to
the Plastic SCM tools, including Gluon .

Gluon is a slimline client designed specifically with artists in mind . It allows
you to pick only the files that you’re going to work on and check them out
from the server, locking them from being modified by anyone else . Once you
complete your work, you check the files back in . The Gluon GUI removes the
more complex concepts that work better for programmers than for other, less
technical users .

For artists, both Plastic SCM and Gluon include ways to diff images . The
image diff tool lets you compare two versions of the same file visually, a
feature that many other systems don’t offer .

Plastic offers a workflow especially designed for artists, making it easy to preview files and history as well
as to check in changes .

Image diff showing the Swipe mode where you can go from one version to the other by just dragging the
swipe control . This is very useful to follow image evolution .

https://unity.com/
https://unity.com/products/plastic-scm?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.plasticscm.com/gluon?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

33.of.52.| unity .com© 2022 Unity Technologies

The standard Plastic SCM GUI client has all the features they would be
looking for and more for the programming team . The GUI has an interactive
visual Branch Explorer that shows the true relationships of all the branches
in a project . There is also a built-in Code Review system that you can use to
request the review of your work from a senior developer .

Plastic SCM joined the Unity family in 2020, which means that the tools are
now closely integrated into the Unity Editor .

One of the key strengths of Plastic SCM is that it has the flexibility to be
configured for a distributed or centralized workflow . In fully distributed
mode, developers work with a repository on their local machine, checking
in, branching, and merging with ease . Developers will then push and pull
changes to the server to share them when ready .

In centralized mode, users check out and check in their changes directly
to the server so everyone is working on the latest changes . However,
as development teams have grown into global organizations, everyone
communicating with one central server isn’t always beneficial . Plastic SCM
can also be configured to work in a multi-site system . In this system, servers
are set up at each site, so teams can check in to their local server, keeping
their workflow fast and hard drives happy . Then, the distributed servers
communicate with each other to a central or cloud server .

For a great video on setting up Plastic SCM with Unity, check out the Unite
Now 2020 video, Version control for games with Unity’s Plastic SCM by
Arturo Nereu . You’ll also learn more about how Plastic can be leveraged for
games and more here .

The branch explorer visualizes the merge structure of the project . It evolves horizontally from left to right .

https://unity.com/
https://www.plasticscm.com/branch-explorer?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.plasticscm.com/code-review?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://blog.unity.com/news/codice-software-joins-unity-technologies-to-bring-version-control-to-real-time-3d-workflows?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.plasticscm.com/mergemachine?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://youtu.be/PjPK6hxGUFU
https://www.plasticscm.com/games?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

34.of.52.| unity .com© 2022 Unity Technologies

Comparison

Green= fully supported

Yellow = partially supported

Plastic

Git

Perforce

Subversion

Plastic Git Preforce Subversion

Flexibility

Good.to.work.centralized.
Just checkin, no push/pull

Good.to.work.distributed.
Push/pull + local repo

Binaries

Good.with.huge.repos

Good.with.huge.files

Can.lock.files.to.avoid.merging

GUI

Visualizes.your.repos.
(so you don’t need a
 PhD in branching)

Comes.with.great.GUIs

Special.GUI.and.workflow.for.
artists.and.non-coders

Workflow Creates.effective.task.
branches

Merge

Very.good.detecting.merges.
between.branches

Comes.with.great.diff.and.
three-way.merge.tools

Tools.help.you..
understand.the.merge

Good.merging.renames,.
moved.files,.directories,.

refactors

Cloud

Can.host.repos.in.the.cloud

Cloud.hosting.is.good.
.with.huge.repos

DIFF

Can.diff.code..
moved.across.files

Can.show.you.the.
.history.of.a.method

Enterprise.Support

Fully Supported Partially Supported

https://unity.com/

35.of.52.| unity .com© 2022 Unity Technologies

Setting.up.Unity.to.
work.with.version.
control
This section provides information on setting up Unity to work with Git, Perforce,
or Plastic SCM . By understanding some of the key workflows for each solution,
you can make an informed decision about which system will best suit your team .

Editor project settings

Perforce.Helix.Core

Unity Editor integration is available with most version control systems, and
Perforce Helix Core integration is built into the Editor . You only need to enable it
via Edit > Project Settings > Version Control . Set the Mode to Perforce, and fill
in the information of your workspace and server settings .

Setting up Perforce Helix Control for a project

Setting up Perforce Helix Control for a project

https://unity.com/

36.of.52.| unity .com© 2022 Unity Technologies

Once this is enabled, you will see that files are now considered
“Under Version Control,” with the option to check them out .

Once a file is checked out, you can lock, unlock, submit, or revert the file .
Choosing to submit will bring up a changeset dialog for you to add your commit
message before submitting it into the repository .

Use the Helix P4V interface to view the project history .

Files under version control

Changeset dialog box

Changeset dialog box

View the project history

https://unity.com/

37.of.52.| unity .com© 2022 Unity Technologies

For more on getting started with Perforce Helix Core and Unity, check out the
Perforce blog .

Plastic.SCM

Plastic SCM is available built into Unity with any of the below editor versions:

 — 2019 .4 .32f1 or later

 — 2020 .3 .20f1 or later

 — 2021 .1 .25f1 or later

 — 2021 .2 .0b16 or later

 — 2022 .1 .0a12 or later

You can enable this by clicking the Plastic SCM icon in the toolbar on the top
right, then complete your set up by connecting Plastic SCM to your Unity ID,
joining or creating an organization, set up or join a new repository, and create
your workspace . You can find more detailed step-by-step instructions using
using this guide .

Alternatively, you enable this via Edit > Project Settings > Version Control in
Unity 2020 LTS, then set the Mode to PlasticSCM .

 Using Plastic SCM with Unity

https://unity.com/
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control
https://unity3d.com/how-to/happier-faster-teamwork
https://unity3d.com/how-to/happier-faster-teamwork

38.of.52.| unity .com© 2022 Unity Technologies

The interface is very similar to the Perforce option . Files can be added,
checked out, reverted, checked in, or submitted, directly from the Editor .

Using Plastic SCM with Unity

Working with files in Plastic SCM from the Unity Editor

Checking in a file

https://unity.com/

39.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM also has the advantage of having a Changeset window available in
the Unity Editor via Window > Plastic SCM .

For more information on setting up Version Control in Unity, check out the
official documentation .

Git.and.other.solutions

For all other VCS, open the Edit > Project Settings > Version Control window,
and select Visible Meta Files from the dropdown menu . There are no other
options here, but meta files must be visible in order for version control systems
to detect them .

What to ignore

When working with a Unity project, or any project for that matter, only files that
cannot be generated should be placed under version control .

For Unity projects, that means only files in the Assets and Project Settings
folders should be committed to your repository . Unity can automatically recreate
all the other folders . Under no circumstance should you commit the Library
folder, since this folder can get very large and Unity will recreate it when
launching the Editor if it doesn’t exist .

Changeset window

https://unity.com/
https://docs.unity3d.com/Manual/Versioncontrolintegration.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

40.of.52.| unity .com© 2022 Unity Technologies

 — With Perforce, you need to explicitly add the Assets and Project Settings
folders to your depot .

 — Plastic SCM automatically selects the appropriate folders and files to place
under version control when set up from the Unity Editor . There is a list that
is saved in the `ignore .conf` file at the root of the project that describes
which files are ignored . To learn more about setting up the "ignore .conf"
file, check out this blog post .

 — Git requires a .gitignore file to indicate what files should never be
included . Depending on your Git GUI client, you can select a template
when creating a repository, or this can be done through GitHub if you set
the hosting up first . Alternatively, a template can be downloaded here .

You should also avoid committing things like .exe or .apk files . Additionally,
gradle and xcode projects built from your Unity project should not be added to
the repository .

A small exception to this rule is if you were to set up automated build processes
for your gradle or xcode projects, but then they would be typically committed to
a repository of their own .

Files can be added to the ignored list directly from the Unity Editor when using Plastic SCM .

https://unity.com/
https://blog.plasticscm.com/2020/01/definitive-ignoreconf-for-unity-projects.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://github.com/github/gitignore/blob/master/Unity.gitignore

41.of.52.| unity .com© 2022 Unity Technologies

Working with large files

Unity projects are made up of a lot more than just code . In fact, scripts can often
be heavily outnumbered by other asset files in a Unity project . These assets are
stored as binary files: Textures, models, Prefabs, audio clips, timelines, and so
on . This results in two things:

 — They can be hard to compare between revisions .

 — The diff cannot be described, so the whole file is written when a change is
pushed to the repo .

Again, in a distributed environment, the entire project history is available on a
user’s local machine . Now if you have a history of large files that have had many
changes over a long time, then you will have that many copies of the file stored on
your machine . This can quickly consume a large portion of your hard drive space!

It’s for this reason that historically, teams prefered a centralized workflow . This
way, large historical versions of binary files would only live on a central server,
with individual users only accessing the latest version on their machines .

Both Perforce and Plastic SCM are centralized systems that can handle large
files well . Plastic SCM also gives you the option to work in a distributed pipeline,
and large file sizes is the tradeoff that you need to consider when choosing
between these options .

Another feature of Plastic SCM is the Dynamic Workspace, which relies on a
virtual filesystem . This means that the Dynamic Workspace downloads files
on demand – so, while you see everything in your workspace, in reality not
everything is downloaded .

Git, being distributed, can struggle with large files . Be sure to also include Git LFS
if you will be working with large files . Git LFS replaces your large files in the .git
folder with text pointers while storing the actual asset on a server such as GitHub .

https://unity.com/
https://blog.plasticscm.com/2021/07/dynamic-workspaces-alpha-for-windows.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://git-lfs.github.com/

42.of.52.| unity .com© 2022 Unity Technologies

Best.practices.for.
version.control
Regardless of which VCS you use, many best practices can help your team work
more effectively . Every team has different needs, so every practice won’t fit
every team .

These tips come from the Unity Enterprise Support Team, who are helping to
optimize real-world projects for some of the biggest studios out there .

Commit little, commit often

This is by far the easiest change you can make to your workflow, yet it’s the one
that some developers struggle with the most . When working with other project
management tools, it’s likely you have already broken down the work into small,
manageable tasks . Commits should be exactly the same .

A single commit should only relate to one task or ticket, unless a single line of
code magically fixes several bugs . If you are working on a larger feature, break
it down into smaller tasks, and make commits for those tasks . We’ll dive into
feature branches later .

The biggest advantage of using smaller commits is that when something does
go wrong, you will find the change much more easily and can revert the negative
change without affecting any other positive changes .

Keep commit messages clean

Commit messages describe the history of your project . It’s much easier to find
the change that added high-score tables to your game if its commit message
says “Added high score tables to the menu” and not “bet you can’t beat my
score on these new tables!”

When working with a task ticketing system like JIRA or GitLab, it’s even better
to include a ticket number in your commit . Many systems can be set up to work
together with smart commits, in which you can actually reference tickets and
change their status from your commit message .

For example, the commit “JRA-123 #close #comment task completed” would set
JIRA ticket JRA-123 to closed, leaving the comment “task completed” on the ticket .

For more on setting this workflow up, see the documentation in JIRA or the
Pivotal Tracker service in GitLab .

https://unity.com/
https://unity.com/solutions/accelerate-solutions-games?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/
https://docs.gitlab.com/ee/user/project/integrations/pivotal_tracker.html#pivotal-tracker-service

43.of.52.| unity .com© 2022 Unity Technologies

Avoid indiscriminate commits

The only time “commit -a” (the git command for “commit all changes”) or any of
its counterparts should be used is with the first commit of a project . Usually, this
is when the only files in the project are README .md .

A commit should only ever include files that are related to the change you are
committing to the repo . Particular care should be taken when working with Unity
projects, as some changes may result in several files being marked as changed,
such as scenes, prefabs, or sprite atlases, even though you didn’t intend to
make any changes to them .

If you accidentally commit a change to a scene that someone else is working on,
that could cause a headache for them when they go to commit their changes
and find they need to merge your changes first .

This is one of the most common mistakes that people who are new to version
control will make . It’s important to understand that you should only commit what
you have changed in the project . To learn more, check out this blog post on how
to speed up your workflow .

Get the latest

As often as it makes sense, pull the latest changes from the repo into your
working copy . It’s not good to work off in isolation, as this only increases the
likelihood of merge conflicts . A typical daily workflow in each system would be
something like this .

Git Perforce

 — git pull

 — Then as many times as you like:

 — Make edits in your working copy

 — git commit your changes

 — git pull the latest changes

 — Once you are happy with your
change set of commits

 — git pull once more

 — git push to send your commits to
the repo

 — Get latest

 — Check out files to work on

 — Make edits

 — Submit changes

https://unity.com/
https://blog.plasticscm.com/2018/10/checkin-with-reviewers-in-mind-how-to-fix-pull-requests.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

44.of.52.| unity .com© 2022 Unity Technologies

Saving changes to a new changelist in P4V

Submitting a changeset in P4V

https://unity.com/

45.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM workflows are a little different because you can work in centralized,
distributed, or multi-site configurations .

Multi-site configurations can be fairly unique, with each user working in either a
centralized or distributed workflow .

Consider the following example:

 — Two teams

 — Each team has an on-site server

 — Team members at both sites check in locally or distributed but benefit
from the speed of a close on-site server

 — Servers push/pull between one another to keep fully or partially in sync

Know your toolset

Whichever VCS your team chooses to work with, make sure that the team is
comfortable using it and understands the tools at their disposal .

If you’re working with Git, not everyone needs to use the same GUI client . But
make sure that everyone is comfortable with the commit > pull > push workflow,
and that they know how to commit only the files they need .

If you’re working with Plastic SCM, let your artists get comfortable using Gluon
to simplify their workflow . Gluon lets you decide which files you want to work
on and only download those, removing the need to download and manage the
entire project . It allows you to lock a file to prevent others from working on it,
and, once you’re finished, users can submit files back to the repository and
unlock them again .

wk

push

pull

wk

checkin

update

push/pull

internet

Boecillo

wk

push

pull

wk

London

Multi-site Plastic SCM configuration

 — Sync Repositories

 — Pull visible

 — Check out files to work on

 — Make edits

 — Check in changes

 — Sync Repositories

 — Push visible

 — Pull changes from the server

 — Check in changes to your
local copy

 — Pull any new changes

 — Push your changes back up to
the server

 — A hybrid of the two,
depending on your setup

Plastic.SCM.(centralized) Plastic.SCM.(distributed) Plastic.SCM.(multi-site)

https://unity.com/
https://www.plasticscm.com/gluon?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

46.of.52.| unity .com© 2022 Unity Technologies

If you are working with Perforce Helix Core, use the built-in Unity Editor tools for
managing version control directly from the Editor . This is incredibly useful, both
for artists or for general handling of Unity asset files such as scenes, Prefabs,
and so on . You can check out assets for modification in the Editor, make your
changes, and then check them back in without even leaving Unity .

Feature branches and Git Flow

When you’re working on a long-standing project with multiple release cycles,
feature branching is hugely beneficial to your workflow . Often, teams work out
of the same branch of a repo that would likely be called trunk, master, or main .
When you do this, your entire project moves along the same timeline .

However, it can be beneficial to split the work off into several branches to work
more effectively as a team .

In Git, a specific workflow called Git Flow focuses on using different branches
for features, bug fixes, and releases . A developer starts out work on a new
feature inside an isolated branch, and when they’re finished, it’s merged back
into the main branch . Meanwhile, someone else may have had to do a hotfix on
the previous release, fixed a bug, and released a new version safely, without any
of the features still under development being included .

Gluon in Plastic SCM

Development along the main branch in Plastic SCM

https://unity.com/

47.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM also features task branches . For this pattern, you create a new
branch for every task that you track . While in Git Flow, we use feature branches
to develop complete, sometimes large, features, task branches in Plastic SCM
are meant to be short-lived . If a task takes more than a handful of commits to
implement, odds are it could be broken down into smaller tasks .

Perforce Helix Core uses a system called Streams to facilitate this style of
workflow . When creating a depot to work in, you need to set it up as a stream
depot type . Then, you can use the Stream Graph view to create new streams .
Every stream other than the mainline stream will need to have a parent stream,
so changes can be copied back up-stream .

There are different types of streams for different purposes .

A Git Flow workflow allows for easier release management .

main
BL101 BL102

task1213

task1209

task1221

Plastic SCM branch per task pattern

Options when creating a new stream in Helix Core

https://unity.com/
https://www.plasticscm.com/book/#_one_task_one_branch?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

48.of.52.| unity .com© 2022 Unity Technologies

When you switch between streams on your local workstation or copy changes
back upstream, only the metadata for changed files gets merged, making the
context change quicker .

Pull requests

Once you’ve completed work on a feature branch, it’s a good practice to use
pull requests to get your changes back into the main stream of the repo . Pull
requests are created by the developers of the feature or task, and it’s usually
the responsibility of a senior developer or DevOps to review the changes before
accepting them into the mainline .

Perforce Helix Streams workflow . The desktop icon can be dragged between the streams to switch workspaces .
The green arrow down from main shows there are changes to be brought into the dev 1 .0 stream . The red arrow
up to main shows we cannot copy to main until we have the latest changes .

A closed pull request on GitHub

https://unity.com/

49.of.52.| unity .com© 2022 Unity Technologies

Plastic SCM and Perforce both have automated tools to help manage merging
branches back into the mainline . Plastic SCM does this with the help of Mergebot,
which automatically merges branches of a repo once they’ve been reviewed and
passed validation . Perforce has an additional platform, Helix Swarm, for managing
code reviews that can also be set up with automated testing .

.

.

.

.

.Plastic SCM code reviews are included in the GUI .

https://unity.com/
https://www.plasticscm.com/mergebot-devops?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.perforce.com/products/helix-swarm

50.of.52.| unity .com© 2022 Unity Technologies

Summary
Hopefully this book has helped you to feel more comfortable working with
version control as part of a team in Unity . Even if you’re working on a solo
project, the principles of organizing your project and using version control
can be really useful .

The biggest takeaway is the importance of clear team communication . As a
team, you need to agree on your guidelines: how you should structure your
project, which version control system to use, and how your workflow in that
system looks . Then, when you start integrating other tools such as JIRA, GitLab,
build tools, or automated testing, the work you’ve already done structuring your
project and workflow will really come into its own .

Finally, check out the following resources to find a wealth of information on the
various version control systems discussed in the book, plus more tips on setting
up your Unity project for success .

https://unity.com/

51.of.52.| unity .com© 2022 Unity Technologies

Additional.resources.
Eight factors to consider when choosing a version control system

Introduction to version control, Unite Now 2020

Git Apprentice, by Chris Belanger and Bhagat Singh

Version Control for Games with Unity’s Plastic SCM

Plastic SCM product documentation

Mergebot in Plastic SCM

Unity open project with version control

How KO_OP uses Plastic SCM to accelerate production

The hidden productivity costs disrupting your release timelines

Perforce setup

How to Configure Helix Core and Game Engine

Helix Core documentation

SVN setup

Using external version control with Unity

https://unity.com/
https://blog.unity.com/technology/eight-factors-to-consider-when-choosing-a-version-control-system?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://youtu.be/ISW2nS_v3Ic
https://www.raywenderlich.com/books/git-apprentice/v2.0/
https://youtu.be/PjPK6hxGUFU
https://www.plasticscm.com/book/?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.youtube.com/watch?v=WJTKSUgj8pY
https://github.com/UnityTechnologies/open-project-1
https://create.unity.com/ko-op-plastic-scm-case-study?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://create.unity.com/hidden-productivity-costs-e-book?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://www.perforce.com/products/helix-core/configure-helix-core-game-engine
https://www.perforce.com/products/helix-core/learning-resources
https://www.perforce.com/products/helix-core/learning-resources
https://docs.unity3d.com/Manual/ExternalVersionControlSystemSupport.html?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

unity .com

https://unity.com/

	Introduction
	Source control vs version control
	Foundational concepts
	Why use version control?
	Centralized vs distributed version control
	Centralized
	Distributed
	Typical workflow
	Key terms

	Best practices
for organizing a
Unity project
	Project organization
	Folder structure
	Empty folders
	The .meta file
	Naming standards
	Workflow optimization

	Split up your assets
	Presets
	Code standards

	Version control systems
	Git
	Perforce (Helix Core)
	Apache Subversion
	Plastic SCM
	Comparison

	Setting up Unity to work with version control
	Editor project settings
	Perforce Helix Core
	Plastic SCM
	Git and other solutions
	What to ignore
	

Working with large files

	Best practices for version control
	Commit little, commit often
	Keep commit messages clean
	Avoid indiscriminate commits
	Get the latest
	Know your toolset
	Feature branches and Git Flow
	

Pull requests

	

Summary
	Additional resources

