
O P T I M I Z E Y O U R
G A M E P E R F O R M A N C E
F O R C O N S O L E S A N D P C

E - B O O KU N I T Y F O R D E V E L O P E R S

U N I T Y 2 0 2 2 L T S E D I T I O N

Contents

Introduction. . .8

Profiling. . .9

Profile early, often, and on the target device 9

Focus on optimizing the right areas . 10

Understand how the Unity Profiler works 11

Deep Profiling . 14

Use the Profile Analyzer . 15

Frames per second: A deceptive metric 16

Determine if you are GPU-bound or CPU-bound 17

Use native profiling and debugging tools 17

Native profiling tools . 17

GPU debugging and profiling tools . 18

Project Auditor . 18

Build Report Inspector . 19

Memory. . 20

Use the Memory Profiler . 21

Reduce the impact of garbage collection (GC) 21

Time garbage collection whenever possible 22

Use the Incremental Garbage Collector to split the GC
workload . 22

Heap Explorer . 22

Programming.and.code.architecture . . 24

Understand the Unity PlayerLoop . 24

Minimize code that runs every frame 26

Cache the results of expensive functions 26

Avoid empty Unity event functions . 27

Build a custom Update Manager . 27

Remove Debug Log statements . 28

Disable Stack Trace logging . 29

Use hash values instead of string parameters 29

Choose the right data structure . 29

Avoid adding components at runtime 30

Use object pools . 30

Transform once, not twice . 31

Use ScriptableObjects . 31

Avoid lambda expressions . 32

The C# Job System . 32

The Burst compiler .34

Project.configuration. . 35

Disable unnecessary Player or Quality settings 35

Switch to IL2CPP . 35

Avoid large hierarchies . 36

Assets. . 37

Compress textures . 37

Texture import settings . 38

Atlas your textures . 40

Check your polygon counts . 40

Mesh import settings . 42

Other mesh optimizations . 42

Audit your assets .43

The AssetPostprocessor .43

Unity DataTools .43

Async texture buffer .43

Stream mipmaps and textures .44

Use Addressables .44

Graphics . . 46

Commit to a render pipeline . 46

Render pipeline packages for consoles 48

Select a rendering path . 49

Forward rendering path . 49

Deferred Shading path . 50

Optimize Shader Graph . 51

Remove built-in shader settings . 53

Strip shader variants . 53

Particle simulations: Particle System or VFX Graph 54

Smooth with anti-aliasing . 55

Common lighting optimizations . 57

Bake lightmaps . 57

Minimize Reflection Probes . 58

Disable shadows . 58

Substitute a shader effect . 58

Use Light Layers . 59

Use Light Probes for moving or background objects 59

GPU.optimization . . .61

Benchmark the GPU . 61

Watch the rendering statistics . 61

Use draw call batching . 62

Check the Frame Debugger . 63

Optimize fill rate and reduce overdraw 64

Draw order and render queues . 65

Optimizing graphics for consoles . 67

Identify your performance bottlenecks 67

Reduce the batch count . 68

Activate Graphics Jobs . 68

Profile the post-processing . 68

Avoid tessellation shaders . 68

Replace geometry shaders with compute shaders 68

Aim for good wavefront occupancy 69

Use HDRP built-in and custom passes 69

Reduce the size of shadow mapping render targets 70

Utilize Async Compute . 70

Culling . 72

Dynamic resolution . 74

Multiple camera views . 74

RenderObjects in URP . 75

CustomPassVolumes in HDRP . 75

Use Level of Detail (LOD) . 76

Profile post-processing effects . 77

User.interface . . 78

Divide your Canvases . 78

Hide invisible UI elements . 79

Limit GraphicRaycasters and disable Raycast Target 79

Avoid Layout Groups . 80

Avoid large List and Grid views . 80

Avoid numerous overlaid elements . 80

When using a fullscreen UI, hide everything else 80

UI Toolkit performance optimization tips 81

Audio. . 82

Use lossless files as your source . 82

Reduce your AudioClips . 83

Optimize the AudioMixer . 84

Physics . . 86

Simplify colliders . 86

Optimize your settings . 87

Adjust simulation frequency . 88

Modify CookingOptions for MeshColliders 89

Use Physics .BakeMesh . 90

Use Box Pruning for large scenes . 91

Modify solver iterations . 91

Disable automatic transform syncing 92

Reuse Collision Callbacks . 92

Move static colliders . 93

Use non-allocating queries . 93

Batch queries for ray casting . 94

Visualize with the Physics Debugger 94

Animation. . 95

Use generic rather than humanoid rigs 96

Use alternatives for simple animation 97

Avoid scale curves . 97

Update only when visible . 97

Optimize workflow . 97

Workflow.and.collaboration. . 98

Use version control . 98

Unity Version Control . 99

Break up large scenes . 100

Reach the next level with industry-leading expertise from
Accelerate Solutions . 100

Remove roadblocks with Unity Integrated Success 101

Next.steps. . 102

More resources . 102

Professional training for Unity creators 102

8.of.103.| unity .com© 2024 Unity Technologies

Optimization will continue to be one of your challenges as a developer .

Getting your game to run with fewer resources and at higher frame rates
ensures that it can reach more potential players – and keep them engaged .

While your audience may take it for granted that your game runs at silky-
smooth 60+ frames per second (fps), achieving your performance goals across
multiple platforms is not always easy . It requires effort to make both your code
architecture and art assets more efficient .

This guide assembles knowledge and advice from Unity’s expert software
engineers . Our Accelerate Solutions games team has tested these best
practices with our industry partners in real-world scenarios . We’re here to help
you identify key areas for optimization in your Unity project .

Follow these steps to get the best performance from your PC
and console game .

I N T R O D U C T I O N

9.of.103.| unity .com© 2024 Unity Technologies

Profile early, often, and on the target device

Profiling is the process of measuring aspects of your game’s performance
at runtime . By using a profiling tool, you can measure how your game runs
on its target platform and use this information to track down the cause of a
performance problem . By watching the profiling tool as you make changes, you
can gauge whether the changes actually fix the performance problem .

The Unity Profiler provides performance information about your application – but
it can’t help you if you don’t use it .

Profile your project early and throughout the development cycle, not just when
you are close to shipping . Investigate glitches or spikes as soon as they appear
and make sure to benchmark performance before and after major changes in your
project . As you develop a “performance signature” for your project, you’ll be able to
spot new issues more easily .

While profiling in the Editor can give you an idea of the relative performance of
different systems in your game, profiling on each device gives you the opportunity
to gain more accurate insights . Profile a development build on target devices
whenever possible . Remember to profile and optimize for both the highest- and
lowest-spec devices that you plan to support .

Along with the Unity Profiler, you can leverage the Memory Profiler and Profile
Analyzer . See Profiling Applications Made with Unity and Working with the
Profiler for more information .

P R O F I L I N G

10.of.103.| unity .com© 2024 Unity Technologies

Focus on optimizing the right areas

Don’t guess or make assumptions about what is slowing down your game’s
performance . Use the Unity Profiler and platform-specific tools to locate the
precise source of a lag . Profiling tools ultimately help you understand what’s
going on under the hood of your Unity project . But don’t wait for significant
performance problems to start showing before digging into your detective
toolbox .

Of course, not every optimization described here will apply to your application .
Something that works well in one project may not translate to yours . Identify
genuine bottlenecks and concentrate your efforts on what benefits your work .

To learn more about how to plan your profiling workflows see the Ultimate guide
to profiling Unity games .

11.of.103.| unity .com© 2024 Unity Technologies

Understand how the Unity Profiler works

The built-in Unity Profiler can help you detect the causes of any bottlenecks or
freezes at runtime and better understand what’s happening at a specific frame or
point in time .

The Profiler is instrumentation-based . It profiles timings of game and engine
code that are automatically marked up (such as MonoBehaviour’s Start or Update
methods, or specific API calls), or explicitly wrapped with the help of ProfilerMarker
API .

Begin by enabling the CPU and Memory tracks as your default . You can monitor
supplementary Profiler Modules like Renderer, Audio, and Physics as needed for
your game (for example, profiling for physics-heavy or music-based gameplay) .
However, only enable what you need so you don’t impact performance and skew
your results .

 Follow this workflow for profiling your Unity projects efficiently .

12.of.103.| unity .com© 2024 Unity Technologies

Use the Unity Profiler to test performance and resource allocation .

Adjust your Build Settings before profiling .

To capture profiling data from an actual device within your chosen platform,
check the Development.Build before you click Build and Run . Then, connect the
Profiler to your application manually once it’s running .

You can optionally check Autoconnect.Profiler in the Build Options . Sometimes
this is useful if you specifically want to capture the first few frames of the
application . Be warned that this option can add 5–10 seconds of startup
time, so only use it when necessary .

13.of.103.| unity .com© 2024 Unity Technologies

Choose the platform target to profile . The Record button tracks several
seconds of your application’s playback (300 frames by default) . Go to
Unity.>.Preferences.>.Analysis.>.Profiler.>.Frame.Count to increase this
up to 2000 if you need longer captures . While this costs more CPU and
memory resources, it can be useful depending on your specific scenario .

Use the Timeline view to determine if you are CPU-bound or GPU-bound .

When using the Deep Profiling setting, Unity can profile the beginning and end
of every function call in your script code, telling you exactly which part of your
application is being executed and potentially causing a delay . However, deep
profiling adds overhead to every method call and may skew the performance
analysis .

Click in the window to analyze a specific frame . Next, use either the Timeline or
Hierarchy view for the following:

.— Timeline shows the visual breakdown of timing for a specific frame .
This allows you to visualize how the activities relate to one another
and across different threads . Use this option to determine if you are
CPU- or GPU-bound .

.— Hierarchy shows the hierarchy of ProfileMarkers, grouped together .
This allows you to sort the samples based on time cost in milliseconds
(Time ms and Self ms) . You can also count the number of Calls
to a function and the managed heap memory (GC Alloc) on the frame .

You can find a complete overview of the Unity Profiler here . If you’re new to
profiling, you can also watch Introduction to Unity Profiling .

Before optimizing anything in your project, save the Profiler .data file . Implement
your changes and compare the saved .data before and after the modification .
Rely on this cycle to improve performance: profile, optimize, and compare .

14.of.103.| unity .com© 2024 Unity Technologies

The Hierarchy view allows you to sort ProfileMarkers by time cost .

Deep Profiling

You can also enable Deep Profiling Support in the Build Settings . When the built
Player starts, the Deep Profiler profiles every part of your code, not just code
timings explicitly wrapped in ProfilerMarkers .

When Deep Profiling is enabled, Unity can profile the beginning and end of every
function call in your script code . This can help you identify exactly which part of
your application is causing a slowdown .

However, Deep Profiling is resource-intensive and uses a lot of memory . Each
ProfilerMarker adds a tiny bit of overhead (about 10ns, depending on the
platform), so each additional point of measurement slows your application
more . Also, be warned that if you have a lot of function calls, deep profiling
amplifies their overhead as well .

If you want to see more details on samples with markers such as GC .Alloc or
JobHandle .Complete, navigate to the Profiler window toolbar and enable the
Call.Stacks setting . This provides the sample’s full call stack, which gives
you the information you need without incurring the overhead of Deep Profiling .

In general, only use Deep Profiling when it’s necessary, since your application
runs significantly slower when it’s in use .

Use Call Stacks instead of Deep Profiling whenever possible .

15.of.103.| unity .com© 2024 Unity Technologies

Use the Profile Analyzer

The Profile Analyzer lets you aggregate multiple frames of Profiler data, then
locate frames of interest . Do you want to see what happens to the Profiler after
you make a change to your project? The Compare view allows you to load and
differentiate two data sets, so you can test changes and improve their outcome .
The Profile Analyzer is available via Unity’s Package Manager .

Work on a specific time budget per frame

Each frame will have a time budget based on your target frames per second
(fps) . For an application to run at 30 fps, its frame budget can’t exceed 33 .33
ms per frame (1000 ms / 30 fps) . Likewise, a target of 60 fps leaves 16 .66 ms
per frame .

Take an even deeper dive into frames and marker data with the Profile Analyzer, which complements the existing Profiler .

16.of.103.| unity .com© 2024 Unity Technologies

Frames per second: A deceptive metric

A common way that gamers measure performance is with frame rate, or frames per
second . This can be a deceptive metric when gauging your application’s performance .

We recommend that you use frame time in milliseconds instead . To understand
why, look at this graph of.fps.versus.Frame.Time:

Consider these numbers:

1000 ms/sec / 900 fps = 1 .111 ms per frame
1000 ms/sec / 450 fps = 2 .222 ms per frame
1000 ms/sec / 60 fps = 16 .666 ms per frame
1000 ms/sec / 56 .25 fps = 17 .777 ms per frame

If your application is running at 900 fps, this translates into a frame time of
1 .111 milliseconds per frame . At 450 fps, this is 2 .222 milliseconds per frame .
This represents a difference of only 1.111 milliseconds per frame, even though
the frame rate appears to drop by one half .

If you look at the differences between 60 fps and 56 .25 fps, that translates into
16 .666 milliseconds per frame and 17 .777 milliseconds per frame, respectively .
This also represents 1 .111 milliseconds extra per frame, but here, the drop-in
frame rate feels far less dramatic percentage-wise .

This is why developers use the average frame time to benchmark game speed
rather than fps .

Don’t worry about fps unless you drop below your target frame rate . Focus on frame
time to measure how fast your game is running, then stay within your frame budget .

Read the original article, “Robert Dunlop’s FPS versus Frame Time,” for more
information .

fps versus Frame Time

17.of.103.| unity .com© 2024 Unity Technologies

Determine if you are GPU-bound or CPU-bound

The central processing unit (CPU) is responsible for determining what must be
drawn, and the graphics processing unit (GPU) is responsible for drawing it . When
a rendering performance problem is due to the CPU taking too long to render a
frame, the game becomes CPU bound . When a rendering performance problem is
due to the GPU taking too long to render a frame, it becomes GPU bound .

The Profiler can tell you if your CPU is taking longer than your allotted frame
budget, or if the culprit is your GPU . It does this by emitting markers prefixed
with Gfx as follows:

 — If you see the Gfx .WaitForCommands marker, it means that the render
thread is ready, but you might be waiting for a bottleneck on the main thread .

 — If you frequently encounter Gfx .WaitForPresentOnGfxThread, it means
that the main thread was ready but was waiting for the render thread .
This might indicate that your application is GPU-bound . Check the
CPU Profiler module’s Timeline view to see activity on the render thread .

If the render thread spends time in.Camera .Render, your application is CPU-bound
and might be spending too much time sending draw calls or textures to the GPU .

If the render thread spends time in Gfx .PresentFrame, your application is
GPU-bound or might be waiting for VSync on the GPU .

Refer to the Common Profiler markers documentation for a complete list of
markers . Also, check out our blog post on Fixing Time .deltaTime in Unity 2020 .2
for smoother gameplay for more information about the frame pipeline .

Use native profiling and debugging tools

Start your profiling with Unity’s tools, and if you need greater detail, reach for
the native profiling and debugging tools available for your target platform .

Native profiling tools

Intel

 — Intel VTune: Quickly find and fix performance bottlenecks on Intel
platforms with this suite of tools for Intel processors only .

 — Intel GPA suite: This suite of graphics-focused tools can help you improve
your game’s performance by quickly identifying problem areas .

Xbox® and Windows PC

 — PIX: PIX is a performance tuning and debugging tool for Windows and Xbox
game developers using DirectX 12 . It includes tools for understanding and
analyzing CPU and GPU performance, as well as monitoring various real-time
performance counters . For Windows developers, start here . For more details
about PIX for Xbox, you need to be a registered Xbox developer: Start here .

18.of.103.| unity .com© 2024 Unity Technologies

PC / Universal

 — AMD μProf: AMD uProf is a performance analysis tool for understanding and
profiling performance for applications running on AMD hardware .

 — NVIDIA NSight: This tooling enables developers to build, debug, profile, and
develop class-leading and cutting-edge software using the latest visual
computing hardware from NVIDIA .

 — Superluminal: Superluminal is a high-performance, high-frequency profiler
that supports profiling applications on Windows, Xbox One, and PlayStation®
written in C++, Rust and .NET . It is a paid product, though, and must be
licensed for use .

PlayStation

 — CPU profiler tools are available for PlayStation hardware . For more details, you
need to be a registered PlayStation developer: Start here .

WebGL

 — Firefox Profiler: Dig into the call stacks and view flame graphs for Unity
WebGL builds (among other things) with the Firefox Profiler . It also features a
comparison tool to look at profiling captures side by side .

 — Chrome DevTools Performance: This web browser tool can be used to
profile Unity WebGL builds .

GPU debugging and profiling tools

While the Unity Frame Debug tool captures and illustrates draw calls that are
sent from the CPU, the following tools can help show you what the GPU does
when it receives those commands .

Some are platform-specific and offer closer platform integration . Take a look at
the tools relevant to your platforms of interest:

 — RenderDoc: GPU debugger for desktop and mobile platforms
 — Intel GPA: Graphics profiling for Intel-based platforms
 — Apple Frame Capture Debugging Tools: GPU debugging for Apple platforms
 — Visual Studio Graphics Diagnostics: Choose this and/or PIX for DirectX-based
platforms such as Windows or Xbox

 — NVIDIA Nsight Frame Debugger: OpenGL-based frame debugger for NVIDIA
GPUs

 — AMD Radeon Developer Tool Suite: GPU profiler for AMD GPUs
 — Xcode frame debugger: For iOS and macOS

Project Auditor

The Project Auditor is an experimental tool capable of performing static analysis
of a project’s scripts and settings . It offers a great way to track down the causes
of managed memory allocations, inefficient project configurations, and possible
performance bottlenecks .

The Project Auditor is a free, unofficial package for use with the Editor .
For information, please refer to the Project Auditor documentation .

19.of.103.| unity .com© 2024 Unity Technologies

Build Report Inspector

The Build Report Inspector (in Preview) is an Editor script that lets you access
information about your last build so you can profile the time spent building your
project and the build’s disk size footprint .

This script allows you to inspect this information graphically in the Editor UI,
making it more easily accessible than the script APIs would .

The build report displays statistics on included resources and generated code size .

Watch a Unite Now presentation on Optimizing Binary Deployment Size to learn
how to optimize your build size . You can also read the Build Report Inspector
documentation for more information .

The Build Report Inspector

20.of.103.| unity .com© 2024 Unity Technologies

Unity employs automatic memory management for user-generated code and
scripts . Small pieces of data, like value-typed local variables, are allocated to
the stack . Larger pieces of data and long-term storage are allocated to the
managed or native heaps .

The garbage collector periodically identifies and deallocates unused managed
heap memory . The Asset garbage collection runs on demand or when you load
a new scene, and it deallocates native objects and resources . While this runs
automatically, the process of examining all the objects in the heap can cause
the game to stutter or run slowly .

Optimizing your memory usage means being conscious of when you allocate
and deallocate managed heap memory, and how you minimize the effect of
garbage collection .

See Understanding the managed heap for more information .

M E M O R Y

Capture, inspect, and
compare snapshots in the
Memory Profiler .

21.of.103.| unity .com© 2024 Unity Technologies

Use the Memory Profiler

The Memory Profiler package takes a snapshot of your managed heap memory
to help you identify problems like fragmentation and memory leaks .

Use the Unity.Objects tab to identify areas where you can eliminate duplicate
memory entries or find which objects use the most memory . The All.of.Memory
tab displays a breakdown of all the memory in the snapshot that Unity tracks .

Learn how to leverage the Memory Profiler in Unity for improved memory usage .

Reduce the impact of garbage collection (GC)

Unity uses the Boehm-Demers-Weiser garbage collector, which stops running
your program code and only resumes normal execution once its work is complete .

Be aware of certain unnecessary heap allocations, which could cause GC spikes:

.— Strings: In C#, strings are reference types, not value types . This means
that every new string will be allocated on the managed heap, even if it’s
only used temporarily . Reduce unnecessary string creation or manipulation .
Avoid parsing string-based data files such as JSON and XML, and store
data in ScriptableObjects or formats like MessagePack or Protobuf instead .
Use the StringBuilder class if you need to build strings at runtime .

.— Unity.function.calls: Some Unity API functions create heap allocations,
particularly ones which return an array of managed objects . Cache
references to arrays rather than allocating them in the middle of a loop .
Also, take advantage of certain functions that avoid generating garbage .
For example, use GameObject .CompareTag instead of manually comparing
a string with GameObject .tag (as returning a new string creates garbage) .

.— Boxing: Avoid passing a value-typed variable in place of a reference-typed
variable . This creates a temporary object, and the potential garbage
that comes with it implicitly converts the value type to a type object
(e .g ., int.i.=.123;.object.o.=.i) . Instead, try to provide concrete overrides with the
value type you want to pass in . Generics can also be used for these overrides .

.— Coroutines: Though yield does not produce garbage, creating a new
WaitForSeconds object does . Cache and reuse the WaitForSeconds object
rather than creating it in the yield line .

.— LINQ.and.Regular.Expressions: Both of these generate garbage from
behind-the-scenes boxing . Avoid LINQ and Regular Expressions if
performance is an issue . Write for loops and use lists as an alternative
to creating new arrays .

.— Generic.Collections.and.other.managed.types: Don’t declare and
populate a List or collection every frame in Update (for example, a list of
enemies within a certain radius of the player) . Instead make the List a
member of the MonoBehaviour and initialize it in Start . Simply empty the
collection with Clear every frame before using it .

For more information, see the manual page on Garbage Collection Best Practices .

22.of.103.| unity .com© 2024 Unity Technologies

Time garbage collection whenever possible

If you are certain that a garbage collection freeze won’t affect a specific point in
your game, you can trigger garbage collection with System .GC .Collect .

See Understanding Automatic Memory Management for examples of how to use
this to your advantage .1

Use the Incremental Garbage Collector to split the GC workload

Rather than creating a single, long interruption during your program’s execution,
incremental garbage collection uses multiple, much shorter interruptions
that distribute the workload over many frames . If garbage collection is impacting
performance, try enabling this option to see if it can reduce the problem of
GC spikes . Use the Profile Analyzer to verify its benefit to your application .

Note: Incremental GC can temporarily help mitigate garbage collection
issues, but the best long-term course of action is to locate and stop frequent
allocations that trigger garbage collection .

Heap Explorer

1 Note that using the GC can add read-write barriers to some C# calls, which come with little overhead that can
add up to ~1 ms per frame of scripting call overhead . For optimal performance, it is ideal to have no GC Allocs in
the main gameplay loops and to hide the GC .Collect where a user won’t notice it .

Use the Incremental Garbage Collector to reduce GC spikes .

The Heap Explorer

23.of.103.| unity .com© 2024 Unity Technologies

Heap Explorer is a third-party Memory Profiler, Debugger, and Analyzer for Unity .
The package can be used to grab a memory snapshot of a given frame and shows
clear tables for Native, Managed, and Static memory . Heap Explorer can help
you identify duplicated assets, like textures copied between multiple AssetBundles .

Though it overlaps in functionality with Unity’s Memory Profiler, some still prefer
Heap Explorer for its easy to understand UI/UX .

24.of.103.| unity .com© 2024 Unity Technologies

The Unity PlayerLoop contains functions for interacting with the core of
the game engine . This structure includes a number of systems that handle
initialization and per-frame updates . All of your scripts will rely on this
PlayerLoop to create gameplay .

When profiling, you’ll see your project’s user code under the PlayerLoop
(with Editor components under the EditorLoop) .

The Profiler will show your custom scripts, settings, and graphics in the context of the entire engine’s execution .

P R O G R A M M I N G A N D
C O D E A R C H I T E C T U R E

Understand the Unity PlayerLoop

Make sure you understand the execution order of Unity’s frame loop . Every
Unity script runs several event functions in a predetermined order . You should
understand the difference between Awake, Start, Update, and other functions
that create the lifecycle of a script . You can utilize the Low-Level API to add
custom logic to the player’s update loop .

Refer to the Script Lifecycle Flowchart for event functions’ specific order of
execution .

25.of.103.| unity .com© 2024 Unity Technologies

Get to know the PlayerLoop and the lifecycle of a script .

26.of.103.| unity .com© 2024 Unity Technologies

Minimize code that runs every frame

Consider whether code must run every frame . Move unnecessary logic out of
Update, LateUpdate, and FixedUpdate . These event functions are convenient
places to put code that must update every frame, while extracting any logic that
does not need to update with that frequency . Whenever possible, only execute
logic when things change .

If you do need to use Update, consider running the code every n frames .
This is one way to apply time slicing, a common technique of distributing
a heavy workload across multiple frames . In this example, we run the
ExampleExpensiveFunction once every three frames:

private int interval = 3;

void Update()
{

if (Time.frameCount % interval == 0)
 {

ExampleExpensiveFunction();

 }
}

Better yet, if ExampleExpensiveFunction performs some operation on a set
of data, consider using time slicing to operate on a different subset of that
data every frame . By doing 1/n of the work every frame rather than all of the
work every n frames, you end up with performance that is more stable and
predictable overall, rather than seeing periodic CPU spikes .

The trick is to interleave this with other work that runs on the other frames .
In this example, you could “schedule” other expensive functions when
Time .frameCount.%.interval.==.1 or Time .frameCount.%.interval.==.2 .

Alternatively, use a custom UpdateManager class (below) and update
subscribed objects every n frames .

Cache the results of expensive functions

GameObject .Find, GameObject .GetComponent, and Camera .main (in versions
prior to 2020 .2) can be expensive, so it’s best to avoid calling them in Update
methods . Also, avoid placing expensive methods in OnEnable and OnDisable if
they are called often .

Frequently calling these methods can contribute to CPU spikes . Wherever possible,
run expensive functions in the initialization phase (i .e ., MonoBehaviour .Awake
and MonoBehaviour .Start) . Cache the needed references and reuse them later .

Here’s an example that demonstrates inefficient use of a repeated
GetComponent call:

27.of.103.| unity .com© 2024 Unity Technologies

void Update()
{

 Renderer myRenderer = GetComponent<Renderer>();
ExampleFunction(myRenderer);

}

Instead, invoke GetComponent only once, as the result of the function is cached .
The cached result can be reused in Update without any further calls to GetComponent .

private Renderer myRenderer;

void Start()
{

myRenderer = GetComponent<Renderer>()
}

void Update()
{
 ExampleFunction(myRenderer);
}

Avoid empty Unity event functions

Even empty MonoBehaviours require resources, so you should remove blank
Update or LateUpdate methods .

Use preprocessor directives if you are employing these methods for testing:

#if UNITY_EDITOR
void Update()
{
}
#endif

Here, you can freely use the Update in-Editor for testing without unnecessary
overhead slipping into your build . This blog post on 10,000 Update calls will help
you understand how Unity executes Monobehaviour .Update .

Build a custom Update Manager

A common usage pattern for Update or LateUpdate is to run logic only when
some condition is met . This can lead to a lot of per-frame callbacks that effectively
run no code except for checking this condition .

Every time Unity calls a Message method like Update or LateUpdate, it makes
an interop call, a call from the C/C++ side to the managed C# side . For a small
number of objects, this is not an issue . When you have thousands of objects,
this overhead starts becoming significant .

Consider creating a custom UpdateManager if you have a large project using
Update or LateUpdate in this fashion (e .g ., an open-world game) . Have active
objects subscribe to this UpdateManager when they want callbacks, and
unsubscribe when they don’t . This pattern could reduce many of the interop
calls to your MonoBehaviour objects .

28.of.103.| unity .com© 2024 Unity Technologies

Refer to Game engine-specific optimization techniques for Unity to see
an example of implementation and potential performance gains .

Remove Debug Log statements

Log statements (especially in Update, LateUpdate, or FixedUpdate) can bog
down performance . Disable your Log statements before making a build .

To do this more easily, consider making a Conditional attribute along
with a preprocessing directive . For example, create a custom class like this:

public static class Logging

{

 [System.Diagnostics.Conditional(“ENABLE_LOG”)]
static public void Log(object message)

 {

UnityEngine.Debug.Log(message);

 }
}

Building a custom Update Manager reduces interop calls .

Adding a custom preprocessor directive lets you partition your scripts .

29.of.103.| unity .com© 2024 Unity Technologies

Generate your log message with your custom class . If you disable the
ENABLE_LOG preprocessor in the Player.Settings.>.Scripting.Define.Symbols,
all of your Log statements disappear in one fell swoop .

The same thing applies for other use cases of the Debug Class, such as Debug .
DrawLine and Debug .DrawRay . These are also only intended for use during
development and can significantly impact performance .

Handling strings and text is a common source of performance problems in
Unity projects . Removing Log statements – and their expensive string formatting –
can be a huge win .

Disable Stack Trace logging

Use the Stack Trace options in the Player Settings to control what type of log
messages appear .

If your application is logging errors or warning messages in your release build (e .g .,
to generate crash reports in the wild), disable stack traces to improve performance .

Use hash values instead of string parameters

Unity does not use string names to address animator, material, and shader
properties internally . For speed, all property names are hashed into property
IDs, and these IDs are actually used to address the properties .

When using a Set or Get method on an animator, material, or shader, harness
the integer-valued method instead of the string-valued methods . The string
methods simply perform string hashing and then forward the hashed ID to the
integer-valued methods .

Use Animator .StringToHash for Animator property names and Shader .PropertyToID
for material and shader property names . Get these hashes during initialization and
cache them in variables for when they’re needed to pass to a Get or Set method .

Choose the right data structure

Your choice of data structure impacts efficiency as you iterate thousands of
times per frame . Not sure whether to use a list, array, or dictionary for your
collection? Follow the MSDN guide to data structures in C# as a general guide
for choosing the correct structure .

Stack Trace options

30.of.103.| unity .com© 2024 Unity Technologies

Avoid adding components at runtime

Invoking AddComponent at runtime comes with some cost . Unity must check for
duplicates or other required components whenever adding components at runtime .

Instantiating a Prefab with the desired components already set up is generally
more performant .

Use object pools

Instantiate and Destroy can generate garbage and garbage collection (GC)
spikes, and this is generally a slow process

Object pooling is a design pattern that can provide performance optimization by
reducing the processing power required of the CPU to run repetitive create and
destroy calls . Instead, with object pooling, existing GameObjects can be reused
over and over .

The key function of object pooling is to create objects in advance and store them
in a pool, rather than have them created and destroyed on demand . When an
object is needed, it’s taken from the pool and used . When it’s no longer needed, it’s
returned to the pool rather than being destroyed .

Rather than regularly instantiating and destroying GameObjects (e .g ., shooting bullets
from a gun), use pools of preallocated objects that can be reused and recycled .

In this example, the ObjectPool
creates 20 PlayerLaser
instances for reuse .

31.of.103.| unity .com© 2024 Unity Technologies

This reduces the number of managed allocations in your project and can prevent
garbage collection problems .

Learn how to create a simple object pooling system in Unity using the Pooling
API as of 2021 LTS .

Transform once, not twice

When moving Transforms, use Transform .SetPositionAndRotation to update
both position and rotation at once . This avoids the overhead of modifying a
transform twice .

If you need to Instantiate a GameObject at runtime, a simple optimization is to
parent and reposition during instantiation:

GameObject.Instantiate(prefab, parent);
GameObject.Instantiate(prefab, parent, position, rotation);

For more on Object .Instantiate, please see the Scripting API .

Use ScriptableObjects

Store unchanging values or settings in a ScriptableObject instead of a
MonoBehaviour . The ScriptableObject is an asset that lives inside of the project
that you only need to set up once . It cannot be directly attached to a GameObject .

MonoBehaviours carry extra overhead since they require a GameObject – and by
default a Transform – to act as a host . That means that you need to create a lot
of unused data before storing a single value . The ScriptableObject slims down
this memory footprint by dropping the GameObject and Transform . It also stores
the data at the project level, which is helpful if you need to access the same
data from multiple scenes .

A common use case is having many GameObjects that rely on the same
duplicate data, which does not need to change at runtime . Rather than
having this duplicate local data on each GameObject, you can funnel it into a
ScriptableObject . Then, each of the objects stores a reference to the shared
data asset, rather than copying the data itself . This is a benefit that can provide
significant performance improvements in projects with thousands of objects .

Create fields in the ScriptableObject to store your values or settings, then
reference the ScriptableObject in your MonoBehaviours .

In this example, a ScriptableObject called Inventory holds settings for various GameObjects .

32.of.103.| unity .com© 2024 Unity Technologies

Using fields from the ScriptableObject can prevent unnecessary duplication
of data every time you instantiate an object with that MonoBehaviour .

In software design, this is an optimization known as the flyweight pattern .
Restructuring your code in this way using ScriptableObjects avoids copying a lot
of values and reduces your memory footprint .

Watch this introduction to ScriptableObjects to see how ScriptableObjects can
benefit your project . You can also check out the relevant documentation .

To learn more about using design patterns in Unity, see the e-book Level up your
code with game programming patterns to learn more about using design patterns .

To learn more about using ScriptableObjects in your project, see the e-book
Create modular architecture in Unity with ScriptableObjects .

Avoid lambda expressions

A lambda expression can simplify your code, but that simplification comes
at a cost . Calling a lambda creates a delegate as well . Passing context
(e .g ., this, an instance member, or a local variable) into the lambda invalidates
any caching for the delegate . When that happens, invoking it frequently
can generate significant memory traffic .

Refactor any methods containing closures while using lambda expressions .
See an example of how to do that here .

The C# Job System

Modern CPUs have multiple cores, but your application needs multithreaded
code to take advantage of them . Unity’s Job System allows you to split large
tasks into smaller chunks that run in parallel on those extra CPU cores, which
can improve performance significantly .

Often in multithreaded programming, one CPU thread of execution, the main
thread, creates other threads to handle tasks . These additional worker threads
then synchronize with the main thread once their work completes .

In traditional
multithreaded
programming, threads
are created and
destroyed . In the C# Job
System, small jobs run
on a pool of threads .

33.of.103.| unity .com© 2024 Unity Technologies

If you have a few tasks that run for a long time, this approach to multithreading
works well . However, it’s less efficient for a game application, which must
typically process many short tasks at 30–60 frames per second .

That’s why Unity uses a slightly different approach to multithreading called
the C# Job System . Rather than generate many threads with a short lifetime,
it breaks your work into smaller units called jobs .

These jobs go into a queue, which schedules them to run on a shared pool of
worker threads . JobHandles help you create dependencies, ensuring that the
jobs run in the correct order .

One potential issue with multithreading is a race condition, which occurs
when two threads access a shared variable at the same time . To prevent this,
Unity multithreading uses a safety system to isolate the data a job needs to
execute . The C# Job System launches each job with a copy of the job structure,
eliminating race conditions .

To use Unity’s C# Job System, follow these guidelines:

 — Change classes to be structs . A job is any struct that implements the IJob
interface . If you’re performing the same task on a large number of objects,
you could also use IJobParallelFor to run across multiple cores .

 — Data passed into a job must be blittable . Remove reference types and pass
only the blittable data into the job as a copy .

 — Because the work within each job remains isolated for safety, you send the
results back to the main thread using a NativeContainer . A NativeContainer
from the Unity Collections package provides a C# wrapper for native
memory . Its subtypes (e .g ., NativeArray, NativeList, NativeHashMap,
NativeQueue, etc .)2 work like their equivalent C# data structures .

Timeline view in the Profiler shows jobs running on the worker threads .

2 These are part of the com .unity .collections package . Some of these structures are currently in Preview .

34.of.103.| unity .com© 2024 Unity Technologies

Refer to the documentation to see how you can optimize CPU performance in
your own project using the C# Job System .

The Burst compiler

The Burst compiler complements the Job System . Burst translates IL/ .NET
bytecode into optimized native code using LLVM . To access it, simply add the
com .unity .burst package from the Package Manager .

Burst allows Unity developers to continue using a subset of C# for convenience
while improving performance .

To enable the Burst compiler for your scripts:

 — Remove static variables . If you need to write to a list, consider using a
NativeArray decorated with the NativeDisableContainerSafetyRestriction
attribute . This allows parallel jobs to write to the NativeArray .

 — Use Unity .Mathematics functions instead Mathf . functions .

 — Decorate the job definition with the BurstCompile attribute .

[BurstCompile]
public struct MyFirstJob : IJob
{

public NativeArray<float3> ToNormalize;

public void Execute()
{

for (int i = 0; i < ToNormalize.Length; i++)
{

ToNormalize[i] = math.normalize(ToNormalize[i]);

}

}

}

Here is an example Burst job that runs over an array of float3’s and normalizes
the vectors . It uses the Unity Mathematics package, as mentioned above .

Both the C# Job System and the Burst compiler form part of Unity’s
Data-Oriented Tech Stack (DOTS) . However, you can use them equally
with ‘classic’ Unity GameObjects or the Entity Component System .
Refer to the latest documentation to see how Burst can accelerate your
workflow when combined with the C# Job System .

35.of.103.| unity .com© 2024 Unity Technologies

There are a few project settings that can affect your performance .

Disable unnecessary Player or Quality settings

In the Player settings, disable Auto Graphics API and
remove graphics APIs that you don’t plan on supporting
for each of your targeted platforms . This can prevent
generating excessive shader variants . Disable Target
Architectures for older CPUs if your application is not
supporting them .

In the Quality settings, disable needless Quality levels .

Switch to IL2CPP

We recommend switching the Scripting Backend from
Mono to IL2CPP (Intermediate Language to C++) .
Doing so will provide overall better runtime performance .

Be aware this does increase build times . Some developers
prefer to use Mono locally for faster iteration, then switch
to IL2CPP for build machines and/or release candidates .
Refer to the Optimizing IL2CPP build times documentation
to reduce your build times .

On PlayStation platforms
where IL2CPP is the only option,
locate the Player.Settings.>..
Other.Settings.>.IL2CPP.
optimization.level.settings .
Use the less optimal options
during development to speed
up build times . For profiling or
final release, select Optimized.
Compile,.Remove.Unused.
Code,.Optimized.link .

P R O J E C T
C O N F I G U R A T I O N

36.of.103.| unity .com© 2024 Unity Technologies

Switch to IL2CPP

Using this option, Unity converts IL code from scripts and assemblies to C++
before creating a native binary file (e .g ., .exe, .apk, .xap) for your target platform .

Please refer to the documentation, which provides information on how to
optimize build times .

You can also read the Introduction to IL2CPP Internals blog post for additional
detail or consult the Compiler options manual page to see how the various
compiler options affect runtime performance .

Avoid large hierarchies

Split your hierarchies . If your GameObjects do not need to be nested in a
hierarchy, simplify the parenting . Smaller hierarchies benefit from multithreading
to refresh the Transforms in your scene . Complex hierarchies incur unnecessary
Transform computations and more cost to garbage collection .

See Optimizing the Hierarchy and this Unite talk for best practices for Transforms .

37.of.103.| unity .com© 2024 Unity Technologies

The asset pipeline can dramatically impact your application’s performance .
An experienced technical artist can help your team define and enforce asset
formats, specifications, and import settings for smooth processes .

Don’t rely on default settings . Use the platform-specific override tab to optimize
assets such as textures and mesh geometry . Incorrect settings might yield
larger build sizes, longer build times, poor GPU performance, and poor memory
usage . Consider using the Presets feature to help customize baseline settings
that will enhance a specific project .

See this guide to best practices for importing art assets . For a mobile-specific
guide (with many general tips as well), check out the Unity Learn course on
3D art optimization for mobile applications . And watch the GDC 2023 session
“Technical tips for every stage of game creation” to learn more about how to
leverage Presets .

Compress textures

Consider these two examples using the same model and texture . The settings
on the top consume more than five times the memory compared to those on the
bottom, without much benefit in visual quality .

A S S E T S

38.of.103.| unity .com© 2024 Unity Technologies

Uncompressed textures require more memory .

Texture compression offers significant performance benefits when you
apply it correctly .

This can result in faster load times, a smaller memory footprint, and dramatically
increased rendering performance . Compressed textures only use a fraction of
the memory bandwidth needed for uncompressed 32-bit RGBA textures .

Refer to this recommended list of texture compression formats for your target
platform:

—. iOS./.Android: Use ASTC .

—. PC / Xbox Series X|S / PlayStation® 5:.BC7 (high quality) or DXT1 (low/

normal quality)

See the manual for more information on recommended texture compression
format by platform .

Texture import settings

Textures can potentially use a lot of resources . Import settings here are critical
In general, try to follow these guidelines:

— Lower the Max Size: Use the minimum settings that produce visually
 acceptable results. This is non-destructive and can quickly reduce your
 texture memory.

—. Use.powers.of.two.(POT): Unity requires POT texture dimensions for
texture compression formats .

—. Toggle.off.the.Read/Write.Enabled.option: When enabled, this option
creates a copy in both CPU- and GPU-addressable memory, doubling
the texture’s memory footprint . In most cases, keep this disabled (only

39.of.103.| unity .com© 2024 Unity Technologies

enable this if you generate a texture at runtime and need to overwrite
it) . You can also enforce this option via Texture2D .Apply, passing in
makeNoLongerReadable set to true .

.— Disable.unnecessary.mipmaps: Mipmaps are not needed for textures that
remain at a consistent size on-screen, such as 2D sprites and UI graphics
(leave mipmaps enabled for 3D models that vary their distance from the

camera) .

Proper texture import settings will help optimize your build size .

40.of.103.| unity .com© 2024 Unity Technologies

Atlas your textures

Atlasing is the process of grouping together several smaller textures into a
single uniformly sized larger texture . This can reduce the GPU effort needed to
draw the content (using fewer draw calls) and reduce memory usage .

For 2D projects, you can use a Sprite Atlas (Asset.>.Create.>.2D.>.Sprite.Atlas)
rather than rendering individual Sprites and Textures .

For 3D projects, you can use your digital content creation (DCC) package of
choice . Several third-party tools like MA_TextureAtlasser or TexturePacker also
can build texture atlases .

Combine textures and remap UVs for any 3D geometry that doesn’t require
high-resolution maps . A visual editor gives you the ability to set and prioritize
the sizes and positions in the texture atlas or sprite sheet .

The texture packer consolidates the individual maps into one large texture . Unity
can then issue a single draw call to access the packed Textures with a smaller
performance overhead .

Check your polygon counts

Higher-resolution models mean more memory usage and potentially longer
GPU times . Does your background geometry really need a million polygons?

Keep the geometric complexity of GameObjects in your Scenes to a minimum,
otherwise Unity has to push a lot of vertex data to the graphics card .

Consider cutting down models in your DCC package of choice . Delete unseen
polygons from the camera’s point of view . For example, if you never see the back
of a cupboard resting against a wall, the model should not have any faces there .

Use texture atlases to save draw calls .

41.of.103.| unity .com© 2024 Unity Technologies

Be aware that the bottleneck is not usually polygon count on modern GPUs,
but rather polygon density . We recommend performing an art pass across
all assets to reduce the polygon count of distant objects . Microtriangles can
be a significant cause of poor GPU performance .

Depending on the target platform, investigate adding details via high-resolution
Textures to compensate for low-poly geometry . Use textures and normal maps
instead of increasing the density of the mesh .

Reduce pixel complexity by baking as much detail into the Textures as possible .
For example, capture the specular highlights into the Texture to avoid having to
compute the highlight in the fragment shader .

Be mindful and remember to profile regularly, as these techniques can impact
performance, and may not be suitable for your target platform .

Remove any unseen faces to optimize your models .

42.of.103.| unity .com© 2024 Unity Technologies

Mesh import settings

Much like textures, meshes can consume excess memory if not imported
carefully . To minimize meshes’ memory consumption:

.— Use.mesh.compression:
Aggressive mesh
compression can reduce
disk space (memory
at runtime, however, is
unaffected) . Note that
mesh quantization can
result in inaccuracy,
so experiment with
compression levels to
see what works for your
models .

.— Disable.Read/Write:
Enabling this option
duplicates the mesh in
memory, which keeps one
copy of the mesh in system
memory and another in
GPU memory . In most
cases, you should disable it
(in Unity 2019 .2 and earlier,
this option is checked by
default) .

.— Disable.rigs.and.BlendShapes: If your mesh does not need skeletal or
blendshape animation, disable these options wherever possible .

.— Disable.normals.and.tangents: If you are absolutely certain the mesh’s material
will not need normals or tangents, uncheck these options for extra savings .

Other mesh optimizations

In the Player Settings, you can also apply a couple of other optimization to your
meshes:

Vertex.Compression sets vertex compression per channel . For example, you
can enable compression for everything except positions and lightmap UVs . This
can reduce runtime memory usage from your meshes .

Note that the Mesh Compression in each mesh’s Import Settings overrides the
vertex compression setting . In that event, the runtime copy of the mesh
is uncompressed and may use more memory .

Optimize.Mesh.Data.removes any data from meshes that is not required by the
material applied to them (such as tangents, normals, colors, and UVs) .

Check your mesh import settings .

43.of.103.| unity .com© 2024 Unity Technologies

Audit your assets

By automating the asset audit process, you can avoid accidentally changing
asset settings . A couple tools can help both to standardize your import settings
or analyze your existing assets .

The AssetPostprocessor

The AssetPostprocessor allows you to hook into the import pipeline and run
scripts prior to or when importing assets . This prompts you to customize
settings before and/or after importing models, textures, audio, and so on in a
way that’s similar to presets but through code . Learn more about the process in
the GDC 2023 talk “Technical tips for every stage of game creation .”

Unity DataTools

Unity DataTools is a collection of open source tools provided by Unity that aim
to enhance the data management and serialization capabilities in Unity projects .
It includes features for analyzing and optimizing project data, such as identifying
unused assets, detecting asset dependencies, and reducing build size .

Learn more about the tools here and read more about Asset Auditing in the
Understanding Optimization in Unity section of the best practice guide .

Async texture buffer

Unity uses a ring buffer to push textures to the GPU . You can manually adjust
this async texture buffer via QualitySettings .asyncUploadBufferSize .

If either the upload rate is too slow or the main thread stalls while loading
several Textures at once, adjust the Texture buffers . Usually you can set the
value (in MB) to the size of the largest texture you need to load in the Scene .

Note: Be aware that changing the default values can lead to high memory pressure .
Also, you cannot return ring buffer memory to the system after Unity allocates it .
If GPU memory overloads, the GPU unloads the least-recently used Texture
and forces the CPU to reupload it the next time it enters the camera frustum .

Read more about memory restrictions in Texture buffers when using time-
slice awake in the Memory Management in Unity guide . Also, refer to the post
Optimizing loading performance to investigate how you can improve your
loading times with the Async Upload Pipeline .

44.of.103.| unity .com© 2024 Unity Technologies

Stream mipmaps and textures

The Mipmap Streaming system gives you control over which mipmap levels load
into memory . To enable it, go to Unity’s Quality Settings (Edit.>.Project.Settings.
>.Quality) and check Texture.Streaming . Enable Streaming.Mipmaps in the
Texture’s Import Settings under Advanced .

This system reduces the total amount of memory needed for Textures because
it only loads the mipmaps necessary to render the current Camera position .
Otherwise, Unity loads all of the textures by default . Texture Streaming trades a
small amount of CPU resources to save a potentially large amount of GPU memory .

You can use the Mipmap Streaming API for additional control . Texture Streaming
automatically reduces mipmap levels to stay within the user-defined Memory Budget .

Use Addressables

The Addressable Asset System simplifies how you manage the assets that make
up your game . Any asset, including scenes, Prefabs, text assets, and so on, can
be marked as “addressable” and given a unique name . You can then call this
alias from anywhere .

Adding this extra level of abstraction between the game and its assets can
streamline certain tasks, such as creating a separate downloadable content
pack . Addressables makes referencing those asset packs easier as well,
whether they’re local or remote .

Texture Streaming
settings

Streaming Mipmaps
is enabled .

45.of.103.| unity .com© 2024 Unity Technologies

Texture Streaming
settings

Install the Addressables package from the Package Manager . Each asset or Prefab
in the project has the ability to become “addressable” as a result . Checking the
option under an asset’s name in the Inspector assigns it a default unique address .

Once marked, the corresponding assets appear in the
Window.>.Asset.Management.>.Addressables.>.Groups window .

Whether the asset is hosted elsewhere or stored locally, the system will locate
it using the Addressable Name string . An addressable Prefab does not load into
memory until needed and automatically unloads its associated assets when no
longer in use .

The “Tales from the optimization trenches: Saving memory with Addressables”
blog post demonstrates an example of how to organize your Addressable
Groups in order to be more efficient with memory . You can also see the
Addressables: Introduction to Concepts Learn module for a quick overview of
how the Addressable Asset system can work in your project .

In this example, Addressables tracks the inventory of Prefabs .

Addressable option enabled with default Addressable Name

In the Addressables Groups, you can see each asset’s custom address paired with its location .

46.of.103.| unity .com© 2024 Unity Technologies

Unity’s graphics tools let you create beautiful, optimized graphics across a range
of platforms, from mobile to high-end consoles and desktop . Because lighting
and effects are quite complex, we recommend that you thoroughly review the
render pipeline documentation before attempting to optimize .

Commit to a render pipeline

Optimizing scene lighting is not an exact science . Your process usually depends
on your artistic direction and render pipeline .

Before you begin lighting your scenes, you will need to choose one of the
available render pipelines . A render pipeline performs a series of operations that
take the contents of a scene to display them onscreen .

Unity provides three prebuilt render pipelines with different capabilities and
performance characteristics, or you can create your own .

 — The Built-in Render Pipeline is a general-purpose render pipeline with
limited customization .

 — The Universal Render Pipeline (URP) is a prebuilt Scriptable Render Pipeline .
URP provides artist-friendly workflows to create optimized graphics across
a range of platforms, from mobile to high-end consoles and PCs . URP will
eventually become the default render pipeline in Unity, however, no date is
set for this yet . The Built-in Render Pipeline will remain an available option at
least for the next release cycle in 2023 .

G R A P H I C S

47.of.103.| unity .com© 2024 Unity Technologies

URP adds graphics and rendering features unavailable to the Built-in Render
Pipeline . In order to maintain performance, it makes tradeoffs to reduce
the computational cost of lighting and shading . Choose URP if you want to
reach the most target platforms, including mobile and VR .

Get a complete overview of the capabilities in URP in the e-book
Introduction to the Universal Render Pipeline for advanced Unity creators .

 — The High Definition Render Pipeline (HDRP) is another prebuilt Scriptable
Render Pipeline, designed for cutting-edge, high-fidelity graphics .

HDRP targets high-end hardware such as PC, Xbox, and PlayStation3 . Use it
to create realistic games, automotive demos, or architectural applications .
HDRP uses physically based lighting and materials and supports improved
debugging tools .

Get a complete overview of the capabilities in HDRP in the e-book The
definitive guide to lighting in the High Definition Render Pipeline .

URP and HDRP work on top of the Scriptable Render Pipeline (SRP) . This is a
thin API layer that lets you schedule and configure rendering commands using
C# scripts . This flexibility allows you to customize virtually every part of the
pipeline . You can also create your own custom render pipeline based on SRP .

See Render Pipelines in Unity for a more detailed comparison of the available
pipelines .

HDRP is not currently supported on mobile platforms . See the Requirements and compatibility page for more details .

Enemies, a demo created by Unity, showcases HDRP’s high-end graphical capabilities .

48.of.103.| unity .com© 2024 Unity Technologies

Choose a render pipeline early when planning your project .

Render pipeline packages for consoles

To build a Project for the PlayStation.4, PlayStation.5, Game.Core.
Xbox, you need to install an additional package for each platform
you want to support . The packages for each platform are:

.— PlayStation.4: com .unity .render-pipelines .ps4

.— PlayStation.5: com .unity .render-pipelines .ps5

.— Xbox: com .unity .render-pipelines .gamecore

49.of.103.| unity .com© 2024 Unity Technologies

Select a rendering path

While selecting a render pipeline,
you should also consider a
rendering path . The rendering path
represents a specific series of
operations related to lighting and
shading . Deciding on a rendering
path depends on your application
needs and target hardware .

Forward rendering path

In forward rendering, the graphics
card projects the geometry and
splits it into vertices . Those vertices
are further broken down into
fragments, or pixels, which render
to screen to create the final image .

The pipeline passes each object, one at a time, to the graphics API . Forward
rendering comes with a cost for each light . The more lights in your scene, the
longer rendering will take .

The Built-in Render Pipeline’s forward renderer draws each light in a separate
pass per object . If you have multiple lights hitting the same GameObject, this can
create significant overdraw, where overlapping areas need to draw the same pixel
more than once . Minimize the number of real-time lights to reduce overdraw .

Rather than rendering one pass per light, the URP culls the lights per-object .
This allows for the lighting to be computed in one single pass, resulting in fewer
draw calls compared to the Built-In Render Pipeline’s forward renderer .

Materials, such as skin or foliage, can benefit from the
advanced lighting and shading features preconfigured with
the HDRP .

Forward rendering path

50.of.103.| unity .com© 2024 Unity Technologies

Deferred shading path

In deferred shading, lighting is not calculated per object .

Deferred shading instead postpones heavy rendering – like lighting – to a later
stage . Deferred shading uses two passes .

In the first pass, or the G-Buffer geometry pass, Unity renders the GameObjects .
This pass retrieves several types of geometric properties and stores them in a
set of textures . G-buffer textures can include:

 — diffuse and specular colors

 — surface smoothness

 — occlusion

 — world space normals

 — emission + ambient + reflections + lightmaps

Deferred shading path

Deferred shading applies lighting to a buffer instead of each object .

51.of.103.| unity .com© 2024 Unity Technologies

In the second pass, or lighting pass, Unity renders the scene’s lighting based
on the G-buffer . Imagine iterating over each pixel and calculating the lighting
information based on the buffer instead of the individual objects . Thus, adding
more non-shadow casting lights in deferred shading does not incur the same
performance hit as with forward rendering .

Though choosing a rendering path is not an optimization per se, it can affect how
you optimize your project . The other techniques and workflows in this section may
vary depending on what render pipeline and which rendering path you’ve chosen .

Optimize Shader Graph

Both HDRP and URP support Shader Graph, a visual interface for shader creation .
This allows some users to create complex shading effects that may have been
previously out of reach . Use the 150+ nodes in the visual graph system to create
more shaders . You can also make your own custom nodes with the API .

Begin each Shader Graph with a compatible master node, which determines the
graph’s output . Add nodes and operators with the visual interface, and construct
the shader logic .

This Shader Graph then passes into the render pipeline’s backend . The final
result is a ShaderLab shader, functionally similar to one written in HLSL or Cg .

Optimizing a Shader Graph follows many of the same rules that apply to
traditional HLSL/Cg Shaders . The more processing your Shader Graph does,
the more it will impact the performance of your application .

If you are CPU-bound, optimizing your shaders won’t improve frame rate,
but may improve your battery life for mobile platforms .

Use Shader Graph to create shaders via a visual interface rather than through code .

52.of.103.| unity .com© 2024 Unity Technologies

If you are GPU-bound, follow these guidelines for improving performance with
Shader Graphs:

.— Decimate.your.nodes: Remove unused nodes . Don’t change any defaults
or connect nodes unless those changes are necessary . Shader Graph
compiles out any unused features automatically .

When possible, bake values into textures . For example, instead of using a node
to brighten a texture, apply the extra brightness into the texture asset itself .

.— Use.a.smaller.data.format: Switch to a smaller data structure when possible .
Consider using Vector2 instead of Vector3 if it does not impact your project . You
can also reduce precision if the situation allows (e .g ., half instead of float) .

.— Reduce.math.operations: Shader operations run many times per second,
so optimize any math operators when possible . Try to blend results instead
of creating a logical branch . Use constants, and combine scalar values before
applying vectors . Finally, convert any properties that do not need to appear
in the Inspector as in-line Nodes . All of these incremental speedups can help
your frame budget .

.— Branch.a.preview: As your graph gets larger, it may become slower to
compile . Simplify your workflow with a separate, smaller branch just
containing the operations you want to preview at the moment, then iterate
more quickly on this smaller branch until you achieve the desired results .

If the branch is not connected to the master node, you can safely leave
the preview branch in your graph . Unity removes nodes that do not affect
the final output during compilation .

.— Manually.optimize: Even if you’re an experienced graphics programmer,
you can still use a Shader Graph to lay down some boilerplate code
for a script-based shader . Select the Shader Graph asset, then select
Copy Shader from the context menu .

Create a new HLSL/Cg Shader and then paste in the copied Shader Graph .
This is a one-way operation, but it lets you squeeze additional
performance with manual optimizations .

Reduce precision in Shader Graph in the Output node when possible .

53.of.103.| unity .com© 2024 Unity Technologies

Remove built-in shader settings

Remove every shader that you don’t use from the Always Included list of
shaders in the Graphics Settings (Edit.>.ProjectSettings.>.Graphics) .
Add shaders here needed for the lifetime of the application .

Strip shader variants

You can use the Shader compilation pragma directives to compile the shader differently
for target platforms . Then, use a shader keyword (or Shader Graph Keyword node)
to create shader variants with certain features enabled or disabled .

Shader variants can be useful for platform-specific features but increase build
times and file size . You can prevent shader variants from being included in your
build, if you know that they are not required .

Parse the Editor .log for shader timing and size . Locate the lines that begin with
“Compiled shader” and “Compressed shader .”

In an example log, your TEST shader may show you:

Always Included Shaders

54.of.103.| unity .com© 2024 Unity Technologies

Compiled shader ‘TEST Standard (Specular setup)’ in 31.23s
d3d9 (total internal programs: 482, unique: 474)
d3d11 (total internal programs: 482, unique: 466)
metal (total internal programs: 482, unique: 480)
glcore (total internal programs: 482, unique: 454)

Compressed shader ‘TEST Standard (Specular setup)’ on d3d9 from 1.04MB to 0.14MB
Compressed shader ‘TEST Standard (Specular setup)’ on d3d11 from 1.39MB to 0.12MB
Compressed shader ‘TEST Standard (Specular setup)’ on metal from 2.56MB to 0.20MB
Compressed shader ‘TEST Standard (Specular setup)’ on glcore from 2.04MB to 0.15MB

This tells you a few things about this shader:

 — The shader expands into 482 variants due to #pragma multi_compile
and shader_feature .

 — Unity compresses the shader included in the game data to roughly the
sum of the compressed sizes: 0 .14+0 .12+0 .20+0 .15 = 0 .61MB .

 — At runtime, Unity keeps the compressed data in memory (0 .61MB), while
the data for your currently used graphics API is uncompressed . For
example, if your current API was Metal, that would account for 2 .56MB .

After a build, Project Auditor can parse the Editor .log to display a list of all shaders,
shader keywords, and shader variants compiled into a project . It can also
analyze the Player .log after the game is run . This shows you what variants the
application actually compiled and used at runtime .

Employ this information to build a scriptable shader stripping system and reduce
the number of variants . This can improve build times, build sizes, and runtime
memory usage .

Read the Stripping scriptable shader variants blog post to see this process in detail .

Particle simulations: Particle System or VFX Graph

Unity includes two particle simulation solutions for smoke, liquids, flames, or
other effects:

 — The Built-in Particle System can simulate thousands of particles on the
CPU . You can use C# scripts to define a system and its individual particles .

A simple effects simulation using the Particle System

55.of.103.| unity .com© 2024 Unity Technologies

Particle Systems can interact with Unity’s underlying physics system and
any colliders in your scene . Particle Systems offer maximum compatibility
and work with any of Unity’s supported build platforms .

 — The VFX Graph moves calculations on the GPU using compute shaders . This
can simulate millions of particles in large-scale visual effects .
The workflow includes a highly customizable graph view . Particles can also
interact with the color and depth buffer .

Though it does not have access to the underlying physics system,
a VFX Graph can interact with complex assets, such as Point Caches, Vector
Fields, and Signed Distance Fields . VFX Graph only works on platforms
that support compute shaders HDRP, and URP .

When selecting one of the two systems, keep device compatibility in mind .
Most PCs and consoles support compute shaders, but many mobile devices do not .
If your target platform does support compute shaders, Unity allows you to use
both types of particle simulation in your project .

Learn more about creating high-end visual effects with the e-book The
definitive guide to creating advanced visual effects in Unity .

Smooth with anti-aliasing

Anti-aliasing is highly desirable as it helps to smooth the image, reduce jagged
edges, and minimize specular aliasing .

If you are using Forward Rendering with the Built-in Render Pipeline, Multisample
Anti-aliasing (MSAA) is available in the Quality Settings . MSAA produces high-
quality anti-aliasing, but it can be expensive . The MSAA.Sample.Count from the
drop-down menu (None, 2X, 4X, 8X) defines how many samples the renderer
uses to evaluate the effect .

Millions of particles on-screen created with the Visual Effect Graph

56.of.103.| unity .com© 2024 Unity Technologies

If you are using Forward Rendering with the URP or HDRP, you can enable MSAA
on the Render Pipeline Asset .

Alternatively, you have the option to add anti-aliasing as a post-processing
effect . This appears on the Camera component under Anti-aliasing:

.— Fast.approximate.anti-aliasing.(FXAA) smooths edges on a per-pixel
level . This is the least resource intensive anti-aliasing and slightly blurs
the final image .

.— Subpixel.morphological.anti-aliasing.(SMAA) blends pixels based
on the borders of an image . This has much sharper results than FXAA
and is suited for flat, cartoon-like, or clean art styles .

In HDRP, you can also use FXAA and SMAA in the Post.Anti-aliasing on the
Camera . HDRP also offers an additional option:

.— Temporal.anti-aliasing.(TAA) smooths edges using frames from the
history buffer . This works more effectively than FXAA but requires
motion vectors in order to work . TAA can also improve Ambient Occlusion
and Volumetrics . It is generally higher quality than FXAA, but it costs
more resources and can produce occasional ghosting artifacts .

Anti-aliasing as a post effect on an HDRP camera .

In URP, locate the MSAA settings on the Render Pipeline Asset .

57.of.103.| unity .com© 2024 Unity Technologies

Common lighting optimizations

While lighting is a vast subject, these general tips can help you to optimize
your resources .

Bake.lightmaps

The fastest option to create lighting is one that doesn’t need to be computed
per-frame . To do this, use Lightmapping to “bake” static lighting just once,
instead of calculating it in real-time .

Add dramatic lighting to your static geometry using Global.Illumination.(GI) .
Mark objects with Contribute.GI so you can store high-quality lighting in the
form of Lightmaps .

The process of generating a lightmapped environment takes longer than just
placing a light in the scene in Unity, but this:

 — runs faster, 2–3 times faster for two-per-pixel lights

 — looks better – Global Illumination can calculate realistic-looking direct and
indirect lighting . The lightmapper smooths and denoises the resulting map .

Baked shadows and lighting can then
render without the same performance hit
of real-time lighting and shadows .

Complex scenes may require long bake
times . If your hardware supports the
Progressive.GPU.Lightmapper, this option
can dramatically speed up your lightmap
generation, up to tenfold in some cases .

Follow the manual guide and this article on optimizing lighting to get started
with lightmapping in Unity .

Enable Contribute GI

Adjust the Lightmapping Settings (Windows.>.Rendering.>.Lighting.Settings) and Lightmap size to limit memory usage .

58.of.103.| unity .com© 2024 Unity Technologies

Minimize.Reflection.Probes.

A Reflection Probe can create realistic reflections, but this can be very costly
in terms of batches . Use low-resolution cubemaps, culling masks, and texture
compression to improve runtime performance . Use.Type:.Baked to avoid
per-frame updates .

If using Type:.Realtime is necessary in URP, avoid Every.Frame if possible .
Adjust the Refresh Mode and Time Slicing settings to reduce the update rate .
You can also control the refresh with the Via Scripting option and render the probe
from a custom script .

If using Type:.Realtime is necessary in HDRP, use On.Demand mode . You can
also modify the Frame Settings in Project.Settings.>.HDRP.Default.Settings .
Reduce the quality and features under Realtime Reflection for improved performance .

Disable.shadows.

Shadow casting can be disabled per MeshRenderer and light . Disable shadows
whenever possible to reduce draw calls .

You can also create fake shadows using a blurred texture applied to a simple
mesh or quad underneath your characters . Otherwise, you can create blob
shadows with custom shaders .

In particular, avoid enabling shadows for point lights . Each point light with
shadows requires six shadow map passes per light – compare that with a single
shadow map pass for a spotlight . Consider replacing point lights with spotlights
where dynamic shadows are absolutely necessary . If you can avoid dynamic
shadows, use a cubemap as a Light .cookie with your point lights instead .

Substitute.a.shader.effect

In some cases, you can apply simple tricks rather than adding multiple extra
lights . For example, instead of creating a light that shines straight into the
camera to give a rim lighting effect, use a Shader which simulates rim lighting
(see Surface Shader examples for an implementation of this in HLSL) .

Disable shadow casting to reduce draw calls .

59.of.103.| unity .com© 2024 Unity Technologies

Use.Light.Layers.

For complex scenes with multiple lights, separate your objects using layers,
then confine each light’s influence to a specific culling mask .

Use.Light.Probes.for.moving.or.background.objects

Light Probes store baked lighting information about the empty space in your
scene, while providing high-quality lighting (both direct and indirect) . They use
Spherical Harmonics, which calculate very quickly compared to dynamic lights .
This is especially useful for moving objects, which normally cannot receive
baked lightmapping .

Light Probes can apply to static meshes as well . In the MeshRenderer
component, locate the Receive.Global.Illumination dropdown and toggle it from
Lightmaps to Light.Probes .

Layers can limit your light’s influence to a specific culling mask .

Light Probes illuminate dynamic objects in the background .

60.of.103.| unity .com© 2024 Unity Technologies

Continue using lightmapping for your prominent level geometry, but switch
smaller details to probe lighting . Light Probe illumination does not require proper
UVs, saving you the extra step of unwrapping your meshes . Probes also reduce
disk space since they don’t generate lightmap textures .

See the Static Lighting with Light Probes blog post for information about
selectively lighting scene objects with Light Probes .

For more about lighting workflows in Unity, read Making believable visuals in Unity .

You can also use Light Probes for smaller details where lightmapping is less noticeable .

A Light Probe Group with Light Probes spread across the level .

61.of.103.| unity .com© 2024 Unity Technologies

To optimize your graphics rendering, you’ll need to understand the limitations of
your target hardware and how to profile the GPU . Profiling helps you check and
verify that the optimizations you’re making are effective .

Use these best practices for reducing the rendering workload on the GPU .

Benchmark the GPU

When profiling, it’s useful to start with a benchmark . A benchmark tells you what
profiling results you should expect from specific GPUs .

See GFXBench for a great list of different industry-standard benchmarks for
GPUs and graphics cards . The website provides a good overview of the current
GPUs available and how they stack up against each other .

Watch the rendering statistics

Click the Stats button in the top right of the Game view . This window shows
you real-time rendering information about your application during Play mode .
Use this data to help optimize performance:

.— FPS: Frames per second

.— CPU.Main: Total time to process one frame
(and update the Editor for all windows)

G P U
O P T I M I Z A T I O N

62.of.103.| unity .com© 2024 Unity Technologies

.— CPU.Render: Total time to render one frame of the Game view

.— Batches: Groups of draw calls to be drawn together

 — Tris.(triangles).and.Verts.(vertices): Mesh geometry

.— SetPass.calls: The number of times Unity must switch shader passes
to render the GameObjects on-screen; each pass can introduce extra
CPU overhead .

Note: In-Editor fps does not necessarily translate to build performance .
We recommend that you profile your build for the most accurate results .
Frame time in milliseconds is a more accurate metric than frames per second
when benchmarking, as outlined in the “FPS: A deceptive metric” section .

Use draw call batching

To draw a GameObject, Unity issues a draw call to the graphics API (e .g .,
OpenGL, Vulkan, or Direct3D) . Each draw call is resource intensive . State
changes between draw calls, such as switching materials, can cause
performance overhead on the CPU side .

PC and console hardware can push a lot of draw calls, but the overhead of each
call is still high enough to warrant trying to reduce them . On mobile devices,
draw call optimization is vital . You can achieve this with draw call batching .

Draw call batching minimizes these state changes and reduces the CPU cost of
rendering objects . Unity can combine multiple objects into fewer batches using
several techniques:

.— SRP.Batching: If you are using HDRP or URP, enable the SRP Batcher in
your Pipeline Asset under Advanced . When using compatible shaders,
the SRP Batcher reduces the GPU setup between draw calls and makes
material data persistent in GPU Memory . This can speed up your CPU
rendering times significantly . Use fewer Shader Variants with a minimal
amount of Keywords to improve SRP batching . Consult this SRP documentation
to see how your project can take advantage of this rendering workflow .

.— GPU.instancing:.If you have a large number of identical objects (e .g .,
buildings, trees, grass, and so on with the same mesh and material), use
GPU instancing . This technique batches them using graphics hardware . To
enable GPU Instancing, select your material in the Project window, and, in
the Inspector, check Enable.Instancing .

.— Static.batching: For non-moving geometry, Unity can reduce draw
calls for any meshes sharing the same material . It is more efficient than
dynamic batching, but it uses more memory .

Mark all meshes that never move as Batching.Static in the Inspector .
Unity combines all static meshes into one large mesh at build time .
The StaticBatchingUtility also allows you to create these static batches
yourself at runtime (for example, after generating a procedural level
of non-moving parts) .

63.of.103.| unity .com© 2024 Unity Technologies

.— Dynamic.Batching: For small meshes, Unity can group and transform
vertices on the CPU, then draw them all in one go . Note: Do not use this
unless you have enough low-poly meshes (no more than 300 vertices
each and 900 total vertex attributes) . Otherwise, enabling it will waste
CPU time looking for small meshes to batch .

You can maximize batching with a few simple rules:

 — Use as few textures in a scene as possible . Fewer textures require fewer
unique materials, making them easier to batch . Additionally, use texture
atlases wherever possible .

 — Always bake lightmaps at the largest atlas size possible . Fewer lightmaps
require fewer material state changes, but keep an eye on the memory
footprint .

 — Be careful not to instance materials unintentionally . Accessing Renderer .
material in scripts duplicates the material and returns a reference to
the new copy . This breaks any existing batch that already includes the
material . If you wish to access the batched object’s material, use Renderer .
sharedMaterial instead .

 — Keep an eye on the number of static and dynamic batch counts versus the total
draw call count by using the Profiler or the rendering stats during optimizations .

Please refer to the Draw Call Batching documentation for more information .

Check the Frame Debugger

The Frame.Debugger allows you to freeze playback on a single frame and step
through how Unity constructs a scene to identify optimization opportunities .
Look for GameObjects that render unnecessarily, and disable those to reduce
draw calls per frame .

SRP Batcher helps you batch draw calls .

64.of.103.| unity .com© 2024 Unity Technologies

Note: The Frame Debugger does not show individual draw calls or state changes .
Only native GPU profilers give you detailed draw call and timing information .
However, the Frame Debugger can still be very helpful in debugging pipeline
problems or batching issues .

One advantage of the Unity Frame Debugger is that you can relate a draw call to
a specific GameObject in the scene . This makes it easier to investigate certain
issues that may not be possible in external frame debuggers .

 For more information, read the Frame Debugger documentation, and see the
section “Use native profiling and debugging tools” for a list of platform-specific
debugging tools .

Optimize fill rate and reduce overdraw

Fill rate refers to the number of pixels the GPU can render to the screen each second .

If your game is limited by fill rate, this means that it’s trying to draw more pixels
per frame than the GPU can handle .

Drawing on top of the same pixel multiple times is called overdraw . Overdraw
decreases fill rate and costs extra memory bandwidth . The most common
causes of overdraw are:

 — Overlapping opaque or transparent geometry
 — Complex shaders, often with multiple render passes
 — Unoptimized particles
 — Overlapping UI elements

While you want to minimize its effect, there is no one-size-fits-all approach to
solving overdraw problems . Begin by experimenting with the above factors to
reduce their impact .

The Frame Debugger breaks down each rendered frame .

65.of.103.| unity .com© 2024 Unity Technologies

Draw order and render queues

To combat overdraw, you should understand
how Unity sorts objects before rendering
them .

The Built-in Render Pipeline sorts
GameObjects according to their Rendering
Mode and renderQueue . Each object’s
shader places it in a render queue, which
often determines its draw order .

Each render queue may follow different rules
for sorting before Unity actually draws the
objects to screen . For example, Unity sorts the
Opaque Geometry queue front-to-back, but
the Transparent queue sorts back-to-front .

Objects rendering on top of one another
create overdraw . If you are using the Built-in
render Pipeline, you can visualize overdraw
in the Scene view control bar . Switch the
draw mode to Overdraw .

Brighter pixels indicate objects drawing on
top of one another; dark pixels mean less
overdraw . Overdraw in the Scene view control bar .

A scene in standard Shaded view

66.of.103.| unity .com© 2024 Unity Technologies

HDRP controls the render queue slightly differently . To calculate the order of the
render queue, the HDRP:

 — Groups meshes by shared materials

 — Calculates the rendering order of those groups based on Material Priority

 — Sorts each group using each Mesh Renderer’s Priority property .

The resulting queue is a list of GameObjects that are first sorted by their
material’s Priority, then by their individual Mesh Renderer’s Priority . This page on
Renderer and Material Priority illustrates this in more detail .

To visualize transparency overdraw
with HDRP, use the Render Pipeline
Debug window (Window.>.Render.
Pipeline.>.Render.Pipeline.Debug)
to select TransparencyOverdraw .

This debug option displays each pixel
as a heat map going from black (which
represents no transparent pixels) through
blue to red (at which there are Max Pixel
Cost number of transparent pixels) .

When correcting overdraw, these
diagnostic tools can offer a visual
barometer of your optimizations .

The same scene in Overdraw view – overlapping geometry is often a source of overdraw .

The HDRP Render Pipeline Debug window can
visualize overdraw from transparent materials .

67.of.103.| unity .com© 2024 Unity Technologies

Optimizing graphics for consoles

Though developing for Xbox and PlayStation does resemble working with their
PC counterparts, those platforms do present their own challenges . Achieving
smooth frame rates often means focusing on GPU optimization .

Identify your performance bottlenecks.

To begin, locate a frame with a high GPU load . Microsoft and Sony provide
excellent tools for analyzing your project’s performance on both the CPU and on
the GPU . Make PIX for Xbox and PlayStation profiler tools part of your toolbox
when it comes to optimization on these platforms .

Use your respective native profiler to break down the frame cost into its specific
parts . This will be your starting point to improve graphics performance .

This section outlines the process of porting the Book of the Dead environment project to PlayStation 4 .

The view was GPU-bound on a PS4 Pro at roughly 45 milliseconds per frame .

68.of.103.| unity .com© 2024 Unity Technologies

Reduce the batch count

As with other platforms, optimization on console will often mean reducing draw
call batches . There are a few techniques that might help .

 — Use Occlusion Culling to remove objects hidden behind foreground objects
and reduce overdraw . Be aware this requires additional CPU processing,
so use the Profiler to ensure moving work from the GPU to CPU is beneficial .

 — GPU instancing can also reduce your batches if you have many objects
that share the same mesh and material . Limiting the number of models in
your scene can improve performance . If it’s done artfully, you can build a
complex scene without making it look repetitive .

 — The SRP Batcher can reduce the GPU setup between DrawCalls by batching
Bind and Draw GPU commands . To benefit from this SRP batching, use
as many materials as needed, but restrict them to a small number of
compatible shaders (e .g ., Lit and Unlit shaders in URP and HDRP) .

Activate Graphics Jobs

Enable this option in Player.Settings.>.Other.Settings to take advantage of the
PlayStation’s or Xbox’s multi-core processors . Graphics.Jobs.(Experimental).
allows Unity to spread the rendering work across multiple CPU cores, removing
pressure from the render thread . See Multithreaded Rendering and Graphics
Jobs tutorial for details .

Profile the post-processing

Be sure to use post-processing assets that are optimized for consoles . Tools from
the Asset Store that were originally authored for PC may consume more resources
than necessary on Xbox or PlayStation . Profile using native profilers to be certain .

Avoid tessellation shaders

Tessellation subdivides shapes into smaller versions of that shape . This can
enhance detail through increased geometry . Though there are examples where
tessellation does make sense (e .g ., Book of the Dead’s realistic tree bark),
in general, avoid tessellation on consoles . They can be expensive on the GPU .

Replace geometry shaders with compute shaders

Like tessellation shaders, geometry and vertex shaders can run twice per frame
on the GPU – once during the depth pre-pass, and again during the shadow pass .

If you want to generate or modify vertex data on the GPU, a compute shader
is often a better choice than a geometry shader . Doing the work in a compute

69.of.103.| unity .com© 2024 Unity Technologies

shader means that the vertex shader that actually renders the geometry can be
comparatively fast and simple .

Aim for good wavefront occupancy

When you send a draw call to the GPU, that work splits into many wavefronts
that Unity distributes throughout the available SIMDs within the GPU .

Each SIMD has a maximum number of wavefronts that can be running at one
time . Wavefront occupancy refers to how many wavefronts are currently in
use relative to the maximum . This measures how well you are using the GPU’s
potential . PIX and Razor show wavefront occupancy in great detail .

In this example from Book of the Dead, vertex shader wavefronts appear in
green . Pixel shader wavefronts appear in blue . On the bottom graph, many
vertex shader wavefronts appear without much pixel shader activity . This shows
an underutilization of the GPU’s potential .

If you’re doing a lot of vertex shader work that doesn’t result in pixels, that may
indicate an inefficiency . While low wavefront occupancy is not necessarily bad,
it’s a metric to start optimizing your shaders and checking for other bottlenecks .
For example, if you have a stall due to memory or compute operations,
increasing occupancy may help performance . On the other hand, too many in-
flight wavefronts can cause cache thrashing and decrease performance .

Use HDRP built-in and custom passes

If your project uses HDRP, take advantage of its built-in and custom passes .
These can assist in rendering the scene . The built-in passes can help you
optimize your shaders . HDRP includes several injection points where you can
add custom passes to your shaders .

Good versus bad wavefront occupancy

70.of.103.| unity .com© 2024 Unity Technologies

For optimizing the behavior of transparent materials, refer to this page on
Renderer and Material Priority .

Reduce the size of shadow mapping render targets

The High Quality setting of HDRP defaults to using a 4K shadow map . Reduce the
shadow map resolution and measure the impact on the frame cost . Just be aware that
you may need to compensate for any changes in visual quality with the light’s settings .

Utilize Async Compute

If you have intervals where you are
underutilizing the GPU, Async Compute
allows you to move useful compute
shader work in parallel to your graphics
queue . This makes better use of those
GPU resources .

For example, during shadow map
generation, the GPU performs depth-
only rendering . Very little pixel shader
work happens at this point, and many
wavefronts remain unoccupied .

If you can synchronize some compute
shader work with the depth-only
rendering, this makes for a better overall
use of the GPU . The unused wavefronts
could help with Screen Space Ambient
Occlusion or any task that complements
the current work .

Use HDRP injection points to customize the pipeline .

Async Compute can move compute shader work in
parallel to the graphics queue .

71.of.103.| unity .com© 2024 Unity Technologies

In this example from Book of the Dead, several optimizations shaved several
milliseconds off the shadow mapping, lighting pass, and atmospherics . The resulting
frame cost allowed the application to run at 30 fps on a PlayStation®4 Pro .

Watch a performance case study in Optimizing Performance for High-End Consoles,
where Unity graphics developer Rob Thompson discusses porting the Book of the
Dead to PlayStation 4 . You can also read this list of tips for optimizing console game
graphics to learn more .

Optimized render at 30 fps

72.of.103.| unity .com© 2024 Unity Technologies

Culling

Occlusion culling disables GameObjects that are fully hidden (occluded) by
other GameObjects . This prevents the CPU and GPU from using time to render
objects that will never be seen by the Camera .

Culling happens per camera . It can have a large impact on performance,
especially when multiple cameras are enabled concurrently . Unity uses two
types of culling, frustum culling and occlusion culling .

.— Frustum.culling is performed automatically on every Camera . It prevents
GameObjects that are outside of the View Frustum from being rendered,
helping to optimize performance .

You can set per-layer culling distances manually via Camera .
layerCullDistances . This allows you to cull small GameObjects at a distance
shorter than the default farClipPlane .

Organize GameObjects into Layers . Use the layerCullDistances array to
assign each of the 32 layers a value less than the farClipPlane (or use 0 to
default to the farClipPlane) .

Unity culls by layer first, keeping GameObjects only on layers the Camera
uses . Afterwards, frustum culling removes any GameObjects outside the
camera frustum . Frustum culling is performed as a series of jobs to take
advantage of available worker threads .

Each layer culling test is very fast (essentially just a bit mask operation) .
However, this cost could still add up with a very large number of
GameObjects . If this becomes a problem for your project, you may need
to implement some system to divide your world into “sectors” and disable
sectors that are outside the Camera frustum in order to relieve some of
the pressure on Unity’s layer/frustum culling system .

.— Occlusion.culling removes any GameObjects from the Game view if the
Camera cannot see them . Use this feature to prevent rendering of objects
hidden behind other objects since these can still render and cost resources .
For example, rendering another room is unnecessary if a door is closed and
the Camera cannot see into the room .

Enabling occlusion culling can significantly increase performance but can also
require more disk space, CPU time, and RAM . Unity bakes the occlusion data
during the build and then needs to load it from disk to RAM while loading a
scene .

While frustum culling outside the camera view is automatic, occlusion
culling is a baked process . Simply mark your objects as Static .Occluders
or Occludees, then bake through the Window.>.Rendering.>.Occlusion.
Culling dialog .

73.of.103.| unity .com© 2024 Unity Technologies

Check out the Working with Occlusion Culling tutorial for more information .

An example of occlusion culling

74.of.103.| unity .com© 2024 Unity Technologies

Dynamic resolution

Allow.Dynamic.Resolution is a Camera setting that allows you to dynamically
scale individual render targets to reduce workload on the GPU . In cases
where the application’s frame rate reduces, you can gradually scale down the
resolution to maintain a consistent frame rate .

Unity triggers this scaling if performance data suggests that the frame rate is
about to decrease as a result of being GPU-bound . You can also preemptively
trigger this scaling manually with script . This is useful if you are approaching a
GPU-intensive section of the application . If scaled gradually, dynamic resolution
can be almost unnoticeable .

Refer to the dynamic resolution manual page for additional information and a list
of supported platforms .

Multiple camera views

Sometimes you may need to render from more than one point of view during
your game . For example, it’s common in an FPS game to draw the player’s
weapon and the environment separately with different fields of view (FOV) .
This prevents the foreground objects from feeling too distorted viewed through
the wide-angle FOV of the background .

You could use Camera Stacking in URP to render more than one camera view .
However, there is still significant culling and rendering done for each camera .
Each camera incurs some overhead, whether it’s doing meaningful work or not .
Only use Camera components required for rendering . On mobile platforms,
each active camera can use up to 1 ms of CPU time, even when rendering nothing .

Camera Stacking in URP . In this example, the gun and background render with different camera settings .

The Unity CPU Profiler shows the main thread in the timeline view and indicates that there are multiple Cameras .
Unity performs culling for each Camera .

75.of.103.| unity .com© 2024 Unity Technologies

RenderObjects in URP

In the URP, instead of using multiple
cameras, try a custom RenderObject .
Select Add.Renderer.Feature in
the Renderer.Data asset . Choose
RenderObject.(Experimental) .

When overriding each RenderObject,
you can:

 — Associate it with an Event and
inject it into a specific timing of
the render loop

 — Filter by Render Queue
(Transparent or Opaque)
and LayerMask

 — Affect the Depth and Stencil settings

 — Modify the Camera settings (Field of View and Position Offset)

CustomPassVolumes in HDRP

In HDRP, you can use custom passes to similar effect . Configuring a
Custom Pass using a Custom Pass Volume is analogous to using an HDRP Volume .

A Custom Pass allows you to:

 — Change the appearance of materials in your scene

 — Change the order that Unity renders GameObjects

 — Read Camera buffers into shaders

Using Custom Passes in HDRP can help you avoid using extra Cameras
and the additional overhead associated with them . Custom passes have
extra flexibility in how they can interact with shaders . You can also extend
the Custom Pass class with C# .

Create a custom RenderObject to override render settings .

RenderObjects in URP combine multiple Layers into one rendered view .

76.of.103.| unity .com© 2024 Unity Technologies

Use Level of Detail (LOD)

As objects move into the distance,
Level of Detail can adjust or switch
them to use lower-resolution meshes
with simpler materials and shaders to
aid GPU performance .

See the Working with LODs course on
Unity Learn for more detail .

A CustomPassVolume in HDRP .

Example of a Mesh using a Level of Detail Group

Source meshes, modeled at varying resolutions

77.of.103.| unity .com© 2024 Unity Technologies

Profile post-processing effects

Profile your post-processing effects to see their cost on the GPU . Some fullscreen
effects, like Bloom and depth of field, can be expensive, but experiment until
you find a happy balance between visual quality and performance .

Post-processing tends not to fluctuate much at runtime . Once you’ve
determined your Volume Overrides, allot your post effects a static portion of
your total frame budget .

Keep post-processing effects simple if possible .

78.of.103.| unity .com© 2024 Unity Technologies

Unity offers two UI systems: The older Unity UI and the new UI Toolkit . UI Toolkit
is intended to become the recommended UI system . It’s tailored for maximum
performance and reusability, with workflows and authoring tools inspired by
standard web technologies, meaning UI designers and artists will find it familiar
if they already have experience designing web pages .

However, as of Unity 2022 LTS, UI Toolkit does not have some features that
Unity UI and Immediate Mode GUI (IMGUI) support . Unity UI and IMGUI are more
appropriate for certain use cases, and are required to support legacy projects .
See the Comparison of UI systems in Unity for more information .

Divide your Canvases

If you have one large Canvas with thousands of elements, updating a single UI element
forces the whole Canvas to update, which can potentially generate a CPU spike .

Take advantage of UGUI’s ability to support multiple Canvases . Divide UI elements
based on how frequently they need to be refreshed . Keep static UI elements
on a separate Canvas, and dynamic elements that update at the same time on
smaller sub-canvases .

Ensure that all UI elements within each Canvas have the same Z value, materials,
and textures .

U S E R I N T E R F A C E

79.of.103.| unity .com© 2024 Unity Technologies

Hide invisible UI elements

You might have UI elements that only appear sporadically in the game
(e .g ., a health bar that appears when a character takes damage) . If your invisible
UI element is active, it might still be using draw calls . Explicitly disable any
invisible UI components and reenable them as needed .

If you only need to turn off the Canvas’s visibility, disable the Canvas component
rather than the whole GameObject . This can prevent your game from having to
rebuild meshes and vertices when you reenable it .

Limit GraphicRaycasters and disable Raycast Target

Input events like onscreen touches or clicks require the GraphicRaycaster component .
This simply loops through each input point on screen and checks if it’s within a
UI’s RectTransform . You need a Graphic Raycaster on every Canvas that requires
input, including sub-canvases .

While this is not really a raycaster (despite the name), there is some expense
for each intersection check . Minimize the number of Graphic Raycasters by not
adding them to non-interactive UI Canvases .

In addition, disable Raycast Target on all UI text and images that don’t need it .
If the UI is complex with many elements, all of these small changes can reduce
unnecessary computation .

Remove GraphicRaycasters from non-interactive UI Canvases .

Disable Raycast Target if possible .

80.of.103.| unity .com© 2024 Unity Technologies

Avoid layout groups

Layout Groups update inefficiently, so use them sparingly . Avoid them entirely
if your content isn’t dynamic, and use anchors for proportional layouts instead .
Otherwise, create custom code to disable the Layout Group components after
they set up the UI .

If you do need to use Layout Groups (Horizontal, Vertical, Grid) for your dynamic
elements, avoid nesting them to improve performance .

Avoid large List and Grid views

Large List and Grid views are expensive . If you need to create a large List or
Grid view (e .g ., an inventory screen with hundreds of items), consider reusing
a smaller pool of UI elements rather than creating a UI element for every item .
Check out this sample GitHub project to see this in action .

Avoid numerous overlaid elements

Layering lots of UI elements (e .g ., cards stacked in a card battle game) creates
overdraw . Customize your code to merge layered elements at runtime into fewer
elements and batches .

When using a fullscreen UI, hide everything else

If your pause or start screen covers everything else in the scene, disable the
camera that is rendering the 3D scene . Likewise, disable any background
Canvas elements hidden behind the top Canvas .

Consider lowering the Application .targetFrameRate during a fullscreen UI,
since you should not need to update at 60 fps .

Layout Groups can lower performance, especially when nested .

81.of.103.| unity .com© 2024 Unity Technologies

UI Toolkit performance optimization tips

UI Toolkit offers improved performance over Unity UI, is tailored for maximum
performance and reusability, and provides workflows and authoring tools
inspired by standard web technologies . One of its key benefits is that it uses a
highly optimized rendering pipeline that is specifically designed for UI elements .

Here are some general recommendations for optimizing performance of your UI
with UI Toolkit:

.— Use.efficient.layouts: Efficient layouts refer to using layout groups
provided by UI Toolkit, such as Flexbox, instead of manually positioning
and resizing UI elements . Layout groups handle the layout calculations
automatically, which can significantly improve performance . They ensure
that UI elements are arranged and sized correctly based on the specified
layout rules . By using efficient layouts, you avoid the overhead of manual
layout calculations and achieve consistent and optimized UI rendering .

.— Avoid.expensive.operations.in.Update: Minimize the amount of work
performed in Update methods, especially heavy operations like UI element
creation, manipulation, or calculation . Perform these operations sparingly
or during initialization whenever possible, as the update method is called
once per frame .

.— Optimize.event.handling: Be mindful of event subscriptions and unregister
them when no longer needed . Excessive event handling can impact
performance, so ensure you only subscribe to events that are necessary .

.— Optimize.style.sheets: Be mindful of the number of style classes and
selectors used in your style sheets . Large style sheets with numerous
rules can impact performance . Keep your style sheets lean and avoid
unnecessary complexity .

.— Profile.and.optimize: Use Unity’s profiling tools to identify performance
bottlenecks in your UI and spot areas that can be optimized further, such
as inefficient layout calculations or excessive redraws .

.— Test.on.target.platforms: Test your UI performance on target platforms
to ensure optimal performance across different devices . Performance can
vary based on hardware capabilities, so consider the target platform when
optimizing your UI .

Remember, performance optimization is an iterative process . Continuously profile,
measure, and optimize your UI code to ensure it runs smoothly and efficiently .

82.of.103.| unity .com© 2024 Unity Technologies

Although audio is not normally a performance bottleneck, you can still optimize
to save memory, disk space, or CPU usage .

Use lossless files as your source

Start with your sound assets in a lossless file format like WAV or AIFF .

If you use any compressed format (such as MP3 or Vorbis), then Unity will
decompress it and recompress it during build time . This results in two lossy
passes, degrading the final quality .

Audio loading CPU usage in the Unity Profiler

A U D I O

83.of.103.| unity .com© 2024 Unity Technologies

Reduce your AudioClips

Import settings on Audio Clips can save
runtime memory and CPU performance:

 — Enable the Force.To.Mono option
on stereo audio files if they do not
require stereo sound; this saves
runtime memory and disk space .

Spatial Audio Sources should use
AudioClips which are either authored
in mono or have Force To Mono
enabled in their import settings . If
you use stereo sounds in spatial
Audio Sources, the audio data will
take up twice the disk space and
memory; Unity must convert the
sound to mono during the audio
mixing process, which also requires
extra CPU processing time .

.— Preload.Audio.Data ensures that Unity will load any referenced AudioClips
before initializing the scene . However, this may increase scene loading
times .

 — If your sound clip is not needed immediately, load it asynchronously .
Check.Load.in.Background . This loads the sound at a delayed time on a
separate thread, without blocking the main thread .

 — Set the Sample.Rate.Setting to Optimize Sample Rate or Override Sample Rate .

For mobile platforms, 22050 Hz should be sufficient . Use 44100Hz
(i .e ., CD quality) sparingly . 48000Hz is excessive .

For PC/console platforms, 44100Hz is ideal . 48000Hz is usually unnecessary .

 — Compress the AudioClip and reduce the compression bitrate .

For mobile platforms, use Vorbis for most sounds (or MP3 for sounds
not intended to loop) . Use ADPCM for short, frequently used sounds
(e .g ., footsteps, gunshots) .

For PC and Xbox®, use the Microsoft XMA codec instead of Vorbis or MP3 .
Microsoft recommends a compression ratio between 8:1 and 15:1 .

For Playstation, use the ATRAC9 format . This has less CPU overhead than
Vorbis or MP3 .

 — The proper Load Type depends on the length of the clip .

AudioClip Import Settings

84.of.103.| unity .com© 2024 Unity Technologies

Clip.size Example.usage Load.type.settings

Small
(< 200
KB)

Noisy sound effects
(footsteps, gunshots), UI
sounds

Use Decompress.on.Load .
This incurs a small CPU
cost to decompress a
sound into raw 16-bit PCM
audio data, but will be the
most performant at runtime .

OR

Set to Compressed.
In.Memory.and set
Compression.Format to
ADPCM . This offers a
fixed 3 .5:1 compression
ratio and is inexpensive to
decompress in real-time .

Medium
(>= 200
KB)

Dialog, short music,
medium/non-noisy
sounds effects

Optimal Load Type depends
on the project’s priorities .

If reducing memory usage
is the priority, select
Compressed.In.Memory .

If CPU usage is a concern,
clips should be set to
Decompress.On.Load .

Large
(> 350-
400 KB)

Background music,
ambient background
noise, long dialog

Set to Streaming .
Streaming has a 200 KB
overhead, so it is only
suitable for sufficiently
large AudioClips .

Optimize the AudioMixer

In addition to your AudioClip settings, be aware of these issues with the AudioMixer .

 — The SFX Reverb Effect is one of the most expensive audio effects in the
AudioMixer . Adding a mixer group with SFX Reverb (and a mixer group
sending to it) increases CPU cost .

This happens even if there is no AudioSource actually sending a signal
to the groups . Unity’s Digital Signal Processing Graph (DSPGraph) doesn’t
distinguish if it’s getting null signals or not .

85.of.103.| unity .com© 2024 Unity Technologies

 — Reduce the number of mixer groups to improve AudioMixer performance .
Adding a large number of child groups under a single parent group
increases audio CPU cost significantly . This happens even if all
AudioSource outputs straight to Master, since Unity’s DSP does not
distinguish null signals .

 — Avoid parents with a single child group . Whenever possible, combine the
two mixer groups into one .

Adding a Reverb group and a group sending to it is expensive, even if no AudioSource writes to it .

An AudioMixer with single child groups

An AudioMixer group with too many child groups

86.of.103.| unity .com© 2024 Unity Technologies

Physics can create intricate gameplay, but this comes with a performance cost .
When you know these costs, you can tweak the simulation to manage them
appropriately . These tips can help you stay within your target frame rate and
create smooth playback with Unity’s built-in physics (NVIDIA PhysX) .

Simplify colliders

Mesh colliders can be expensive . Substitute more complex mesh colliders with
primitive or simplified mesh colliders to approximate the original shape .

P H Y S I C S

Use primitives or simplified meshes for colliders .

87.of.103.| unity .com© 2024 Unity Technologies

Optimize your settings

In the Player Settings, check Prebake.Collision.Meshes whenever possible .

Make sure that you edit your Physics settings (Project.Settings.>.Physics) as well .
Simplify your Layer Collision Matrix wherever possible .

Enable Prebake Collision Meshes

Modify the physics project settings to squeeze out more performance .

88.of.103.| unity .com© 2024 Unity Technologies

Adjust simulation frequency

Physics engines work by running on a fixed time step . To see the fixed rate that
your project is running at, go to Edit.>.Project.Settings.>.Time .

The Fixed.Timestep field defines the time delta used by each physics step . For
example, the default value of 0 .02 seconds (20 ms) is equivalent to 50 fps, or 50 Hz .

Because each frame in Unity takes a variable amount of time, it is not perfectly
synced with the physics simulation . The engine counts up to the next physics
time step . If a frame runs slightly slower or faster, Unity uses the elapsed time to
know when to run the physics simulation at the proper time step .

In the event that a frame takes a long time to prepare, this can lead to performance
issues . For example, if your game experiences a spike (e .g ., instantiating many
GameObjects or loading a file from disk), the frame could take 40 ms or more to run .
With the default 20 ms Fixed Timestep, this would cause two physics simulations
to run on the following frame in order to “catch up” with the variable time step .

Extra physics simulations, in turn, add more time to process the frame .
On lower-end platforms, this potentially leads to a downward spiral of performance .

A subsequent frame taking longer to prepare makes the backlog of physics
simulations longer as well . This leads to even slower frames and even more
simulations to run per frame . The result is worse and worse performance .

Eventually the time between physics updates could exceed the Maximum
Allowed Timestep . After this cutoff, Unity starts dropping physics updates,
and the game stutters .

The default Fixed Timestep in the Project Settings is 0 .02 seconds (50 frames per second) .

89.of.103.| unity .com© 2024 Unity Technologies

To avoid performance issues with physics:

 — Reduce the simulation frequency . For lower-end platforms, increase the
Fixed.Timestep to slightly more than your target frame rate . For example,
use 0 .035 seconds for 30ps on mobile . This could help prevent that
downward performance spiral .

 — Decrease the.Maximum.Allowed.Timestep . Using a smaller value (like 0 .1 s)
sacrifices some physics simulation accuracy, but also limits how many
physics updates can happen in one frame . Experiment with values to find
something that works for your project’s requirements .

 — Simulate the physics step manually if necessary . You can disable Auto.Simulation
in the Physics Settings and instead directly invoking Physics .Simulate during
the Update phase of the frame . This allows you to take control when to
run the physics step . Pass Time .deltaTime to Physics .Simulate in order to
keep the physics in sync with the simulation time .

This approach can cause instabilities in the physics simulation in scenes
with complex physics or highly variable frame times, so use it with caution .

Modify CookingOptions for MeshColliders

Meshes used in physics go through a process called cooking . This prepares the
mesh so that it can work with physics queries like raycasts, contacts, and so on .

A MeshCollider has several CookingOptions to help you validate the mesh for
physics . If you are certain that your mesh does not need these checks, you can
disable them to speed up your cook time .

In the CookingOptions for each MeshCollider, simply uncheck the
EnableMeshCleaning, WeldColocatedVertices, and CookForFasterSimulation .
These options are valuable for procedurally generated meshes at runtime,
but can be disabled if your meshes already have the proper triangles .

Profiling a scene in Unity with manual simulation

90.of.103.| unity .com© 2024 Unity Technologies

Also, if you are targeting PC, make sure you keep Use Fast Midphase enabled .
This switches to a faster algorithm from PhysX 4 .1 during the mid-phase of
the simulation (which helps narrow down a small set of potentially intersecting
triangles for physics queries) . Non-desktop platforms must still use the slower
algorithm that generates R-Trees .

Use Physics .BakeMesh

If you are generating meshes procedurally during gameplay, you can create
a Mesh Collider at runtime . Adding a MeshCollider component directly to the
mesh, however, cooks/bakes the physics on the main thread . This can consume
significant CPU time .

Use Physics .BakeMesh to prepare a mesh for use with a MeshCollider and save
the baked data with the mesh itself . A new MeshCollider referencing this mesh
will reuse this prebaked data (rather than baking the mesh again) . This can help
reduce Scene load time or instantiation time later .

To optimize performance, you can offload mesh cooking to another thread with
the C# Job System . Refer to this example for details on how to bake meshes
across multiple threads .

Cooking options for a mesh

BakeMeshJob in the Profiler

91.of.103.| unity .com© 2024 Unity Technologies

Use Box Pruning for large scenes

The Unity physics engine runs in two steps:

 — the broad.phase, which collects potential collisions using
a sweep and prune algorithm

 — the narrow.phase, where the engine actually computes the collisions

The broad phase default setting of Sweep and Prune BroadPhase
(Edit.>.Project.Settings.>.Physics.>.BroadPhase.Type) can generate false
positives for worlds that are generally flat and have many colliders .

If your scene is large and mostly flat, avoid this issue and switch to
Automatic.Box.Pruning or Multibox.Pruning.Broadphase . These options divide
the world into a grid, where each grid cell performs sweep-and-prune .

Multibox Pruning Broadphase allows you to specify the world boundaries and the
number of grid cells manually, while Automatic Box Pruning calculates that for you .

Modify solver iterations

If you want to simulate a specific physics body more accurately, increase its
Rigidbody .solverIterations .

Broadphase Type in the Physics options

Override the defaultSolverIterations per Rigidbody

92.of.103.| unity .com© 2024 Unity Technologies

This overrides the Physics .defaultSolverIterations, which can also be found in
Edit.>.Project.Settings.>.Physics.>.Default.Solver.Iterations .

To optimize your physics simulations, set a relatively low value in the project’s
defaultSolveIterations . Then apply higher custom Rigidbody .solverIterations
values to the individual instances that need more detail .

Disable automatic transform syncing

When you update a Transform, Unity does not automatically sync it to the
physics engine . Unity accumulates transformations and waits for either the
physics update to execute or for the user to call Physics .SyncTransforms .

If you want to sync physics with your Transforms more frequently, you can set
Physics .autoSyncTransform to true (also found in Project.Settings.>.Physics.>.
Auto.Sync.Transforms) . When this is enabled, any Rigidbody or Collider on that
Transform or its children automatically update with the Transform .

However, disable this unless absolutely necessary . Otherwise, a series of
successive physics queries (such as raycasts) can lead to a loss in performance .

Reuse Collision Callbacks

The callbacks MonoBehaviour .OnCollisionEnter, MonoBehaviour .OnCollisionStay
and MonoBehaviour .OnCollisionExit all take a collision instance as a parameter .
This collision instance is allocated on the managed heap and must be garbage
collected .

To reduce the amount of garbage generated, enable Physics .reuseCollisionCallbacks
(also found in Projects.Settings.>.Physics.>.Reuse.Collision.Callbacks) .
With this active, Unity only assigns a single collision pair instance to each callback .
This reduces waste for the garbage collector and improves performance .

Profiling a scene in Unity with Auto Sync Transform disabled

93.of.103.| unity .com© 2024 Unity Technologies

Note: If you reference the collision instance outside of the collision callbacks for
post-processing, you must disable Reuse Collision Callbacks .

Move static colliders

Static colliders are GameObjects with a Collider component but without a Rigidbody .

Note that you can move a static collider, contrary to the term “static .” To do
so, simply modify the position of the physics body . Accumulate the positional
changes and sync before the physics update . You don’t need to add a Rigidbody
component to the static collider just to move it .

However, if you want the static collider to interact with other physics bodies in
a more complex way, give it a kinematic Rigidbody . Use Rigidbody .position and
Rigidbody .rotation to move it instead of accessing the Transform component .
This guarantees more predictable behavior from the physics engine .

Note: In 2D physics, do not move static colliders because the tree rebuild
is time consuming .

Use non-allocating queries

To detect and collect Colliders within a certain distance and in a certain
direction, use raycasts and other physics queries like BoxCast .

Physics queries that return multiple colliders as an array, like OverlapSphere or
OverlapBox, need to allocate those objects on the managed heap . This means
that the garbage collector eventually needs to collect the allocated objects,
which can decrease performance if it happens at the wrong time .

To reduce this overhead, use the NonAlloc versions of those queries . For example,
if you are using OverlapSphere to collect all potential colliders around a point,
use OverlapSphereNonAlloc instead .

This allows you to pass in an array of colliders (the results parameter) to act as
a buffer . The NonAlloc method works without generating garbage . Otherwise,
it functions like the corresponding allocating method .

Note that you need to define a results buffer of sufficient size when using a
NonAlloc method . The buffer does not grow if it runs out of space .

In the Unity Console, there is a single collision instance on Collision Entered and Collision Stay .

94.of.103.| unity .com© 2024 Unity Technologies

Batch queries for ray casting

You can run raycast queries with Physics .Raycast . However, if you have a large
number of raycast operations (e .g ., calculating line of sight for 10,000 agents),
this may take a significant amount of CPU time .

Use RaycastCommand to batch the query using the C# Job System . This
offloads the work from the main thread so that the raycasts can happen
asynchronously and in parallel .

See a usage example at the RaycastCommands documentation page .

Visualize with the Physics Debugger

Use the Physics Debug window (Window.>.Analysis.>.Physics.Debugger)
to help troubleshoot any problem colliders or discrepancies . This shows a
color-coded indicator of the GameObjects that can collide with one another .

For more information, see Physics Debug in the Unity documentation .

The Physics Debugger helps you visualize how your physics objects can interact with one another .

95.of.103.| unity .com© 2024 Unity Technologies

Unity’s Animation System (sometimes called Mecanim) is fairly sophisticated .
Its workflow involves several key components .

 — Animation Clips contain information about how certain objects should
change their position, rotation, or other properties over time .

 — The Animator Controller, a structured flowchart-like system, acts as an
Animation State Machine . This tracks the clip currently being played, as
well as when the animations should change or blend together .

 — A humanoid rig gives you the ability to retarget bipedal animation from any
source (e .g ., motion capture, the Asset Store, or some other third-party
animation library) to your own character model . Unity’s Avatar system maps
humanoid characters to a common internal format, making this possible .

Animator component

A N I M A T I O N

96.of.103.| unity .com© 2024 Unity Technologies

 — A GameObject has an Animator component to connect these parts together .
This component references an Animator Controller and an Avatar (if required) .
The Animator Controller, in turn, references the Animation Clips it uses .

These guidelines will help you when working with animation in Unity .

Use generic rather than humanoid rigs

By default, Unity imports animated models
with the generic rig, but developers often
switch to the humanoid rig when animating
a character . Be aware of these issues with
rigs:

 — Use a generic rig whenever possible .
Humanoid rigs calculate inverse
kinematics and animation retargeting
each frame, even when not in use .
Thus, they consume 30–50% more CPU
time than their equivalent generic rigs .

 — When importing humanoid animation,
use an Avatar Mask to remove IK Goals
or finger animation if you don’t need
them .

 — With generic rigs, using root motion is
more expensive than not using it . If your
animations don’t use root motion, do not
specify a root bone .

 Unity’s Animation System

Generic rigs use less CPU time than humanoid rigs .

97.of.103.| unity .com© 2024 Unity Technologies

Use alternatives for simple animation

Animators are primarily intended for humanoid characters . However, they
are often repurposed to animate single values (e .g ., the alpha channel of a
UI element) . Avoid overusing Animators, particularly in conjunction with UI
elements, since they come with extra overhead .

The current animation system is optimized for animation blending and more
complex setups . It has temporary buffers used for blending, and there is
additional copying of the sampled curve and other data .

Also, if possible, consider not using the animation system at all . Create easing
functions or use a third-party tweening library where possible (e .g ., DOTween) .
These can achieve very natural-looking interpolation with mathematical expressions .

Avoid scale curves

Animating scale curves is more expensive than animating translation and
rotation curves . To improve performance, avoid scale animations .

Note: This does not apply to constant curves (curves that have the same value
for the length of the animation clip) . Constant curves are optimized, and these
are less expensive than normal curves .

Update only when visible

Set the animators’s Culling Mode to Based on Renderers, and disable the
skinned mesh renderer’s Update When Offscreen property . This saves Unity
from updating animations when the character is not visible .

Optimize workflow

Other optimizations are possible at the scene level:

 — Use hashes instead of strings to query the Animator .

 — Implement a small AI Layer to control the Animator . You can make it
provide simple callbacks for OnStateChange, OnTransitionBegin, and other
events .

 — Use State Tags to easily match your AI state machine to the Unity state
machine .

 — Use additional curves to simulate events .

 — Use additional curves to mark up your animations, for example in
conjunction with target matching .

98.of.103.| unity .com© 2024 Unity Technologies

Building an application in Unity is a huge endeavor that often involves many
developers . Make sure that your project is set up optimally for your team .

Use version control

Version control is essential for working as part of a team . It can help you track
down bugs and bad revisions . Follow good practices like using branches and
tags to manage milestones and releases .

To help with version control merges, make sure your Editor settings have Asset.
Serialization.Mode set to Force.Text . This is less space efficient but makes
Unity store scene files in a text-based format .

If you’re using an external version control system (such as Git) in the Version
Control settings, verify that the Mode is set to Visible Meta Files .

Unity also has a built-in YAML (a human-readable, data-serialization language)
tool specifically for merging scenes and Prefabs . For more information, see
Smart merge in the Unity documentation .

Asset Serialization Mode

W O R K F L O W A N D
C O L L A B O R A T I O N

Version Control Mode

99.of.103.| unity .com© 2024 Unity Technologies

Unity Version Control

Most Unity projects include a sizable amount of art assets in addition to the
script code . If you want to manage these assets with version control, consider
switching to Unity Version Control (formerly known as Plastic SCM) . Even with
Git LFS, Git does not perform as well as Plastic SCM with larger repositories
which offers superior speed when working with large binary files (>500 MB) .

Unity Version Control allows you to:

 — Work knowing that your art assets are securely backed up

 — Track ownership of every asset

 — Roll back to previous iterations of an asset

 — Drive automated processes on a single central repository

 — Create branches quickly and securely over multiple platforms

Additionally, Unity Version Control helps you centralize your development with
excellent visualization tools . Artists especially will appreciate the user-friendly
workflows that encourage tighter integration between development and art teams .

Version Control web experience in the Unity dashboard

Unity Version Control offers artist friendly UI

100.of.103.| unity .com© 2024 Unity Technologies

To get started with Unity Version Control, check out our getting started guide .

Break up large scenes

Large, single Unity scenes do not lend themselves well to collaboration .
Break your levels into many smaller scenes so that artists and designers can
collaborate effectively on a single level while minimizing the risk of conflicts .

Note that at runtime, your project can load scenes additively using
SceneManager .LoadSceneAsync passing the.LoadSceneMode .Additive
parameter mode .

Reach the next level with industry-leading expertise from
Accelerate Solutions

Accelerate Solutions specializes in helping game studios hit their most
ambitious goals across several use cases, including improving performance
and optimization, game planning and technical design, project acceleration,
improving player KPIs and monetization, and delivering on challenging ports
and migrations . The global team is made up of Unity’s most senior software
developers and technical artists who are knowledgeable across the Unity
engine, multiplayer, cloud, devops, AI/ML, and game design .

The team’s expertise lies in helping you take your game to the next level at
any stage of game development . The optimizations mainly focus on identifying
general and specific performance issues such as frame rate, memory, and
binary size to improve player experiences and/or iteration times . Services
offered range from consulting to full game development .

Consulting
During these engagements, the consultant will analyze your project or
workflows and provide guidance and recommendations to your team on how to
achieve your desired outcome .

Codevelopment
Working alongside your team, a Unity developer and/or team will deep dive into
your project and achieve a desired outcome .

Custom.development and Full.game.development
For these engagements, the Accelerate Solutions team will assign and partner
with an internal Unity team or highly experienced Unity game studio team
to lead and execute a project on your behalf, owning it from inception to
completion .

To learn more about Accelerate Solutions, please reach out .

101.of.103.| unity .com© 2024 Unity Technologies

Remove roadblocks with Unity Integrated Success

Integrated Success is our most complete Success Plan – ideal for your most
complex projects and helping your games reach their full potential . From strategic
planning to unforeseen circumstances, we’ve got you covered . Get insight, hands-
on guidance, and premium technical support to ensure your project’s success .
This plan provides access to advanced features including our fastest response
times, dedicated strategic support from a Partner Relations Manager, prioritized
bug handling and LTS backporting, and an annual deep-dive project review .

Integrated Success also allows you to optionally add read and modification
access to Unity source code . This access is available for development teams
that want to deep dive into Unity source code to adapt and reuse it for other
applications .

Optimize.your.game.with.a.Project.Review.
Project Reviews are an essential part of the Integrated Success package . Learn
how to optimize your project during this annual review . Senior engineers perform
an analysis of your work and provide insights and actionable advice specific to
your goals .

The team familiarizes themselves with your projects and then uses various
profiling tools to detect performance bottlenecks, factoring in existing
requirements and design decisions . They also try to identify points where
performance could be optimized for greater speed, stability, and efficiency .

For well-architected projects that have low build times (modular scenes, heavy
usage of AssetBundles, etc .), they’ll make adjustments and reprofile to uncover
new issues .

In instances where the team is unable to solve problems immediately, they’ll
capture as much information as possible and conduct further investigation
internally, consulting specialized developers across R&D if necessary .

Though deliverables can vary depending on your needs, findings are summarized
with recommendations provided in a written report . The team’s goal is to always
provide the greatest value to you by helping to identify potential blockers, assess
risk, validate solutions, and ensure that best practices are followed moving
forward .

Partner.Relations.Manager.(PRM).
In addition to a Project Review, Unity Integrated Success also comes with a
Partner Relations Manager (PRM) – a strategic Unity advisor who acts as your
internal advocate and an extension of your team to help you get the most out of
Unity . They maintain clear lines of communication so you’re always informed and
working towards your goals . Your PRM provides you with the dedicated technical
and operational expertise required to preempt issues and keep your projects
running smoothly, up to and following launch .

To learn more about our Integrated Success package, Project Reviews, and PRMs,
please reach out .

Next.steps
You can find additional optimization tips, best practices, and news on the
Unity Blog and Unity community forums, as well as through Unity Learn
and the #unitytips hashtag .

Performance optimization is a vast topic that requires careful attention .
It is vital to understand how your target hardware operates, along with its
limitations . In order to find an efficient solution that satisfies your design
requirements, you will need to master Unity’s classes and components,
algorithms and data structures, and your platform’s profiling tools .

Unity’s team is always here to help you find the right tools and services
for support throughout your game development journey, from concept
to commercialization . If you’re ready to get going, you can access Unity Pro today
or talk to one of our experts to learn about all the ways we’re ready
to help you realize your vision .

More resources

Create a C# style guide: Write cleaner code that scales assists you with
developing a style guide to help unify your approach to creating a more
cohesive codebase .

Level up your code with game programming patterns highlights best practices
for using the SOLID principles and common programming patterns to create
scalable game code architecture in your Unity project .

Create modular game architecture in Unity with ScriptableObjects is the third
guide in our series for intermediate to advanced Unity programmers . Each guide,
authored by experienced programmers, provides best practices for topics that
are important to development teams .

Professional training for Unity creators

Unity Professional Training gives you the skills and knowledge to work more
productively and collaborate efficiently in Unity . Find an extensive training
catalog designed for professionals in any industry, at any skill level, in multiple
delivery formats .

All materials are created by experienced Instructional Designers in partnership
with our engineers and product teams . This means that you always receive the
most up-to-date training on the latest Unity tech .

Learn more about how Unity Professional Training can support you and
your team .

unity .com

