
Optimize Your
Mobile Game
Performance

UN I T Y F O R GAM E S UN I T Y 2 0 2 0 LT S E D I T I O N | E - B OO K

Contents

Introduction . 3

Profiling . 4

Memory . 10

Adaptive Performance . 14

Programming and code architecture . 16

Project configuration . . .22

Assets . 24

Graphics and GPU optimization . 29

User interface . 37

Audio . 41

Animation .43

Physics . 45

Workflow and collaboration . 48

Unity Integrated Success . 50

Conclusion . 51

3.of.52.| unity .com© 2021 Unity Technologies

Introduction
Optimizing your iOS and Android applications is an essential
process that underpins the entire development cycle . Mobile
hardware continues to evolve, and a mobile game’s optimization –
along with its art, game design, audio, and monetization strategy
– plays a key role in shaping the player experience .

Both iOS and Android have active user bases in the billions .
If your mobile game is highly optimized, it has a better chance
at passing certification from platform-specific stores . To maximize
your opportunity for success at launch and beyond, your aim is
always twofold: building the slickest, most immersive experience
and making it performant on the widest range of handhelds .

This guide assembles knowledge and advice from Unity’s expert
team of software engineers . Unity’s Accelerate Solutions games
team has partnered with developers across the industry to help
launch the best games possible . Follow the steps outlined here to
get the best performance from your mobile game while reducing
its power consumption .

Note that many of the optimizations discussed here may introduce
additional complexity, which can mean extra maintenance and
potential bugs . Balance performance gains against the time and
labor cost when implementing these best practices .

Happy optimizing from the Unity team!

https://unity.com/

4.of.52.| unity .com© 2021 Unity Technologies

Profiling
The Unity Profiler can help you detect the causes of
any lags or freezes during runtime or understand what’s
happening at a specific frame (point in time) . Enable the
CPU and Memory tracks by default . You can monitor
additional Profiler Modules (such as Renderer, Audio,
Physics, etc .) if you have specific needs for your game
(e .g ., physics-heavy or music-based gameplay) .

Build the application to your device by checking
Development.Build and Autoconnect.Profiler,
or connect manually to accelerate app startup time .

Choose the target to profile . The Record button
tracks several seconds of your application’s playback
(300 frames by default) . Go to Unity.>.Preferences.>..
Analysis.>.Profiler.>.Frame.Count to increase this as
far as 2000 if you need longer captures . This means
that the Unity Editor has to do more CPU work and
takes up more memory, but it can be useful depending
on your specific scenario .

Use the Unity Profiler to test performance and resource allocation for your application .

https://unity.com/
https://docs.unity3d.com/Manual/Profiler.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

5.of.52.| unity .com© 2021 Unity Technologies

This is an instrumentation-based profiler that profiles code timings explicitly wrapped
in ProfileMarkers (such as Monobehaviour’s Start or Update methods or specific
API calls) . Also, when you’re using the Deep Profiling setting, Unity can profile the
beginning and end of every function call in your script code to tell you exactly which
part of your application is causing a slowdown (but this comes with extra overhead) .

When profiling your game, we recommend that you cover both spikes and the cost of
an average frame in your game . Understanding and optimizing expensive operations
that occur each frame can be more useful for applications running below the target
framerate . When looking for spikes, explore expensive operations first (e .g ., physics,
AI, animation) and garbage collection .

Click in the window to analyze a specific frame . Next, use either Timeline or the
Hierarchy view:

 — Hierarchy shows the hierarchy of ProfileMarkers, grouped together . This allows
you to sort the samples based on time cost in milliseconds (Time.ms and
Self.ms) . You can also count the number of Calls to a function and the
managed heap memory (GC.Alloc) on this frame .

 — Timeline shows a visual breakdown of the specific frame’s timings . This allows
you to visualize how the activities relate to one another and across different
threads . Use this to determine if you are CPU-bound or GPU-bound .

Use the Timeline view to determine if you are CPU-bound or GPU-bound .

https://unity.com/
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/ProfilerWindow.html#deep-profiling?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

6.of.52.| unity .com© 2021 Unity Technologies

Read a complete overview of the Unity Profiler here . Those new to profiling can
also watch this Introduction to Unity Profiling .

Before optimizing anything in your project, save the Profiler .data file . Implement
your changes and compare the saved .data before and after the modification .
Rely on this cycle to improve performance: profile, optimize, and compare .
Then, rinse and repeat .

Profile.early.and.often.

The Unity Profiler provides performance information about your application,
but it can’t help you if you don’t use it . Profile your project early in development,
not just when you are close to shipping . Investigate glitches or spikes as soon
as they appear . As you develop a “performance signature” of your project,
you’ll be able to spot new issues more easily .

Don’t.optimize.blindly.

Don’t guess or make assumptions about what is slowing your game’s performance .
Use the Unity Profiler and platform-specific tools to locate what, specifically, is
causing the lag .

The Hierarchy view allows you to sort ProfileMarkers by time cost .

https://unity.com/
https://docs.unity3d.com/Manual/Profiler.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://resources.unity.com/optimizing-your-game-with-unity/introduction-to-profiling?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

7.of.52.| unity .com© 2021 Unity Technologies

Also, not every optimization described here will apply to your application .
Something that works well in one project may not translate to yours .
Identify genuine bottlenecks and concentrate your efforts on those .

Profile.on.the.target.device.

While profiling in the Editor can give you a very rough idea of the relative
performance of different systems in your game, there’s no substitute for the
real thing . Profile a development build on target devices whenever possible .
Remember to profile and optimize for the lowest-spec device you plan to support .

The Unity Profiler alone cannot see into every part of the engine . Fortunately, iOS
and Android both include native tools to help you test performance:

 — On iOS, use Xcode and Instruments .

 — On Android, use Android Studio and Android Profiler .

Certain hardware can also take advantage of additional profiling tools
(e .g ., Arm Mobile Studio, Intel VTune and Snapdragon Profiler) .
See Profiling Applications Made with Unity for more information .

Use.the.Profile.Analyzer

This tool lets you aggregate multiple frames of Profiler data, then locate frames
of interest . Want to see what happens to the Profiler after you make a change to
your project? The Compare view allows you to load and diff two data sets, which
is vital for testing changes and showing improvements . The Profile Analyzer is
available via Unity’s Package Manager .

https://unity.com/
https://developer.apple.com/documentation/xcode/
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://developer.android.com/studio/intro
https://developer.android.com/studio/profile/android-profiler
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://developer.qualcomm.com/software/snapdragon-profiler
https://learn.unity.com/tutorial/profiling-applications-made-with-unity#5c7f8528edbc2a002053b5b8?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

8.of.52.| unity .com© 2021 Unity Technologies

Work.on.a.specific.time.budget.per.frame.

Each frame will have a time budget based on your target frames per second (fps) .
Ideally, an application running at 30 fps will allow for approximately 33 .33 ms per
frame (1000 ms / 30 fps) . Likewise, a target of 60 fps leaves 16 .66 ms per frame .

For mobile, however, you cannot use this time consistently because the device
will overheat and the OS will thermal throttle the CPU and GPU . We recommend
that you only use around 65% of the available time to allow cooldown between
frames . A typical frame budget will be approximately 22 ms per frame at 30 fps
and 11 ms per frame at 60 fps .

Devices can exceed this for short periods of time (e .g ., for cutscenes or loading
sequences) but not for a prolonged duration .

Need a deeper dive into frames and marker data? The Profile Analyzer complements the existing Profiler .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

9.of.52.| unity .com© 2021 Unity Technologies

Determine.if.you.are.GPU-bound.or.CPU-bound

The Profiler can tell you if your CPU is taking longer than your allotted frame
budget or if the culprit is your GPU .

If you see the Gfx .WaitForCommands marker, the render thread is ready,
but you may be waiting for a bottleneck on the main thread .

If you frequently encounter Gfx .WaitForPresent, that means the main thread
was ready but was waiting for the GPU to present the frame .

Account.for.device.temperature..

Most mobile devices do not have active cooling like their desktop counterparts .
Physical heat levels can directly impact performance .

If the device is running hot, the Profiler may report poor performance, even
if it may not be cause for concern . Combat profiling overhead by profiling in
short bursts to keep the device cool and simulate real-world conditions .

Test.on.a.min-spec.device

There is a wide range of iOS and Android devices . Test your project on the
minimum device specifications that you want your application to support .

https://unity.com/

10.of.52.| unity .com© 2021 Unity Technologies

Memory
Unity employs automatic memory management for your user-generated code
and scripts . Small pieces of data, like value-typed local variables, are allocated
to the stack . Larger pieces of data and longer-term storage are allocated to the
managed heap .

The garbage collector (GC) periodically identifies and deallocates unused heap
memory . While this runs automatically, the process of examining all the objects
in the heap can cause the game to stutter or run slowly .

Optimizing your memory usage means being conscious of when you allocate and
deallocate heap memory and minimizing the effect of garbage collection .

See Understanding the managed heap for more information .

https://unity.com/
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

11.of.52.| unity .com© 2021 Unity Technologies

Use.the.Memory.Profiler.

This separate add-on (available as an Experimental or Preview package in
the Package Manager) can take a snapshot of your managed heap memory,
helping you spot problems like fragmentation and memory leaks .

Click in the Tree Map view to trace a variable to the native object holding
on to memory . Here, you can identify common memory consumption issues,
like excessively large textures or duplicate assets .

Watch how you can use the Memory Profiler in Unity to improve memory usage .
You can also check out the official Memory Profiler documentation .

Reduce.the.impact.of.garbage.collection.(GC).

Unity uses the Boehm-Demers-Weiser garbage collector, which stops
running your program code and only resumes normal execution when it
has finished its work .

Capture, inspect, and compare snapshots in the Memory Profiler .

https://unity.com/
https://www.youtube.com/watch?v=I9wB4Cvgz5g
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@0.2/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://www.hboehm.info/gc/

12.of.52.| unity .com© 2021 Unity Technologies

Be aware of certain unnecessary heap allocations, which could cause GC spikes:

 — Strings:.In C#, strings are reference types, not value types . Reduce unnecessary
string creation or manipulation . Avoid parsing string-based data files such
as JSON and XML; store data in ScriptableObjects or formats such as
MessagePack or Protobuf instead . Use the StringBuilder class if you need
to build strings at runtime .

 — Unity.function.calls: Be aware that some functions create heap allocations .
Cache references to arrays rather than allocating them in the middle of a loop .
Also, take advantage of certain functions that avoid generating garbage;
for example, use GameObject .CompareTag instead of manually comparing
a string with GameObject .tag (returning a new string creates garbage) .

 — Boxing:.Avoid passing a value-typed variable in place of a reference-typed
variable . This creates a temporary object, and the potential garbage that
comes with it (e .g ., int.i.=.123;.object.o.=.i) implicitly converts the value
type to a type object .

 — Coroutines:.Though yield does not produce garbage, creating a new
WaitForSeconds object does . Cache and reuse the WaitForSeconds object
instead of creating it in the yield line .

 — LINQ.and.Regular.Expressions: Both of these generate garbage from
behind-the-scenes boxing . Avoid LINQ and Regular Expressions if
performance is an issue .

Time.garbage.collection.if.possible.

If you are certain that a garbage collection freeze won’t affect a specific point
in your game, you can trigger garbage collection with System .GC .Collect .

See Understanding Automatic Memory Management for examples of where you
could potentially use this to your advantage .

https://unity.com/
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder
https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

13.of.52.| unity .com© 2021 Unity Technologies

Use.the.incremental.garbage.collector.to.split.the.GC.workload.

Instead of using a single, long interruption of your program’s execution, incremental
garbage collection uses multiple, much-shorter interruptions, distributing the
workload over many frames . If garbage collection is impacting performance, try
enabling this option to see if it can significantly reduce the problem of GC spikes .
Use the Profile Analyzer to verify the benefit to your application .

Use the incremental garbage collector to reduce GC spikes .

https://unity.com/

14.of.52.| unity .com© 2021 Unity Technologies

Adaptive.Performance
With Unity and Samsung’s Adaptive Performance, you can monitor the device’s
thermal and power state to ensure that you’re ready to react appropriately .
When users play for an extended period of time, you can reduce your level of
detail (or LOD) bias dynamically to help your game continue to run smoothly .
Adaptive Performance allows developers to increase performance in a
controlled way while maintaining graphics fidelity .

While you can use Adaptive Performance APIs to fine-tune your application,
this package also offers automatic modes . In these modes, Adaptive Performance
determines the game settings along several key metrics:

 — Desired frame rate based on previous frames

 — Device temperature level

 — Device proximity to thermal event

 — Device bound by CPU or GPU

These four metrics dictate the state of the device, and Adaptive Performance
tweaks the adjusted settings to reduce the bottleneck . This is done by providing
an integer value, known as an Indexer, to describe the state of the device .

https://unity.com/
https://developer.samsung.com/codelab/game/adaptive-performance/overview.html

15.of.52.| unity .com© 2021 Unity Technologies

To learn more about Adaptive Performance, you can view the
samples we’ve provided in the Package Manager by selecting
Package.Manager.>.Adaptive.Performance.>.Samples .
Each sample interacts with a specific scaler, so you can
see how the different scalers impact your game . We also
recommend reviewing the End User Documentation to learn
more about Adaptive Performance configurations and how
you can interact directly with the API .

Note that Adaptive Performance only works for Samsung devices .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@2.1/manual/samples-guide.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@2.1/manual/user-guide.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

16.of.52.| unity .com© 2021 Unity Technologies

Programming.and.
code.architecture
The Unity PlayerLoop contains functions for interacting with the core of the
game engine . This tree-like structure includes a number of systems that
handle initialization and per-frame updates . All of your scripts will rely on this
PlayerLoop to create gameplay .

When profiling, you’ll see all of your project’s user code under the PlayerLoop
(with Editor components under the EditorLoop) .

Your custom scripts, settings, and graphics can significantly impact how long each frame takes to calculate and render onscreen .

Understand the PlayerLoop and the lifecycle of a script .

You can optimize your scripts with these tips and tricks .

Understand.the.Unity.PlayerLoop.

Make sure you understand the execution order of Unity’s
frame loop . Every Unity script runs several event functions
in a predetermined order . You should understand the
difference between Awake, Start, Update, and other
functions that create the lifecycle of a script .

Refer to the Script Lifecycle Flowchart for event functions’
specific order of execution .

Minimize.code.that.runs.every.frame.

Consider whether code must run every frame .
Move unnecessary logic out of Update, LateUpdate,
and FixedUpdate . These event functions are convenient
places to put code that must update every frame, but extract
any logic that does not need to update with that frequency .
Whenever possible, only execute logic when things change .

https://unity.com/
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

17.of.52.| unity .com© 2021 Unity Technologies

If you do need to use Update, consider running the code every n frames .
This is one way of applying time slicing, a common technique of distributing
a heavy workload across multiple frames . In this example, we run the
ExampleExpensiveFunction once every three frames:

private.int.interval.=.3;
.
void.Update()
{

if.(Time .frameCount.%.interval.==.0)
{
.......ExampleExpensiveFunction();
}

}

Avoid.heavy.logic.in.Start/Awake.

When your first scene loads, these functions get called for each object:

 — Awake

 — OnEnable

 — Start

Avoid expensive logic in these functions until your application renders its first
frame . Otherwise, you may encounter longer loading times than necessary .

Refer to the order of execution for event functions for details about the first
scene load .

Avoid.empty.Unity.events.

Even empty MonoBehaviours require resources, so you should remove blank
Update or LateUpdate methods .

Use preprocessor directives if you are using these methods for testing:

#if.UNITY_EDITOR
void.Update()
{
}
#endif

Here, you can freely use the Update in the Editor for testing without
unnecessary overhead slipping into your build .

https://unity.com/
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

18.of.52.| unity .com© 2021 Unity Technologies

Remove.Debug.Log.statements.

Log statements (especially in Update, LateUpdate, or FixedUpdate) can bog
down performance . Disable your Log statements before making a build .

To do this more easily, consider making a Conditional attribute along with
a preprocessing directive . For example, create a custom class like this:

public.static.class.Logging
{
......[System .Diagnostics .Conditional(“ENABLE_LOG”)]
......static.public.void.Log(object.message)
......{
.............UnityEngine .Debug .Log(message);
......}
}

Generate your log message with your custom class . If you disable the
ENABLE_LOG preprocessor in the Player.Settings, all of your Log statements
disappear in one fell swoop .

Use.hash.values.instead.of.string.parameters.

Unity does not use string names to address Animator, Material, and Shader
properties internally . For speed, all property names are hashed into property
IDs, and these IDs are actually used to address the properties .

Whenever using a Set or Get method on an Animator, Material, or Shader,
use the integer-valued method instead of the string-valued methods . The string
methods simply perform string hashing and then forward the hashed ID to the
integer-valued methods .

Use Animator .StringToHash for Animator property names and Shader .PropertyToID
for Material and Shader property names .

Adding a custom preprocessor directive lets you partition your scripts .

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute?view=net-5.0
https://docs.unity3d.com/ScriptReference/Animator.StringToHash.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/ScriptReference/Shader.PropertyToID.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

19.of.52.| unity .com© 2021 Unity Technologies

Choose.the.right.data.structure

Your choice of data structure can have a cumulative effect on efficiency or
inefficiency as you iterate many thousands of times per frame . Does it make
more sense to use a List, Array, or Dictionary for your collection? Follow the
MSDN guide to data structures in C# as a general guide to choosing the
correct structure .

Avoid.adding.components.at.runtime.

Invoking AddComponent at runtime comes with some cost . Unity must check for
duplicate or other required components whenever adding components at runtime .

Instantiating a Prefab with the desired components already set up is generally
more performant .

Cache.GameObjects.and.components.

GameObject .Find, GameObject .GetComponent, and Camera .main (in versions
prior to 2020 .2) can be expensive, so avoid calling them in Update methods .
Instead, call them in Start and cache the results .

For example, this demonstrates inefficient use of a repeated GetComponent call:

void.Update()
{
......Renderer.myRenderer.=.GetComponent<Renderer>();
......ExampleFunction(myRenderer);
}

Instead, you can invoke GetComponent only once, as the result of the function
is cached . The cached result can be reused in Update without any further calls
to GetComponent .

private.Renderer.myRenderer;
void.Start()
{
......myRenderer.=.GetComponent<Renderer>();
}

void.Update()
{
......ExampleFunction(myRenderer);
}

https://unity.com/
https://msdn.microsoft.com/en-us/library/7y3x785f
https://docs.unity3d.com/Manual/Prefabs.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

20.of.52.| unity .com© 2021 Unity Technologies

Use.object.pools.

Instantiate and Destroy can generate garbage and garbage collection (GC)
spikes and is generally a slow process . Instead of instantiating and destroying
GameObjects frequently (e .g ., shooting bullets from a gun), use pools of
preallocated objects which can be reused and recycled .

In this example, the ObjectPool creates 20 PlayerLaser instances for reuse .

Create the reusable instances at a
point in the game (e .g ., during a menu
screen) when a CPU spike is less
noticeable . Track this “pool” of objects
with a collection . During gameplay,
simply enable the next available
instance when needed, disable objects
instead of destroying them, and return
them to the pool .

This reduces the number of managed
allocations in your project and can
prevent garbage collection problems .

Learn how to create a simple Object
Pooling system in Unity here .

The pool of PlayerLaser objects is inactive and ready to shoot .

https://unity.com/
https://en.wikipedia.org/wiki/Object_pool_pattern
https://learn.unity.com/tutorial/introduction-to-object-pooling?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

21.of.52.| unity .com© 2021 Unity Technologies

Use.ScriptableObjects.

Store unchanging values or settings in a ScriptableObject instead of a
MonoBehaviour . The ScriptableObject is an asset that lives inside of the project
that you only need to set up once . It cannot be directly attached to a GameObject .

Create fields in the ScriptableObject to store your values or settings,
then reference the ScriptableObject in your Monobehaviours .

In this example, a ScriptableObject called Inventory holds settings for various GameObjects .

Using those fields from the ScriptableObject can prevent unnecessary duplication
of data every time you instantiate an object with that Monobehaviour .

Watch this Introduction to ScriptableObjects tutorial to see how ScriptableObjects
can help your project . You can also find documentation here .

https://unity.com/
https://www.youtube.com/watch?v=PVOVIxNxxeQ
https://docs.unity3d.com/Manual/class-ScriptableObject.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

22.of.52.| unity .com© 2021 Unity Technologies

Project.configuration
There are a few Project Settings that can impact your mobile performance .

Reduce.or.disable.Accelerometer.Frequency.

Unity pools your mobile’s accelerometer several times a second .
Disable this if it’s not being used in your application, or reduce its frequency
for better performance .

Disable.unnecessary.Player.or.Quality.settings

In the Player settings, disable Auto.Graphics.API for unsupported platforms
to prevent generating excessive shader variants . Disable Target.Architectures
for older CPUs if your application is not supporting them .

In the Quality settings, disable unneeded Quality levels .

Disable.unnecessary.physics

If your game is not using physics, uncheck Auto.Simulation and Auto.Sync.
Transforms . These will just slow down your application with no discernible benefit .

Ensure your Accelerometer Frequency is disabled if you are not making use of it in your mobile game .

https://unity.com/

23.of.52.| unity .com© 2021 Unity Technologies

Choose.the.right.frame.rate.

Mobile projects must balance frame rates against battery life and thermal
throttling . Instead of pushing the limits of your device at 60 fps, consider
running at 30 fps as a compromise . Unity defaults to 30 fps for mobile .

You can also adjust the frame rate dynamically during runtime with
Application .targetFrameRate . For example, you could even drop below
30 fps for slow or relatively static scenes and reserve higher fps settings
for gameplay .

Avoid.large.hierarchies

Split your hierarchies! If your GameObjects do not need to be nested
in a hierarchy, simplify the parenting . Smaller hierarchies benefit from
multithreading to refresh the Transforms in your scene . Complex hierarchies incur
unnecessary Transform computations and more cost to garbage collection .

See Optimizing the Hierarchy and this Unite talk for best practices
with Transforms .

Transform.once,.not.twice

Also, when moving Transforms, use Transform .SetPositionAndRotation
to update both position and rotation at once . This avoids the overhead
of modifying a transform twice .

If you need to Instantiate a GameObject at runtime, a simple optimization
is to parent and reposition during instantiation:

GameObject .Instantiate(prefab,.parent);
GameObject .Instantiate(prefab,.parent,.position,.rotation);

For more details about Object .Instantiate, please see the Scripting API .

Assume.Vsync.is.enabled.

Mobile platforms won’t render half-frames . Even if you disable Vsync in the
Editor (Project.Settings.>.Quality), Vsync is enabled at the hardware level .
If the GPU cannot refresh fast enough, the current frame will be held,
effectively reducing your fps .

https://unity.com/
https://blogs.unity3d.com/2017/06/29/best-practices-from-the-spotlight-team-optimizing-the-hierarchy/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://youtu.be/W45-fsnPhJY?t=794
https://docs.unity3d.com/ScriptReference/Transform.SetPositionAndRotation.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

24.of.52.| unity .com© 2021 Unity Technologies

Assets
The asset pipeline can dramatically impact your application’s performance .
An experienced technical artist can help your team define and enforce asset
formats, specifications, and import settings .

Don’t rely on default settings . Use the platform-specific override tab to optimize
assets such as textures and mesh geometry . Incorrect settings may yield larger
build sizes, longer build times, and poor memory usage . Consider using the
Presets feature to help customize baseline settings for a specific project to
ensure optimal settings .

See this guide to best practices for art assets for more detail or check
out this course about 3D Art Optimization for Mobile Applications on
Unity Learn .

The Boat Attack demo
project was created using the
Universal Render Pipeline.

https://unity.com/
https://docs.unity3d.com/Manual/Presets.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/HOWTO-ArtAssetBestPracticeGuide.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/course/3d-art-optimization-for-mobile-gaming-5474?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

25.of.52.| unity .com© 2021 Unity Technologies

Import.textures.correctly.

Most of your memory will likely go to textures, so the import settings here are
critical . In general, follow these guidelines:

Proper texture import settings will help optimize your build size .

 — Lower.the.Max.Size:.Use the minimum settings
that produce visually acceptable results .
This is non-destructive and can quickly reduce
your texture memory .

 — Use.powers.of.two.(POT):.Unity requires POT
texture dimensions for mobile texture compression
formats (PVRCT or ETC) .

 — Atlas.your.textures:.Placing multiple textures into
a single texture can reduce draw calls and speed
up rendering . Use the Unity SpriteAtlas or the
third-party Texture Packer to atlas your textures .

 — Toggle.off.the.Read/Write.Enabled.option:..
When enabled, this option creates a copy in both
CPU- and GPU-addressable memory, doubling the
texture’s memory footprint . In most cases, keep this
disabled . If you are generating textures at runtime,
enforce this via Texture2D .Apply, passing in
makeNoLongerReadable set to true .

 — Disable.unnecessary.Mip.Maps: Mip Maps are not
needed for textures that remain at a consistent size
on-screen, such as 2D sprites and UI graphics
(leave Mip Maps enabled for 3D models that vary
their distance from the camera) .

https://unity.com/
https://docs.unity3d.com/Manual/class-SpriteAtlas.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://www.codeandweb.com/texturepacker

26.of.52.| unity .com© 2021 Unity Technologies

Compress.textures.

Consider these two examples using the same model and texture . The settings
on the left consume almost eight times the memory as those on the right,
without much benefit in visual quality .

Use Adaptive Scalable Texture Compression (ATSC) for both iOS and Android .
The vast majority of games in development target min-spec devices that
support ATSC compression .

The only exceptions are:

 — iOS games targeting A7 devices or lower (e .g ., iPhone 5, 5S, etc .) – use
PVRTC

 — Android games targeting devices prior to 2016 – use ETC2 (Ericsson
Texture Compression)

If the quality of compressed formats such as PVRTC and ETC isn’t sufficiently
high, and if ASTC is not fully supported on your target platform, try using 16-bit
textures instead of 32-bit textures .

See the manual for more information about recommended texture compression
format by platform .

Uncompressed textures require more memory .

https://unity.com/
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/class-TextureImporterOverride.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

27.of.52.| unity .com© 2021 Unity Technologies

Adjust.mesh.import.settings

Much like textures, meshes can consume excess memory if not imported
carefully . To minimize meshes’ memory consumption:

Check.your.polygon.counts.

Higher-resolution models mean more memory usage and potentially longer
GPU times . Does your background geometry need half a million polygons?
Consider cutting down models in your DCC package of choice . Delete unseen
polygons from the camera’s point of view . Use textures and normal maps for fine
detail instead of high-density meshes .

Automate.your.import.settings.using.the.AssetPostprocessor.

The AssetPostprocessor allows you to run scripts when importing assets .
This allows you to customize settings before and/or after importing models,
textures, audio, and so on .

Check your mesh import settings .

 — Compress.the.mesh:.Aggressive
compression can reduce disk space
(memory at runtime, however, is unaffected) .
Note that mesh quantization can result in
inaccuracy, so experiment with compression
levels to see what works for your models .

 — Disable.Read/Write:.Enabling this option
duplicates the mesh in memory, keeping one
copy of the mesh in system memory and
another in GPU memory . In most cases, you
should disable it (in Unity 2019 .2 and earlier,
this option is checked by default) .

 — Disable.rigs.and.BlendShapes:.If your
mesh does not need skeletal or
blendshape animation, disable these
options wherever possible .

 — Disable.normals.and.tangents,.if.possible:..
If you are certain the mesh’s material will not
need normals or tangents, uncheck these
options for extra savings .

https://unity.com/
https://docs.unity3d.com/ScriptReference/AssetPostprocessor.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

28.of.52.| unity .com© 2021 Unity Technologies

Use.the.Addressable.Asset.System

The Addressable Asset System provides a simplified way to manage your
content, loading AssetBundles by “address” or alias . This unified system loads
asynchronously from either a
local path or a remote content
delivery network (CDN) .

If you split your non-code assets (Models, Textures, Prefabs, Audio, and even
entire Scenes) into an AssetBundle, you can separate them as downloadable
content (DLC) .

Then, use Addressables to create a smaller initial build for your mobile
application . Cloud Content Delivery lets you host and deliver your game
content to players as they progress through the game .

Click here to see how the Addressable Asset System can take the pain out of
asset management .

Load assets by “address” using the Addressable Asset System .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.addressables@latest?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/AssetBundlesIntro.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://unity.com/products/cloud-content-delivery?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://unity.com/how-to/simplify-your-content-management-addressables?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

29.of.52.| unity .com© 2021 Unity Technologies

Graphics.and..
GPU.optimization
Each frame, Unity determines which objects must be rendered and then
creates draw calls . A draw call is a call to the graphics API to draw objects
(e .g ., a triangle), while a batch is a group of draw calls to be executed together .

As your projects become more complex, you’ll need a pipeline that optimizes
the workload on your GPU . The Universal.Render.Pipeline.(URP) currently
uses a single-pass forward renderer to bring high-quality graphics to your
mobile platform (deferred rendering will be available in future releases) .
The same physically based Lighting and Materials from consoles and PCs
can also scale to your phone or tablet .

Boat Attack demo project created using the Universal Render Pipeline.

https://unity.com/

30.of.52.| unity .com© 2021 Unity Technologies

The following guidelines can help you to speed up your graphics .

Batch.your.draw.calls.

Batching objects to be drawn together minimizes the state changes needed to
draw each object in a batch . This leads to improved performance by reducing
the CPU cost of rendering objects . Unity can combine multiple objects into
fewer batches using several techniques:

 — Dynamic.batching: For small meshes, Unity can group and transform
vertices on the CPU, then draw them all in one go . Note: Only use this if
you have enough low-poly meshes (less than 900 vertex attributes and
no more than 300 vertices) . The dynamic batcher won’t batch larger
meshes than this, so enabling it will waste CPU time every frame looking
for small meshes to batch .

 — Static.batching: For non-moving geometry, Unity can reduce draw
calls for any meshes sharing the same material . It is more efficient than
dynamic batching, but it uses more memory .

 — GPU.instancing: If you have a large number of identical objects, this
technique batches them more efficiently using graphics hardware .

 — SRP.Batching:.Enable the SRP Batcher in your Universal.Render.Pipeline.
Asset under Advanced . This can speed up your CPU rendering times
significantly, depending on the Scene .

Organize your GameObjects to take advantage of these batching techniques .

https://unity.com/
https://blogs.unity3d.com/2019/02/28/srp-batcher-speed-up-your-rendering/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://blogs.unity3d.com/2019/02/28/srp-batcher-speed-up-your-rendering/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://blogs.unity3d.com/2019/02/28/srp-batcher-speed-up-your-rendering/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/2020.3/Documentation/Manual/DrawCallBatching.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

31.of.52.| unity .com© 2021 Unity Technologies

Use.the.Frame.Debugger.

The Frame Debugger shows how each frame
is constructed from individual draw calls .
This is an invaluable tool for troubleshooting
your shader properties and can help you
analyze how the game is rendered .

New to the Frame Debugger? Check out this
introduction here .

Avoid.too.many.dynamic.lights.

The URP reduces the number of draw calls
compared to the legacy forward renderer .
Avoid adding too many dynamic lights to your
mobile application . Consider alternatives like
custom shader effects and light probes for
dynamic meshes, as well as baked lighting for
static meshes .

For the specific limits of URP and Built-in
Render Pipeline real-time lights, see this
feature comparison table .

Disable.shadows.

Shadow casting can be disabled per MeshRenderer and light . Disable shadows
whenever possible to reduce draw calls .

You can also create fake shadows using a blurred texture applied to a simple
mesh or quad underneath your characters . Alternately, create blob shadows
with custom shaders .

The Frame Debugger breaks each frame into its separate steps .

Disable shadow casting to reduce draw calls .

https://unity.com/
https://docs.unity3d.com/Manual/FrameDebugger.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/tutorial/working-with-the-frame-debugger?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.4/manual/universalrp-builtin-feature-comparison.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

32.of.52.| unity .com© 2021 Unity Technologies

Bake.your.lighting.into.Lightmaps.

Add dramatic lighting to your static
geometry using Global Illumination (GI) .
Mark objects with Contribute.GI so
you can store high-quality lighting in
the form of Lightmaps .

Baked shadows and lighting can then
render without a performance hit at
runtime . The Progressive CPU and
GPU Lightmapper can accelerate the
baking of Global Illumination .

Follow the manual guide and this article about optimizing lighting for help
getting started with Lightmapping in Unity .

Enable Contribute GI .

Adjust the Lightmapping.Settings (Windows.>.Rendering.>.Lighting.Settings) and Lightmap size to limit memory usage .

https://unity.com/
https://docs.unity3d.com/Manual/Lightmapping.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://unity.com/how-to/advanced/optimize-lighting-mobile-games?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

33.of.52.| unity .com© 2021 Unity Technologies

Use.Light.Layers.

For complex scenes with multiple lights, separate your objects using layers,
then confine each light’s influence to a specific culling mask .

Use.Light.Probes.for.moving.objects

Light Probes store baked lighting information about the empty space in your
Scene and provide high-quality lighting (both direct and indirect) . They use
Spherical Harmonics, which calculate very quickly compared to dynamic lights .

Layers can limit your light’s influence to a specific culling mask .

Light Probes illuminate dynamic objects in the background .

https://unity.com/

34.of.52.| unity .com© 2021 Unity Technologies

Use.Level.of.Detail.(LOD)..

As objects move into the distance,
Level of Detail can switch them to
use simpler meshes with simpler
materials and shaders to aid GPU
performance .

See the Working with LODs course
on Unity Learn for more detail .

Example of a mesh using a LOD Group .

Source meshes, modeled at varying resolutions .

Use.Occlusion.Culling.to.remove.hidden.objects.

Objects hidden behind other objects can potentially still render and cost
resources . Use Occlusion Culling to discard them .

While frustum culling outside the camera view is automatic, occlusion culling is
a baked process . Simply mark your objects as Static.Occluders or Occludees,
then bake through the Window.>.Rendering.>.Occlusion.Culling dialog .
Though not appropriate for every scene, culling can improve performance
in many cases .

Check out the Working with Occlusion Culling tutorial for more information .

Avoid.mobile.native.resolution.

Phones and tablets have become increasingly advanced, with newer devices
sporting very high resolutions .

Use Screen .SetResolution(width,.height,.false) to lower the output resolution
and regain some performance . Profile multiple resolutions to find the best
balance between quality and speed .

https://unity.com/
https://docs.unity3d.com/Manual/LevelOfDetail.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/tutorial/working-with-lods-2019-3?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/tutorial/working-with-occlusion-culling?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

35.of.52.| unity .com© 2021 Unity Technologies

Limit.use.of.cameras

Each camera incurs some overhead, whether it’s doing meaningful work or not .
Only use camera components necessary for rendering . On lower-end mobile
platforms, each camera can use up to 1 ms of CPU time .

Keep.shaders.simple.

The Universal Render Pipeline
includes several lightweight Lit
and Unlit shaders that are already
optimized for mobile platforms .
Try to keep your shader variations as
low as possible, since this can have
a dramatic effect on runtime memory
usage . If the default URP shaders
don’t suit your needs, you can
customize the look of your materials
using Shader Graph . Find out how
to build your shaders visually using
Shader Graph here .

Create custom shaders with the Shader Graph .

Keep Post-processing simple in mobile applications .

Minimize.overdraw.and.alpha.blending

Avoid drawing unnecessary transparent or semi-transparent images .
Mobile platforms are greatly impacted by the resulting overdraw and alpha
blending . Don’t overlap barely visible images or effects . You can check
overdraw using the RenderDoc graphics debugger .

Limit.Post-processing.effects.

Fullscreen Post-processing effects
like glows can dramatically slow
performance . Use them cautiously
in your title’s art direction .

https://unity.com/
https://unity.com/shader-graph?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://unity.com/shader-graph?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/RenderDocIntegration.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.3/manual/integration-with-post-processing.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

36.of.52.| unity .com© 2021 Unity Technologies

Be.careful.with.Renderer .material.

Accessing Renderer .material in scripts duplicates the material and returns
a reference to the new copy . This breaks any existing batch that already
includes the material . If you wish to access the batched object’s material,
use Renderer .sharedMaterial instead .

Optimize.SkinnedMeshRenderers.

Rendering skinned meshes is expensive . Make sure that every object using
a SkinnedMeshRenderer requires it . If a GameObject only needs animation
some of the time, use the BakeMesh function to freeze the skinned mesh in
a static pose, and swap to a simpler MeshRenderer at runtime .

Minimize.Reflection.Probes.

A Reflection Probe can create realistic reflections, but this can be very costly
in terms of batches . Use low-resolution cubemaps, culling masks, and texture
compression to improve runtime performance .

https://unity.com/
https://docs.unity3d.com/ScriptReference/Renderer-sharedMaterial.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/class-ReflectionProbe.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

37.of.52.| unity .com© 2021 Unity Technologies

User.interface
Unity UI (UGUI) is often a source of performance issues . The Canvas
component generates and updates meshes for the UI elements and issues
draw calls to the GPU . Its functioning can be expensive, so keep the following
factors in mind when working with UGUI .

Divide.your.Canvases

If you have one large Canvas with thousands of elements, updating a single UI
element forces the whole Canvas to update, potentially generating a CPU spike .

Take advantage of UGUI’s ability to support multiple Canvases . Divide UI
elements based on how frequently they need to be refreshed . Keep static UI
elements on a separate Canvas, and keep dynamic elements that update at
the same time on smaller sub-canvases .

Ensure that all UI elements within each Canvas have the same Z value,
materials, and textures .

Hide.invisible.UI.elements.

You may have UI elements that only appear sporadically in the game
(e .g ., a health bar that appears only when a character takes damage) .
If your invisible UI element is active, it might still be using draw calls .
Explicitly disable any invisible UI components and re-enable them as needed .

If you only need to turn off the Canvas’s visibility, disable the Canvas component
rather than GameObject . This can save rebuilding the meshes and vertices .

Limit.GraphicRaycasters.and.disable.Raycast.Target.

Input events like on-screen touches or clicks require the GraphicRaycaster
component . This simply loops through each input point on screen and checks
if it’s within a UI’s RectTransform .

Remove the default GraphicRaycaster from the top Canvas in the hierarchy .
Instead add the GraphicRaycaster only to the individual elements that need
to interact (buttons, scroll rects, and so on) .

Disable Ignore Reversed Graphics, which is active by default .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

38.of.52.| unity .com© 2021 Unity Technologies

Also, disable Raycast.Target on all UI text and images that don’t need it .
If the UI is complex with many elements, all of these small changes can reduce
unnecessary computation .

Disable Raycast Target if possible .

Layout Groups can lower performance, especially when nested .

Avoid.Layout.Groups

Layout Groups update inefficiently, so use them sparingly . Avoid them entirely
if your content isn’t dynamic, and use anchors for proportional layouts instead .
Alternately, create custom code to disable the Layout Group components after
they set up the UI .

If you do need to use Layout Groups (Horizontal, Vertical, Grid) for your dynamic
elements, avoid nesting them to improve performance .

Avoid.large.List.and.Grid.views.

Large List and Grid views are expensive . If you need to create a large List or
Grid view (e .g ., an inventory screen with hundreds of items), consider reusing
a smaller pool of UI elements rather than creating a UI element for every item .
Check out this sample GitHub project to see this in action .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UIAutoLayout.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://github.com/boonyifei/ScrollList

39.of.52.| unity .com© 2021 Unity Technologies

Avoid.numerous.overlaid.elements

Layering lots of UI elements (e .g ., cards stacked in a card battle game) creates
overdraw . Customize your code to merge layered elements at runtime into
fewer elements and batches .

Use.multiple.resolutions.and.aspect.ratios.

With mobile devices now using very different resolutions and screen sizes,
create alternate versions of the UI to provide the best experience per device .

Use the Device Simulator to preview the UI across a wide range of supported
devices . You can also create virtual devices in XCode and Android Studio .

Preview a variety of screen formats using the Device Simulator .

When.using.a.fullscreen.UI,.hide.everything.else.

If your pause screen or start screen covers everything else in the scene,
disable the camera rendering the 3D scene . Likewise, disable any background
Canvas elements hidden behind the top Canvas .

Consider lowering the Application .targetFrameRate during a fullscreen UI,
since you should not need to update at 60 fps .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/HOWTO-UIMultiResolution.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://docs.unity3d.com/Manual/com.unity.device-simulator.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html#//apple_ref/doc/uid/TP40012848-CH5-SW10
https://developer.android.com/studio/run/managing-avds

40.of.52.| unity .com© 2021 Unity Technologies

Assign.the.Camera.to.World.Space.and.Camera.Space.Canvases.

Leaving the Event or Render.Camera field blank forces Unity to fill
in Camera .main, which is unnecessarily expensive .

Consider using Screen.Space.–.Overlay for your Canvas RenderMode
if possible, since that does not require a camera .

When using World Space Render Mode, make sure to fill in the Event Camera .

https://unity.com/

41.of.52.| unity .com© 2021 Unity Technologies

Audio
Though audio is not normally a performance
bottleneck, you can still optimize to
save memory .

Make.sound.clips.mono.when.possible

If you are using 3D spatial audio, author
your sound clips as mono (single channel)
or enable the Force To Mono setting .
A multichannel sound used positionally
at runtime will be flattened to a mono
source, thus increasing CPU cost and
wasting memory .

Use.original.uncompressed.WAV.files..
as.your.source.assets.when.possible.

If you use any compressed format (such as
MP3 or Vorbis), then Unity will decompress
it and recompress it during build time .
This results in two lossy passes, degrading
the final quality .

Compress.the.clip.and.reduce.the.
compression.bitrate.

Reduce the size of your clips and memory
usage with compression:

 — Use Vorbis for most sounds (or MP3
for sounds not intended to loop) .

 — Use ADPCM for short, frequently used
sounds (e .g ., footsteps, gunshots) .
This shrinks the files compared to uncompressed PCM but is fast
to decode during playback .

Sound effects on mobile devices should be 22,050 Hz at most .
Using lower settings usually has minimal impact on the final quality,
but use your own ears to judge .

Optimize the Import Settings of your AudioClips .

https://unity.com/

42.of.52.| unity .com© 2021 Unity Technologies

Choose.the.proper.Load.Type.

The setting varies per clip size .

 — Small.clips.(<.200.kb) should Decompress.on.Load . This incurs CPU cost
and memory by decompressing a sound into raw 16-bit PCM audio data,
so it’s only desirable for short sounds .

 — Medium.clips.(>=.200.kb) should remain Compressed.in.Memory .

 — Large.files.(background.music) should be set to Streaming .
Otherwise, the entire asset will be loaded into memory at once .

Unload.muted.AudioSources.from.memory.

When implementing a mute button, don’t simply set the volume to 0 . You can
Destroy the AudioSource component to unload it from memory, provided the
player does not need to toggle this on and off very often .

https://unity.com/

43.of.52.| unity .com© 2021 Unity Technologies

Animation
Unity’s Mecanim system is fairly sophisticated . If possible, limit your usage
on mobile using the settings that follow .

Use.generic.versus.humanoid.rigs.

By default, Unity imports animated models with the Generic Rig, but
developers often switch to the Humanoid Rig when animating a character .

A Humanoid Rig consumes 30–50% more CPU time than the equivalent
Generic Rig because it calculates inverse kinematics and animation
retargeting each frame, even when not in use . If you don’t need these
specific features of the Humanoid Rig, use the Generic Rig .

https://unity.com/
https://docs.unity3d.com/Manual/AnimationOverview.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

44.of.52.| unity .com© 2021 Unity Technologies

Avoid.excessive.use.of.Animators.

Animators are primarily intended for humanoid characters but are often
used to animate single values (e .g ., the alpha channel of a UI element) .
Avoid overusing Animators, particularly in conjunction with UI elements .
Whenever possible, use the legacy Animation components for mobile .

Consider creating tweening functions or using a third-party library for
simple animations (e .g ., DOTween) .

Animators are potentially expensive .

https://unity.com/
https://youtu.be/W45-fsnPhJY?t=1968

45.of.52.| unity .com© 2021 Unity Technologies

Physics
Unity’s built-in Physics (Nvidia PhysX) can be expensive on mobile . The following
tips may help you squeeze out more frames per second .

Optimize.your.settings

In the PlayerSettings, check Prebake.Collision.Meshes whenever possible .

Enable Prebake Collision Meshes .

Make sure that you edit your Physics.
settings (Project.Settings.>.Physics)
as well . Simplify your Layer.Collision.
Matrix wherever possible .

Disable Auto.Sync.Transforms and
enable Reuse.Collision.Callbacks .

Modify the physics project settings to squeeze out more performance .

https://unity.com/

46.of.52.| unity .com© 2021 Unity Technologies

Keep an eye on the Physics module of the Profiler for performance issues .

Simplify.colliders.

Mesh colliders can be expensive . Substitute more complex
mesh colliders with simpler primitive or mesh colliders to
approximate the original shape .

Move.a.Rigidbody.using.physics.methods.

Use class methods like MovePosition or AddForce
to move your Rigidbody objects . Translating their
Transform components directly can lead to physics world
recalculations, which can be expensive in complex scenes .
Move physics bodies in FixedUpdate rather than Update .

Fix.the.Fixed.Timestep.

The default Fixed.Timestep in the Project Settings is
0 .02 (50 Hz) . Change this to match your target frame rate
(for example 0 .03 for 30 fps) .

Otherwise, if your frame rate drops at runtime, that
means Unity would call FixedUpdate multiple times per
frame, potentially creating a CPU performance issue with
physics-heavy content .

The Maximum.Allowed.Timestep limits how much time
physics calculations and FixedUpdate events can use in the
event the frame rate drops . Lowering this value means that
during a performance hitch, physics and animation may
slow down, but it also reduces their impact on frame rate .

Use primitives or simplified meshes for colliders .

Modify the Fixed Timestep to match your target frame rate, and lower the Maximum
Allowed Timestep to reduce performance glitches .

https://unity.com/
https://docs.unity3d.com/Manual/ProfilerPhysics.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

47.of.52.| unity .com© 2021 Unity Technologies

Visualize.with.the.Physics.Debugger

Use the Physics Debug window (Window.>.Analysis.>.Physics.Debugger)
to help troubleshoot any problem colliders or discrepancies . This shows
a color-coded indicator of what GameObjects should be able to collide
with one another .

For more information, see Physics Debug Visualization
in the Unity documentation .

The Physics Debugger helps you visualize how your physics objects can interact with each other .

https://unity.com/
https://docs.unity3d.com/Manual/PhysicsDebugVisualization.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

48.of.52.| unity .com© 2021 Unity Technologies

Workflow.and.
collaboration
Building an application in Unity is a large endeavor that will often involve many
developers . Make sure that your project is set up optimally for your team .

Use.version.control.

Everyone should be using some type of version control . Make sure your Editor.
Settings have Asset.Serialization.Mode set to Force.Text .

If you’re using an external version control system (such as Git) in the Version.
Control settings, make sure the Mode is set to Visible.Meta.Files .

Unity also has a built-in YAML (a human-readable, data-serialization language)
tool specifically for merging Scenes and Prefabs . For more information,
see Smart Merge in the Unity documentation .

Version control is essential for working as part of a team . It can help you track
down bugs and bad revisions . Follow good practices like using branches
and tags to manage milestones and releases .

Check out Plastic SCM, our recommended version control solution for Unity
game development .

Break.up.large.Scenes.

Large, single Unity Scenes do not lend themselves well to collaboration .
Break your levels into many smaller Scenes so that artists and designers can
collaborate better on a single level while minimizing the risk of conflicts .

At runtime, your project can load Scenes additively using
SceneManager .LoadSceneAsync passing the LoadSceneMode .Additive
parameter mode .

https://unity.com/
https://docs.unity3d.com/Manual/SmartMerge.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://www.plasticscm.com

49.of.52.| unity .com© 2021 Unity Technologies

Remove.unused.resources.

Watch out for any unused assets that come bundled with third-party plug-ins and
libraries . Many include embedded test assets and scripts, which will become part
of your build if you don’t remove them . Strip out any unneeded resources left over
from prototyping .

Speed.Up.sharing.with.Unity.Accelerator.

The Unity Accelerator is a proxy and cache for the Collaborate service that allows
you to share Unity Editor content faster . If your team is working on the same local
network, you don’t need to rebuild portions of your project, significantly reducing
download time . When used with Unity Teams Advanced, the Accelerator also
shares source assets .

https://unity.com/
https://unity3d.com/unity/features/collaborate?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://unity3d.com/teams?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

50.of.52.| unity .com© 2021 Unity Technologies

Unity.Integrated.
Success
If you need personalized attention, consider Unity Integrated Success .
Integrated Success is much more than a support package . Integrated Success
customers also have the option to add read and modification access to Unity
source code . This access is available for development teams that want to deep
dive into the source code to adapt and reuse it for other applications .

Get.a.Project.Review.

Project Reviews are an essential part of the Integrated Success package .
Whenever possible, we travel to our customers and typically spend two full
days familiarizing ourselves with their projects . We use various profiling
tools to detect performance bottlenecks, factoring in existing requirements
and design decisions . We also identify points where performance could be
optimized for greater speed, stability, and efficiency .

For well-architected projects that have low build times (modular scenes, heavy
usage of AssetBundles, etc .), we perform changes while onsite and reprofile to
uncover new issues .

In instances where we are unable to solve problems directly, we capture as much
information as possible . Then, we conduct further investigation back at the Unity
offices, consulting specialized developers across our R&D departments if need be .

Though deliverables can vary depending on the needs of the customers,
typically a written report summarizes our findings and provides recommendations .
Our goal is to always provide the greatest value to our customers by helping them
identify potential blockers, assess risk, validate solutions and ensure that they
are following best practices moving forward .

Developer.Relations.Manager.(DRM).

In addition to a Project Review, Unity Integrated Success also comes with
a Developer Relations Manager (DRM), a strategic Unity advisor who will quickly
become an extension of your team to help you get the most out of Unity .
Your DRM provides you with the dedicated technical and operational expertise
required to preempt issues and keep your projects running smoothly, right up
to launch and beyond .

To learn more about an Integrated Success package and Project Reviews,
please reach out to your Unity sales or fill out this form .

https://unity.com/
https://unity.com/success-plans?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://create.unity3d.com/unity-sales?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

51.of.52.| unity .com© 2021 Unity Technologies

Conclusion
You can find additional optimization tips, best practices, and news on the
Unity Blog, using the #unitytips hashtag, on the Unity community forums,
and on Unity Learn .

Performance optimization is a vast topic . Understand how your mobile hardware
operates, along with its limitations . In order to find an efficient solution that
satisfies your design requirements, you will need to master Unity’s classes and
components, algorithms and data structures, and your platform’s profiling tools .

Of course, a little bit of creativity helps here, too .

https://unity.com/
https://blogs.unity3d.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://forum.unity.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-mobile&utm_content=optimize-mobile-game-performance-ebook

unity .com

https://unity.com/
https://unity.com/

	Introduction
	Profiling
	Memory
	Adaptive performance
	Programming and code architecture
	Project configuration
	Assets
	Graphics and
GPU optimization
	User interface
	Audio
	Animation
	Physics
	Workflow and collaboration
	Unity Integrated Success
	Conclusion

