
© 2025 Unity Technologies

The Universal Render Pipeline cookbook:

Recipes for shaders 
and visual effects 

 ⟶  E - B O O K



Contents

Introduction. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Author and contributors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

Unity contributors. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

Getting started with this guide. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Starting a new URP project . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

Importing e-book sample scenes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

Stencils. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  13

Renderer Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Instancing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

GPU Resident Drawer and GPU occlusion culling . .  .  .  .  .  . 21

Instancing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  23

SRP Batcher. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24

GPU Instancing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26

RenderMeshPrimitives. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  28

Toon and outline shading. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Simple toon shading. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35

Shading. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35

Outlining . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36

Toon shading. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37

Shading. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37

Outlining . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

Ambient occlusion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44

SSAO properties. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  46



Decals. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

URP Decal Projection properties. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

Creating the material. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  52

Adding a decal with code. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53

Water . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

DepthFade subgraph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  57

TextureMovement subgraph . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  58

Water shader . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  58

Color. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  59

Normal maps. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61

Swell. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  62

LUT for color grading . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64

Adaptive Probe Volumes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

Using APVs in a scene . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  74

Lighting Scenario asset . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  77

Fixing issues with APVs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  80

Light leaks . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82

Rendering Layers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  83

Streaming APVs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  86

Sky occlusion . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  87

Light probes vs APVs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90

Screen space refraction. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

Volumetrics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  102

Volumetric cloud. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  103



Procedural noise. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

Types of procedural noise. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115

Implementing procedural noise in Unity. .  .  .  .  .  .  .  .  .  .  .  .  . 115

Procedural heightmap example. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116

Using noise to generate a wood texture. .  .  .  .  .  .  .  .  .  .  .  .  . 119

Benefits of procedural noise . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126

Challenges and optimization. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127

Compute shaders . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  128

ParticleFun. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129

Adding a mesh object. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  139

Conclusion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151



© 2025 Unity Technologies 5 of 151 | unity.com

Introduction

A dash of post-processing effects, a cup of decals, a pinch of color grading, and some 
sparkling water: It’s time to cook up some high-quality lighting and visual effects in your games 
using the Universal Render Pipeline (URP). 

Over 12 chapters, our URP cookbook offers up numerous recipes for creating popular effects. 
Additionally, sample scenes based on these recipes are available to download from this 
GitHub repo maintained by the main author, Nik Lever.

This guide is aimed at intermediate Unity users who have developed projects in Unity, know 
how to use URP features, and have some knowledge of writing HLSL-based shaders.

You’ll get all the ingredients you need to:

	— Create an x-ray-like image effect with stencils.

	— Build a toon and outline shader with Shader Graph.

	— Add an ambient occlusion effect with post-processing.

	— Use Photoshop and a LUT image to add color grading to your scenes.

	— Produce reflections and refraction, and much more. 

https://unity.com/releases/lts
https://github.com/NikLever/Unity-URP-Cookbook-Unity6


© 2025 Unity Technologies 6 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

The e-book and the downloadable sample scenes for each recipe are now updated for Unity 6. 
New additions to this guide include:

	— Two new recipes for procedural noise and compute shaders

	— A full revision of the Toon shader

	— A section on how to implement Adaptive Probe Volumes (APVs), a quick and flexible 
alternative to light probes

	— Steps on how to use the new Render Graph API for creating Renderer Features

Reference this cookbook alongside the e-book Introduction to the Universal Render Pipeline for 
advanced Unity creators. There is also a playlist  of URP tutorials on Unity’s YouTube channel, 
providing both general and more specialized tips for creating lighting and effects for your games.

We hope you have fun creating beautiful effects for your game. 

Many of the recipes in this e-book use High-Level Shader Language or HLSL. If you are 
new to this language then see the following resources for a good introduction:

	— Example of custom shaders from the Unity Manual

	— Ronja’s HLSL tutorials

	— Udemy: Learn Unity Shaders from Scratch

	— The Book of Shaders

This image is from PRINCIPLES, a sample of what URP can achieve in the hands of experienced developers. PRINCIPLES  is an adventure 
game from COLOPL Creators, the technology brand of COLOPL Inc, who developed the series of Shironeko Project and Quiz RPG: The World 
of Mystic Wiz. Experience a deep underworld that makes use of Unity’s latest features, including URP, for stunning graphics and immersive 3D 
sound. PRINCIPLES is currently available on App Store or Google Play. You can also watch an interview with the studio here.

https://unity.com/releases/lts
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://www.youtube.com/watch?v=NFBr21V0zvU&list=PLX2vGYjWbI0QRLkvupULwSZCPkLyHs-UX
https://www.youtube.com/watch?v=NFBr21V0zvU&list=PLX2vGYjWbI0QRLkvupULwSZCPkLyHs-UX
https://www.youtube.com/watch?v=NFBr21V0zvU&list=PLX2vGYjWbI0QRLkvupULwSZCPkLyHs-UX
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/writing-shaders-urp-landing.html
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.ronja-tutorials.com/post/002-hlsl/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://www.udemy.com/course/learn-unity-shaders-from-scratch/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://thebookofshaders.com/
https://apps.apple.com/jp/app/principles/id1620294510
https://apps.apple.com/jp/app/principles/id1620294510
https://apps.apple.com/jp/app/principles/id1620294510
https://play.google.com/store/apps/details?id=jp.colopl.ruins
https://play.google.com/store/apps/details?id=jp.colopl.ruins
https://play.google.com/store/apps/details?id=jp.colopl.ruins
https://www.youtube.com/watch?v=qKTX5GKKpwM


© 2025 Unity Technologies 7 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

Author and contributors
Nik Lever, the main author of this e-book, has been creating real-time 3D content since 
the mid-90s and using Unity since 2006. For over 30 years, he’s led the small development 
company Catalyst Pictures, and has provided courses since 2018 with the aim of helping game 
developers expand their knowledge in a rapidly evolving industry.

Unity contributors

Steven Cannavan is a senior software development consultant at Unity, specializing in 
graphics and rendering. He has over 15 years of experience in the game development industry.

MingWai Chan is a senior technical artist on Unity’s graphics engineering team. She has 
worked at Unity for eight years and has been using the Editor since 2012.

Oliver Schnabel is a senior technical product manager in Unity’s graphics team, where he 
integrates customer insights and works with global studios to prioritize the development of 
a more performant, unified, and scalable rendering stack. He brings extensive experience in 
computer graphics and real-time development.

Jonas Mortensen is a senior technical artist on Unity’s Graphics team.

Adrien Moulin is a senior graphics developer in Unity’s render pipeline team. He has over eight 
years of experience in the simulation and real-time software industry. He is currently focused 
on delivering the best possible foundations and APIs to the Scriptable Render Pipeline users.

Mathieu Muller is the lead product manager for Graphics at Unity. He leads the Graphics 
product management team and oversees the Graphics roadmap and product vision.

Damian Nachman is a senior technical product manager in Unity’s graphics team, specializing 
in low-level graphics development and optimization. He has 10 years of experience with 
working on real-time graphics engines and benchmarking across multiple industries.

https://unity.com/releases/lts


© 2025 Unity Technologies 8 of 151 | unity.com

Getting started  
with this guide

You can follow the steps in each recipe to recreate the lighting and visual effects by opening a 
new URP project. Additionally, you can access the Github page that accompanies this guide, 
which provides you with downloadable sample scenes for each recipe. 

All of the recipes have been updated extensively to work in Unity 6. 

https://unity.com/releases/lts
https://github.com/NikLever/Unity-URP-Cookbook-Unity6
https://github.com/NikLever/Unity-URP-Cookbook-Unity6
https://github.com/NikLever/Unity-URP-Cookbook-Unity6


© 2025 Unity Technologies 9 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

Starting a new URP project
Open a new project using URP via the Unity Hub. Click New, and verify that the Unity version 
selected at the top of the window is 6000.01 or newer. Choose a name and location for the 
project, select the 3D (URP) template, and click Create.

If you create a new project with the Universal 3D template, you might have to download the template for the first time.

Note: The template ensures that your project is set to use a linear color space, which is 
required for calculating lighting correctly.

This template is empty but has URP and its assets preconfigured and installed.

https://unity.com/releases/lts


© 2025 Unity Technologies 10 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

Go to Edit > Project Settings, and open the Graphics panel. You’ll see the Default Render 
Pipeline Asset. This URP Asset controls the global rendering and quality settings of a project 
and creates the rendering pipeline instance. Meanwhile, the rendering pipeline instance 
contains intermediate resources and the render pipeline implementation.

PC_RPAsset is the default URP Asset selected, but you can switch to Mobile_RPAsset for an 
asset more suited to a device with more restricted resources.

The Graphics panel in Project Settings

Importing e-book sample scenes
You can clone the repository from here or download the code in a zip file and unzip it.

The GitHub repository from where you can download the project by clicking the green Code button

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://github.com/NikLever/Unity-URP-Cookbook-Unity6


© 2025 Unity Technologies 11 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

Once the project is unzipped and downloaded, import it from the Unity Hub via Open > Add 
project from disk.

Import the sample project from Unity Hub.

It’s important that you are working in the same version of the Editor as that used for the 
sample project. If the Editor versions don’t match, the Hub will show a warning message about 
a missing Editor version. You can install the missing version from the blue button at the bottom 
right, as seen in this image. 

Install the version of the Unity Editor that matches any tutorial project you’re following and/or downloading. This is easy to do via the Unity Hub.

https://unity.com/releases/lts


© 2025 Unity Technologies 12 of 151 | unity.com

Introduction | Getting started with this guide | Stencils | 

Once the correct Editor version is installed, you will be able to open the project as normal.

Each recipe is contained in a folder along with the steps and files referred to in this book.

https://unity.com/releases/lts


© 2025 Unity Technologies 13 of 151 | unity.com

Stencils

In the Made with Unity game TUNIC (created by Andrew Shouldice, TUNIC Team, 22nd Century Toys LLC, and Isometricorp Games Ltd., 
published by Finji), the main character’s silhouette is drawn when props are blocking him. This effect can be achieved with Renderer Features 
in URP. It’s also explained in this video tutorial.

https://unity.com/releases/lts
https://tunicgame.com/
https://www.youtube.com/watch?v=3CpEn_mmr3o
https://www.youtube.com/watch?v=3CpEn_mmr3o
https://www.youtube.com/watch?v=3CpEn_mmr3o


© 2025 Unity Technologies 14 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

URP has two assets that control the final render, the Universal Renderer Asset and the URP 
Asset. From the former, you can add Renderer Features to be injected into any stage of the 
rendering pipeline, such as:

	— Rendering shadows

	— Rendering prepasses

	— Rendering G-buffer

	— Rendering Deferred lights

	— Rendering opaques

	— Rendering Skybox

	— Rendering transparents

	— Rendering post-processing

Renderer Features
Renderer features provide you with ample opportunity to experiment with lighting and effects. 
This section will focus on Stencils, using only the bare minimum of required code. 

To work along, open the sample scene via Scenes > Renderer Features Stencils > SmallRoom 
- Stencil in the Editor. 

Stencils in action: As the magnifying glass moves over the desk, it can see through to reveal what is in the drawers.

As the above image shows, the aim in this example is to convert the lens of the magnifying 
glass so it allows you to to see through the desk, like an X-ray image. The approach uses 
a combination of Layer Masks, shaders, and Renderer Features. The first step is to change 
the material used by the lens, in this case a material called MaskMat, with a shader called 
Custom/StencilMask.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-renderer-feature.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-renderer-feature.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/urp-renderer-feature.html


© 2025 Unity Technologies 15 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

Shader "Custom/StencilMask"

{

  	 Properties{}

	 SubShader{

		  Tags {

			   "RenderType" = "Opaque"

		  }

		  Pass {

			   ZWrite Off

			   HLSLPROGRAM

            #pragma vertex vert

            #pragma fragment frag

            #include 

"Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"

            struct Attributes

            {

                float4 positionOS   : POSITION;

            };

            struct Varyings

            {

                float4 positionHCS  : SV_POSITION;

            };

            Varyings vert(Attributes IN)

            {

                Varyings OUT;

                OUT.positionHCS = TransformObjectToHClip(IN.positionOS.xyz);

                return OUT;

            }

            half4 frag() : SV_Target

https://unity.com/releases/lts


© 2025 Unity Technologies 16 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

            {

                return (half4)0;

            }

			   ENDHLSL

		  }

	 }

}

Notice that Custom/StencilMask has the command ZWrite Off. In most cases, if you 
set ZWrite Off for an object, it will disappear because the object doesn’t write its depth 
value into the depth buffer, so it won’t obstruct objects that are behind it anymore. The object 
will still be rendered with the same order, but the drawn pixel content is being overridden by 
the objects behind. To clarify, setting ZWrite Off doesn’t change the render order (but 
setting render queue index does).  If you change its render queue index to a higher value than 
Geometry, then it will reappear. For this example, it’s been left at 2000, the Geometry value. 

The only action you want the lens to perform is to write a value to the Stencil buffer. Since you 
need to consider the stencil writes and not the output of the shader to the color buffer, you 
can disable the color writes, ColorMask 0. This is a slightly optimized approach, especially 
if you want this to work with the Deferred Rendering path as the scene would be rendered 
before the lens mask.

 This example uses two custom layers, Mask and SeeThrough. The lens is in the Mask layer, 
while the desk, but not its children, is in the SeeThrough layer. 

This scene uses the Renderer Data object named See Through Settings_Renderer, located in 
the same folder as the scene file, materials, and shader: Scenes > Renderer Feature Stencils. 
The script attached to the Main Camera, AutoLoadPipelineAsset, ensures this is set 
as the Scriptable Render Pipeline Asset in Project Settings > Graphics. Now let’s check the 
settings for this asset. 

Pipeline Asset set for the Main Camera > Auto Load Pipeline Asset script

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/rendering/deferred-rendering-path-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/rendering/deferred-rendering-path-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/rendering/deferred-rendering-path-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/rendering/deferred-rendering-path-landing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/rendering/deferred-rendering-path-landing.html


© 2025 Unity Technologies 17 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

Select the SeeThrough Settings_Renderer via Scenes > Renderer Feature Stencils. The first 
setting changed from the default is the Opaque Layer Mask. Note that this excludes Mask and 
SeeThrough.  

Change the Opaque Layer Mask in the See Through Settings_Renderer. 

In the Renderer Features list in the Inspector, there are two Render Objects features named 
Mask and SeeThrough. If you disable the SeeThrough option, the desk disappears. This 
happens because, as part of a filtered-out layer that’s using the Opaque Layer Mask, it’s not a 
part of the default render – it only gets rendered because of the Render Objects feature.

Settings for Mask (Render Objects)

https://unity.com/releases/lts


© 2025 Unity Technologies 18 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

The image above shows that Mask is set to use the Event BeforeRenderingOpaques and 
be filtered so it only works on rendered pixels in the Mask Layer. In the Overrides panel, the 
Stencil option is enabled. The value it will save to the buffer is 1. To make sure this write 
happens, the Compare Function is set to Always, and Pass is set to Replace so it always 
replaces the existing value. Fail and Z Fail are set to Keep. 

URP will attempt to render the Mask Layer. Since no override material is set, it will use the 
materials defined by the objects in this Mask Layer, which is just the lens with the MaskMat 
material and the StencilMask shader. Setting Compare Function to Always and Pass to 
Replace ensures that the Stencil buffer is wherever the lens is in vision, with the value for 
each pixel set to 1.  

The settings for See Through (Render Objects)

Let’s look at the second Render Objects Renderer Feature (shown above). This is set to use 
the Event AfterRenderingOpaques, meaning it will apply after the Stencil buffer has been 
set. Its Layer Mask is set to SeeThrough and Value set to 1. If the Value 1 is found, the pixel 
shouldn’t be rendered. 

The Compare Function setting is set to Not Equal, while Pass, Fail, and Z Fail are all set to 
Keep. This Render Objects pass will only read from the Stencil buffer but not write to it. So this 
pass will render any pixel in the layer See Through, where the Stencil buffer does not contain 
the value 1. It leaves the default render only where the lens is. Try changing the Compare 
Function to Equal to flip the result so the desk appears in the lens only. 

https://unity.com/releases/lts


© 2025 Unity Technologies 19 of 151 | unity.com

| Getting started with this guide | Stencils | Instancing | 

The effect of changing the Compare Function to Equal

Renderer Features are a great way to achieve dramatic custom effects. 

https://unity.com/releases/lts


© 2025 Unity Technologies 20 of 151 | unity.com

Instancing

The popular Made with Unity game Genshin Impact, by HoYoverse, features a vast open world with lush vegetation. It runs on all the major 
platforms, from mobile devices to the latest consoles. This section offers tips on how to recreate a similar grass effect in a performant way.

Exchanging data between the CPU and GPU is a major bottleneck in the rendering pipeline. 
If you have a model that needs to be rendered many times using the same geometry and 
material, then Unity provides some great tools to do so, which are covered in this chapter. 

https://unity.com/releases/lts
https://genshin.hoyoverse.com/pc-launcher/?utm_source=EU_google_EUT2_search_20220719&mhy_trace_channel=ga_channel&new=1&gclid=CjwKCAiAwc-dBhA7EiwAxPRylGcsg_43UUG55LGlMh3WR8vYBuSHby1XJ3T78jU-_0aD5VapH8kRWhoCGMcQAvD_BwE#/GI008
https://genshin.hoyoverse.com/pc-launcher/?utm_source=EU_google_EUT2_search_20220719&mhy_trace_channel=ga_channel&new=1&gclid=CjwKCAiAwc-dBhA7EiwAxPRylGcsg_43UUG55LGlMh3WR8vYBuSHby1XJ3T78jU-_0aD5VapH8kRWhoCGMcQAvD_BwE#/GI008
https://genshin.hoyoverse.com/pc-launcher/?utm_source=EU_google_EUT2_search_20220719&mhy_trace_channel=ga_channel&new=1&gclid=CjwKCAiAwc-dBhA7EiwAxPRylGcsg_43UUG55LGlMh3WR8vYBuSHby1XJ3T78jU-_0aD5VapH8kRWhoCGMcQAvD_BwE#/GI008


© 2025 Unity Technologies 21 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

GPU Resident Drawer and GPU occlusion culling
Before starting on the instancing recipe, let’s look at a generic solution new to Unity 6,  GPU 
Resident Drawer, which is available via the Rendering section of the URP Asset. 

The GPU Resident Drawer is a GPU-driven rendering system that’s designed to optimize CPU 
time. It enables GameObjects to take advantage of the 

BatchRenderGroup API, so they can benefit from its faster batching and improved CPU 
performance. 

With GPU Resident Drawer, you can author your game using GameObjects, and when 
processed, they will be ingested and rendered via a special fast path that handles better 
instancing. When you enable this feature, games that are CPU-bound due to a high number of 
draw calls will see a reduction in this bottleneck as the amount of draw calls is reduced. 

The GPU Resident Drawer and GPU occlusion culling options available via the URP Asset in Unity 6

Notice from the screengrabs above that the batches necessary to render the garden 
environment from the URP 3D Sample in Editor mode is 3569. When the GPU Resident Drawer 
is set to Instanced Drawing this drops to just 506. 

The improvements you will see are dependent on the scale of your scenes and the amount of 
instancing you utilize. The more instanceable objects you render, the bigger the benefits gain. 

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-resident-drawer.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-resident-drawer.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-resident-drawer.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-resident-drawer.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-resident-drawer.html
https://discussions.unity.com/t/introducing-the-new-urp-3d-sample/929894
https://discussions.unity.com/t/introducing-the-new-urp-3d-sample/929894
https://discussions.unity.com/t/introducing-the-new-urp-3d-sample/929894
https://discussions.unity.com/t/introducing-the-new-urp-3d-sample/929894
https://discussions.unity.com/t/introducing-the-new-urp-3d-sample/929894


© 2025 Unity Technologies 22 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

When you enable GPU Resident Drawer, GPU occlusion culling also becomes available as an 
option. This uses a GPU-driven approach to ensure you don’t render things you can’t see on 
the screen; depending on your content, it can reduce CPU work dramatically.

Viewing the Occlusion Test using the Rendering Debugger

GPU Resident Drawer is targeted for MeshRenderers. It will not handle Skinned Mesh 
Renderers, VFX Graphs, particle systems, or similar effects renderers. No changes to your 
existing content are required to take advantage of it. Also note that if you’re using custom 
shaders, you’ll need to ensure they’re compatible with DOTS instancing; see this simplified 
version as an example.

Note: GPU Resident Drawer requires the Forward+ renderer, and Project Settings > 
Graphics > BatchRendererGroup Variants needs to be set to Keep All.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-culling.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-culling.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-culling.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-culling.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/gpu-culling.html
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/GraphicsSamples/URPSamples/Assets/SampleScenes/6. Misc/SimpleDotsInstancingShader/SceneAssets/CustomDotsInstancingShader.shader
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/GraphicsSamples/URPSamples/Assets/SampleScenes/6. Misc/SimpleDotsInstancingShader/SceneAssets/CustomDotsInstancingShader.shader
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/GraphicsSamples/URPSamples/Assets/SampleScenes/6. Misc/SimpleDotsInstancingShader/SceneAssets/CustomDotsInstancingShader.shader
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/GraphicsSamples/URPSamples/Assets/SampleScenes/6. Misc/SimpleDotsInstancingShader/SceneAssets/CustomDotsInstancingShader.shader
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/GraphicsSamples/URPSamples/Assets/SampleScenes/6. Misc/SimpleDotsInstancingShader/SceneAssets/CustomDotsInstancingShader.shader


© 2025 Unity Technologies 23 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

To see if GPU occlusion culling is effective for your scene go to Window > Analysis > Rendering 
Debugger, and select GPU Resident Drawer > Occlusion Test Overlay. This displays a heatmap 
of culled instances. The heatmap displays blue if there are few culled instances, through to red 
if there are many culled instances. If you enable this setting, culling might be slower.

Instancing 
A field full of grass will be used to illustrate the concept of instancing. It’s far from 
photorealistic but sufficient to illustrate the techniques involved. You’ll find the example in the 
Scenes > Instancing folder.

Note: Thanks go to the author of the article, “Making Grass in Unity with GPU Instancing,” for 
the assets.

A field of grass rendered using an SRP Batcher-compatible material

To start, you need a single blade of grass and just two triangles, to keep things simple. The 
UV is set so the base of each grass blade has a V value of 0 and the tip a V value of 1. You can 
use this to offset the tip vertex to simulate wind. 

Grass blade model and UV

https://unity.com/releases/lts
https://www.google.com/url?q=https://docs.unity3d.com/6000.0/Documentation/Manual/GPUInstancing.html&sa=D&source=docs&ust=1732790230224144&usg=AOvVaw3160DtiCnehcU3JiX-nbyw
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/


© 2025 Unity Technologies 24 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

SRP Batcher
Take a look at the Shader Graph subgraph in the folder Scenes > Instancing > Common 
> Grass Wave. The aim of this is to perturb the X value of the object’s vertex based on 
WindSpeed, WindShiftStrength, and WindStrength. To ensure that all the grass blades behave 
slightly differently, a Noise node is used in the subgraph called Perturb Grass. The vertex Y 
and Z positions are passed directly to the output, but the offset for the X value is processed 
using a Lerp node. 

The T input, which controls the interpolation, comes from the UV’s V value. At the base of the 
grass blade, this is 0, meaning the result of lerp will be the A input to the lerp, which is the 
modeled position. The tip of the blade V is 1, ensuring that the result of the lerp is the B input, 
the processed offset.

The Grass Wave subgraph

Now that you have a method of deforming each blade, it’s time to turn this into a complete 
shader that you can use as the material shader for each blade of grass. 

Take a look in the folder Scenes > Instancing > 1 - SRP Batcher > SRP Batcher Shader. This is 
a simple shader, just the Grass Wave subgraph controlling the Vertex > Position and a Sample 
Texture 2D acting as the base color input for the fragment shader. 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Simple-Noise-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Lerp-Node.html


© 2025 Unity Technologies 25 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

Now, let’s use the following code to populate a field of grass.

_startPosition = -_fieldSize / 2.0f;

_cellSize = new Vector2(_fieldSize.x / GrassDensity, _fieldSize.y / GrassDensity);

			 

var grassEntities = new Vector2[GrassDensity, GrassDensity];

var halfCellSize = _cellSize / 2.0f;

		

for (var i = 0; i < grassEntities.GetLength(0); i++) {

	 for (var j = 0; j < grassEntities.GetLength(1); j++) {

		  grassEntities[i, j] =

			   new Vector2(_cellSize.x * i + _startPosition.x, 

                                _cellSize.y * j + _startPosition.y) + 

			   new Vector2( Random.Range(-halfCellSize.x, halfCellSize.x),

					     Random.Range(-halfCellSize.y, halfCellSize.y));

	 }

}

_abstractGrassDrawer.Init(grassEntities, _fieldSize);

Looking more closely at this code example you see:  

	—  _fieldSize is (40, 40).

	—  _startPosition is (-20, -20).

	— GrassDensity is set to 250 in the GitHub sample.

	— cellSize is (0.16, 0.16). 

	— Two loops are iterated through setting each element of the _grassEntities 2D array.

	— Base position for each blade is _startPosition plus the current cell; then a small 
random factor is introduced.

	— _abstractGrassDrawer is a base class for two versions of using the grass-
populating code. 

	— For the initial version, ignore GPU Instancing and see how well SRP batcher 
handles the problem by opening and running the scene Scenes > Instancing > 1 - 
SRP Batcher > 1 - SRP.

	— First, you need to populate the scene with the grass blade model Prefab, at 
each position in the grassEntities 2D Array. The code is in the file Scenes > 
Instancing > Scripts > GameObjectGrassDrawer.cs. 

https://unity.com/releases/lts


© 2025 Unity Technologies 26 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

Here, you iterate over the grassEntities array using Instantiate to create a new 
GameObject from the assigned prefab. It works but dramatically impacts the frame rate for 
the scene. You can see from the image of the grass field on page 29 that the frame rate is a 
sluggish 29 fps for 62,500 blades, running on a 2022 MacBook Air with the following specs:

	— Built-in Retina Display

	— Processor: Apple M2 2022

	— Memory: 8 GB 

How can you optimize the scene?  

public override void Init(Vector2[,] grassEntities, Vector2 fieldSize) {

	 _grassEntities = new GameObject[grassEntities.GetLength(0),

				         grassEntities.GetLength(1)];

	 for (var i = 0; i < grassEntities.GetLength(0); i++) {

		  for (var j = 0; j < grassEntities.GetLength(1); j++) {

			   _grassEntities[i, j] = 

				    Instantiate(_grassPrefab,

					          new Vector3(

						          grassEntities[i, j].x, 

						          0.0f, 

						          grassEntities[i, j].y),

					          Quaternion.identity);

		  }

	 }

}

Note: For a non-square terrain, you could create a draw tool saving each blade position in 
a list. For example, this blog post by game developer Bronson Zgeb explains how to build a 
tool to streamline placing objects in the scene every time you click in it.

GPU Instancing

One optimization technique is to enable GPU instancing. Look at Scenes > Instancing > 
2 - GPU Instancing > 2 - GPU Instancing from the GitHub samples for an example of this 
technique. 

A material setting called Enable GPU Instancing instructs the renderer to batch any models 
that use the same material, thereby reducing the number of draw calls. The setting is available 
in the Advanced Options panel. 

The SRP Batcher and GPU Instancing are mutually exclusive. When using URP, if a material 
is compatible with the SRP Batcher, then SRP Batcher will be used, even if Enable GPU 
Instancing is selected. A shader created with Shader Graph is compatible with SRP Batcher 

https://unity.com/releases/lts
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html


© 2025 Unity Technologies 27 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

Save the shader in Assets. 

Scripts assigned to the Ground GameObject in the GPU Instancing scene

by default. To disable SRP Batcher compatibility, select the Shader Graph that will create the 
HLSL shader, and click on View Generated Shader in the Inspector. 

Generating an HLSL shader from Shader Graph 

The shader will be created, placed in the Temp folder, and opened in your chosen text or code 
editor. Change the Shader name to: Shader “Custom/GPU Instancing Shader”

Then search for CBUFFER, and comment out the CBUFFER macros:

// Graph Properties

//CBUFFER_START(UnityPerMaterial)

            float4 _MainTexture_TexelSize;

            half _WindShiftStrength;

            half _WindSpeed;

            half _WindStrength;

//CBUFFER_END

https://unity.com/releases/lts


© 2025 Unity Technologies 28 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

Notice the GPU Instancing scene uses the same version of Abstract Grass Drawer as the SRP 
Batcher scene. The only difference is the GameObjectGrassDrawer version in GPU Instancing 
is assigned a different prefab with a material that uses the GPU Instancing shader. 

GPU Instancing Shader is not compatible with SRP Batcher

If you check the GPU Instancing shader in the Inspector, you can see it’s not compatible with 
SRP Batcher. 

Any change to the graph that you used to generate the code will necessitate repeating the 
customization steps:

1.	 View Generated Shader or Regenerate.

2.	 Edit the Shader name.

3.	 Comment out the CBUFFER macros.

4.	 Save to Assets.

However, after all this work, the testing shows only a marginal improvement over SRP Batcher, 
probably due to being CPU bound. There has to be a better way. 

RenderMeshPrimitives
The Unity Graphics API has a number of methods for directly rendering a mesh by 
bypassing the need for a GameObject. The method used here is RenderMeshPrimitives, 
a feature introduced in Unity LTS 2021. Prior to that, you would have needed to use 
DrawMeshInstancedProcedural, which is now marked as obsolete. 

With RenderMeshPrimitives, you should use a material that sources the individual mesh 
position using a ComputeBuffer. You can see it in action by viewing the scene Scenes > 
Instancing > 3 - RenderMeshPrimitives > 3 - RenderMeshPrimitives. 

The Instancing scenes in the Project window

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.RenderMeshPrimitives.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.DrawMeshInstancedProcedural.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.DrawMeshInstancedProcedural.html


© 2025 Unity Technologies 29 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

As you can see from the image of the grass field below, the improvement in frame rate 
is nothing short of remarkable – 377 fps. The scenes created with SRP Batcher and GPU 
Instancing were running at around 20 and 50 fps respectively. 

The difference in this case is that the grass field is rendered using a single draw call. 

Frame Debugger stats for the grass field

The grass field is rendered using RenderMeshPrimitives.

You achieve this by making the positions of each blade a Material property. The data to render 
the blades resides on the GPU, which uses its parallelism to render the entire field at an 
optimal speed. 

Let’s review the code to generate the positions. You’ll find it in the UpdatePositions 
method in the file Scenes > Instancing > Scripts > InstancedGrassDrawer.cs.

https://unity.com/releases/lts


© 2025 Unity Technologies 30 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

_positions holds a Vector2 List of grass positions. If _positionsBuffer exists, then 
you release it. If you’re unfamiliar with a “?” following a variable, it’s a null check, meaning it’s 
shorthand for:

if (positionsBuffer != null) _positionsBuffer.Release()

You create a ComputeBuffer that takes a count parameter and the byte size of each item. A 
Vector2 contains two floats. A single float is 32 bits or 4 bytes, making two floats 8 bytes. It’s 
simple to populate a ComputeBuffer by using SetData passing the _positions List. Now 
you can use the SetBuffer method to copy this to the material. You’ll access this buffer in 
the material using the name positionsBuffer.

Take a look at the graph in Scenes > Instancing > 3 - RenderMeshPrimitives > Instanced 
Grass Shader.

Getting the vertex position from a ComputeBuffer

_positionsCount = _positions.Count;

_positionBuffer?.Release();

if (_positionsCount == 0) return;

_positionBuffer = new ComputeBuffer(_positionsCount, 8);

_positionBuffer.SetData(_positions);

_instanceMaterial.SetBuffer(Shader.PropertyToID("PositionsBuffer"), _positionBuffer);

https://unity.com/releases/lts


© 2025 Unity Technologies 31 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

Starting at the bottom, you can see the Space parameter for Grass Mesh vertex position is 
set to World. But there’s an important code block that needs adding whenever you use this 
technique: A #pragma is required by any meshes rendered using RenderMeshPrimitive. This is 
done using a custom function. Instead of sourcing the function from a file, you add a string:

#pragma instancing_options procedural:ConfigureProcedural

Out = In;

The code method now used by this shader to generate positional values will come from a 
function with the name ConfigureProcedural. Other than that, this Custom Function 
node simply passes its input, In, to its output, Out.

The heavy lifting is done in the Custom Function called ShaderGraphFunction, which is 
found in the file InstancedPosition, in the same folder as the scene file.   

#if defined(UNITY_PROCEDURAL_INSTANCING_ENABLED)

StructuredBuffer<float2> PositionsBuffer;

#endif

float2 position;

void ConfigureProcedural () {

	 #if defined(UNITY_PROCEDURAL_INSTANCING_ENABLED)

	 position = PositionsBuffer[unity_InstanceID];

	 #endif

}

void ShaderGraphFunction_float (out float2 PositionOut) {

	 PositionOut = position;

} 

The position is set using the ConfigureProcedural method and passed to the output 
using the ShaderGraphFunction for which the script has float and half versions. 

At this point in the graph, the individual blade location is a float2 with the first float being 
the X value and the second the Z. A Split node is used to convert this into the individual floats, 
and a Combine node to move the second float to the third. The Split and Combine nodes call 
the individual floats RGBA not XYZW, but by moving G to B, you’re effectively moving Y to Z. 
The blade and vertex positions are now established, and you can combine these to get the 
actual world position of the vertex. 

With this shader ready, you now use it with a material that has the inputs WindSpeed, 
WindStrength, WindShiftStrength, and MainTexture, the same as those used by the SRP 
Batcher and GPU Instancing versions. The only difference is in how the position of each vertex 
is calculated. Refer back to the script InstancedGrassDrawer.cs to see how to render 
the grass blades. The variables in the script are initialized in the Init method called by the 
Awake method of the GrassField.cs script. 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Split-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Combine-Node.html


© 2025 Unity Technologies 32 of 151 | unity.com

| Stencils | Instancing | Toon and outline shading |

public override void Init(Vector2[,] grassEntities, Vector2 fieldSize) {

	 _grassEntities = grassEntities;

	 _grassBounds = new Bounds(transform.position, 

                        new Vector3(fieldSize.x, 0.0f, fieldSize.y));

	 _positions = new List<Vector2>();

	 _renderParams = new RenderParams(_instanceMaterial);

	 _renderParams.worldBounds = _grassBounds;

	 _renderParams.shadowCastingMode = ShadowCastingMode.Off;

}

To use Graphics.RenderMeshPrimitives, you need a RenderParams instance. This 
is created from the assigned Material, _instanceMaterial. Two other properties are additionally 
assigned.  

The actual rendering is done using the Update callback:

private void Update() {

	 if (_positionsCount == 0) return;

	 Graphics.RenderMeshPrimitives(_renderParams, _instanceMesh, 0, 
_positionsCount);

}

RenderMeshPrimitives takes four parameters, a RenderParams instance, the mesh to render, 
a submesh index, and a count value identifying how many copies to render. When using the 
shader, each copy will have a unique unity_InstanceID, which will have the value 0 to count -1. 

Rendering using a ComputeBuffer is a fast and fairly simple setup. By manipulating the  
_positionBuffer, you could mow the grass or blow it away. To avoid passing data 
between the CPU and the GPU, this is best handled with a ComputeShader. You’ll find more 
information about performance boosts with compute shaders in a later recipe. 

More resources

	— The assets for this recipe

	— Example project using DrawMeshInstancedIndirect

	— GPU Instancing documentation

	— GPU Instancing article from CatLikeCoding

	— Using ComputeBuffers for instancing

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeBuffer.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeShader.html
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://github.com/ColinLeung-NiloCat/UnityURP-MobileDrawMeshInstancedIndirectExample
https://github.com/ColinLeung-NiloCat/UnityURP-MobileDrawMeshInstancedIndirectExample
https://github.com/ColinLeung-NiloCat/UnityURP-MobileDrawMeshInstancedIndirectExample
https://docs.unity3d.com/Manual/GPUInstancing.html
https://catlikecoding.com/unity/tutorials/rendering/part-19/Rendering-19.pdf
https://catlikecoding.com/unity/tutorials/rendering/part-19/Rendering-19.pdf
https://www.udemy.com/course/compute-shaders/learn/lecture/22732855/?instructorPreviewMode=student_v4#overview


© 2025 Unity Technologies 33 of 151 | unity.com

Toon and 
outline shading

The third-person action-shooter and Made with Unity game Rollerdrome, by Roll7, has a distinctive art direction that makes the game look like 
a comic book, achieved with cel shading techniques. Don’t miss this interview with the creators.

https://unity.com/releases/lts
https://www.roll7.co.uk/rollerdrome
https://www.youtube.com/watch?v=G1NY0LKDqJo
https://www.youtube.com/watch?v=G1NY0LKDqJo


© 2025 Unity Technologies 34 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

This recipe is based on common ways of creating a toon shader and an outline shader. 

One scene, three different looks: Standard shading (left), simple toon shading (center), and toon shading (right)

Often used together, toon and outline 
shaders present two distinct challenges. 
The toon shader takes the color 
that would be created using a URP-
compatible Lit shader, and ramps the 
output rather than allowing continuous 
gradients, thereby requiring a custom 
lighting model. 

The scene with the simple ramped toon shader

https://unity.com/releases/lts


© 2025 Unity Technologies 35 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

Simple toon shading
To see what the shader looks like, go to Scenes > Toon Shading > Simple Toon Shading. We’ll 
split the challenge into two different shaders, with the first shader being the main color choice 
for each pixel in the model. 

Shading

The simplest possible lighting model uses Lambert lighting. This lighting model simply takes 
the dot product of the light direction and the world space normal at this point. The image 
below shows the shader graph for this shader. 

The Simple Toon Shading Shader Graph

Starting on the left is a Normal Vector node and a Main Light Direction node. These two 
vectors are put into a Dot Product node. The output from this will be 1 when the two vectors 
are inline and -1 when the two vectors are in opposite directions. For lighting you want the 
maximum when the two vectors are in opposite directions. 

The Lambert Lighting model

https://unity.com/releases/lts
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Normal-Vector-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Normal-Vector-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Normal-Vector-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Main-Light-Direction-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Main-Light-Direction-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Main-Light-Direction-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Main-Light-Direction-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Main-Light-Direction-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Dot-Product-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Dot-Product-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Dot-Product-Node.html


© 2025 Unity Technologies 36 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

A Remap node is used here. This useful node can convert an input value from a range to a new 
value based on another range. The In Min Max is set to -1, 1 and the Out Min Max is set to 1, 
0. Now if the In value is -1, the Out will be 1 and if the In value is 1 the Out value is 0. 

The graph has two properties: Texture and Shades. Shades is an integer value defining 
how many ramped steps are allowed in the range 0 to 1. You need a mechanic that will step 
the value rather than give a continuous interpolation. First, use a Divide node to divide 1 by the 
Shades property. If Shades is 4 then at this point the output of the Divide node will be 0.25. 
Then, use a second Divide node, dividing the output of the Remap node by the output from the 
Shades Divide node. The effect is to change the range from [0, 1] to [0, Shades]. Use a Round 
node to convert the value to an integer value. At this point the value can only be 0, 1, …, Shades.

Outlining 

The simplest technique for adding outlines is to add a second pass that only renders back-
facing polygons and uses a vertex shader that moves the vertex a small amount along the 
vertex normal. This shader is included in the GitHub samples via Scenes > Toon Shading  > 
VertexOutline; its graph is shown here: 

An outline shader using a back-facing vertex shift technique

The Normal Vector node, with Space set to Object, is fed into a Multiply node. This is 
multiplied by the Thickness value for the material. The output from this is added to the Object 
Position, moving the vertex position slightly out from the object modeled location. This is 
the input to the Vertex Position property. The shader property Universal > Render Face is 
set to Back using the panel in Graph Inspector > Graph Settings. A shader graph allows a 
single pass only so to add this to the render you need to add a second material using the 
GameObject Inspector.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Remap-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Divide-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Round-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Round-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Multiply-Node.html


© 2025 Unity Technologies 37 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

Adding a second material

The scene in Scenes > Toon Shading > Simple Toon Shading shows the second material 
being used. View the material VertexOutline in the same folder, in the Inspector, and set 
Thickness to 0.02.  

Using this technique is effective for simple convex shapes. But as shapes become 
more complex it does not create a consistent equal thickness line, as the image below 
demonstrates. Let’s look at an alternative approach.

Outlining using an expanded back facing model: simple sphere (left), complex model (right)

Toon shading
To see what the alternative shader looks like, go to Scenes > Toon Shading > Toon Shading. 
As before, the shading task is split into two different shaders: Shading and outlining. The first 
step is to set the main color choice for each pixel in the model. 

Shading

The only Shader Graph node for the Main Light is the Main Light Direction node. 

Note: In URP the Main Light is the Direction Light with the greatest intensity.

https://unity.com/releases/lts


© 2025 Unity Technologies 38 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

The Main Light Direction node was used in the simple toon shading recipe. To improve the 
simple version you can incorporate light color and shadows. Let’s start by accessing the Main 
Light using a custom function, which you’ll find in the file Shaders > HLSL > Custom Lighting.
hlsl.

void MainLight_float(float3 WorldPos, out float3 Direction, out float3 Color, out 
float DistanceAtten, out float ShadowAtten)
{
#ifdef SHADERGRAPH_PREVIEW
    Direction = float3(0.5, 0.5, 0);
    Color = 1;
    DistanceAtten = 1;
    ShadowAtten = 1;
#else
	 float4 shadowCoord = TransformWorldToShadowCoord(WorldPos);

    Light mainLight = GetMainLight(shadowCoord);
    Direction = mainLight.direction;
    Color = mainLight.color;
    DistanceAtten = mainLight.distanceAttenuation;

	 #if !defined(_MAIN_LIGHT_SHADOWS) || defined(_RECEIVE_SHADOWS_OFF)
		  ShadowAtten = 1.0h;

	 #else
        ShadowSamplingData shadowSamplingData = GetMainLightShadowSamplingData();
        float shadowStrength = GetMainLightShadowStrength();
        ShadowAtten = SampleShadowmap(shadowCoord,  
        TEXTURE2D_ARGS(_MainLightShadowmapTexture,
        sampler_MainLightShadowmapTexture),
        shadowSamplingData, shadowStrength, false);
    #endif
#endif

}

It’s good practice to add a block of code inside a #ifdef SHADERGRAPH_PREVIEW 
preprocessor directive that defines the behavior while creating the Shader Graph Asset. This 
specifies the values to default to in the graph preview window. 

The WorldPos is converted into a shadow coordinate using the function 
TransformWorldToShadowCoord. The functions used in this code come from the 
Universal Render Pipeline package and are available to custom functions in Shader Graph. 
When the function GetMainLight is used with a float4, the ShadowAttenuation property of 
the returned light is set. This is needed in the graph that uses this custom function. 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Create-Shader-Graph.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Create-Shader-Graph.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Create-Shader-Graph.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Create-Shader-Graph.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Create-Shader-Graph.html
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl


© 2025 Unity Technologies 39 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

This code is used in the Main Light subgraph (see image below), which you’ll find in the folder 
Shaders > Subgraphs. Let’s review it.

Main Light subgraph

The Custom Function node takes a Position node set to Absolute World as its only input. The 
function returns Direction, Color, DistanceAtten (which remains unused), and ShadowAtten. To 
allow for self shadowing, you’ll need to get the dot product of the light direction and the World 
normal, and clamp this between 0 and 1. You don’t want negative values. 	

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Custom-Function-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Position-Node.html


© 2025 Unity Technologies 40 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

Now that you have a way of accessing the Main Light, you can use it to create a simple toon 
shader. Take a look at Scenes > Toon Shading  > Toon Shading to see the graph (also in image 
below). 

Simple Toon graph

The first node is the Main Light subgraph. The ShadowAttenuation and SelfShadowing outputs 
are multiplied together. The trick is to pass this output into a Sample Gradient node that works 
with a ramped gradient, so light levels are not smooth, but instead jump in stages based on 
the gradient. 

Taking a smoothly changing input and processing it with a gradient is another useful technique 
for a number of shading challenges. The rest of the graph combines light color with the 
ramped level, then combines this with the sampled texture to generate the color to use for the 
base color. 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Gradient-Node.html?q=sample gradient
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Gradient-Node.html?q=sample gradient
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Gradient-Node.html?q=sample gradient


© 2025 Unity Technologies 41 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

Outlining 

A more sophisticated technique for outlining uses 
Sobel Filter edge detection. You can use a post-
processing technique for this. Imagine the current 
pixel being analyzed is the orange square in the image 
to the right. You want to check how a buffer for the 
orange pixel differs from the gray squares. The buffers 
to check are the Color G-buffer and the Normal 
G-buffer. If the variation meets a property intensity 
then you can consider the orange pixel to be on an 
edge boundary and update its color to an Outline 
Color property. 

Sobel Filtering

To handle this you can create a Shader 
Graph using Create > Shader Graph 
> URP > Full Screen Shader Graph. 
Or you can change the behavior of 
an existing Shader Graph using the 
Graph Inspector which is accessed by 
clicking on the icon in the top right of 
the Shader Graph window (the “i” in a 
circle icon). 

The Material property drop-down in the Shader Graph Inspector

Take a look at Scenes > Toon Shading > Outline to see the Shader Graph. Let’s look first at 
the Detect edges based on the world space normals section of the graph, starting on the left. 

1.	 The first node is a Screen node, which gives the rendered image size in pixels. You can 
convert this into a Vector2. 

2.	 Then you divide the Outline Thickness property by this vector using a Divide node. Now 
you have a value you can use as an offset value. 

3.	 You use a Split node to access the x and y values of the offset value; the Split node 
provides RGBA outputs wherein r=x and g=y. 

4.	 Create two Vector2s, one to give an offset in the x and the other in the y. The x offset 
has y=0 and the y offset has x=0. Now you can use Add and Subtract nodes to add and 
subtract the offset from the current Screen Position. 

5.	 At this point you have four positions in screen space: [0,0] at the bottom left and [1,1] top 
right. Use four URP Sample Buffer nodes to get the world normal at this position. 

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Vector-2-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Vector-2-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Split-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Add-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Subtract-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html


© 2025 Unity Technologies 42 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

6.	 Subtract the normal at the left from the normal at the right and get the Length of this new 
vector, and then subtract the lower normal from the upper normal to get the Length of 
the vector. 

7.	 You now have a scalar value of the difference between the pixel to the left of the current 
screen pixel and the pixel to the right and between the pixel below and the one above. 

8.	 Use an Add node to sum these values to give a total difference as a scalar value for the 
four pixels being analyzed. To complete the analysis use a Step node, returning 1 if the 
value is over the Normal Threshold property. 

Detecting edges based on world-space normals.

9.	 You do more or less the same thing for the color buffer, except you’ll access the Blit 
Source, not Normal World Space, and use Color Threshold rather than Normal Threshold. 

For the Color edge detection, the sample Source Buffer is set to Blit Source.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Length-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Step-Node.html


© 2025 Unity Technologies 43 of 151 | unity.com

| Instancing | Toon and outline shading | Ambient occlusion | 

10.	 After step 9 there should be two outputs that are either 0 or 1. The remainder of the 
graph is shown below. The lines appearing from the left are from the output of the normal 
edge detection (upper) and color edge detection (lower). Use an Add node to add these 
values and now you should have a value that can be 0, 1, or 2. 

11.	 Use a Saturate node to clamp this value between 0 and 1. 

12.	 Then use a Lerp node to interpolate between the existing pixel, supplied by a URP 
Sample Buffer node and the Outline Color property. There is an option to use an Overlay. 
If this is set to On then the output is the composite of the existing Blit Source and the 
Outline Color property. If Overlay is set to Off then just the Outline Color or black is 
passed. The final output goes to the Fragment Base Color input.

The final nodes of the Outline shader

This recipe provides the key techniques for toon shading. 

More resources  

	— Unity Open Project GitHub (most of the code from this chapter is from the Open Project)

	— Unity Open Project on YouTube

	— YouTube tutorials from Ned Makes Games (includes a short series on toon shading)

	— YouTube tutorial about using Unity’s SobelFilter.shader from AE Tuts (a channel that 
focuses on Shader Graph tutorials)

	— Edge detection using a Sobel filter by Alexander Ameye

	— Daniel Ilett’s Cel Shading series and Fullscreen outline shader tutorial 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Saturate-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Lerp-Node.html
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://www.youtube.com/watch?v=O4N4s6BKNH0
https://www.youtube.com/watch?v=RC91uxRTId8
https://www.youtube.com/watch?v=RC91uxRTId8
https://www.youtube.com/watch?v=RC91uxRTId8
https://www.youtube.com/watch?v=xgZ0NpaMByU
https://www.youtube.com/watch?v=xgZ0NpaMByU
https://www.youtube.com/watch?v=xgZ0NpaMByU
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://alexanderameye.github.io/notes/edge-detection-outlines/
https://danielilett.com/2019-05-29-tut2-intro/
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY
https://www.youtube.com/watch?v=VGEz8oKyMpY


© 2025 Unity Technologies 44 of 151 | unity.com

Ambient occlusion

The racing game, Circuit Superstars by Original Fire Games, is a game made with Unity that uses URP features like Scree Space Ambient 
Occlusion (SSAO), to ground the cars and models in the environment and add depth to the visuals. 

https://unity.com/releases/lts
https://www.circuit-superstars.com/
https://www.circuit-superstars.com/
https://www.circuit-superstars.com/


© 2025 Unity Technologies 45 of 151 | unity.com

| Toon and outline shading | Ambient occlusion | Decals | 

Ambient Occlusion

Ambient occlusion is a post-processing technique that darkens creases, holes, intersections, 
and surfaces that are close to one another. In the real world, such areas tend to block out or 
occlude ambient light, thereby appearing darker. In the image above, the left side is rendered 
without ambient occlusion and on the right, rendered with it. Notice how the edges around the 
steps are darkened.

URP implements the real-time Screen Space Ambient Occlusion (SSAO) effect as a Renderer 
Feature. The pass code it uses can be viewed here.

Note: The SSAO effect is a Renderer Feature and works independently from the post-
processing effects in URP. This effect does not depend on or interact with Volumes.

To see it in action, open Scenes > Ambient Occlusion > Ambient Occlusion. This scene is a 
low-polygon city environment available as a free asset on the Unity Asset Store. 

The scene uses the URP Asset named Ambient_Occlusion_URP_Settings. This is loaded 
automatically when you open the scene via the AutoLoadPipelineAsset script attached to 
Scene > Main Camera. The URP Asset uses the Ambient_Occlusion_URP_Settings_Renderer.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-ssao.html
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/Runtime/Passes/ScreenSpaceAmbientOcclusionPass.cs
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook


© 2025 Unity Technologies 46 of 151 | unity.com

| Toon and outline shading | Ambient occlusion | Decals | 

To add SSAO to your scene, view the Universal Renderer Data asset in the Inspector, and click 
on Add Renderer Feature. In the options drop-down menu, select Screen Space Ambient 
Occlusion.

Adding a SSAO Renderer Feature

SSAO properties
Once you add a SSAO Renderer Feature, you can control the result via the Inspector. Let’s look 
at the available properties. 

SSAO options

	— Method: Choose between Interleaved Gradient and Blue Noise

	— Intensity: This controls the strength of the darkening.

	— Radius: This controls how many samples of the normal texture are taken around the 
current pixel. Larger values have a significant impact on performance, so keep them as 
low as possible. The radius value is scaled based on the distance from the camera to the 
object that is being rendered at the target pixel.

	— Falloff Distance: This controls the scene distance where ambient occlusion does not 
apply.

https://unity.com/releases/lts


© 2025 Unity Technologies 47 of 151 | unity.com

| Toon and outline shading | Ambient occlusion | Decals | 

	— Direct Lighting Strength: This property is dependent on the After Opaque option being 
disabled since it relies on being handled when lighting calculations are being done. It 
affects the strength of ambient occlusion where direct light hits.

	— Quality > Source: This option selects the source of the normal vector values. The SSAO 
Renderer Feature uses normal vectors for calculating how exposed each point on a 
surface is to ambient lighting. Available choices for Source:

	— Depth Normals: SSAO uses the normal texture generated by the DepthNormals 
pass. This option lets Unity make use of a more accurate normal texture.

	— Depth: SSAO reconstructs the normal vectors using the depth texture instead. Use 
this option only if you want to avoid using the DepthNormals pass block in your 
custom shaders. Selecting this option enables the Normal Quality property.

When switching between these two options, there might be a variation in performance, 
which depends on the target platform and the application. In a wide range of 
applications the difference in performance is small. In most cases, Depth Normals 
produces a better visual look.

	— Quality > Source > Normal Quality: This is active when the Source property is set to 
Depth.

	— The options in this property (Low, Medium, High) determine the number of 
samples of the depth texture that Unity takes when reconstructing the normal 
vector from the depth texture. The number of samples per quality level are: 

	— Low: 1

	— Medium: 5

	— High: 9

The performance impact is regarded as medium. 

	— Quality > Downsample: Selecting this halves the resolution of the processing in both 
the X and Y directions. Since this effectively reduces the number of pixels to process by 
75%, it also reduces GPU load significantly but results in an effect with fewer details. 

	— Quality > After Opaque: This option affects the look of the final render, but it comes with 
performance implications: 

	— If disabled: SSAO has a Depth or Depth Normals prepass (see the Source option 
below). The SSAO is then calculated after them and applied in the DrawOpaques 
pass when doing the lighting calculations. It gives a better-looking Ambient 
Occlusion, and the user can control the Direct Lighting Strength value for SSAO, 
but it has a negative impact on performance. 

	— If enabled: SSAO requires a Depth Normals if After Opaque is selected. If Depth 
is selected, then it either gets the depth from Depth prepass, if that was made, or 
a CopyDepth pass done after rendering opaques. The SSAO is then added on top 

https://unity.com/releases/lts


© 2025 Unity Technologies 48 of 151 | unity.com

| Toon and outline shading | Ambient occlusion | Decals | 

of everything after the DrawOpaques pass, instead of being part of the lighting 
calculations. The benefit here is that a prepass can be skipped, which can help 
performance.

Note: You want to also be able to render Depth + Normals in the Render Opaque pass so 
you can fully skip any prepass with that option enabled to save performance.

	— Quality > Blur Quality: This can be set to High, Medium, or Low. On devices with limited 
resources use the lowest setting that gives satisfactory results.

	— Quality > Samples: For each pixel, the SSAO Renderer Feature takes the number of 
samples within the specified radius to calculate the ambient occlusion value. Increasing 
this from low to medium to high makes the effect smoother and more detailed, but 
reduces the performance. 

Two variations of Direct Lighting Strength: 0.2 (left) and 0.9 (right); note the darker lines in between each step on the image of the right

SSAO is a great example of the flexibility of URP. The number of problems that can be 
addressed using Renderer Features is limited only by your imagination.

More resources 

	— YouTube tutorial from UGuruz

	— Ambient occlusion documentation

	— Assets used in recipe (thanks to Marcelo Barrio)

https://unity.com/releases/lts
https://www.youtube.com/watch?v=pgM4pKG1aGE
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/post-processing-ssao.html
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/publishers/38782?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/publishers/38782?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/publishers/38782?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook


© 2025 Unity Technologies 49 of 151 | unity.com

Decals

One of many use cases for decals is to project a blob shadow onto a 3D surface, like the character Milo from the game Tinykin, made with 
Unity by Splashteam. 

https://unity.com/releases/lts
https://www.tinykingame.com/


© 2025 Unity Technologies 50 of 151 | unity.com

| Ambient occlusion | Decals | Water | 

Decals are a great way to add overlays to a surface. They are often used to add visuals such 
as bullet holes or tire treads to the game environment as the player interacts with the scene. 
As you can see from the steps in the following image, the decal wraps around a mesh. You’ll 
find the scene file and assets for this recipe in the folder Scenes > Decals.

Decals added to a simple scene

Decals are rendered in a scene using a Renderer Feature. If you look at Decals_URP_Settings_
Renderer from the recipe folder you’ll see that the Decals Renderer Feature is added. As usual, 
the AutoLoadPipelineAsset.cs script attached to the Main Camera ensures the correct 
pipeline asset is used when you load the scene. To add decals to your custom scene, select 
the Universal Renderer Data asset currently being used by the Player for rendering, and in the 
Inspector, choose Decal from the Add Renderer Feature drop-down.

The Decal option in the Add Renderer drop-down

https://unity.com/releases/lts


© 2025 Unity Technologies 51 of 151 | unity.com

| Ambient occlusion | Decals | Water | 

To add a decal to a scene when working in the Editor, right-click the Hierarchy window, and 
select Rendering > URP Decal Projector.  

Creating a URP Decal Projector

Position and orient a URP Decal Projector in the Editor as you usually would. A Decal Projector 
uses orthographic projection, so the size of a decal cast on a surface is unaffected by the 
distance of the projector from the surface. Initially, a new Decal Projector will display as a 
white block. In addition to the axis arrows, you’ll see a white arrow indicating the direction of 
projection. 

A new Decal Projector

URP Decal Projection properties
	— Scale Mode: By default, the URP Decal Projection component has Scale Mode set to 

Scale Invariant. That means the size of the decal is determined solely by the Width and 
Height properties. Switching to Inherit from Hierarchy will combine the GameObject’s 
Transform Scale with the Width and Height properties. 

https://unity.com/releases/lts


© 2025 Unity Technologies 52 of 151 | unity.com

| Ambient occlusion | Decals | Water | 

	— Width and Height: Properties that control the size of the decal

	— Projection Depth: Sets the depth of the projector bounding box; the projector projects 
decals along the local Z axis

	— Pivot: Sets the offset position of the center of the projector bounding box, relative to the 
origin of the root GameObject

	— Material: Sets the Material to project; the Material must use the shader Shader Graph/
Decal (more details about this shortly)

	— Tiling and Offset: The tiling and offset values for the Decal Material along its UV axes

	— Opacity: Lets you specify the opacity value; a value of 0 makes the decal fully 
transparent, a value of 1 makes the decal as opaque, as defined by the Material

	— Draw Distance: Distance from the Camera to the decal at which this projector stops 
projecting the decal and URP no longer renders it

	— Start Fade: Sets the distance (via a slider) from the Camera at which the projector 
begins to fade out the decal; values from 0 to 1 represent a fraction of the Draw 
Distance; with a value of 0.9, Unity starts fading the decal out at 90% of the Draw 
Distance and finishes fading it out at the Draw Distance

	— Angle Fade: Sets the fade out range of the decal based on the angle between the 
decal’s backward direction and the vertex normal of the receiving surface

Creating the material

A Decal Projector must use a material that uses the shader Shader Graph/Decal. This example 
uses the material called DecalMat found in the Scene folder. There is a base map assigned but 
no normal map; this is useful if you want the appearance of a lumpy surface for the decal. 

The material is assigned to the Projector in the Inspector. 

Assigning the URP Decal Projector Material

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/decal-shader-graph-reference.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/decal-shader-graph-reference.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/decal-shader-graph-reference.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/decal-shader-graph-reference.html
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/decal-shader-graph-reference.html


© 2025 Unity Technologies 53 of 151 | unity.com

| Ambient occlusion | Decals | Water | 

Adding a decal with code
Although you can add a URP Decal Projector to your scene while developing in the Editor, it’s 
more common to add them as a result of user interaction at runtime. You can create a prefab 
to establish the Material, Width, and Height properties, although you can easily update this at 
runtime in code. This code example focuses on instantiation, positioning, and orientation only. 
The complete code to add a decal as a result of a mouse press on a Collider can be found in 
the AddDecal.cs script in the recipe folder.

void AddDecalProjector(Vector3 pos, Vector3 normal)

{

    GameObject decalProjectorObject = Instantiate(decalProjectorPrefab);

    // Creates a new material instance for the DecalProjector 

    //if you want individual Decal control over the material

    //DecalProjector decalProjectorComponent = decalProjectorObject.
GetComponent<DecalProjector>();

    //decalProjectorComponent.material = new Material(decalProjectorComponent.material);

    //Move away from surface

    pos += normal * 0.5f;

    Quaternion up = Quaternion.AngleAxis(Random.Range(0, 360), Vector3.left);

    Quaternion rot = Quaternion.LookRotation(-normal, up.eulerAngles);

    decalProjectorObject.transform.SetPositionAndRotation(pos, rot);

}

This function is called when there is a RaycastHit after a mouse-down event over a Collider. 
pos is the hit.point and normal the hit.normal. The prefab called decalProjectorObject is 
instantiated. To get the position, you need to move the pos Vector3 away from the surface 
without exceeding the Projection Depth. This is achieved by moving the point along the 
normal. To orientate the decal, you first create a randomized up vector. To get the necessary 
rotation to align the decal to the surface and rotate a random amount around the normal, use 
the parameters inverse normal and the randomized up vector. 

https://unity.com/releases/lts
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/Decals/AddDecal.cs
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/Decals/AddDecal.cs
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/Decals/AddDecal.cs


© 2025 Unity Technologies 54 of 151 | unity.com

| Ambient occlusion | Decals | Water | 

Decals have many uses in games, and the URP Decal Projector is a great tool in your toolbox. 

A decal in the Scene view

More resources 

	— Decal Renderer documentation

	— YouTube tutorial by Llam Academy

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/renderer-feature-decal.html
https://www.youtube.com/watch?v=5p8cKIu3P_8


© 2025 Unity Technologies 55 of 151 | unity.com

Water

Water and aquatic vegetation are two important visual elements for creating beautiful open environments in video games. This image is from 
the survival game Len’s island, made with Unity by Flowstudio.

https://unity.com/releases/lts
https://www.lensisland.com
https://www.lensisland.com
https://www.lensisland.com
https://www.lensisland.com
https://www.lensisland.com


© 2025 Unity Technologies 56 of 151 | unity.com

| Decals | Water | LUT for color grading | 

This recipe is for making a simple water shader. It’s created in Shader Graph to make the steps 
more accessible to artists and designers. 

The shader is built in three stages: 

	— Creating the water color

	— Moving tiled normal maps to add wavelets to the surface

	— Adding moving displacement to the vertex positions to create a swell effect  

A still from a video showing a simple water shader in motion.

To view the final result, open the Water scene in the folder Scenes > Water. The final shader 
uses two subgraphs, DepthFade and TextureMovement; it’s a good idea to look at them before 
you review the water shader. The Water scene uses the WaterURPSettings Asset, with the 
Depth Texture and Opaque Texture options enabled. Note that the Opaque Texture is only 
required if you add further effects not covered in this recipe, such as refraction.

Depth Texture and Opaque Texture selected in the WaterURPSettings asset

https://unity.com/releases/lts
https://youtu.be/qPE-nMPBylM


© 2025 Unity Technologies 57 of 151 | unity.com

| Decals | Water | LUT for color grading | 

DepthFade subgraph

The DepthFade subgraph

The shallow and deep parts of the water each require their own color. The final color of the 
water will be a blend of these two colors, based on a Depth property. Depth is the distance 
between the surface of the water and the geometry below it. Since the water shader is set 
as transparent, opaque geometry will already be rendered, and because Depth Texture is 
selected for the URP Settings Asset, the current depth can be read. 

A Scene Depth node with Sampling set to Eye mode gives the distance from the eye to the 
opaque geometry at the current pixel. The Screen Position node, with Raw selected as the 
mode of its output value, holds the information about rendering the current pixel of water. A 
Split node is used since you want the W component, which stores the distance from the eye to 
the current pixel of water. 

Subtracting the water distance from the distance of the existing opaque geometry gives a 
guide to the depth of the water, albeit a ray from the eye position, not a ray directly down. 
Next, a Divide node controls where the edge between shallow and deep appears. The output 
from this subgraph should be between 0 and 1, so you’ll use a Saturate node which acts as a 
specialized Clamp node by always restricting the output between 0 and 1.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Scene-Depth-Node.html?q=Scene Depth
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Scene-Depth-Node.html?q=Scene Depth
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Scene-Depth-Node.html?q=Scene Depth
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html?q=screen position raw
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html?q=screen position raw
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Screen-Position-Node.html?q=screen position raw
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Divide-Node.html?q=Divide node
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Saturate-Node.html?q=Saturate node
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Clamp-Node.html?q=Clamp


© 2025 Unity Technologies 58 of 151 | unity.com

| Decals | Water | LUT for color grading | 

TextureMovement subgraph

TextureMovement subgraph

The water shader has a number of moving textures that are handled using the 
TextureMovement subgraph. In this subgraph, a Time node is used as one input to a Multiply 
node. The input Speed is divided by 100 and forms the second input to the Multiply node. The 
output from the Multiply node acts as the Offset input to a Tiling and Offset node. The Scale 
property forms the Tiling input. Over time, this simple subgraph will update the UV used by a 
Sample Texture 2D node given a Speed and Scale input.

Water shader 
Now it’s time to create the water shader, based on a Lit Shader Graph, via URP > Lit Shader 
Graph.

Create > Shader Graph > URP > Lit Shader Graph

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Time-Node.html?q=Time node
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Multiply-Node.html?q=Multiply
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Texture-2D-Node.html?q=sample texture
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Texture-2D-Node.html?q=sample texture
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Texture-2D-Node.html?q=sample texture
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Texture-2D-Node.html?q=sample texture
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Sample-Texture-2D-Node.html?q=sample texture


© 2025 Unity Technologies 59 of 151 | unity.com

| Decals | Water | LUT for color grading | 

Next, you’ll use the Graph Inspector to set the Surface Type.

Setting the Surface Type

Edit the graph, starting with Color. 

Color

Color and Alpha

Color is handled by adding a DepthFade subgraph. The subgraph uses a float Depth property 
for control. If the output goes directly to the Base Color input of the Fragment shader, it results 
in the below image: shallow water is black and deeper water white. The higher the value of 
Depth, the more the black spreads. Black indicates 0 and white 1.

https://unity.com/releases/lts


© 2025 Unity Technologies 60 of 151 | unity.com

| Decals | Water | LUT for color grading | 

Plugging the output from DepthFade directly into Fragment > Base Color

Instead of linking the DepthFade directly to the Base Color input, it goes to a Lerp node. 
ShallowWaterColor is input A, replacing the black color, and DeepWaterColor is input B, 
replacing the white. When setting the alpha for these colors make sure the shallow water is 
more transparent. The Lerp output goes to Fragment > Base Color. For the Alpha, you’ll use 
a Split node, linking the A output with Fragment > Alpha. This produces the result seen in the 
following image.  

 Dense mesh and colored water

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Lerp-Node.html?q=Lerp


© 2025 Unity Technologies 61 of 151 | unity.com

| Decals | Water | LUT for color grading | 

The actual water is a plane, but to allow for vertex displacement, the mesh has many more 
vertices as the image shows.

This simple flat surface is a start but needs more work, namely, normal maps. 

Normal maps

Controlling the Fragment > Normal

Normal maps add moving wavelets to the surface. The first input property is Wave Speed, 
which is used as the Speed input to a TextureMovement subgraph. Scale is hard set to 50,50, 
and, via a second TextureMovement node, Speed is preprocessed by a Multiply node to be 
minus half the Wave Speed property. 

The next step in calculating the normal is to sample the Normal texture twice using the UV 
processed by the two TextureMovement subgraph nodes. Add the two normals together to 
get the combined effect of the two moving textures. The shader has a Normal Strength float 
property, which could be used as the Strength input to a Normal Strength node. But you want 
the wavelets to die back nearer to the edge. To control this, use the DepthFade subgraph 
node with the shader property Edge Distance controlling the spread. This is used as the T 
input to a Lerp node blending between 0 and Normal Strength. The output of this stage of the 
graph goes to Fragment > Normal. 

https://unity.com/releases/lts


© 2025 Unity Technologies 62 of 151 | unity.com

| Decals | Water | LUT for color grading | 

Now you have controllable wavelets whose reflective property can be tweaked by controlling 
the Smoothness of the Fragment using a simple float property. The following image shows the 
effect of changing the Smoothness value.

Applying different levels of smoothness to the wavelets, left to right: 0, 0.5, and 1

The next step is to enable vertex displacement to add motion to the water.

Swell

Controlling the swell using Gradient Noise

https://unity.com/releases/lts


© 2025 Unity Technologies 63 of 151 | unity.com

| Decals | Water | LUT for color grading | 

For this step, you’ll use a TextureMovement subgraph node again. Speed is set using the 
shader float property Swell Speed, and Scale is hard set to 50,50. This acts as the UV input 
to a Gradient Noise node with Scale hard set to 1. You use a Multiply node to control this value 
using the shader float property Displacement. The purpose of these nodes is to set a Y value 
for vertex in object space. Notice the Space parameter of the Position node is set to Object. 
This links with a Split node and then a Combine node; Combine receives the R and B values 
directly from the Split node, with R being Position X and B being Position Z. The G value for Y 
comes from the Gradient Noise path. The RGB(3) output links to the Vertex > Position.

If you view the scene in Play mode you can see the swell moving through the water, especially 
at the edges. 

The final result

While this recipe forms the basis of a simple water shader, you can enhance it using caustic 
reflections, refraction, and foam. See the links below for additional guidance. 

More information

	— Unity YouTube tutorial

	— Caustic reflections tutorial by Alan Zucconi

	— Stylized water tutorial by Binary Lunar 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Gradient-Noise-Node.html?q=Gradient noise
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Gradient-Noise-Node.html?q=Gradient noise
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Gradient-Noise-Node.html?q=Gradient noise
https://www.youtube.com/watch?v=gRq-IdShxpU
https://www.alanzucconi.com/2019/09/13/believable-caustics-reflections/
https://www.alanzucconi.com/2019/09/13/believable-caustics-reflections/
https://www.alanzucconi.com/2019/09/13/believable-caustics-reflections/
https://www.youtube.com/watch?v=1yevpCAA_rU&t=831s
https://www.youtube.com/watch?v=1yevpCAA_rU&t=831s
https://www.youtube.com/watch?v=1yevpCAA_rU&t=831s


© 2025 Unity Technologies 64 of 151 | unity.com

LUT for color grading

The mystery adventure FPS game Return of the Obra Dinn, made with Unity by Lucas Pope, achieves a unique look and feel thanks to its lo-fi 
art style and unique color palette that could be achieved following this recipe.

https://unity.com/releases/lts
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/
https://obradinn.com/


© 2025 Unity Technologies 65 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

Using Color Lookup to create grading effects

If you’ve yet to use the post-processing filters available with URP, you’re in for a treat. This 
recipe involves using one filter, but the steps employed apply to all them. By default, a 
new URP scene has post-processing disabled, so make sure to enable it via the Camera > 
Rendering panel. 

Select Post Processing in Camera > Rendering 

Additionally, you’ll need to enable post-processing in the Universal Renderer Data asset.

Selecting post-processing in the Universal Renderer Data asset

https://unity.com/releases/lts


© 2025 Unity Technologies 66 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

To apply the filter where the camera is located, add a Global Volume. Right-click in the 
Hierarchy window, and select Volume > Global Volume. 

Creating a Global Volume

Select the new GameObject, and create a new Profile by clicking New.

Creating a new Profile

Now you can add an override. Press the Add Override button, select post-processing, then 
choose Color Lookup.  

Adding a Color Lookup post-processing filter

https://unity.com/releases/lts


© 2025 Unity Technologies 67 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

Click the All button. Now you need a LUT (Lookup Table) image texture. This is a strip image 
that will be used by the filter to change the default rendered colors. You’ll find the image file in 
Scenes > LUT > NeutralLUT.png, or download it using this link. 

NeutralLUT.png

A LUT image must have sRGB (Color Texture) disabled, which you do by selecting the image 
and viewing the Inspector.

Disable sRGB (color Texture) for all LUT textures

Count the blocks in the NeutralLUT image above, and you’ll find there are 32 of them. 
Alternatively, you can use 16 blocks; whether you choose 32 or 16 blocks, ensure the settings 
for your URP Asset match your choice. If you choose 32, make sure the post-processing panel 
has LUT size set to 32. Feel free to experiment with the Grading Mode option. 

Setting the LUT size 

If you assign NeutralLUT.png as the Lookup Texture using the Color Lookup settings panel, 
you’ll see no change to the rendered image. The filter uses the texture to set a new color. 
The code takes the current pixel color and uses this to find a texel on the LUT image. With a 
neutral LUT image, the texel color will be the same as the current pixel color. 

https://unity.com/releases/lts
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/LUT/NeutralLUT.png
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/LUT/NeutralLUT.png
https://github.com/NikLever/Unity-URP-Cookbook-Unity6/blob/main/Assets/Scenes/LUT/NeutralLUT.png


© 2025 Unity Technologies 68 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

The real magic occurs when you process the image you use as the Lookup Texture using a 
paint program, such as Photoshop or Krita (there’s a link under More resources, at the end of 
this section, to a YouTube video explaining how to use Krita for color grading). 

Assigning the Lookup Texture

Take a screen grab of your scene, and open it in Photoshop. At the bottom of the Layers 
panel, find the half black/half white circular button. Select it, and in the panel find Gradient 
Map. A new color adjustment layer is added.  

Creating a color adjustment layer

To create a color adjustment layer that results in a high-contrast black-and-white image, click 
the Gradient Map drop-down and select Basics, black and white.

Selecting a black and white gradient

https://unity.com/releases/lts


© 2025 Unity Technologies 69 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

To boost the contrast, click the gradient to open a new window. Use the stops to adjust the 
contrast. 

Changing the stops to boost the contrast

The screengrab should now look black and white.

The effect of the Gradient Map

Once you have the grading of your choice, you need to apply this layer to the NeutralLUT.
png file. Open the file in Photoshop. Back in the screen grab, right-click the adjustment layer, 
and select Duplicate Layer. In the new panel, select NeutralLUT.png as the Destination > 
Document. 

https://unity.com/releases/lts


© 2025 Unity Technologies 70 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

Duplicating the adjustment layer

Now the texture looks like this:

 B&WLUT.png

Save it, and drag it to your project’s Assets folder. Make sure to disable sRGB (Color Texture) 
in the Inspector panel. The last step is to assign the new LUT texture as the Lookup Texture 
for the Color Lookup filter. 

Using various LUT textures

Using LUT Textures is an efficient way to create dramatic color grading, and this approach can 
be useful in many games. 

https://unity.com/releases/lts


© 2025 Unity Technologies 71 of 151 | unity.com

| Water | LUT for color grading | Adaptive Probe Volumes | 

More resources

	— Documentation for post-processing in URP 

	— YouTube tutorial by PHLEARN

	— YouTube tutorial by GDQuest 

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/add-post-processing.html
https://www.youtube.com/watch?v=zTuCTYbvxac
https://www.youtube.com/watch?v=Iurcp8xdpJY


© 2025 Unity Technologies 72 of 151 | unity.com

Adaptive Probe 
Volumes 

The Unity and URP-made game LEGO® Bricktales by Clockstone immerses players in the world of LEGO, where great lighting plays a huge 
role in creating its atmosphere and realism of the blocks.

https://unity.com/releases/lts
https://thunderfulgames.com/games/lego-bricktales/
https://thunderfulgames.com/games/lego-bricktales/
https://thunderfulgames.com/games/lego-bricktales/


© 2025 Unity Technologies 73 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Download

Adaptive Probe Volumes (APVs) are the latest Unity solution for mixed mode lighting and are 
easier to set up and maintain than light probes. If you are new to lighting techniques available 
with URP then check out the Unity e-book Introduction to the Universal Render Pipeline for 
advanced Unity creators. 

You can combine baked and dynamic objects using the Mixed Mode setting for your lights. 
When using Mixed Mode it’s recommended to also add probes to your scene, for which 
there are two options in Unity 6: Light probes or APVs. The two options solve the same 
problem, namely allowing dynamic objects to move through a scene and be affected by global 
illumination. But APVs bring additional benefits and setup efficiency compared to traditional 
light probes.

A probe is simply a point in your scene. At design time the global illumination at this location 
is calculated. At run time, when rendering a frame, a URP shader that includes lighting 
calculations uses a blend of the nearest probes for global illumination values.

Note: 
Global illumination (GI) is a system that models how light bounces off surfaces onto other 
surfaces, to create indirect light, rather than being limited to just the light that hits a surface 
directly from a direct light source.

https://unity.com/releases/lts
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6?isGated=false
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6


© 2025 Unity Technologies 74 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Using APVs in a scene
Any technical artist who has carefully positioned light probes for a scene only to find the 
scene layout has changed will immediately see the benefits of APVs because in many scenes 
you can use APVs to place all the probes in a matter of seconds. Let’s look at a practical 
example using the FPS Sample: The Inspection. 

1.	 First make sure the active URP Asset has the Light Probe System option set to Adaptive 
Probe Volumes.

2.	 In the Hierarchy window right-click and select GameObject > Light > Adaptive Probe 
Volume (APV).

3.	 Set the Mode to Global and accept the default settings – Subdivisions of 1, 3, 9 and 27 
meters. 

https://unity.com/releases/lts
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book
https://github.com/NikLever/Unity6E-book


© 2025 Unity Technologies 75 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

4.	 Bake the volume by pressing Bake Probe Volumes. The current scene is scanned and 
the probes are placed based on the geometry in the scene. Probes are at their densest 
where there is the most geometry. 

5.	 To view the result of the bake open Analysis > Rendering Debugger. Select Probe 
Volumes and select Display Probes. To view the different resolutions choose Display 
Bricks. 

For many scenes that would complete the job, and you can head off for a coffee break. But 
APVs provide much more fidelity. You can add multiple volumes with different subdivisions to 
have precise control over the placement and density of probes. 

https://unity.com/releases/lts


© 2025 Unity Technologies 76 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Take the oasis environment in the URP 3D Sample as an example. Imagine most of the action 
in the scene is around the tent and therefore, you want to place most of the probes around it. 
To achieve this you would:

1.	 Open Rendering > Lighting > Adaptive Probe Volumes and change Max Probe Spacing 
to 81m.  

2.	 Add an Adaptive Probe Volume set as Global and set the Override Probe Spacing to 
27m>81m.

3.	 Add an Adaptive Probe Volume set as Local and set the Override Probe Spacing to 
1m>9m. Set the Volume to be a bit bigger than the tent. 

https://unity.com/releases/lts


© 2025 Unity Technologies 77 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

4.	 Bake the probe Volumes. 

As you can see from the image below, most probes are around the tent. 

Probe placement

Lighting Scenario asset
Another feature of APVs is the ability to switch between indirect lighting data. A Lighting 
Scenario asset contains the baked lighting data for a scene or Baking Set. You can bake 
different lighting setups into different lighting scenarios, and change which one URP uses at 
runtime or at design time using the Rendering Debugger.

Scenario Blending using the Rendering Debugger

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-usebakingsets.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-usebakingsets.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-usebakingsets.html


© 2025 Unity Technologies 78 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

For example, you can create one Lighting Scenario asset for day, and another one for night. At 
runtime, you can switch or blend between the two.

Day/night Lighting Scenarios

1.	 To use a Lighting Scenario asset, go to the active URP Asset and enable Lighting > Light 
Probe Lighting > Lighting Scenarios.

https://unity.com/releases/lts


© 2025 Unity Technologies 79 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

2.	 To create a new Lighting Scenario asset so you can store baking results inside, do the 
following:

a.	 Open the Adaptive Probe Volumes panel in the Lighting window.

b.	 In the Lighting Scenarios section, select the Add (+) button to add a Lighting 
Scenario asset.

3.	 In the Lighting window, under the Adaptive Probe Volume tab, make sure the Probe 
Positions are set to Don’t Recalculate. This ensures that Unity will only rebake lighting 
without changing the probe positions, which could otherwise invalidate previously baked 
scenarios.

4.	 To bake into a Lighting Scenario, follow these steps:

a.	 In the Lighting Scenarios section, select a Lighting Scenario to make it active.

b.	 Select Generate Lighting. URP stores the baking results in the active Lighting 
Scenario.

c.	 Use the drop-down button next to Generate Lighting to only focus on the probes if 
you’re not using lightmaps. 

https://unity.com/releases/lts


© 2025 Unity Technologies 80 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

You can set which Lighting Scenario URP uses at runtime using the ProbeReferenceVolume 
API.

Note:
If you change the active Lighting Scenarios at runtime, URP changes only the indirect 
lighting data in the light probes. You might still need to use scripts to move geometry, 
modify lights or change direct lighting.

Fixing issues with APVs

Debug Probe Sampling

To fix issues such as APV artifacts, use Window > Analysis > Rendering Debugger > Probe 
Volumes > Debug Probe Sampling to inspect probes and how they are sampled for a given 
pixel. 

Visualizing Probe Sampling per pixel

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-bakedifferentlightingsetups.html


© 2025 Unity Technologies 81 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Since light probes are added in a grid, placement can sometimes cause rendering errors such 
as dark areas where it should be light and vice versa. The Editor provides several tools to let a 
technical artist quickly fix these issues. 

Light probes inside geometry are called invalid probes. URP marks a probe as invalid when it 
fires sampling rays to capture surrounding light data, but the rays hit the unlit backfaces inside 
geometry. The APV system has several tools to fix these issues. 

The Probe Invalidity Settings available in the Adaptive Probe Volumes panel

Virtual Offset tries to make invalid light probes valid, by moving their capture points so they’re 
outside any colliders. And Dilation detects light probes that remain invalid after Virtual Offset, 
and gives them data from valid probes nearby.

You can check which light probes are invalid using the Rendering Debugger.

In the left-side scene in the image above, Virtual Offset isn’t active and dark bands are visible. 
In the scene on the right side, Virtual Offset is active.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html


© 2025 Unity Technologies 82 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

In the left-side scene in the image above, Dilation isn’t active and some areas are too dark. In 
the scene on the right, Dilation is active.

Light leaks

Light leaks are areas that are too light or dark, often in the corners of a wall or ceiling.

A light leak

Light leaks often occur when geometry receives light from a light probe that isn’t visible to 
the geometry, for example due to the light probe being on the other side of a wall. APVs use 
regular grids of light probes, so light probes might not follow walls or be at the boundary 
between different lighting areas.

https://unity.com/releases/lts


© 2025 Unity Technologies 83 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Try the following techniques to fix light leaks: 

	— Create thicker walls.

	— Add an Adaptive Probe Volumes Options override to your scene:

	— Add a Volume, then an Adaptive Probe Volumes Options override to the Volume. 
This adjusts the position that GameObjects use to sample the light probes.

	— Enable Rendering Layers:

	— In the Lighting window, configure the Rendering Layer Masks in the Adaptive 
Probe Volumes panel to allow the APV to assign a Rendering Layer Mask to each 
light probe.

	— Adjust Baking Set properties:

	— If adding a Volume doesn’t work, use the Adaptive Probe Volumes panel in the 
Lighting window to adjust Virtual Offset and Dilation settings.

	— Use a Probe Adjustment Volume component:

	— Use this component to make light probes invalid in a small area. This triggers 
Dilation during baking, and improves the results of Leak Reduction Mode at 
runtime.

Rendering Layers

When switching the URP 3D Sample oasis environment from using light probes/lightmaps to 
using APV only, an issue arises with light leaks, which you can see on the bright roof and wall 
in the image below. 

Light leaking in the tent in the oasis environment from the URP 3D Sample

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#create-thicker-walls
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#add-an-adaptive-probe-volumes-options-override-to-your-scene
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/volumes-landing-page.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#layers
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#layers
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#layers
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#layers
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#layers
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-lighting-panel-reference.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumesettings
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html#probevolumeadjustment


© 2025 Unity Technologies 84 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

This is because some pixels are blending between probes on the inside and outside of the 
tent. By using Window > Analysis > Rendering Debugger > Probe Volumes > Debug Probe 
Sampling, you can spot which probes are used when interpolating the value for a pixel. 

Viewing the interpolated probes for a pixel

One option to fix this is to use a Volume to modify how the APV is sampled at runtime using 
the Adaptive Probe Volume Options override. The NormalBias and ViewBias settings can be 
useful for adjusting the sampling position: NormalBias pushes it along the normal (away from 
walls), while ViewBias pushes it towards the camera (keeping it on the same side of the wall 
as the camera). When you change these properties in the Volume, you can see the updates in 
real-time in both the lighting results and the Debug Probe Sampling View, where the sampling 
position and weights are updated accordingly. But a better option is to use Rendering Layers. 

APVs support Rendering Layers, allowing you to create up to four different masks and restrict 
sampling to those specific masks for certain objects. This can be useful to prevent interior 
objects from sampling exterior probes, or vice versa. Activate and add them using Window > 
Rendering > Lighting > Adaptive Probe Volumes > Rendering Layers.

You’ll also need to add a layer via Project Settings > Tags and Layers > Rendering Layers:

https://unity.com/releases/lts


© 2025 Unity Technologies 85 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

To implement this, edit the meshes themselves to ensure they are divided between the different 
areas you want to create. In this project for example, the meshes are edited to separate the 
interior and exterior into multiple meshes. Once the meshes are split, assign the correct Rendering 
Layers to them, and specify which ones APV should use in the Adaptive Probe Volume Tab.

You don’t need to assign layers to every object in the tent, only to those susceptible to leaking, 
like the walls or objects near the walls.

When generating lighting, the system will automatically assign layers to the probes during the 
bake process based on the nearby objects, eliminating the need to manually assign layers per 
probe. To facilitate this automatic probe assignment, you need to assign layers to larger objects. 
In the oasis environment tent example, the interior layer is assigned to the walls and ceiling of 
the tent to ensure that most of the interior probes hit them during baking and are automatically 
assigned to the interior mask. Probes are assigned to the layer they encounter most frequently.

Once this is done, click Generate Lighting and observe that leaking is eliminated for the tent, 
thanks to the separate interior and exterior masks.

 Light leaks without and with rendering layers

Get more information here about fixing issues with APVs 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-fixissues.html


© 2025 Unity Technologies 86 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Streaming APVs
APV streaming enables you to use APV-based lighting in large worlds. APV streaming bakes 
APV data that’s larger than the available CPU or GPU memory, and loads it at runtime when 
it’s needed. At runtime, as the camera moves, URP loads only APV data from cells within the 
camera’s view frustum.

You can enable and disable streaming for different URP quality levels. Enable streaming with 
the following steps: 

1.	 Select Edit > Project Settings > Quality from the main menu.

2.	 Select a Quality Level.

3.	 Double-click the Render Pipeline Asset to open it in the Inspector.

4.	 Expand the Lighting tab.

5.	 You can now enable two types of streaming:

a.	 Enable Disk Streaming to stream from disk to CPU memory.

b.	 Enable GPU Streaming to stream from CPU memory to GPU memory. You must enable 
Enable Disk Streaming first.

You can configure streaming settings in the same window. Refer to URP Asset for more 
information.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-streaming.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-streaming.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-streaming.html


© 2025 Unity Technologies 87 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Debug streaming

The smallest section URP loads and uses is a cell, which is the same size as the largest brick 
in an APV. You can influence the size of cells in an APV by adjusting the density of light probes

Use the Rendering Debugger to view the cells in an APV or debug streaming.

APV Streaming

Sky occlusion
Sky occlusion is the process whereby if a GameObject samples a color from the sky, Unity 
will dim the color if the light can’t reach the GameObject. Sky occlusion in Unity uses the sky 
color from the ambient probe, which updates at runtime. This means you can dynamically light 
GameObjects as the sky color changes. For example, you can change the sky color from light 
to dark to simulate the effect of a day-night cycle.

Note: If you enable sky occlusion, APVs might take longer to bake, and Unity might use 
more memory at runtime.

When you enable sky occlusion, Unity bakes an additional static sky occlusion value into each 
probe in an APV. The sky occlusion value is the amount of indirect light the probe receives 
from the sky, including light that bounced off static GamesObjects.

The main benefit of using sky occlusion is you can modify the sky lighting at runtime. 

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-skyocclusion.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-skyocclusion.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-skyocclusion.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-skyocclusion.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-skyocclusion.html


© 2025 Unity Technologies 88 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Let’s look at the series of images on the left to illustrate 
this:

	— The top image shows the problem that occurs when 
you can’t bake the sky lighting because you need it 
to change at runtime. In this image only an ambient 
probe is used with no baking resulting in a poor 
result. 

	— In the second to fifth images the ambient probe is 
used together with sky occlusion. You could also 
light this image with a regular APV bake, with sky 
occlusion disabled but then the lighting would not 
change at runtime.

An example of the results of using sky occlusion in a scene. The images are from the 
Unity Asset Store package Azure[Sky] Dynamic Skybox by 7stars. 

https://unity.com/releases/lts
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050
https://assetstore.unity.com/packages/tools/particles-effects/azure-sky-dynamic-skybox-36050


© 2025 Unity Technologies 89 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Note: URP now supports per-vertex quality sampling for probes. This is especially useful 
to boost performance on lower-end devices. To set the sampling mode use the URP Asset 
in the Lighting section. Advanced Properties must be active to view the option; press the 
ellipsis at the top right of the Lighting panel to activate it. With Advanced Properties active, 
the SH Evaluation Mode drop-down will appear.

More Information

	— Adaptive Probe Volumes documentation

	— GDC 2023 session: Efficient and impactful lighting with Adaptive Probe Volumes 

Follow these steps to enable sky occlusion: 

1.	 Enable the GPU Light Baker (formerly called Progressive GPU Lightmapper). Unity doesn’t 
support sky occlusion if you use Progressive CPU. Go to Window > Rendering > Lighting.

2.	 Go to the Scene panel.

3.	 Set Lightmapper to Progressive GPU.

4.	 Open the Adaptive Probe Volumes panel.

5.	 Enable Sky Occlusion.

To update the lighting data, you must also bake the APV after you enable or disable sky 
occlusion. Once the sky occlusion is baked, the scene lighting will respond to the ambient 
probe updates. In URP, the ambient probe is updated in real-time only when using the Color or 
Gradient Mode, not the Skybox mode. This means you’ll probably have to manually animate a 
color to match the animated sky visuals.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes.html
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8


© 2025 Unity Technologies 90 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

Light probes vs APVs

Light Probe Groups in use in the top image, and APVs in the bottom image; images are from the Unity Asset Store package ArchVizPRO 
Photostudio URP by ArchVizPro

The bottom image shows how smoothly a transition from dark to light works with APV. In the 
top image, the Light Probe Group results in a bright light on the car door because a single 
interpolated probe is used per object. This is because the door is a separate GameObject to 
the rest of the door and uses a different probe, resulting in a rendering error. 

https://unity.com/releases/lts
https://assetstore.unity.com/packages/3d/environments/industrial/archvizpro-photostudio-urp-225832
https://assetstore.unity.com/packages/3d/environments/industrial/archvizpro-photostudio-urp-225832
https://assetstore.unity.com/packages/3d/environments/industrial/archvizpro-photostudio-urp-225832
https://assetstore.unity.com/packages/3d/environments/industrial/archvizpro-photostudio-urp-225832
https://assetstore.unity.com/packages/3d/environments/industrial/archvizpro-photostudio-urp-225832


© 2025 Unity Technologies 91 of 151 | unity.com

| LUT for color grading | Adaptive Probe Volumes | Screen space refraction | 

The table below compares the features of light probes and APVs.

Light Probe Groups Adaptive Probe Volumes

Time-consuming to place probes and move 
them if geometry changes

Fast to place and easy to update as 
geometry changes

A single interpolated probe is used for 
lighting objects:

	— Objects cannot transition well from 
darkness to light and stand out.

	— It can cause problems for big objects.

Each pixel is individually lit:

	— This ensures smooth transitions.

	— Volumetric effects work well using 
APV because the APV grid is easy to 
sample at any location.

Static objects are usually lit using light maps. 
Only dynamic objects use probes.

No need for lightmaps or lightmap UVs:

	— Use a single lighting solution for all 
objects in a scene. 

	— Light large worlds with a constrained 
memory budget. 

Probes can be freely placed and moved at 
runtime.

Probes are placed in a grid structure and 
cannot be moved at run time.

Switch GI is not supported. The Lighting Scenario asset allows for 
switching between different lighting, e.g., 
from day to night, turning a light on or off, 
and so on.

https://unity.com/releases/lts


© 2025 Unity Technologies 92 of 151 | unity.com

Screen space 
refraction

In the indie game Arctico, by the developers Claudio and Antonio, you have to build your base camp and explore a glacier landscape. The 
abundant water in the game reflects the surface, an effect that can be achieved with screen space reflection. Screen space reflection is used 
to fake a reflective surface in real-time, while screen space refraction is used to simulate transparency and the bending of light as it passes 
through a medium. 

https://unity.com/releases/lts
https://www.playarctico.com/


© 2025 Unity Technologies 93 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

An example of screen space refraction

Screen space refraction uses the current opaque texture created by the render pipeline as the 
source texture to map pixels to the model being rendered. It can’t show models that are not 
part of the opaque texture. The method is about deforming the UV used to sample the image. 

In this recipe, you’ll learn how to use a normal map to create refraction effects as well as tint 
a refraction effect. The additional tinting seen in the image above is achieved by lerping the 
calculated pixel color with a Color property. 

To see the effect in action, take a look at Scenes > Refraction > Refraction. 

The technique requires the opaque texture to be available to the shader. Find the URP Settings 
Asset currently assigned in Edit > Project Settings… > Graphics > Scriptable Render Pipeline 
Settings. In the Inspector, make sure Opaque Texture is enabled. If you also enable Opaque 
Downsampling, you’ll get a small performance boost. It also introduces a small blur to what 
you see through the refractive object, which can improve the visual appearance.  

https://unity.com/releases/lts


© 2025 Unity Technologies 94 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

Setting Opaque Texture and Opaque Downsampling

The first step to creating the shader is to create a new Shader Graph Asset. Right-click in the 
Project window, and select Create > Shader Graph > URP > Lit Shader Graph.

Creating a new Lit Shader Graph

Create a material using this shader by selecting the Shader Graph Asset and choosing Create 
> Material. Apply this material to the object you want to be refractive. 

Now double-click on the Shader Graph Asset to open it. Create a Scene Color node, and 
connect this to Fragment > Base Color.

Using a Scene Color node

Scene Color only works with transparent materials since it relies on opaque objects having 
been rendered. In the render pipeline, transparent objects are rendered after opaque objects. 
Set Graph Inspector > Graph Settings > Surface Type to Transparent. 

https://unity.com/releases/lts


© 2025 Unity Technologies 95 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

The Scene Color node by default uses normalized screen coordinates for the UV and so maps 
the opaque texture to each pixel with lighting affected by the smoothness,  resulting in the 
image below.

The result of using Scene Color

Since the goal is to manipulate the UV used by the Scene Color node, you need to override the 
default UV behavior. Create a Screen Position node and an Add node. Drag the output of the 
Screen Position node to input A of the Add node and set the B input as [0.1, 0.1, 0, 0]. 

Adding nodes to control the UV

https://unity.com/releases/lts


© 2025 Unity Technologies 96 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

Now you’ll see the Opaque Texture offset.

Opaque Texture offset

For each rendered pixel, you want the offset to be controlled by the camera’s view direction, 
the normal for the object at the current screen position, and a scaling value. Shader Graph has 
a node that will calculate refraction given these three inputs; it actually has two scaling values, 
but you’ll only use one. 

You can add a new float property called IOR, short for Index of Refraction for scaling. Set it 
as a slider, with min 1 and max 6. For view direction, add a View Direction node and link it to a 
Normalize node to guarantee it’s of unit length. 

Add a Normal node set to World Space, and again link it to a Normalize node. Create a Refract 
node, and link the normalized View Direction to the Incident input. Link the normalized Normal 
to the Refract node Normal input and link the IOR property to the IORMedium input.  

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Refractive_index
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/View-Direction-Node.html?q=view direction
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/View-Direction-Node.html?q=view direction
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/View-Direction-Node.html?q=view direction
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Normalize-Node.html?q=Normalize


© 2025 Unity Technologies 97 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

At this point, the Refracted output is in World space, but to offset the Screen space UV we 
need it in Tangent space. Add a Transform node setting the input as World and the output as 
Tangent. For the type, choose Direction. Use this as the A input to the Add node with Screen 
Position as the B input. You get the graph you see below.

Basic refraction graph

An IOR of 5.44 will result in the visual effect seen in the following image.  

Basic Screen Space Refraction

https://unity.com/releases/lts


© 2025 Unity Technologies 98 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

You can tint the result by adding a Color property. Add a Lerp node, and use an Opacity 
property set to slider mode, range 0-1, as the T input. The output from Scene Color is set as 
input A and Color as input B. 

Adding a tinting stage to the graph

https://unity.com/releases/lts


© 2025 Unity Technologies 99 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

You should now be able to tint the output.

A tinted version

The normal affects the refraction, so a single plane will just get an offset version of the 
Opaque Texture. 

https://unity.com/releases/lts


© 2025 Unity Technologies 100 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

Now it’s time to add a normal map. You start by adding a Texture 2D property to the shader 
that you name Normal Map, and a float property as a slider, called Normal Strength, with a 
range of 0-1. Create a Sample Texture 2D node, and set it as Type Normal, Space Tangent. 
Set the Texture input to the Normal Map property. Create a Normal Strength node and set 
input as the RGBA(4) output from the Sample Texture 2D node. Set the Strength input as the 
Normal Strength property. Create an Add node with input A as the output from the Normal 
Strength node and input B from the Transform World to the Tangent node. Follow these steps, 
and you should end up with this graph. 

Adding a normal map

https://unity.com/releases/lts


© 2025 Unity Technologies 101 of 151 | unity.com

 | Adaptive Probe Volumes | Screen space refraction | Volumetrics | 

Using a suitable normal map should result in the effect seen in the image below, in this case 
using a single quad instead of the diamond. Refraction for a planar mesh simply shows an 
offset of the Opaque Texture. Using a normal map with a planar mesh can be a useful way to 
hide this artifact.

Using a Normal Map

An alternative to using the Refract node is to add a Custom Function Node with a Vector3 
viewDir input, a Vector3 normal input, and an IOR input. If you use this option, set your IOR 
property as a slider with the range -0.15 to 2, not 1-6. Set a Vector3 as the output. The code is 
very simple so just use a String not a file: 

Out = refract(viewDir, normal, IOR);

It gives different results and is worth experimenting with.

More resources

	— Screen space refraction by David Lettier

	— ScreenSpace planar reflection GitHub repo by Steven Cannavan

	— Reflection probes vs Screen space reflection by Kyle W. Powers

	— Shader Graph refraction tutorial by AE Tuts

	— Crystal Shader Graph in Unity by Binary Lunar 

https://unity.com/releases/lts
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc
https://www.youtube.com/watch?v=Qri_fN01hMc


© 2025 Unity Technologies 102 of 151 | unity.com

Volumetrics

The game Lost in Random by Zoink! immerses players into a fantasy kingdom with a very unique art direction where great lighting plays a 
huge role in creating its atmosphere. They recreated volumetric fog in URP, as seen in this article.

https://unity.com/releases/lts
https://www.ea.com/en-gb/games/lost-in-random
https://www.ea.com/en-gb/games/lost-in-random
https://www.ea.com/en-gb/games/lost-in-random
https://www.ea.com/en-gb/games/lost-in-random
https://www.ea.com/en-gb/games/lost-in-random
https://agentlien.github.io/fog/


© 2025 Unity Technologies 103 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

Volumetric cloud

This is a recipe for using ray marching to render a 3D texture. Unity supports 3D textures, 
which are an array of images placed in a grid on a single texture, rather like a Texture Atlas. 
The difference is that each image is the same size. Using a 3D UV value, you can source a 
texel from the grid of images with UV.Z defining the row and column of the individual image 
to use. The image below shows a typical 3D texture, its import settings, and a preview in the 
Inspector.

Left to right: A 3D texture, its import settings, and a preview of it in the Inspector

https://unity.com/releases/lts


© 2025 Unity Technologies 104 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

Here is a great YouTube short explaining how to use 
Blender to create a 3D cloud texture.

YouTube short explaining how to create a 3D cloud texture

As with the previous recipes, this shader will be built with Shader Graph. To view the finished 
product, go to Scenes > Volumetric Clouds, and open the VolumetricClouds scene. Note 
that the scene includes a Camera, Directional Light, and a cube. The cube uses the Material 
RaymarchMat.

To start the recipe, you’ll need to give the RaymarchMat material the shader named Shader 
Graphs/Raymarchv1SG, created by Nik Lever. You should now see a sphere. If you adjust the 
densityScale, you can begin to see transparency at the edges. 

Using the Shader Graph Raymarchv1SG

https://unity.com/releases/lts
https://www.youtube.com/shorts/IGx_I4nzfxQ
https://www.youtube.com/shorts/IGx_I4nzfxQ
https://www.youtube.com/shorts/IGx_I4nzfxQ
https://www.blender.org/


© 2025 Unity Technologies 105 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

You’re supposed to be rendering a cube, but instead you see a sphere: What’s going on? The 
answer is ray marching. Ray marching, according to its Wikipedia page, “is a class of rendering 
methods for 3D computer graphics where rays are traversed iteratively, effectively dividing 
each ray into smaller ray segments, sampling some function at each step. This function can 
encode volumetric data for volume ray casting, distance fields for accelerated intersection 
finding of surfaces, among other information.”

Ray marching

With this first version, a sphere is defined using a Vector4. XYZ defines the position of the 
sphere, relative to the object and W its radius. For each pixel, a direction is calculated for a 
ray that comes directly from the camera (represented by the dotted gray line in the diagram 
above). Set a density value to 0, then move along this line calculating at each blue dot inside 
the sphere to add a small value to density. When the ray has traveled through the sphere, 
you’ll have a value for how much of the sphere is in a line directly from the camera to the pixel 
you’re rendering. This density value is used as the Base Color in the Shader Graph. Ignore the 
Sun and the red dots for now; these will be considered later when it’s time to add lighting, in 
the fourth version of this shader.

This graph uses a Custom Function Node based on the file via Scripts > HLSL > Raymarch.
hlsl. For this first version, you’ll use the function raymarchv1. The variable density is initialized 
to 0. Then you enter a for loop for numSteps count. The rayOrigin is moved by stepSize in the 
direction defined by rayDirection. 

How far are you from the sphere origin? You can use the HLSL function distance to calculate 
the length of a vector from the sphere origin to the current value for rayOrigin. If this is less 
than the sphere radius (Sphere.w), then add 0.1 to the density value. The output value result is 
the accumulated density value times densityScale.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Ray_marching
https://en.wikipedia.org/wiki/Ray_marching
https://en.wikipedia.org/wiki/Ray_marching
https://en.wikipedia.org/wiki/Ray_marching#:~:text=Ray marching is a class,some function at each step.
https://en.wikipedia.org/wiki/Ray_marching#:~:text=Ray marching is a class,some function at each step.
https://en.wikipedia.org/wiki/Ray_marching#:~:text=Ray marching is a class,some function at each step.


© 2025 Unity Technologies 106 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

void raymarchv1_float( float3 rayOrigin, float3 rayDirection, float numSteps, 

                       float stepSize, float densityScale, float4 Sphere, 

                       out float result )

{

	 float density = 0;

	

	 for(int i =0; i< numSteps; i++){

		  rayOrigin += (rayDirection*stepSize);

				  

		  //Calculate density

		  float sphereDist = distance(rayOrigin, Sphere.xyz);

		  if(sphereDist < Sphere.w){

			   density += 0.1;

		  }

					   

	 }

	 result = density * densityScale;

} 

For your calculations, you’ll work in Object Space. You get the rayOrigin using a Position 
node, and to get the rayDirection you need a Camera node that links the position output to a 
Transform node, with the input set as World and the output Object. 

You now have the pixel position and Camera Position in Object Space, which enables you 
to get the ray direction using a Subtract node, with Position as input A and Camera Position 
as input B. This rayDirection is normalized using a Normalize Node. The other inputs to the 
Custom Function Node are the float properties, numSteps, number of blue dots per ray, 
stepSize, the distance between blue dots, densityScale, and the Vector4 sphere discussed 
earlier. The density output goes directly to Base Color and Alpha. Note that this shader is set 
to be transparent and unlit, requiring you to calculate the lighting.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Camera-Node.html?q=camera
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Transform-Node.html?q=transform
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/Subtract-Node.html?q=Subtract


© 2025 Unity Technologies 107 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

Version 1 of the Ray march shader

Ray marching comes to life when a 3D texture is added to determine the shape. You’ll 
introduce a 3D texture in version 2. Start by setting RaymarchMat to use Shader Graphs > 
Raymarch2SG. The Custom Function used is raymarchv2.  

void raymarchv2_float( float3 rayOrigin, float3 rayDirection, float numSteps, 

                       float stepSize, float densityScale, UnityTexture3D volumeTex,

                       UnitySamplerState volumeSampler, float3 offset, 

                       out float result )

{

	 float density = 0;

	 float transmission = 0;

	

	 for(int i =0; i< numSteps; i++){

		  rayOrigin += (rayDirection*stepSize);

					   

		  //Calculate density

		  float sampledDensity = SAMPLE_TEXTURE3D(volumeTex, volumeSampler, rayOrigin + 
offset).r;

		  density += sampledDensity;

					   

	 }

	 result = density * densityScale;

}

https://unity.com/releases/lts


© 2025 Unity Technologies 108 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

You’ll notice there are three new inputs: 

	— A UnityTexture3D volumeTex that comes directly from a Material property. 

	— A MACRO, SAMPLE_TEXTURE3D, necessary when working with 3D textures, that needs 
a SamplerState instance. 

	— There is a node for SamplerState that allows you to select the wrapping option. 
You’ll set that to clamp so that UV values outside of the range 0 - 1 are clamped at 
0 for values less than 0 and at 1 for values above 1. 

	— Offset, which is a value you can use to move around our 3D texture inside the Cube. 

Now, instead of checking whether you are inside a sphere, you’ll get a sampledDensity value 
using the float3 sample position of rayOrigin plus offset. You only need one channel here, the 
red channel, R.

The image below shows a render of version 2. It’s beginning to look like a cloud. 

Version 2 of the shader

https://unity.com/releases/lts


© 2025 Unity Technologies 109 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

The final version of the shader introduces lighting. Use the shader named Shader Graphs/
Raymarchv3SG for the Material RaymarchMat. This time, you’ll use the function raymarch. 
The function uses six new parameters: numLightSteps, lightStepSize, lightDir, lightAbsorb, 
and transmittance, and returns a float3 vector. 

To build up the final values, initialize three new variables: transmission, lightAccumulation 
and finalLight. The code is the same as version 2 up to the light loop comment. Look again 
at the “ray marching” illustration shown earlier: For each step along the view direction ray, 
represented by the blue dots, you get a ray towards the main light, which is yellow in the 
diagram. The red dots represent the step-by-step sampling of the 3D texture. The more cloud 
you find, the less light that will hit that part of the view direction ray. This process determines 
how bright each pixel is.

void raymarch_float( float3 rayOrigin, float3 rayDirection, float numSteps, 

                     float stepSize, float densityScale, UnityTexture3D volumeTex,

                     UnitySamplerState volumeSampler, float3 offset, 

                     float numLightSteps, float lightStepSize, float3 lightDir,

                     float lightAbsorb, float darknessThreshold, float transmittance,

                     out float3 result )

{

	 float density = 0;

	 float transmission = 0;

	 float lightAccumulation = 0;

	 float finalLight = 0;

    

	 for(int i =0; i< numSteps; i++){

		  rayOrigin += (rayDirection*stepSize);

					   

		  float3 samplePos = rayOrigin+offset;

		  float sampledDensity = 

                 SAMPLE_TEXTURE3D(volumeTex, volumeSampler, samplePos).r;

		  density += sampledDensity*densityScale;

		  //light loop

		  float3 lightRayOrigin = samplePos;

		

		  for(int j = 0; j < numLightSteps; j++){

			   lightRayOrigin += -lightDir*lightStepSize;

			   float lightDensity = 

             SAMPLE_TEXTURE3D(volumeTex, volumeSampler, lightRayOrigin).r;

			   lightAccumulation += lightDensity;

		  }

https://unity.com/releases/lts


© 2025 Unity Technologies 110 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

The light loop is easy to understand, repeating the number of times that have been specified 
for the numLightSteps variable. Bear in mind that this is a nested loop, so keep the 
numLightSteps count as low as possible. You move from samplePos towards the main light by 
using minus lightDir. Then, lightDensity is added to lightAccumulation. Some math is required 
outside the light loop: 

float lightTransmission = exp(-lightAccumulation);

First, lightTransmission is set as e-lightAccumulation . The constant e, Euler’s number, is about 
2.718. The graph below shows the result of this function. The horizontal axis is the value of 
lightAccumulation and the vertical axis exp(-lightAccumulation). When the accumulated light 
density, lightAccumulation, is 0, exp(-lightAccumulation) equals 1. As lightAccumulation increases 
exp(-lightAccumulation) quickly drops away, nearing 0 if lightAccumulation is 5 or more.

Graph of e-x for the range 0 to 4

             float lightTransmission = exp(-lightAccumulation);

		  float shadow = darknessThreshold + 

                              lightTransmission * (1.0 - darknessThreshold);

		  finalLight += density*transmittance*shadow;

		  transmittance *= exp(-density*lightAbsorb);

					   

	 }

       transmission = exp(-density);

	 result = float3(finalLight, transmission, transmittance);

}

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/E_(mathematical_constant)


© 2025 Unity Technologies 111 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

float shadow = darknessThreshold +  
                              lightTransmission * (1.0 - darknessThreshold);

A shadow value is calculated next. Use the property called darknessThreshold. The graph 
below shows the shadow value in the vertical axis, for a darknessThreshold of 0.15. If 
lightAccumulation is 0 then shadow equals 1, whereas if lightAccumulation approaches 5, then 
shadow tends to the darknessThreshold constant value.

The shadow value

finalLight += density*transmittance*shadow;

Density * transmittance * shadow is added to the finalLight accumulated value. If the 
accumulated light density, lightAccumulation, is high, then shadow will tend to 0 and therefore, 
the accumulated value for finalLight will be less. 

transmittance *= exp(-density*lightAbsorb);

The initial value of transmittance is a passed-in property, but for each view direction step, its 
value is multiplied by e-density*lightAbsorb. The property lightAbsorb controls how much light gets 
lost in the cloud by scattering.   

For version 3, the result is a float3 containing the finalLight, transmission, and transmittance.

The graph for version 3 is shown below. Now that the output from the Custom Function is a 
float3, a Split node is added. Output R goes to a Lerp node T input. Version 3 has several new 
properties, including color and shadowColor, with the former the B input and the latter the A 
input. 

https://unity.com/releases/lts


© 2025 Unity Technologies 112 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

If finalLight raymarch node Out.x is 0, then the shadowColor will be passed to the Lerp 
node output. If finalLight is 1, then color is passed to the output. In the range 0-1 a linear 
interpolation of shadowColor and color is the output. The Lerp node output goes directly to 
Fragment > Base Color. 

Alpha uses the raymarch node with transmission value Out.y. This value is 0 when Alpha 
should be 1 and 1 when it should be 0. A One Minus node is used to correct the Split node  B 
value and link this to Fragment > Alpha. 

Final version

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/One-Minus-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/One-Minus-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/One-Minus-Node.html


© 2025 Unity Technologies 113 of 151 | unity.com

| Screen space refraction | Volumetrics | Procedural noise | 

This gives the result you see below. 

A cloud with ray marching

Houdini is a useful tool when creating the 3D texture. Alternatives to a 3D texture include 
using multilayered Perlin noise, or pre-baking a tileable noise texture using Unity. Hopefully, 
this recipe will be a starting point for your journey into ray marching.

More resources

	— Volumetric ray marching cloud shader by dmeville  

	— Coding adventure: Clouds by Sebastian Lague 

	— Creating Volumetric Clouds with Houdini by Camelia Slimani

	— Altos sky system, by OccaSoftware

	— Real Time Volumetric Clouds by Adrian Polimeni 

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Perlin_noise
https://www.ronja-tutorials.com/post/029-tiling-noise/
https://www.ronja-tutorials.com/post/029-tiling-noise/
https://www.ronja-tutorials.com/post/029-tiling-noise/
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds
https://github.com/adrianpolimeni/RealTimeVolumetricClouds


© 2025 Unity Technologies 114 of 151 | unity.com

Procedural noise

The game Please, Touch the Artwork by Thomas Waterzool, uses procedural generation to help speed up the level creation process, a good 
case for randomizing game design elements. 

https://unity.com/releases/lts
https://unity.com/case-study/please-touch-the-artwork


© 2025 Unity Technologies 115 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

Procedural noise is a powerful technique used for generating textures, terrains, and other 
environmental elements in a way that appears random but can be finely controlled. By using 
algorithms to generate these effects, developers can create vast, varied worlds without the 
need to handcraft every detail. 

Unity supports several types of procedural noise, including Gradient/Perlin noise, Simplex 
noise, Voronoi/Worley, each of which has unique applications and benefits. Understanding and 
implementing procedural noise can enhance both the aesthetic and performance aspects of a 
game or interactive experience.

Procedural Noise examples left to right: Gradient, Simplex, and Voronoi

Types of procedural noise
The most common types of procedural noise in Unity are Perlin noise and Simplex noise, both 
developed by Ken Perlin. 

Perlin noise is the go-to algorithm for creating smooth, natural-looking variations in textures, 
terrains, and animations. It generates smooth, continuous patterns that avoid harsh edges, 
making it ideal for things like mountainous terrain, cloud textures, or water waves. Simplex 
noise is a more efficient alternative, especially for three-dimensional applications. It provides 
a smoother result and is computationally less intensive than Perlin noise, which is helpful for 
mobile games or VR environments where performance is critical.

Implementing procedural noise in Unity
In Unity, procedural noise can be implemented through shaders or directly in C# scripts. For 
2D textures, the Mathf.PerlinNoise() function is particularly accessible and useful. 
It generates noise values based on X and Y coordinates, which makes it easy to apply to 
terrains, textures, or particle effects. By adjusting parameters like frequency, amplitude, and 
scale, developers can control the noise output to achieve different visual effects.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Simplex_noise
https://en.wikipedia.org/wiki/Worley_noise


© 2025 Unity Technologies 116 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

For example, a developer might want to use Perlin noise to create a heightmap for a terrain. 
This can be done by generating a grid of Perlin noise values and mapping those values to 
height levels. As each noise value corresponds to a point on the terrain, this can result in hills, 
valleys, and other natural formations without the need to manually sculpt them. Unity’s terrain 
tools can then apply these heightmaps to create a 3D terrain, which can be further refined by 
adding textures or using other procedural generation techniques.

Procedural heightmap example

Here’s a basic example of how to generate a heightmap in Unity using Perlin noise in a C# 
script. This script will create a terrain with hills and valleys by applying Perlin noise to a Terrain 
GameObject.

1. Create a Terrain GameObject in Unity.

2. Attach the script below to Terrain.

3. Adjust the parameters as desired to control the look of the terrain.

Procedural height example

using Unity.VisualScripting;

using UnityEngine;

[ExecuteInEditMode]

public class ProceduralHeight : MonoBehaviour

{

    public int depth = 20; // The max height of the terrain

    public float scale = 20f; // Controls how "stretched" the noise appears

https://unity.com/releases/lts


© 2025 Unity Technologies 117 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

    private int width = 256; // Width of the terrain

    private int height = 256; // Height of the terrain

    private float offsetX = 100f; // Offset for X coordinate (randomized at start)

    private float offsetY = 100f; // Offset for Y coordinate (randomized at start)

    private int _depth;

    private float _scale;

    private Terrain terrain;

    void Start()

    {

        // Randomize offsets for a unique terrain each time

        offsetX = Random.Range(0f, 9999f);

        offsetY = Random.Range(0f, 9999f);

        _depth = depth;

        _scale = scale;

        terrain = GetComponent<Terrain>();

        terrain.terrainData = GenerateTerrain(terrain.terrainData);

    }

    TerrainData GenerateTerrain(TerrainData terrainData)

    {

        terrainData.heightmapResolution = width + 1;

        terrainData.size = new Vector3(width, depth, height);

        terrainData.SetHeights(0, 0, GenerateHeights());

        return terrainData;

    }

    float[,] GenerateHeights()

    {

        float[,] heights = new float[width, height];

        for (int x = 0; x < width; x++)

        {

            for (int y = 0; y < height; y++)

            {

                float xCoord = (float)x / width * scale + offsetX;

                float yCoord = (float)y / height * scale + offsetY;

https://unity.com/releases/lts


© 2025 Unity Technologies 118 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

                heights[x, y] = Mathf.PerlinNoise(xCoord, yCoord);

            }

        }

        return heights;

    }

    void Update(){

        if ( depth != _depth || scale != _scale ){

            terrain.terrainData = GenerateTerrain(terrain.terrainData);

             _depth = depth;

             _scale = scale;

        }

    }

}

Let’s look at some key values/properties in this script:

	— depth: This is the vertical scale of the terrain; a higher value will create taller hills.

	— width and height: These are the dimensions of the terrain.

	— scale: This controls how “zoomed in” the noise is; a higher value creates smoother, 
broader hills.

	— offsetX and offsetY: Random offsets are added to vary the terrain layout each time the 
script runs.

The GenerateHeights() function creates a 2D array representing the height values of 
each point on the terrain. Each value is generated using Mathf.PerlinNoise, which gives 
a smooth, natural variation based on xCoord and yCoord (scaled by width, height, and scale).

In the resources you will find this example at Scenes > Procedural Noise > Terrain. This 
simple heightmap generation technique can be modified to add more complexity, like using 
multiple layers of Perlin noise for fractal-like terrain or applying additional noise functions.

https://unity.com/releases/lts


© 2025 Unity Technologies 119 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

Using noise to generate a wood texture

Examples of using procedural noise for a wood texture

Another use for procedural noise is to create shaders that mirror natural textures, like the 
wood textures pictured above. Take a look at Scenes > Procedural Noise > Wood to find this 
example. Here you’ll see two different wood shaders, one highly stylised and the other more 
realistic. Let’s start by creating the stylised version: 

1.	 Create a Shader Graph via Shader Graph  > URP > Lit Shader Graph

2.	 Add these properties: 

a.	ColorA (Color default: 7D490B)

b.	ColorB (Color default: BB905D)

c.	Frequency (Float default: 2)

d.	NoiseScale (Float default: 6)

e.	PatternIntensity (Float default: 0.6)

f.	Contrast (Float default: 4)

3.	 Create a Geometry > UV node, Channel UV0.

4.	 Create a Procedural > Noise > GradientNoise node. Link the output from step 3 to the 
UV input and set the Scale input to 5. Leave the Hash Type as Deterministic. 

5.	 Create a Multiply node and set input A as the output from step 4 and input B as the 
property NoiseScale. 

6.	 Create an Add node and link the output from step 5 to input B.

7.	 Return to the UV node of step 3. Above the Gradient Noise node create a Split node and 
link the output from the UV node to its input.

https://unity.com/releases/lts


© 2025 Unity Technologies 120 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

8.	 Create a Multiply node and set the Split node G output as input A and the property 
Frequency as input B.

9.	 Link the output from step 8 to input A of step 6.

10.	 Create a Fraction node and link the output from the Add node to its input.

11.	 Create a One Minus node and link its input to the output from step 10.

12.	 Create a Multiply node and link the output from step 11 to input A and the property 
Contrast to input B.

13.	 Create another Multiply node and link input A to the output from step 10 and input B to 
the output from step 12.

14.	 Create a Power node and link input A to the output from step 13 and input B to the 
property PatternIntensity.

15.	 Create an Add node and link input A to the R output of the Split node from step 7 and the 
B input link to the output from step 14.

16.	 Create a Lerp node and set input A to the property ColorA, input B to the property 
ColorB and input T to the output from step 15. 

17.	 Link the output from step 16 to the Fragment Base Color. 

The stylised wood Shader Graph

The UV u value is used to set the grain position that is passed directly to the final Add node. 
The v value goes through a complex chain of manipulation. Starting with Gradient Noise this is 
manipulated via Multiply nodes to adjust the frequency of the grain lines (pattern) and scale. 
The key to the shader is using the fractional part of the calculated value via the Fraction node. 
You can also use properties to adjust the contrast and intensity of the grain or pattern. 

https://unity.com/releases/lts


© 2025 Unity Technologies 121 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

Stages of the shader: Gradient Noise (left); the effect of using the fractional part giving multiple grain lines (second to left); boosting the 
contrast (second to right), and adding color (right)

Lets look at the more realistic version that’s achieved using a Custom Function node. This is an 
adapted version of this example from ShaderToy. ShaderToy is a great source of shader code, 
however all code uses the GLSL syntax, not HLSL, and will need to be adapted for use in a 
Shader Graph Custom Function. If you’re knowledgeable in HLSL coding then the conversion 
should be somewhat straight-forward: vec -> float, fract -> frac, mix -> lerp.

An example of a shader from the ShaderToy website

https://unity.com/releases/lts
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1
https://www.shadertoy.com/view/mdy3R1


© 2025 Unity Technologies 122 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

The Custom Function, seen in the code below, requires just setting the Geometry > Position 
node to Object if you are happy to take the default colors. Or add two Color properties to 
define the colors; ColorA provides the grain lines color, ColorB the base color. 

Custom Function wood Shader Graph, using user defined colors

#define sat(x)	 clamp(x, 0.0, 1.0)

#define S(a, b, c)	 smoothstep(a, b, c)

#define S01(a)	 S(0.0, 1.0, a)

float sum2(float2 v) { return dot(v, float2(1.0, 1.0)); }

///////////////////////////////////////////////////////////////////////////////

float h31(float3 p3) {

	 p3 = frac(p3 * 0.1031);

	 p3 += dot(p3, p3.yzx + 333.3456);

	 return frac(sum2(p3.xy) * p3.z);

}

float h21(float2 p) { return h31(p.xyx); }

float n31(float3 p) {

	 const float3 s = float3(7, 157, 113);

https://unity.com/releases/lts


© 2025 Unity Technologies 123 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

	 // Thanks Shane - https://www.shadertoy.com/view/lstGRB

	 float3 ip = floor(p);

	 p = frac(p);

	 p = p * p * (3. - 2. * p);

	 float4 h = float4(0, s.yz, sum2(s.yz)) + dot(ip, s);

	 h = lerp(frac(sin(h) * 43758.545), frac(sin(h + s.x) * 43758.545), p.x);

	 h.xy = lerp(h.xz, h.yw, p.y);

	 return lerp(h.x, h.y, p.z);

}

// roughness: (0.0, 1.0], default: 0.5

// Returns unsigned noise [0.0, 1.0]

float fbm(float3 p, int octaves, float roughness) {

	 float sum = 0.,

	       amp = 1.,

	       tot = 0.;

	 roughness = sat(roughness);

	 for (int i = 0; i < octaves; i++) {

		  sum += amp * n31(p);

		  tot += amp;

		  amp *= roughness;

		  p *= 2.;

	 }

	 return sum / tot;

}

float3 randomPos(float seed) {

	 float4 s = float4(seed, 0, 1, 2);

	 return float3(h21(s.xy), h21(s.xz), h21(s.xw)) * 1e2 + 1e2;

}

// Returns unsigned noise [0.0, 1.0]

float fbmDistorted(float3 p) {

	 p += (float3(n31(p + randomPos(0.)), n31(p + randomPos(1.)), n31(p + randomPos(2.))) * 
2. - 1.) * 1.12;

	 return fbm(p, 8, .5);

}

// float3: detail(/octaves), dimension(/inverse contrast), lacunarity

// Returns signed noise.

float musgraveFbm(float3 p, float octaves, float dimension, float lacunarity) 

{

https://unity.com/releases/lts


© 2025 Unity Technologies 124 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

	 float sum = 0.,

	       amp = 1.,

	       m = pow(lacunarity, -dimension);

	 for (float i = 0.; i < octaves; i++) {

		  float n = n31(p) * 2. - 1.;

		  sum += n * amp;

		  amp *= m;

		  p *= lacunarity;

	 }

	 return sum;

}

// Wave noise along X axis.

float3 waveFbmX(float3 p) {

	 float n = p.x * 20.;

	 n += .4 * fbm(p * 3., 3, 3.);

	 return float3(sin(n) * .5 + .5, p.yz);

}

///////////////////////////////////////////////////////////////////////////////

// Math

float remap01(float f, float in1, float in2) { return sat((f - in1) / (in2 - in1)); }

///////////////////////////////////////////////////////////////////////////////

// Wood material.

float3 matWood(float3 p, float3 colA, float3 colB ) {

	 float n1 = fbmDistorted(p * float3(7.8, 1.17, 1.17));

	 n1 = lerp(n1, 1.0, 0.2);

	 float n2 = lerp(musgraveFbm(float3(n1, n1, n1) * 4.6, 8.0, 0.0, 2.5), n1, 0.85);

	 float dirt = 1. - musgraveFbm(waveFbmX(p * float3(.01, .15, .15)), 15., .26, 2.4) * .4;

	 float grain = 1. - S(.2, 1., musgraveFbm(p * float3(500, 6, 1), 2., 2., 2.5)) * .2;

	 n2 *= dirt * grain;

    

    // The three float3 values are the RGB wood colors - Tweak to suit.

	 return lerp(lerp(colA, colB, remap01(n2, .19, .56)), float3(.52, .32, .19), remap01(n2, 
.56, 1.));

}

https://unity.com/releases/lts


© 2025 Unity Technologies 125 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

//Hard coded colors

void wood_float( float3 pos, out float4 result){

    float3 colA = float3(.03, .012, .003);

    float3 colB = float3(.25, .11, .04);

    result = float4(pow(matWood(pos, colA, colB), float3(1,1,1) * 0.4545), 0);

}

//User selectable colors, colA provides the grain lines

void wood_float( float3 pos, float3 colA, float3 colB, out float4 result){

    result = float4(pow(matWood(pos, colA, colB ), float3(1,1,1) * 0.4545), 0);

}

Starting with the wood_float function, the code calls the function matWood. This makes use 
of the functions fbmDistorted, musgraveFbm and waveFbm. There are a lot of carefully 
chosen “magic” numbers that the developer probably took a lot of time tweaking to get the 
best results. fBm (Fractional Brownian motion) or multifractal noise, is a type of procedural 
noise developed by Ken Musgrave, and consequently often called Musgrave noise. It’s used 
for generating realistic textures and terrains. Unlike traditional noise functions such as Perlin 
noise, Musgrave noise simulates complex, natural phenomena like clouds, mountains, and 
flowing water by combining multiple layers (or octaves) of noise with varying frequencies and 
amplitudes.

Let’s look in more detail at the musgraveFbm function, starting with its parameters:

	— P (float3): This is a position value, usually in object space.

	— octaves (float): Musgrave noise works by layering several octaves of noise functions. 
The result is a composite effect that builds detail as more layers are added, making the 
texture look progressively more complex.

	— dimension (float): This inversely controls the contrast.

	— lacunarity: This controls the frequency ratio between octaves. Higher lacunarity values 
make each octave smaller and more detailed, resulting in more intricate patterns.

The function initializes three float values: 

1.	 The returned sum value

2.	 An amplitude value, amp 

3.	 A multiplier, m

The multiplier is the lacunarity raised to the power negative dimension. Then it enters a 
loop for each octave. The function n31 returns a Perlin noise value from a float3 input. Since 
this is in the range 0 to 1 you remap it to the range -1 to 1, then add this to the cumulative 

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://en.wikipedia.org/wiki/Ken_Musgrave
https://en.wikipedia.org/wiki/Ken_Musgrave
https://en.wikipedia.org/wiki/Ken_Musgrave


© 2025 Unity Technologies 126 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

sum value after multiplying it by the current amplitude value, amp. Then, adjust the amp value 
by multiplying by the multiplier constant value m. Finally, change the sample position p by 
multiplying by the lacunarity parameter. 

Musgrave noise is highly valued in computer graphics for its ability to produce realistic, natural 
textures that require minimal manual input. By layering and varying different noise functions, it 
creates intricate, fractal-like patterns that resemble the complexity of real-world landscapes, 
clouds, and organic materials such as the wood example described.

Raymarch clouds using Musgrave noise

Benefits of procedural noise
In shaders, procedural noise can also be used to create animated textures or dynamic 
materials. For instance, adding noise to a water shader can create realistic ripple effects. By 
animating the noise over time, the water surface appears to move, giving a sense of fluidity 
and realism. You can combine procedural noise with color gradients and transparency effects 
to create varied and dynamic materials, such as clouds or swaying grass.

Using procedural noise offers several benefits, mainly for scalability and variety. Manually 
creating large, diverse environments can be time-consuming and require substantial memory. 
Procedural noise allows developers to create complex environments that are unique yet 
consistent, without using much storage space. Additionally, because procedural noise 
algorithms are deterministic, the same “random” environment can be recreated if needed by 
using the same seed values.

This technique also allows for infinite environments, which is useful in games that need 
continuous terrain, such as open-world or survival games. By generating the environment 
procedurally, Unity can load and unload sections of terrain as needed, reducing memory usage 
and improving performance.

https://unity.com/releases/lts


© 2025 Unity Technologies 127 of 151 | unity.com

| Volumetrics | Procedural noise | Compute shaders | 

Challenges and optimization
Procedural noise can be computationally intensive, especially when used in 3D  applications 
or for large environments. To optimize performance, you can limit the resolution of noise 
generation or employ caching strategies to store previously calculated noise values. 
Additionally, blending different noise values at different scales can add complexity and also 
improve realism by adding multiple layers of detail.

Overall, procedural noise in Unity is a versatile tool that can help you create diverse, scalable, 
and engaging worlds that adapt dynamically to player interactions.

https://unity.com/releases/lts


© 2025 Unity Technologies 128 of 151 | unity.com

Compute shaders 

If you want your game to have complex simulations like Cities: Skylines II by Colossal Order and Paradox Interactive, you can consider 
offloading part of this work to the GPU thanks to compute shaders.

https://unity.com/releases/lts
https://www.paradoxinteractive.com/games/cities-skylines-ii/about


© 2025 Unity Technologies 129 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

This recipe uses compute shaders. A compute shader can be used for any computationally 
intensive task that involves the same calculations being applied to multiple entities. We’ll look 
at particle effects and flocking as examples. If you are totally new to compute shaders then 
check out the resources at the end of this recipe.

Even though Unity provides two systems for creating particle systems, the Built-In Particle 
System and the VFX Graph, in this recipe you’ll create your own. This will help you understand 
the techniques necessary to create shaders that work with instanced meshes, allowing you to 
create visual effects featuring tens of thousands of meshes. Depending on your GPU, a million 
low-polygon meshes are feasible. These techniques can be used to create grass, hair, water, 
armies, and crowds.

ParticleFun

The ParticleFun recipe in action

Open Scenes > Compute Shaders > ParticleFun > ParticleFun and then in Visual Studio 
Code, open ParticleFun.cs, ParticleFun.compute and ParticleFun.shader from the 
same folder. If you run the program you’ll see that particles move towards the mouse position 
and change color over time. But first let’s review the code, starting with this script:

public class ParticleFun : MonoBehaviour

{

    private Vector2 cursorPos;

    // struct

    struct Particle

    {

        public Vector3 position;

        public Vector3 velocity;

https://unity.com/releases/lts


© 2025 Unity Technologies 130 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

        public float life;

    }

    const int SIZE_PARTICLE = 7 * sizeof(float);

    public int particleCount = 1000000;

    public Material material;

    public ComputeShader shader;

    int kernelID;

    ComputeBuffer particleBuffer;

    int groupSizeX;

   RenderParams rp;

The particle has a position, velocity, and life values. The data for an individual particle uses 7 
floats, so the size of a particle is 7 times the size of a float. Then, declare a number of public 
variables that the user can adjust in the Inspector. The material will be the Particle material 
that uses the ParticleFun.shader and the shader will be ParticleFun.compute.

In the Start method, call Init. The Init method initializes each particle. The position is set 
to Homogeneous Clip Space. That is a value between -w and w for each axis; w is the fourth 
component of the coordinate. Assuming w=1, then -1, -1, -1 is bottom-left at near frustum and 
1, 1, 1 is top-right, far frustum. 

Vector v = new Vector3();

v.x = Random.value * 2 - 1.0f;

v.y = Random.value * 2 - 1.0f;

v.z = Random.value * 2 - 1.0f;

v.Normalize();

v *= Random.value * 5;

 

particleArray[i].position.x = v.x;

particleArray[i].position.y = v.y;

particleArray[i].position.z = v.z;

 

particleArray[i].velocity.x = 0

particleArray[i].velocity.y = 0;

particleArray[i].velocity.z = 0;

 

particleArray[i].life = Random.value * 5.0f + 1.0f; 

https://unity.com/releases/lts


© 2025 Unity Technologies 131 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Start by creating a Vector3 with x, y, and z set to a random value between -1 and 1. Then, 
normalize this vector; remember to set the vector to have the length 1. Expand the length of 5. 
Using this vector, set the position of an individual particle in the particle array. Velocity is set 
to 0 and life to a random value between 1 and 6.

        // create compute buffer

        particleBuffer = new ComputeBuffer(particleCount, SIZE_PARTICLE);

        particleBuffer.SetData(particleArray);

        // find the id of the kernel

        kernelID = shader.FindKernel("CSParticle");

        uint threadsX;

        shader.GetKernelThreadGroupSizes(kernelID, out threadsX, out _, out _);

        groupSizeX = Mathf.CeilToInt((float)particleCount / (float)threadsX);

        // bind the compute buffer to the shader and the compute shader

        shader.SetBuffer(kernelID, "particleBuffer", particleBuffer);

        material.SetBuffer('"particleBuffer", particleBuffer);

	  

        rp = new RenderParams(material);

          rp.worldBounds = new Bounds(Vector3.zero, 10000*Vector3.one);

The next step is to create a ComputeBuffer. Notice this has two parameters, the number 
of elements, count and the size of each element, stride. Then you need to populate the 
buffer using the SetData method. This transfers data from RAM to the GPU memory. To 
be accessed by a ComputeShader all data must be in GPU memory. You call code in a 
ComputeShader using a special type of function in the ComputeShader code called a kernel. 
Each kernel has a unique ID. You can find its ID by calling the FindKernel method using the 
function name as a parameter. 

Each kernel has three thread parameters x, y, and z. The magic of compute shaders is the 
way they work in parallel. For the particle example the thread group sizes are set as 256, 1, 
1. To get the best performance from the GPU you’ll need to know about the actual device 
architecture. 

From a C# script you can access the thread group sizes using the compute shader method 
GetKernelThreadGroupSizes. To make sure you have a thread covering every particle 
you’ll need to dispatch the kernel for the number of times as shown in this code: 

Mathf.CeilToInt((float)particleCount / (float)threadsX)

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeBuffer-ctor.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeShader.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeShader.FindKernel.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeShader.GetKernelThreadGroupSizes.html


© 2025 Unity Technologies 132 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

For this example, all the work is in the x thread. Notice that the particleBuffer is passed 
to the material as well as the compute shader. 

shader.SetBuffer(kernelID, "particleBuffer", particleBuffer);

material.SetBuffer("particleBuffer", particleBuffer);

This is the principle trick of this example. You can use a shared ComputeBuffer, resident on 
the GPU, across the compute shader and a vertex-fragment shader. So, you can manipulate 
the content of the buffer in the compute shader and when it’s time to render the object using a 
vertex-fragment shader, it makes use of the same buffer in the render.

You’ll need to initialize a RenderParams instance; simply set a large Bounds instance. This will 
be needed when you use Graphics.RenderPrimitives to actually render the particles. 

This brings you to the Update method. Here you set the deltaTime and mousePosition 
for the compute shader. Then, Dispatch the kernelID you found earlier. When you Dispatch 
you set the number of work groups for the x, y, and z dimensions. Since you want to run the 
kernel for particleCount times and the x thread group size is 256, you’ll precalculate 
groupSizeX to be the integer ceiling of particleCount / 256. Ceiling simply means if it was 
7/2 the floating point value is 3.5; by taking the integer ceiling you raise this to the next whole 
number, 4. Using groupSizeX for the x dimension ensures the kernel will run with the x value 
having each index value from 0 to particleCount-1 and higher, if particleCount is not 
an exact multiple of 256. Once the Dispatch has completed, the particleBuffer will 
contain the new position values for each particle. 

From here, you’ll use a method of the Graphics interface, however, it first requires some 
explanation. This method, RenderPrimitives takes four parameters:

	— A RenderParams instance that at a minimum defines a Bounds area

	— The type of mesh topology (here you’re rendering points, but you could be rendering 
lines of triangles)

	— The vertex count in a single instance; for points this will always be just one

	— The instance count; for this example that is the number of particles

void Update()

    {

        float[] mousePosition2D = { cursorPos.x, cursorPos.y };

        // Send data to the compute shader

        shader.SetFloat("deltaTime", Time.deltaTime);

        shader.SetFloats("mousePosition", mousePosition2D);

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RenderParams.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.RenderPrimitives.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.RenderPrimitives.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Graphics.RenderPrimitives.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/ComputeShader.Dispatch.html


© 2025 Unity Technologies 133 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

        // Update the Particles

        shader.Dispatch(kernelID, groupSizeX, 1, 1);

        Graphics.RenderPrimitives(rp, MeshTopology.Points, 1, particleCount );

    }

The actual rendering will be handled by the shader attached to the material. Let’s look at that 
now.

In the ParticleFun.shader file we need to add a reference to the buffer. This will need a 
definition of the particle struct. 

struct Particle{

float3 position;

  	 float3 velocity;

  	 float life;

};

StructuredBuffer<Particle> particleBuffer;

Set the buffer as a StructuredBuffer, not a RWStructuredBuffer, because the 
shader will not be writing to this buffer. The compute shader will do that.

We have a _PointSize property. Notice that the Attributes struct, an instance of which 
is passed to the vert function, has an instanceID property. For a point shader the 
instance id will be set to 0 through to particles count – 1. We use this value as an index 
into the buffer. Since the compute shader is going to update this position value we have a 
way of using the compute shader for positioning and the vertex-fragment shader to do the 
rendering. When using MeshTopology points, the shader must set the input parameter with the 
semantic PSIZE to the pixel point size of a point. Here you set it to the variable PointSize 
which was passed by the script.

Shader "Custom/ParticleFun"

{

    Properties

    {

        _PointSize("Point size", Float) = 5.0

    }

    SubShader

    {

        Tags { "RenderType" = "Opaque" "RenderPipeline" = "UniversalPipeline" }

https://unity.com/releases/lts
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-object-structuredbuffer
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-object-rwstructuredbuffer


© 2025 Unity Technologies 134 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

        Pass

        {

            HLSLPROGRAM

            #pragma vertex vert

            #pragma fragment frag

            struct Particle{

                float3 position;

                float3 velocity;

                float life;

            };

            StructuredBuffer<Particle> particleBuffer;

            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"

            CBUFFER_START(UnityPerMaterial)

            float _PointSize;

            CBUFFER_END

            struct Attributes

            {

                float4 positionOS   : POSITION;

                uint instanceID : SV_InstanceID;

                UNITY_VERTEX_INPUT_INSTANCE_ID

            };

            struct Varyings

            {

                float4 positionHCS  : SV_POSITION;

                float4 color : COLOR;

                float size: PSIZE;

            };

            Varyings vert(Attributes IN)

            {

                Varyings OUT;

https://unity.com/releases/lts


© 2025 Unity Technologies 135 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

                Particle particle = particleBuffer[IN.instanceID];

                // Color

		    float lerpVal = particle.life * 0.25f;

		    OUT.color = half4(1.0f - lerpVal+0.1, lerpVal+0.1, 1.0f, lerpVal);

		     // Position

                OUT.positionHCS = TransformObjectToHClip(particle.position);

                OUT.size = _PointSize;

                return OUT;

            }

            half4 frag(Varyings IN) : SV_Target

            {

                return IN.color;

            }

            ENDHLSL

        }

    }

}

Let’s switch to the compute shader. Create a compute shader via Create > Shaders > 
Compute Shader by right-clicking in the Project view. 

Create a compute shader.

https://unity.com/releases/lts


© 2025 Unity Technologies 136 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

You need to define a buffer for your particles. It needs a struct that matches the one in the 
script and you need to declare a RWStructuredBuffer because this shader is going to 
write to the buffer.

// Particle’s data

struct Particle

{

  	 float3 position;

  	 float3 velocity;

  	 float life;

};

 

// Particle’s data, shared with the shader

RWStructuredBuffer<Particle> particleBuffer;

In the CSParticle kernel you have:

Particle particle = particleBuffer[id.x];

     

particle.life -= deltaTime;

 

float3 delta = float3(mousePosition.xy, 0) - particle.position;

float3 dir = normalize(delta);

 

particle.velocity += dir;

particle.position += particle.velocity * deltaTime;

 

particleBuffer[id.x] = particle;

     

if (particle.life < 0) respawn(id.x);

Grab the particle from the buffer whose index is id.x. Because of the way you Dispatch this 
kernel this will have a value of 0 through to particleCount-1, as discussed. Then, decrement 
its life. Use the deltaTime property passed with each screen update to the compute shader 
by the script. It’s the time in seconds that has elapsed since the last update. It will be a tiny 
value since Unity aims to display a new rendered frame at around 60 times a second. So 
deltaTime will be around 16ms or 0.016 seconds.

Create a vector from the particle to the mouse position, setting the z value to 0 – this is the 
default value for z for the particles. The mouse position value is set to the world position of the 
mouse. In the ParticleFun.cs file, use an OnGUI event. 

https://unity.com/releases/lts


© 2025 Unity Technologies 137 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

void OnGUI()

    {

        Vector3 p = new Vector3();

        Camera c = Camera.main;

        Event e = Event.current;

        Vector2 mousePos = new Vector2();

        // Get the mouse position from Event.

        // Note that the y position from Event is inverted.

        mousePos.x = e.mousePosition.x;

        mousePos.y = c.pixelHeight - e.mousePosition.y;

        p = c.ScreenToWorldPoint(new Vector3(mousePos.x, mousePos.y, 

                                  c.nearClipPlane ));

        cursorPos.x = p.x;

        cursorPos.y = p.y;    

    }

This detects a mouse press and we use a bit of code to convert this into a screen position. 
Screen coordinates use bottom as 0, whereas Event.mousePosition uses top as 0. To 
invert the y value, subtract mousePosition.y from the Camera pixelHeight. Then 
use the Camera method ScreenToWorldPoint (this method requires a Z value) and finally, 
nearClipPlane ensures a successful result. 

If you want to know more about converting mouse positions to world coordinates, see this 
post from Game Dev Beginner.

Now you have a vector you can use to accelerate the particle, away from the mouse position. 
Then use the particle’s velocity modulated by deltaTime.

If a particle’s life is less than 0 then respawn the particle and use a fast-random function to 
generate the random values necessary. XorShift random number generators were a great 
discovery for real-time graphics by George Marsaglia. 

The particle is positioned within a sphere of radius 0.8, centered around the mouse position 
and z=0. Reset the life of a new particle to four seconds and reset the velocity to zero.

https://unity.com/releases/lts
https://gamedevbeginner.com/how-to-convert-the-mouse-position-to-world-space-in-unity-2d-3d/#screen_to_world_3d
https://gamedevbeginner.com/how-to-convert-the-mouse-position-to-world-space-in-unity-2d-3d/#screen_to_world_3d
https://gamedevbeginner.com/how-to-convert-the-mouse-position-to-world-space-in-unity-2d-3d/#screen_to_world_3d
https://en.wikipedia.org/wiki/George_Marsaglia
https://en.wikipedia.org/wiki/George_Marsaglia
https://en.wikipedia.org/wiki/George_Marsaglia


© 2025 Unity Technologies 138 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Let’s use the life property to control the color of the particle. Back in the vertex-fragment 
shader in the vert function add this code to the color assignment:

void respawn(uint id)

{

	 rng_state = id;

	 float tmp = (1.0 / 4294967296.0);

	 float f0 = float(rand_xorshift()) * tmp - 0.5;

	 float f1 = float(rand_xorshift()) * tmp - 0.5;

	 float3 normalF3 = normalize(float3(f0, f1, 0.0)) * 0.8f;

	 normalF3 *= float(rand_xorshift()) * tmp;

	 particleBuffer[id].position = float3(normalF3.x + mousePosition.x, normalF3.y + 
mousePosition.y, 0.0);

	 // reset the life of this particle

	 particleBuffer[id].life = 4;

	 particleBuffer[id].velocity = float3(0,0,0);

} 

	 float life = particleBuffer[instance_id].life;

	 float lerpVal = life * 0.25f;

	 o.color = fixed4(1.0f - lerpVal+0.1, lerpVal+0.1, 1.0f, lerpVal);

Now the particles change color. The lerp value will be a value between 1 and 0, because life is 
set to 4 by the respawn function and you multiply this value by 0.25. The red channel will start 
at 0.1 and increase to 1.1 as life decreases, while the green channel starts at 1.1 and decreases 
over time to 0.1. Blue is always 1 and alpha decreases over time, causing the pixel to fade 
away.

This example shows how useful it can be to combine a compute shader and vertex-fragment 
shader when rendering multiple instances of the same asset. The simplest asset of all is used, 
a single pixel color value. The next example shows you how to extend this concept to render 
multiple mesh objects.

https://unity.com/releases/lts


© 2025 Unity Technologies 139 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Adding a mesh object

The Instanced Flocking scene

This mesh object example implements flocking. The idea of flocking came from observations 
of birds in flight, and the conclusion that the motion of a flock could be controlled with simple 
rules, the first one being that a bird could only know about the behavior of a small group of 
birds nearby and within eyesight. It was first suggested at Siggraph 87 in a paper presented by 
Craig Reynolds. He called members of the flock Boids, a term that has stuck as a common term 
for an individual member of a computer simulated flock. Boid is short for “Bird-oid” object.

Once you’ve scanned the members of the flock that are within a certain user-defined radius 
and in the line of sight, use these three rules to adjust the position, orientation, and velocity of 
each boid.

1.	 Separation: Steer to avoid crowding other local boids. To achieve this, find the vector 
that points away from vectors from the current boid to other local boids.

Image by Craig Reynolds, Boids: Background and Update 

https://unity.com/releases/lts
https://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/
https://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/
https://www.red3d.com/cwr/
https://www.red3d.com/cwr/
https://www.red3d.com/cwr/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/


© 2025 Unity Technologies 140 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

2.	 Alignment: Steer towards the average heading of local boids. Lerp the current heading 
with the average heading of local boids.

Image by Craig Reynolds, Boids: Background and Update 

3.	 Cohesion: Steer to move toward the average position of local boids. Find the average 
position of local boids and steer towards it.

Image by Craig Reynolds, Boids: Background and Update 

If separation and cohesion seem to be opposites of each other, remember that for separation 
you are working with vectors from the current boid. Whereas for cohesion you are considering 
the average position of a group of boids in the calculation.

Let’s look at a concrete example. 

Open the scene InstancedFlocking from Scenes > ComputeShaders > Instanced and in 
VS Code, open InstancedFlocking.cs and InstancedFlocking.compute from 
the same folder. You’re going to be working with another ComputeBuffer, with this example 
focusing on the compute shader. 

https://unity.com/releases/lts
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/
https://www.red3d.com/cwr/boids/


© 2025 Unity Technologies 141 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

A boid has a position, direction, and a noise offset value. A constructor method is added to 
this struct, but the data in the struct is only two Vector3s and a float. 

public struct Boid

    {

        public Vector3 position;

        public Vector3 direction;

        public float noise_offset;

        public Boid(Vector3 pos, Vector3 dir, float offset)

        {

            position.x = pos.x;

            position.y = pos.y;

            position.z = pos.z;

            direction.x = dir.x;

            direction.y = dir.y;

            direction.z = dir.z;

            noise_offset = offset;

        }

    } 

There are a number of public properties that will allow the user to adjust the behavior of the 
flock; each will be examined as they come up when coding the shader. 

InitBoids creates and populates a boids array. Position is a random value inside a sphere.

InitShader creates and sets the ComputeBuffer from the boids array and sets a number of 
properties in the compute shader.

The Update method sets time and delta time and then dispatches the kernel. Once 
the compute shader has calculated the new position and direction for each boid, use 
RenderMeshIndirect to actually render the boids. RenderMeshIndirect needs a 
RenderParams instance, a mesh, and a GraphicsBuffer instance. The RenderParams 
instance is initialized in the Start method.

renderParams = new RenderParams(boidMaterial);

renderParams.worldBounds = new Bounds(Vector3.zero, Vector3.one * 1000); 

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Graphics.RenderMeshIndirect.html
https://docs.unity3d.com/ScriptReference/RenderParams.html
https://docs.unity3d.com/ScriptReference/GraphicsBuffer.html


© 2025 Unity Technologies 142 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Notice the constructor is passed a material. This material must support instancing. The 
method you’ll use is to edit the URP Lit shader. To do this, copy the following files from the 
folder Library/PackageCache/com.unity.render-pipelines.universal/Shaders:

	— Lit.shader

	— LitForwardPass.hlsl 

	— ShadowCasterPass.hlsl, if shadows are supported

Put these files together into a subfolder. 

Take a look at Scenes > ComputeShaders > Instanced > Shader in VS Code. Notice the three 
files copied from the PackageCache folder. The changes to Lit.shader are minimal. The shader 
name is changed. 

Shader "Custom/Flocking/Instanced"

{

    …

And the path to LitForwardPass.hlsl is changed to a single dot, meaning it will use the file in 
the same folder as the Lit.shader file. In the LitForwardPass.hlsl file, define the boid struct and 
the boidsBuffer.

struct Boid

{

    float3 position; 

    float3 direction; 

    float noise_offset;

};

StructuredBuffer<Boid> boidsBuffer;

We add a create_matrix function. This creates a rotation and position matrix from a 
position, direction, and up vectors. 

float4x4 create_matrix(float3 pos, float3 dir, float3 up) {

    float3 zaxis = normalize(dir);

    float3 xaxis = normalize(cross(up, zaxis));

    float3 yaxis = cross(zaxis, xaxis);

    return float4x4(

        xaxis.x, yaxis.x, zaxis.x, pos.x,

        xaxis.y, yaxis.y, zaxis.y, pos.y,

        xaxis.z, yaxis.z, zaxis.z, pos.z,

        0, 0, 0, 1

    );

} 

https://unity.com/releases/lts


© 2025 Unity Technologies 143 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

It’s important to add an SV_instanceID element to the Attributes struct. This will allow 
access to the instanceID in the vertex shader.

struct Attributes

{

    float4 positionOS   : POSITION;

    float3 normalOS     : NORMAL;

    float4 tangentOS    : TANGENT;

    float2 texcoord     : TEXCOORD0;

    float2 staticLightmapUV   : TEXCOORD1;

    float2 dynamicLightmapUV  : TEXCOORD2;

    uint instanceID : SV_InstanceID;

    UNITY_VERTEX_INPUT_INSTANCE_ID

};

The Lit.shader defines the function LitPassVertex as the vertex shader. This function is in 
the LitForwardPass.hlsl for a Forward render pipeline. 

Now that you have an instanceID in the input Attributes parameter, you can source an 
individual boid from the boidsBuffer. Use the create_matrix function and the boid position 
and direction to create a matrix. Edit the parameter passed to GetVertexPosition in the 
default version of this file by multiplying input.positionOS by the matrix just created. 
GetVertexPosition is expecting a float3 so outside the mul function, add .xyz to 
change the float4 output to a float3. Do the same for the NormalInput:

Boid boid = boidsBuffer[input.instanceID];

float4x4 mat = create_matrix(boid.position, boid.direction, float3(0.0, 1.0, 0.0));

VertexPositionInputs vertexInput = GetVertexPositionInputs(mul(mat, input.positionOS).xyz);

VertexNormalInputs normalInput = GetVertexNormalInputs(mul(mat, input.normalOS), mul(mat, 
input.tangentOS));

Now you have a material to use. Let’s look at how you use this to display multiple mesh objects.

An additional buffer, argsBuffer, which is a graphics buffer, has been added to the script. 
The vertex-fragment shader will use this buffer when rendering. You’ll need to add the code to 
initialize the buffer. 

When creating the buffer, set the type as IndirectArguments, the elements in the array 
as 1, and the size of an element as the size of an IndirectDrawIndexedArgs. Create 
an array of a single IndirectDrawIndexedArgs. Set the indexCountPerInstance 
to the vertex count of the boidMesh using the GetIndexCount method and set the 
instanceCount to the numOfBoids property. 

https://unity.com/releases/lts


© 2025 Unity Technologies 144 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Copy the data over to the argsBuffer using the SetData method. Now the data is resident 
on the GPU:

argsBuffer = new GraphicsBuffer(GraphicsBuffer.Target.IndirectArguments, 1, GraphicsBuffer.
IndirectDrawIndexedArgs.size);

GraphicsBuffer.IndirectDrawIndexedArgs[] data = new GraphicsBuffer.IndirectDrawIndexedArgs[1];

data[0].indexCountPerInstance = boidMesh.GetIndexCount(0);

data[0].instanceCount = (uint)numOfBoids;

argsBuffer.SetData(data);

This leads to the Update method. Set the Time and deltaTime in the compute 
shader. Dispatch it and once this has calculated the boid positions and directions, use 
RenderMeshIndirect to render the boids.

 void Update()

    {

        shader.SetFloat("time", Time.time);

        shader.SetFloat("deltaTime", Time.deltaTime);

        shader.Dispatch(this.kernelHandle, groupSizeX, 1, 1);

        Graphics.RenderMeshIndirect( renderParams, boidMesh, argsBuffer );

    }

That is everything to know about the script. Let’s switch focus to the flocking code in the 
compute shader.

This involves applying the three simple rules outlined earlier: Separation, alignment, and 
cohesion. First, get the boid from the buffer based on id.x. Then, set up the initial separation, 
alignment, and cohesion values. Only consider nearby boids when calculating these values. 
Inevitably, the current boid is inside this radius so nearbyCount starts at 1, not 0. Then for 
every boid you can ignore it if the loop is pointing at the current boid. 

To apply the updates, i must not equal id.x. Then you get the boid pointed to by the i variable. 
There’s one more check to see if the distance from the current boid to the temp boid is less 
than the property neighbor distance:  

Boid boid = boidsBuffer[id.x];

 

float3 separation = 0;

float3 alignment = 0;

float3 cohesion = flockPosition;

 

https://unity.com/releases/lts


© 2025 Unity Technologies 145 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

uint nearbyCount = 1; // Add self that is ignored in loop

 

for (int i = 0; i < boidsCount; i++)

{

  if (i != int(id.x))

  {

    Boid tempBoid = boidsBuffer[i];

    if (distance(boid.position, tempBoid.position) < neighbourDistance){

      //position calculation goes here

    }

  }

} 

The most complex calculation is separation, which is explained in more detail later in this 
section, but first, let’s look at alignment and cohesion. For alignment, you’ll get the sum of 
each boid’s direction and for cohesion, the sum of each boid’s position, with the cohesion 
variable having the value flock position:  

alignment += tempBoid.direction;

cohesion += tempBoid.position;

nearbyCount++; 

Then outside the loop you use the nearbyCount value to get the average of value for 
alignment and cohesion by dividing the accumulated values by the nearbyCount value. 
For cohesion you need to subtract the current boids position and normalize the result. This 
leaves the target direction as the sum of the three properties. But when applying the newly 
calculated direction, only use it at a very low blend with the existing boid direction. By using 
lerp, only 6% of the calculated direction is used to 94% of the existing. 

Now that you have a boid direction (this is the forward vector not a rotation value), you can 
use it to update the position by multiplying it by the speed and deltaTime.  The last step is 
to apply our updates back to the buffer.

float avg = 1.0 / nearbyCount;

alignment *= avg;

cohesion *= avg;

cohesion = normalize(cohesion - boid.position);

 

float3 direction = alignment + separation + cohesion;

 

boid.direction = lerp(direction, normalize(boid.direction), 0.94);

boid.position += boid.direction * boidSpeed * deltaTime;

 

boidsBuffer[id.x] = boid; 

https://unity.com/releases/lts


© 2025 Unity Technologies 146 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

If you run the program now the boids will all merge into one, as you haven’t yet applied a 
separation value. Let’s fix that.

Back in the for loop you first get a vector, and its length, from the temporary boid to the boid 
you’re currently setting. If the temporary boid is farther away than the value set as neighbor 
distance then ignore it. If it’s less than this distance you need to allow for it in your separation 
value. Use the offset vector and scale this by a value that increases the nearer you get to the 
boid you’re setting. Because you’re using 1 over dist you’ll need to make sure dist is never zero, 
so avoid division by zero. 

So, what does 1/dist minus 1/neighbourDistance mean? Think about what happens when 
dist is small, 1/dist is very large and you can ignore the small value of 1/neighbor distance. 
Whereas if this boid is near the limit of neighbor distance then you get more or less 1/neighbor 
distance minus 1/neighbor distance or zero. So when a boid is close to the target boid, you 
massively increase the separation vector and when one is near the neighbor distance value 
you ignore it.

float3 offset = boid.position - tempBoid.position;

float dist = length(offset);

if (dist<neighbourDistance){

  	 dist = max(dist, 0.000001);

  	 separation += offset * (1.0/dist - 1.0/neighbourDistance);

}

Now you have a flocking example. After a few seconds all the boids come together and orbit 
around the flock position. 

SkinnedFlocking scene

https://unity.com/releases/lts


© 2025 Unity Technologies 147 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

This final example uses a Skinned Mesh Renderer. Open the scene called SkinnedFlocking via 
the Scenes > ComputeShaders > Skinned folder and run it. You’ll see loads of birds flying 
around. In VS Code, open SkinnedFlocking.cs from the Scripts folder. From the Shader 
folder, open SkinnedFlocking.compute and LightForwardPass.hlsl.

 Let’s start with the script. This is essentially the same as the previous example, with 
a few changes. First, the boid struct now has a frame property. Use this to select the 
animation frame to display. There is now a numOfFrames property that is passed to the 
compute shader and the custom Lit shader. The script also uses the EnableKeyword and 
DisableKeyword methods of the shader to add or remove a define from the shader. This 
example also has a third buffer, the vertexAnimationBuffer, and you might have noticed a new 
method, GenerateVertexAnimationBuffer. Let’s review this method.

 Before the program starts you’ll use an Animator component to set the mesh into a series of 
poses. Then put the vertex positions in the pose into a buffer. By choosing the correct index 
from this buffer you can display a series of different poses of the mesh. The first thing you 
need is the Animator component. Animations in Unity can use layers, but keep it simple here 
and use just layer one.

animator = boidObject.GetComponentInChildren<Animator>();

int iLayer = 0;

You can see that the Animator is set to automatically play the animation clip FlapWings. To set 
a pose you’ll need the state info, a new Mesh to store the pose and a couple of variables.

AnimatorStateInfo aniStateInfo = animator.GetCurrentAnimatorStateInfo(iLayer);

 

    	 Mesh bakedMesh = new Mesh();

    	 float sampleTime = 0;

    	 float perFrameTime = 0; 

This script has a public property called animationClip that’s set to the FlapWings 
animation.  Use the frame rate and length properties included in the AnimationClip to 
determine the number of frames to bake. Because this value is going to be used so often to 
set the index in the vertexAnimationBuffer to use for a vertex, it will be more efficient if 
it’s a power of two. The Mathf object has a useful method to set this value. Now you can get 
the duration of an individual frame.

numOfFrames = Mathf.ClosestPowerOfTwo((int)(animationClip.frameRate * animationClip.length));

    	 perFrameTime = animationClip.length / numOfFrames;

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
https://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
https://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
https://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
https://docs.unity3d.com/ScriptReference/SkinnedMeshRenderer.html
https://docs.unity3d.com/ScriptReference/Animator.html
https://docs.unity3d.com/ScriptReference/AnimationClip.html


© 2025 Unity Technologies 148 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

You’ll need the vertex count of the mesh. Now you can set up an array of Vector4s to store 
the vertex data. It’s going to be vertex count times numOfFrames long. You’re all set to grab 
the vertex data, which is done in a for loop. Recall that you got an aniStateInfo object 
that you can use to get the animation to play, setting the layer and start time. Then, call 
update with a deltaTime of zero. This will update the mesh to the position defined by this 
animation. Now you can bake the mesh to your bakedMesh object and then iterate through 
the vertices to store their values in the vertex array.

var vertexCount = boidSMR.sharedMesh.vertexCount;

       

    	 Vector4[] vertexAnimationData = new Vector4[vertexCount * numOfFrames];

    	 for (int i = 0; i < numOfFrames; i++)

    	 {

        	 animator.Play(aniStateInfo.shortNameHash, iLayer, sampleTime);

        	 animator.Update(0f);

 

        	 boidSMR.BakeMesh(bakedMesh);

             //Grab the vertices into the vertex array here

             for(int j = 0; j < vertexCount; j++)

        	 {

            		  Vector4 vertex = bakedMesh.vertices[j];

            		  vertex.w = 1;

            		  vertexAnimationData[(j * numOfFrames) +  i] = vertex;

        	 }

 

        	 sampleTime += perFrameTime;

    	 }

At this stage you’ll have an array of vertices that you can use to set up your ComputeBuffer. 
Pass this buffer to the material. The compute shader doesn’t need this buffer, only the shader. 
You’ll only read from the buffer.

vertexAnimationBuffer = new ComputeBuffer(vertexCount * numOfFrames, 16);

vertexAnimationBuffer.SetData(vertexAnimationData);

boidMaterial.SetBuffer("vertexAnimation", vertexAnimationBuffer);

Now let’s look at how the compute shader has been affected.

Use the current speed, deltaTime and the property boidFrameSpeed to adjust the boid 
frame property. A faster moving bird will flap quicker. Check that the frame property hasn’t 
passed the numOfFrames property. If it has then subtract this value, so boid.frame will be 
in the range 0 to numOfFrames.

https://unity.com/releases/lts


© 2025 Unity Technologies 149 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

boid.frame = boid.frame + velocity * deltaTime * boidFrameSpeed;

if (boid.frame >= numOfFrames) boid.frame -= numOfFrames; 

Now let’s review the shader. It’s essential that the Attributes instance passed to the vertex 
shader function includes vertexID as well as instanceID.

struct Attributes

{

    float4 positionOS   : POSITION;

    float3 normalOS     : NORMAL;

    float4 tangentOS    : TANGENT;

    float2 texcoord     : TEXCOORD0;

    float2 staticLightmapUV   : TEXCOORD1;

    float2 dynamicLightmapUV  : TEXCOORD2;

    uint instanceID : SV_InstanceID;

    uint vertexID : SV_VertexID;

    UNITY_VERTEX_INPUT_INSTANCE_ID

};

Now in the LitVertexPass function you’ll get the boid from the boidsBuffer using the 
instanceID. If FRAME_INTERPOLATION is not defined then set positionOS.xyz to the 
vertexAnimation buffer at index vertexID * numFrames + boid.frame. 

If FRAME_INTERPOLATION is defined then set positionOS.xyz to a blend of the current 
boid.frame value and the next frame using lerp. The blend value is determined by the 
fractional part of boid.frame. If this is 0 then the blend will be just the frame value. If the 
fractional part is 0.5 then it will result in a linear interpolation of 50% frame and 50% next.

Boid boid = boidsBuffer[input.instanceID];

    #ifdef FRAME_INTERPOLATION

        uint next = boid.frame + 1;

        if (next >= numOfFrames) next = 0;

        float frameInterpolation = frac(boidsBuffer[input.instanceID].frame);

        input.positionOS.xyz = lerp(vertexAnimation[input.vertexID * numOfFrames + boid.
frame], vertexAnimation[input.vertexID * numOfFrames + next], frameInterpolation);

    #else

        input.positionOS.xyz = vertexAnimation[input.vertexID * numOfFrames + boid.frame];

    #endif

https://unity.com/releases/lts


© 2025 Unity Technologies 150 of 151 | unity.com

| Procedural noise | Compute shaders | Conclusion

Play the app now and see how the speed of the birds flapping their wings is affected by their 
velocity. Do this by following these steps: 

1.	 Set up a vertex buffer that stores a number of poses of the bird, performing the flap 
wings animation.

2.	 In the compute shader set the Boid property frame to a value between 0 and 
numOfFrames.

3.	 The speed at which this frame property updates is dictated by the velocity of the bird.

4.	 In the surface shader you’ll get the current and next frames using the Boid property.

5.	 In the vertex shader, use a combination of vertexID and the current and next frame values 
to get the appropriate value from the vertex buffer.

This recipe moves from using a compute shader to position single points being rendered, to 
rendering multiple animated meshes. Compute shaders offer a great performance boost for 
some computationally expensive processes and are well worth learning to use effectively.

More resources

Learn to Write Unity Compute Shaders

https://unity.com/releases/lts
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders
https://www.udemy.com/course/compute-shaders


© 2025 Unity Technologies 151 of 151 | unity.com

Conclusion

As mentioned in the introduction to this guide, the e-book Introduction to the Universal 
Render Pipeline for advanced Unity creators is a valuable guide for helping experienced Unity 
developers and technical artists get the best out of the latest capabilities available with URP.  

All of Unity’s advanced technical e-books are available from the Unity best practices hub. The 
e-books can also be found on the advanced best practices Documentation page.

https://unity.com/releases/lts
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/urp-introduction.html
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/6000.0/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook


unity.com

https://unity.com/es
https://unity.com/

	Introduction
	Author and contributors
	Unity contributors

	Getting started 
with this guide
	Starting a new URP project
	Importing e-book sample scenes


	Stencils
	Renderer Features

	Instancing
	GPU Resident Drawer and GPU occlusion culling
	Instancing 
	SRP Batcher

	GPU Instancing
	RenderMeshPrimitives


	Toon and outline shading
	Simple toon shading
	Shading
	Outlining 
	Toon shading

	Shading
	Outlining 

	Ambient occlusion
	SSAO properties

	Decals
	URP Decal Projection properties
	Creating the material
	Adding a decal with code


	Water
	DepthFade subgraph
	TextureMovement subgraph
	Water shader 
	Color
	Normal maps
	Swell


	LUT for color grading
	Adaptive Probe Volumes 
	Using APVs in a scene
	Lighting Scenario asset
	Fixing issues with APVs

	Light leaks
	Rendering Layers
	Streaming APVs
	Sky occlusion
	Light probes vs APVs


	Screen space refraction
	Volumetrics
	Volumetric cloud

	Procedural noise
	Types of procedural noise
	Implementing procedural noise in Unity

	Procedural heightmap example
	Using noise to generate a wood texture
	Benefits of procedural noise
	Challenges and optimization


	Compute shaders 
	ParticleFun
	Adding a mesh object


	Conclusion

	Botón 3: 
	Página 5: 
	Página 8: 
	Página 13: 
	Página 20: 
	Página 33: 
	Página 44: 
	Página 49: 
	Página 55: 
	Página 64: 
	Página 72: 
	Página 92: 
	Página 102: 
	Página 114: 
	Página 128: 
	Página 151: 



