
0-2
years

$112,500

Pay Range
Midpoint

$90,000
$67,500

Note: These ranges are based on the Radford compensation
database's 50th percentile for all industries, company sizes, sectors,
and US locations. The range minimum is 25% below the midpoint, and
the maximum is 25% above it. These figures are not reflective of
Unity’s pay ranges but provide broad benchmarks across US
geographies and industries. This information should not be used to
represent Unity’s compensation ranges or philosophy.

Write, modify, and maintain code for real-time 3D
(RT3D) applications based on specifications and best
practices with guidance from senior programmers.

Coding and development

Help identify and fix bugs or issues in the codebase.
Bug fixing and troubleshooting

Contribute to documenting code and maintain clear and
organized documentation for the project.

Documentation and code maintenance

Top three responsibilities

Demonstrate the ability to use various APIs, use
consistent code styles throughout your work, and
follow general coding best practices.

Coding proficiency in at least one
scripting language

Review and understand code bases and expand on
existing code while adhering to project standards.

Ability to interpret existing code

Diagnose and fix code that doesn’t compile or isn’t
performing as expected.

Debug and troubleshoot code

Top three skills

A junior programmer assists in the development of interactive applications and experiences using
real-time graphics technology. They work collaboratively with senior programmers, artists, quality
assurance (QA) team members, and designers to implement game mechanics, debug and optimize
code, and contribute to the overall development process. Their responsibilities may include scripting
interactive behaviors, solving technical issues, and continuously learning and adapting to the
evolving landscape of games and other creative industries.

Junior Programmer

UNIVERSAL JOB PROFILE

5+
years

Career Stage
Entry level
0-2 years of professional experience

Alternative Titles

Junior interactive developer
Junior software developer
Junior software engineer

A junior programmer may also have the
following alternative titles:

Other Terms
Roles are often specified by incorporating
the main tool or task into the title, such as:

Junior Unity programmer
Junior programmer - Unreal Engine
Junior programmer - front end

Note: Some companies might use general titles like
“Programmer”. Review job descriptions carefully to
ensure alignment with entry-level qualifications.

Table of contents

About the role
Key traits and qualities of a Junior Programmer

Responsibilities

Skills required

Tools used

Collaborative roles

Job progression

UJP information & contributions

Acknowledgements

About the Universal Job Profiles

Contributing to the Universal Job Profiles

Changelog

Navigating job rejection

Interview process

Preparing for an interview

Interviewing for the job

Full industry list

Resources for career development
Learning experiences

Key terms

Internships

Applying for the job
Application requirements

Resume requirements

Cover letters

Portfolio requirements

Linkedin Profile

General application tips

Portfolio recommendations

Portfolio maintenance

About Applicant Tracking Systems (ATS)

Sample resume

Job boards

A junior programmer in the early stages of their career needs to
balance two roles: contributing to projects and learning from more
experienced colleagues. Employers value candidates who can
integrate smoothly into a team, prioritizing collaboration over
individualism.

While technical skills matter, clear communication and teamwork are
often more important. Employers seek junior programmers who can
articulate problems, propose solutions, and explain their reasoning,
while also being open to feedback and different perspectives.
Success in this role requires combining coding proficiency with
strong interpersonal skills to thrive in a collaborative environment.

Key traits and qualities of a junior programmer

Job details

When junior programmers are first getting started,
their tasks will likely remain closely monitored by
senior programmers and team leads. The parts of a
project they will contribute to will remain small, but
grow as they increase their skills and gain a deeper
understanding of the project. Below are a sample of
the most common responsibilities that junior
programmers are assigned, but specific
responsibilities will vary from company to company.

Responsibilites

Job details

Most junior programmers will be assigned these responsibilities. All junior
programmers should be able to perform the following tasks:

Core Responsibilities

Coding and development: Junior programmers are responsible for writing, modifying, and
maintaining code for real-time 3D applications. They implement mechanics, user
interfaces, or other interactive features based on design specifications and established
programming best practices with guidance from senior programmers.

Testing and quality assurance: Junior programmers may be involved in testing the
functionality and performance of the developed applications. They conduct unit testing,
assist in writing automated testing scripts, assist in user testing, and contribute to
ensuring the quality and stability of the software.

Bug fixing and troubleshooting: Junior programmers help identify and fix bugs or issues in
the codebase. They work closely with the development team to investigate and resolve
problems, whether they’re related to functionality, performance, or compatibility with
different platforms or devices.

Collaboration and communication: Junior programmers collaborate with other team
members, such as senior programmers, artists, QA testers, and designers, to understand
project requirements, estimate task duration, and contribute to the development process.
Effective communication, both written and verbal, is essential to coordinate tasks, share
progress updates, reach milestones, and seek assistance when needed.

Documentation and Code Maintenance: Junior programmers contribute to
documenting their code and maintaining clear and organized project
documentation. They also use version control systems like Git to manage
code changes and collaborate effectively with the team. These practices
enhance code readability, streamline collaboration, and support knowledge
transfer within the team.

Responsibilities

These tasks are slightly more specialized, but it will greatly benefit junior
programmers to be familiar with these tasks should they be assigned.

Secondary Responsibilities

UI/UX consistency: Junior programmers may contribute to the establishment and
maintenance of UI/UX standards across products and experiences within the company's
portfolio. To do so, they collaborate closely with design and development teams to ensure
consistent and user-friendly interfaces across projects.

Back end coding and development: With guidance from senior programmers, junior
programmers may design, modify, and maintain the underlying systems that drive the
application's functionality. This may include optimizing database queries, implementing
APIs, or ensuring seamless data flow.

API development: Junior programmers may be responsible for aiding in the creation of and
maintaining APIs that act as bridges between the front end and back end of an application.
These APIs facilitate communication and data exchange, enabling various components to
work together, from user interactions on the interface to data processing happening
behind the scenes.

Responsibilities

Beyond day-to-day responsibilities, junior programmers should remain
focused on continuing to build their skills and knowledge base so that they can
eventually progress to more senior level roles.

Personal Responsibilities

Ongoing learning and development: In order to grow in their chosen field, junior
programmers should maintain a skills growth mindset, even once employed. They
should actively invest time in learning and implementing new programming languages,
frameworks, and stay up to date with the latest advances in RT3D.

The specific tasks assigned to a junior programmer can vary significantly
depending on the project they’re working on. A junior programmer in games may
develop aspects of a combat system, while a junior programmer working in
automotive might contribute to a driving simulation. The skills listed below are
generalized to be universally relevant no matter the project. These skills ensure
that a junior programmer is well rounded and can adapt themselves to any job.

Required skills

Required skills

Ability to interpret existing code within a code base

Script comprehension and integration:

Experience using the features of an integrated development environment
(IDE) to code efficiently and correctly.
Ability to program scripts that integrate into existing systems.
Ability to execute coding standards as established by senior programmers.

Experience composing scripts that utilize various APIs.

Effective scripting practices:

A coding style that is efficient and easy to read.

Familiarity with coding best practices to maximize code
readability and efficiency.

Experience refactoring code for optimization and
readability.

Experience participating in code review cycles.

Ability to write script functionality for data persistence
within and between runtime sessions.

Data handling and persistence:

Knowledge of appropriate data types and structures
based on situational needs.

Required skills

Familiarity with unit testing to ensure that code functions as intended.

Bug fixing and troubleshooting:

Ability to diagnose and fix code that compiles but fails to perform as expected.

Ability to troubleshoot runtime exceptions.

Familiarity with debugging applications on multiple platforms.

Ability to profile and debug trivial performance issues.

Ability to give and receive feedback in a positive and helpful way.

Teamwork skills:

Ability to work in a team.

Empathy with others in order to foster trust and respect.

Ability to resolve conflicts diplomatically.

Technical proficiency:
Excellent writing skills for documentation and internal communications.

Familiarity with popular task management software, such as Jira or Trello

Familiarity with common project management methods, such as agile and waterfall

Familiarity with Key Performance Indicators (KPIs) and Objectives and Key Results
(OKRs)

Knowledge of fundamental version control concepts.

Habits for handling stress, such as mindfulness practices, to cope with the
busy game industry.

Personal development:

A growing professional network in the game industry, cultivated by joining
forums, attending conferences, and going to meetups

Ability to manage your time well to balance work, personal life, and relaxation
for a healthy lifestyle

In games and broader creative industries, junior programmers make use of a large
variety of tools that are specially designed for specific tasks. The following list
highlights important tool categories that are often required for day-to-day work.
Junior programmers should be proficient in at least one tool from each category.
Demonstrating an understanding of how and why a category of tools is used is
more important than knowing the specific programs a company uses.

Tools used

Tools used

Integrated development environments (IDEs): IDEs such as Xcode, Android
Studio, Visual Studio, or JetBrains Rider provide a comprehensive coding
environment with features like code editing, debugging, version control
integration, and project management.

Real-time 3D engines: Real-time 3D engines like Unity or Unreal Engine are
widely used in the industry. These engines provide a suite of tools for designing,
building, and deploying interactive applications, including game development,
simulations, and virtual experiences.

Programming languages: Languages suited for real-time 3D
development include C#, C++, Lua, and Python, among many
others. The choice of language will depend on the specific engine,
project requirements, or company preferences.

Version control systems: Version control systems like Git or SVN
are crucial for collaboration and code management. These tools
are used to track changes, manage code branches, and
collaborate with other team members.

Tools used

Artificial intelligence (AI) tools: While still very new, AI tools such as ChatGPT,
TensorFlow, or PyTorch are already being integrated into production workflows
to assist with a wide array of programming tasks. These tools are able to
generate code snippets, provide code completion suggestions, and offer
solutions to coding issues.

Cloud services: For junior programmers focusing on back-end development,
platforms such as AWS (Amazon Web Services), Azure, Unity DevOps, and
others offer scalable infrastructure and services for hosting applications,
databases, and server-side components.

Debugging and profiling tools: Debugging and profiling tools, such as Visual
Studio Debugger or Unity Profiler, help in identifying and troubleshooting issues
in code. These tools assist in understanding runtime behavior, performance
bottlenecks, and memory management.

Project management and communication tools: Project management tools like
Jira, Trello, or Asana are used to track tasks, collaborate with team members,
and communicate project updates. Communication tools like Slack or Microsoft
Teams facilitate real-time communication and collaboration within the
development team.

Junior programmers typically work closely with several departments on a day-
to-day basis, collaborating as part of a larger development team. The following
list includes common job roles that junior programmers may work with:

Collaborative roles

Collaborative roles

Senior programmers/developers: Junior programmers work closely with
senior programmers or developers who provide guidance, mentorship, and
oversight. They collaborate on coding tasks, share knowledge, and seek
guidance on more complex programming challenges.

Artists and designers: In real-time 3D industries, collaboration with artists and
designers is crucial. Junior programmers work closely with these professionals
to implement their visual assets, integrate animations, optimize performance,
and ensure that the interactive elements align with the artistic vision and design
specifications.

Technical artists: Technical artists bridge the gap between art and
programming. They help implement and optimize art assets, create
shaders, set up visual effects, and ensure the technical feasibility
of the artistic vision. Junior programmers may collaborate with
technical artists to incorporate their work into the overall
development process.

Producers and project managers: Producers and project
managers oversee the development process and ensure that
projects are completed on time and within budget. Junior
programmers interact with them to provide progress updates,
receive task assignments, and discuss project requirements or
changes.

Collaborative roles

Sound engineers: For projects involving audio, junior programmers collaborate with
sound engineers to integrate sound effects, music, or voice-over assets into the
application. They work together to synchronize audio cues with visual elements and
create an immersive auditory experience.

Data Scientists/Analysts: Depending on the company and project, junior
programmers may work with data scientists or analysts to implement tracking
mechanisms, collect and analyze data, and integrate data-driven features or systems
into the application.

Quality assurance testers: Junior programmers work closely with QA testers to
identify and fix bugs, ensure functionality, and optimize performance. They
collaborate to reproduce and understand reported issues and work together to
resolve them effectively.

One of the greatest advantages of starting out as a junior programmer is the wide
range of career opportunities that open up with experience. While many
programmers choose to specialize in specific areas as they advance, focusing on
one niche isn’t the only path to career growth. There are also opportunities to
branch into broader roles, such as technical art or project management. Below is a
brief list of potential paths junior programmers can explore as they develop their
careers:

Job progression

Job progression

Back-end programmer: Back-end programmers manage server-side infrastructure for
RT3D applications that include multiplayer, collaborative, or otherwise dynamic
experiences. They specialize in designing scalable and secure systems, managing
data, and implementing network communication protocols. A junior programmer could
transition into a back-end role by learning about server-side programming and
architecture, database design and maintenance, and API development.

Front-end programmer: Front-end programmers play a pivotal
role in shaping the user interface and interactive elements of real-
time 3D applications. They focus on crafting visually engaging and
responsive user experiences, incorporating assets, animations,
and UI. Junior programmers can transition into front-end roles by
becoming familiar with creating and/or implementing 3D assets,
understanding UI design principles, and becoming proficient at
creating user focused interactive experiences.

Mid-level programmer/developer: With increased experience and
proficiency, junior programmers can progress to mid-level
programmer roles. In these positions, they take on more complex
programming tasks, have greater autonomy, and may mentor
junior programmers. Junior programmers can transition into this
role by contributing to larger parts of a project and by
demonstrating overall growth in programming skills.

Job progression

Technical artist: Technical artists bridge the gap between art and programming. They
specialize in creating efficient pipelines, developing shaders, optimizing visual assets, and
implementing advanced graphics techniques. Junior programmers with an artistic inclination
can transition into technical artist roles by honing their skills in 3D modeling, animation, or
visual effects (VFX) production, and by creating tools extensions for RT3D software.

Interaction/gameplay programmer: Interaction/gameplay programmers focus on designing
and implementing interactive systems and gameplay mechanics within RT3D applications.
Junior programmers with a strong interest in interactive experiences or game mechanics can
move into these roles by actively participating in game development projects and studying
algorithms and techniques related to interaction design.

Tools/engine programmer: While many companies work with pre-built engines and tools,
some still prefer to create their own in-house solutions. Tools/engine programmers create
these systems according to team needs and project requirements. Junior programmers can
prepare for this role by actively engaging with and expanding on existing tools and engines,
creating their own, contributing to tool improvement initiatives, or gaining proficiency in
software architecture.

Technical project manager/producer: Technical project managers or producers oversee the
planning, execution, and delivery of technical projects, and manage resources, timelines, and
budgets. Junior programmers who become interested in project management after gaining
production experience can move into these roles by collaborating with other project
managers, acquiring proficiency in project management methodologies, and cultivating strong
communication skills.

Systems engineer: Systems engineers are responsible for scoping, developing, and
supporting core gameplay systems. They often work in the low-level side of the engine
to create systems for game features, developer tooling, and optimization. This work
may touch a variety of different systems including streaming, SDKs, threading, memory
management, and platform and middleware abstractions. Junior programmers
interested in this role should participate in engine development projects and study
system architecture.

Graphics engineer: Graphics engineers create, maintain, and optimize rendering systems for
video games, and they require expertise in advanced mathematics, real-time computer
graphics, threading, memory management, and low-level programming. Junior programmers
interested in this role can prepare by building a strong foundation in mathematics, including
linear algebra, trigonometry, and calculus, exploring real-time graphics concepts, and gaining
proficiency in low-level programming languages, such as C++.

Resources for career development

Resources for career
development

Learning experiences

Junior Programmer Learning Pathway on Unity Learn: This complete learning
experience is designed for anyone interested in learning to code and obtaining an
entry-level role using Unity. This pathway assumes a basic knowledge of Unity and
has no math prerequisites. The Junior Programmer Pathway also prepares you for
the Unity Associate Programmer certification.

Certifications

Unity Certified Associate Programmer: This certification validates your Unity
programming skills to employers by demonstrating core skills and competencies
across programming, UI, debugging, and asset management.

https://learn.unity.com/pathway/junior-programmer
https://unity.com/products/unity-certifications/associate-programmer

The game and broader creative industries have their own set of words and phrases
that might seem confusing to outsiders. Junior programmers will come across
specific terms that they’ll need to know in order to do their job well and work with
others. To help aspiring programmers prepare and stand out as strong candidates,
below is a list of important terms commonly encountered in a programming career.
Learning these words and phrases will not only enhance understanding of the role,
but will also provide the skills and confidence needed to succeed in this ever-
changing industry.

Key terms

Key Terms

Object-Oriented Programming (OOP): A programming paradigm based on the
concept of "objects," which can contain data (attributes) and code (methods).
Key concepts include:

Classes: Blueprints for creating objects.
Objects: Instances of classes.
Inheritance: Allows a class to inherit properties and methods from another
class.
Encapsulation: Bundling data and methods together, restricting access to
some components.
Polymorphism: The ability for objects of different classes to be treated as
objects of a common superclass.
Design Patterns: Reusable solutions to common programming problems or
challenges. Examples include the Singleton pattern, Factory pattern, and
Observer pattern. Understanding these patterns is critical for writing
maintainable, scalable OOP-based code.

Functions/Methods: Reusable blocks of code that perform a specific task and
can be called upon when needed.

Note: The terms "function" and "method" are often used interchangeably.
However, technically, a "method" refers to a function that is tied to an
object in object-oriented programming, while a "function" can exist
independently.

Static Variables and Methods:
Static Variables: Variables that belong to a class rather than a specific
object. Their values are shared across all instances of that class.
Static Methods: Methods that belong to a class and can be called without
creating an instance of that class. They typically operate on static variables
or perform general utilities.

Key Terms

Version Control System (VCS): A tool or system that helps manage changes
to source code. Popular tools include Git, Mercurial, and Subversion.

Note: Version control and source control are often used interchangeably.
However, source control specifically refers to managing changes to source
code, whereas version control is a broader term that applies to tracking
changes in any set of files.

Debugging: The process of finding and fixing defects or problems within a
program to ensure it functions correctly.

Debugger: A specialized tool that helps programmers investigate and fix
issues in their code. It allows you to pause a program at specific points
(breakpoints), inspect variables, step through code line by line, and
monitor program behavior.

API (Application Programming Interface): A set of tools, definitions, and
protocols that allow different software systems or components to
communicate and work together.

Libraries and Frameworks:
Libraries: Collections of pre-written code that developers can use to save
time and effort.
Frameworks: Provide a structured environment and predefined tools for
building applications, often dictating the architecture of the project.

Algorithm: A step-by-step procedure or formula for solving a problem or
accomplishing a task.

Data Structure: A way of organizing and storing data so that it can be
accessed and modified efficiently.

Control Structures: Constructs that dictate the order in which instructions are
executed. Examples include loops (for, while) and conditional statements (if-
else).

Database: An organized collection of data, generally stored and accessed
electronically.

Code Review: The practice of systematically examining code written by
another developer to identify mistakes overlooked in the initial development
phase, improve code quality, and facilitate knowledge sharing.

Key Terms

Unit Testing: A type of software testing where individual units/components of
a software are tested in isolation to ensure they work as intended.

Game Development Version Release Terms:
Alpha: An early version of a game that is still in development and typically
not feature-complete. It's often used internally or shared with a limited
audience for initial feedback, with many bugs expected.
Beta: A more polished version of the game, but still with potential bugs or
missing optimizations. It's often shared with a broader audience or testers
to gather feedback before the final release.
Release Candidate (RC): A near-final version of the game that is
considered stable and ready for release, unless significant bugs or issues
are found.
Gold/Final Release: The final version of the game that is distributed to the
public or sent to platforms for publishing.

Automated Tests and Manual Tests: Automated tests rely on specialized
tools to execute repetitive tasks, while manual testing involves humans testing
the application by hand. Both are critical for ensuring code quality.

Real-Time 3D (RT3D): A term used to describe three-dimensional graphics
that are rendered and displayed in real time as the user interacts with them.
RT3D engines (like Unity or Unreal Engine) continuously calculate and update
the position, lighting, and appearance of objects in the scene, enabling
dynamic and interactive experiences like video games, simulations, and virtual
reality.

Agile Methodology: A set of principles for software development under which
requirements and solutions evolve through collaborative effort. Common
practices include Scrum and Kanban.

Internships

Internships

Though not always widely recognized, the gaming industry does provide internship
programs, often hosted by larger studios. These internships deliver vital hands-on
experience and serve as a gateway to entry-level positions. Industry internships are
generally seasonal. Interested candidates should begin searching for openings as
early as February to ensure their applications align with the recruitment timelines for
summer programs. Information about internships can typically be found on company
websites, and once available, these opportunities are often listed on job boards like
Hitmarker.

Several game studios offer regular internship programs, providing opportunities for
students and recent graduates to gain industry experience. Here are a few notable
ones:

Activision Blizzard - Known for franchises like Call of Duty and World of Warcraft,
Activision Blizzard offers internships in game development, data analysis, and
business operations.

Electronic Arts (EA) - EA offers a range of internships across various departments,
including game development, design, and business operations.

Epic Games - The studio behind Fortnite offers internships in software engineering,
game design, and more.

Insomniac Games - Creators of games like Spider-Man and Ratchet & Clank,
Insomniac offers internships in various disciplines.

Niantic - Creator of augmented reality games like Pokémon GO, Niantic offers
internships in fields such as software engineering, game design, data science, and
user experience design.

Riot Games - Creators of League of Legends, Riot Games provides internships in
areas such as game design, software engineering, and art.

Sony Interactive Entertainment - Offers internships in game development and
business functions through PlayStation.

Ubisoft - With internships available in multiple countries, Ubisoft offers roles in game
design, programming, art, and marketing.

https://hitmarker.net/
https://careers.activisionblizzard.com/early-careers
https://www.ea.com/careers/early-careers
https://www.epicgames.com/site/en-US/earlycareers
https://insomniac.games/our-future/
https://nianticlabs.com/careers/voyager?hl=en
https://www.riotgames.com/en/university-programs
https://sonyinteractive.com/en/careers/internships/
https://sonyinteractive.com/en/careers/internships/
https://www.ubisoft.com/en-us/company/careers/interns-graduates
https://www.ubisoft.com/en-us/company/careers/interns-graduates

A junior programmer’s skills put them in the unique position of being in demand
across a wide variety of industries that use real-time 3D tools. This offers more
opportunities when a junior programmer is first starting out, and excitingly, the
skills that they gain in one sector transfer to others without issue. Below is a list
of common industries that hire junior programmers:

Industry List

Industry list

Aerospace and defense

Animation, media, film, and entertainment

Architecture, engineering, and construction (AEC)

Automotive

Education and training

Energy and natural resources

Games

Healthcare

Manufacturing and engineering

Marketing and advertising

Retail and ecommerce

Once you've developed your skills as a junior programmer, the next big step is
landing the right job. Part two of this guide acts as a roadmap to help you navigate
the often challenging process of job applications and interviews.

In a competitive field, success in the job market is not just about having strong
coding skills—it’s also about showcasing them effectively to potential employers.
This section covers how to craft compelling resumes and cover letters, build an
impressive portfolio that highlights your unique abilities, and optimize your LinkedIn
profile to attract opportunities. It also provides practical advice on interview
preparation and presenting yourself with confidence.

Prepare for the job hunt

The application process

The application process

You'll also find strategies for sharpening your job search
to target roles that align with your career goals in this
section. Special emphasis is placed on developing
resilience when facing rejections and learning how to use
those experiences to fine-tune your approach moving
forward.

A resume is a vital tool for anyone seeking employment in the RT3D industry. Even
when you’re starting out in the industry and have little experience to showcase, your
resume is an opportunity to highlight your skills and knowledge, and also serves as a
way to point employers to samples of your work. You will often be asked to provide
a resume in addition to filling out information about yourself in an application. Having
a resume already prepared will help save you time during your job search.

Resume

Resume

Name and contact information: This should be the full name you go by in a
professional setting. If you are concerned about your contact information
being publicly available, it’s okay to minimize the information you include.
However, you must have at least one contact method, such as an email,
through which an employer can contact you to arrange an interview.

Desired title: This should align with the job you’re applying for (in other words,
Junior Programmer).

When preparing a resume, be sure to include the following information:

Skills: List your technical skills, including specific scripting languages and
software packages, in bullet format.

Projects: Any projects you have worked on, and your specific role in them if on
a team. Projects that you worked on while in a training/academic program are
fine to list here. If you have any relevant work that has been published, be sure
to include it.

Links to your work: Relevant links to your LinkedIn, portfolio, github, or other
work samples

Education: School or other forms of training, if applicable.

Certifications/certificates: Anything you earned during the course of your
learning for this role that is formally recognized, if applicable.

Internships/apprenticeships: Any formalized training experience you
participated in, if applicable. Be sure to include information on the company
that managed your internship/apprenticeship.

File name: Ensure that the file name of your resume is simple, descriptive, and
most importantly contains your full first and last name.

An important aspect of resume preparation to keep in mind is that today most
employers make use of applicant tracking systems (ATS), which are a type of
software that help companies manage the recruitment process. An ATS automates
the process of sorting and filtering resumes to help identify likely candidates for a
human reviewer. While it might seem frustrating that a computer reviews your
resume before a person does, this enables recruiters and hiring managers to spend
more time on resumes and potential job candidates than they would be able to
otherwise. Because the first step of the application process is managed by
computers, it’s extremely important that you format your resume so that it’s
optimized for an ATS.

Automated Tracking Systems (ATS)

ATS

Keywords: Include relevant keywords in your resume that match the job
listing. ATS often scans for specific words or phrases to determine the
relevance of an application. For example, if the job listing is looking for
experience with Unreal Engine, and you know both Unity and Unreal, do not
list “various game engines”, but explicitly list the engines by name.

When preparing your resume for an ATS, be sure to review:

Formatting: Use a clean and simple format. Avoid complex layouts, images, or
graphics that may confuse the ATS. It’s a general best practice to avoid
including any images, especially a photo of yourself in your resume.

File format: Submit your application in a format that the ATS can easily read,
such as plain text or a common document format like .docx or .pdf. It’s a good
idea to have your resume ready in multiple formats ahead of time. Most word
processing programs allow you to export to multiple formats. When uploading
your resume to an application page, take special care to upload using the
recommended format.

Section headings: Clearly label sections of your resume (for example, "Work
Experience", "Education", "Skills", etc.) to help the ATS categorize information
accurately. Don’t use specialized terms or uncommon acronyms in headers.

Bullet points: Present information using bullet points for clarity. ATS systems
often prefer straightforward, concise content.

Special characters: Minimize the use of special characters, symbols, or
unusual fonts, as these may not be interpreted correctly by the ATS. Default
fonts found in most word processing programs are generally a safe choice.

Below is an example of a resume that follows the guidelines outlined above.
Sample resume

Sample Resume

Programmer
(123) 456-7890 | alex@example.com | linkedin.com/in/alexample | github.com/alexample | aaportfolio.com

Alex Ample

Bachelor of Science, Computer Science
Example University, City, State
GPA: 3.8 | June 2024

Education

Relevant Coursework: Game Development and Design, Data Structures and Algorithms,
Artificial Intelligence for Games, 3D Graphics Programming, Interactive Narrative Design

Programming Languages: C++, C#, Java, Python, JavaScript
Game Engines: Unity, Unreal Engine
Tools & Technologies: Git, Blender, Autodesk Maya, Visual Studio, GitHub, Jira
Web Technologies: HTML, CSS, React
Other Skills: Object-Oriented Programming, Agile Methodologies, Version Control,
SQL

Technical Skills

Experience
Programmer Intern
Example Game Studio, City, State | June-September 2023

Worked closely with senior developers to implement game mechanics and features using
C++ within Unreal Engine.
Debugged and optimized code to improve game performance and stability.
Assisted in developing and maintaining the game’s AI logic and behavior trees.
Participated in code reviews and provided constructive feedback to peers.

Mystic Example Project | Lead Programmer | Unity, C#, Blender | Steam Link

Projects

Developed core game mechanics including player movement, enemy AI, and collision
detection.
Implemented an inventory system and UI components using Unity’s component-based
architecture.
Created custom shaders and effects to enhance visual performance.
Conducted rigorous testing and code refactoring to ensure high performance and minimal
bugs.

Space Example Project | Gameplay Programmer | Unreal Engine, C++ | GitHub Link

Implemented dynamic shooting mechanics and enemy AI patterns.
Developed optimized pathfinding algorithms using A* and NavMesh in Unreal Engine.
Integrated real-time multiplayer functionalities using Unreal’s networking framework.
Created automated testing scripts to ensure consistent game behavior across builds.

While often considered one of the most time consuming aspects of applying for
a job, cover letters are the first chance you have to introduce yourself to a
company using your own words, and therefore represents an important
opportunity. While an ATS may scan your cover letter for keywords much in the
same way it does your resume, it’s far more likely that an actual person will be
reading your cover letter. It’s common for people just entering the industry to
create generic cover letters or even skip them entirely, so taking the time to
craft a meaningful cover letter will help the reader remember you, and this may
lead to an increased chance of getting an interview. Take care to make a
positive and meaningful first impression.

While you may be able to reuse some content between cover letters, such as a
personal introduction or an overview of your skills, most of a cover letter should
be written specifically for the company you’re sending it to. A cover letter should
express why you would be a good candidate for the role, what specifically drew
you to the job, and any interesting anecdotes or additional information that might
pique the reader’s interest.

Cover letters

Cover letters

A brief introduction of yourself

What interests you about the company

What made you want to apply for the role

What makes you uniquely qualified for this specific job

Thank the reader for their time

A cover letter should be one page or less, and
should contain the following information:

It is a professional space: While LinkedIn can be considered a social media site,
it’s one for professional use exclusively. Use LinkedIn with the expectation that
potential employers will see everything you post and include on your profile.

Create your resume first: Having your resume created first will significantly
speed up the process of creating your LinkedIn profile.

A strong LinkedIn profile is essential in the game and creative industries, though
many new job seekers underestimate its importance. Recruiters frequently use
LinkedIn for candidate evaluations, and lacking a profile can raise red flags.
Beyond showcasing your professional presence, LinkedIn offers opportunities to
network, stay updated on industry trends, and discover job openings—often
announced here first. A well-crafted profile elevates your visibility and serves as a
key tool for career growth.

LinkedIn

LinkedIn profile

When creating your LinkedIn profile, consider the following:

Customize your LinkedIn URL: Personalize your LinkedIn
URL to make it easy to share. A good rule of thumb is to
make your URL your name.

Join and participate in groups: Join LinkedIn groups that
align with your interests to connect with fellow professionals
in the industry you wish to join. Engage in discussions and
share your insights in a respectful, professional manner.

Including a professional photo is normal: Unlike on a
resume, LinkedIn profiles can include a personal photo. This
should be a professional, clear image of yourself, not a group
shot. Essentially, choose a picture that would be suitable for
a school or work ID.

Your name and contact information: This should be included in case the
hiring manager reviewing your portfolio loses track of your resume. Ensure
you’re easy to contact from the portfolio itself. Consider including a link to
your LinkedIn profile or to your resume.

Project descriptions: Provide clear and concise descriptions
for each project, explaining the goals, features, and
technologies used. Highlight any unique challenges or
innovative solutions you implemented. This helps prospective
employers understand the scope and complexity of your work.
Be sure to note if you developed a project as part of a team,
and what role you performed.

A portfolio is one of the most important assets of any creative professional,
serving as a showcase of your current capabilities in your chosen area of work. It
acts as your visual resume, providing potential employers with important insight
into your skills, style, and approach to problem solving. While on the job hunt, it’s
crucial to continually refine and improve your portfolio, ensuring it accurately
reflects your improving skills. This section highlights practical details of what
your portfolio should include for the application process.

Portfolio

Portfolio

When preparing your portfolio to be reviewed with your application, be sure that
includes the following:

Published projects: Highlight projects that have been fully
published and specify the platform they are available on.
Published works underscore your ability to work across the
entire production pipeline, which shows a deep
understanding beyond prototype creation. Published
projects are significant achievements and are of particular
interest to employers.

Visual assets: Incorporate visual assets such as screenshots,
videos, or interactive demos to showcase the visual quality and
functionality of your projects. Visual elements provide a
tangible representation of your work and make it easier for
employers to assess your skills.

Portfolio

Ease of navigation: When putting your portfolio together, consider the type
of content that you’ll be showcasing and select a platform that will best serve
that kind of content. If you choose to create your own custom website to
host your portfolio, ensure that viewers can easily find the full contents of
your portfolio with a minimum number of clicks.

The contents of a portfolio will always vary based on its creator. However,
when you’re just starting out, it can be challenging to come up with ideas for
portfolio pieces. If you’re struggling, spend time studying the games and media
you enjoy the most. Ask yourself why you enjoy them and try to identify the
specific systems that make them fun. Consider if there are elements within
those systems that you can draw inspiration from or even recreate.
Remember, a portfolio should reflect not only your skills but also your interests
and values.

As a junior programmer, always include code samples in your portfolio.
Employers hiring for programming roles want to assess the quality of your
work, and this can’t be achieved if you only show a final project. Code samples
not only reveal your technical proficiency but also provide valuable insights
into your thought process and problem-solving approach.

Below are a few examples of portfolio pieces that would be appropriate for a
junior programmer portfolio:

Portfolio recommendations

A simple complete game: If your career goal is in game development, showing
your ability to program all aspects of a game is a valuable portfolio piece. Focus
on a smaller-scale project, such as a simple arcade game, a card game, or an idle
game. The key is to demonstrate your proficiency in creating functionality for
essential game components.

A full system: For those interested in showcasing their capability to create
functionality integrated into larger applications, a full system design is a great
option. This system could range from a fighting system for a game to an inventory
management system for a manufacturing application or a quiz system for a testing
application.

Portfolio

Depending on your specific area of interest, some other portfolio pieces might be:

User interface (UI) design and implementation: Demonstrate your proficiency in
designing and implementing user interfaces. Create a portfolio piece that showcases
your ability to enhance user experience through intuitive and visually appealing
interfaces.

Procedural generation: Showcase your skills in procedural content generation by
creating a system that generates game levels, landscapes, or other content
dynamically. This can be particularly impressive for those interested in game
development.

Networking and multiplayer functionality: Develop a project that demonstrates your
understanding of networking and multiplayer functionality. This could be a simple
multiplayer game or an application that relies on real-time collaboration.

Tool development: Design and implement a custom tool that enhances the
development process. This could be a utility for asset management, a debugging tool,
or any other tool that streamlines tasks for RT3D development.

Integration with external APIs: Showcase your ability to integrate external APIs into
your projects. This could involve incorporating weather data, geolocation services, or
other APIs relevant to your chosen project.

 Many programmers worry about including visual elements in their portfolio
because they think it will distract from the code that they’ve written. This is an
unnecessary concern. If you’re building a game and are using open source
assets, commissioned art, or even placeholder art (sometimes called
programmer art), simply use good quality project descriptions to define what
the viewer should be focusing on in the piece. Remember to appropriately
credit any assets that you use.

A note on art

Standalone code samples: Include snippets of code that show your programming
skills. Focus on demonstrating clean and well-structured code, adherence to coding
standards, and problem-solving approaches. Be sure to include comments in the
code to provide context and explain your thought process. These code samples
don't need to be part of a complete project but should demonstrate your
knowledge or ability in a specified area, including how the code interacts with other
systems in the application.

Portfolio

A portfolio is an asset that you should regularly curate as your skills grow and
evolve. It is also a very good place to focus your efforts on as you wait for new
job opportunities to become available. Consider the following when
maintaining your portfolio:

Portfolio maintenance

Regularly remove outdated work: Ensure your portfolio always aligns with
your current skill level. Regularly review and eliminate pieces that no longer
reflect your expertise or current approach to work. This ensures that viewers
are able to accurately estimate your skill level.

Avoid unedited tutorial work: Early on, your portfolio may include tutorial or
assignment pieces. Improve these by adding variation or extra content for
uniqueness, making your portfolio stand out from others who used the same
tutorials.

Show your personality with your work: Use your portfolio to showcase your
interests, values, and unique style to potential employers through diverse
projects that highlight your technical skills and problem-solving approach.

Focus on quality and diversity of work: Choose fewer, high-quality projects
for your portfolio to showcase diverse skills. Each should highlight your
technical abilities, problem-solving, and creativity. Include more than one
example to show potential employers your skills.

When you begin your job search, it may be tempting to showcase everything
you can do by including a wide variety of samples in your portfolio. For
instance, if you're a programmer with an interest in character art, you might
consider adding your character models alongside your code samples.
However, this approach can have a negative impact on your job prospects. A
well-curated portfolio should reflect the specific roles you are currently
applying for. Recruiters often have very little time to spend on each portfolio
they review, and need to be able to quickly understand your primary area of
expertise. Presenting a wide array of skills can muddle your focus and you are
likely to be judged by your weakest skill. If you insist on pursuing multiple job
types, create separate dedicated portfolios for each.

The importance of portfolio specificity

Spell check: Carefully check your resume, cover letters, portfolio, and LinkedIn
profile for spelling errors. If possible, have your documents reviewed by another
person to help identify any words that are spelled correctly, but used in the wrong
context (for example, do you actually have a “Skulls” header in your resume, rather
than a “Skills” header?).

Find the hiring point of contact: When applying for jobs, identify and connect
with the hiring manager or recruiter via the company's site or LinkedIn. After
applying, express your interest in the role to show proactivity. This gets you
noticed, creates a good first impression, and aligns you with the goal of finding a
proper fit, increasing your chances of standing out.

Application Tips

Application tips

Ask questions during the interview: Have questions ready for your interview.
This shows your interest in the role and helps you understand expectations
and company culture. Being question-less could appear as disinterest or lack
of preparation.

Follow up: Follow up with all communication during the
application process. It shows politeness, an appreciation for
people's time, and reinforces your interest. Respond to
emails/calls promptly but not outside of working hours. Use
follow up emails to thank people, ask additional questions, or
clarify next steps post-interview.

Assess company fit: Remember, interviews are a two-way
street. Just as the company is evaluating you, assess if you'd
thrive there. Don't rush into unsuitable jobs due to
circumstances, as you may end up job hunting again soon.
During interviews, gauge if the company matches your values
and work style for a better career fit.

Job boards

Job boards

While traditional job boards can feature game industry jobs, job seekers will often
have better luck using industry specific boards. These platforms concentrate on
gaming-related positions ranging from development and design to quality
assurance and production. These industry specific boards are invaluable tools for
both emerging professionals and experienced individuals seeking new
opportunities that are fine-tuned to their expertise. Below is a list of a few
industry specific boards:

Amir Savat’s Games Community

Gamesindustry.biz jobs board

Games Jobs Direct

Grackle HQ

Hitmarker

Work With Indies

https://amirsatvat.com/
https://jobs.gamesindustry.biz/
https://www.gamesjobsdirect.com/
https://gracklehq.com/
https://hitmarker.net/
https://www.workwithindies.com/

The interview process

The interview process
Interviews for junior programmer positions typically include more than one round of
interviews. These may be a mix of behavioral interviews to assess your interpersonal
skills, teamwork, and cultural fit, as well as technical interviews to evaluate your technical
knowledge and problem solving approach. Technical interviews may involve discussing
real-time 3D concepts, algorithms, data structures, or specific programming languages
and frameworks.

Technical Assessment: Many companies conduct a technical assessment to
evaluate your programming skills and problem-solving abilities. This may involve
coding exercises, algorithmic problems, or even a take-home coding
assignment. Be prepared to showcase your coding proficiency and demonstrate
your ability to solve programming challenges. For take-home assignments,
ensure you allocate sufficient time to complete them and submit within the
specified timeline.

Coding interviews: Some interviews may include hypothetical
problem-solving scenarios or coding challenges to assess your
ability to communicate, think critically, and solve problems in
real-time. This may involve working through a coding problem
on a whiteboard (either physical or digital) or explaining your
approach to a given scenario. These interviews generally focus
more on assessing your thought process, and may even limit
you to writing pseudo code.

Cultural fit: In addition to technical assessments, companies
often prioritize interviews focusing on cultural fit. These
conversations provide the prospective team with the chance to
understand how your values align with the company culture.
Expect questions that delve into your work style, collaboration
preferences, and how you approach challenges as part of a
team. Demonstrating your adaptability, communication skills,
and enthusiasm for collaborative work is key to making a
positive impression in these cultural fit interviews.

Initial screening: A hiring manager or recruiter conducts an initial screening to
assess your basic qualifications, interest in the role, and understanding of the
target industry. This stage may involve a review of your resume and a
preliminary phone or video interview.

Interview Preparation

Preparing for an
interview

Moving to the interview stage is a pivotal moment for your job search and can often
come with nervousness or stress. Proper preparation is key to presenting yourself
as a confident and capable candidate. This section will provide some essential
steps to ensure you navigate the interview process seamlessly and leave a lasting
positive impression on potential employers.

Respond promptly: When contacted by a hiring manager or recruiter for an
interview, respond promptly. Don’t feel pressured to respond outside of
regular working hours, however, demonstrate your enthusiasm and
commitment by acknowledging their outreach in a timely manner.

Share your availability: Many companies use special applications that allow
you to self select your availability, but if this isn’t the case, provide a range of
dates and times for the interview within the upcoming weeks. If dealing with
different time zones, specify your current time zone to avoid scheduling
confusion.

Time your availability strategically: Whenever possible,
schedule the interview on a date and at a time when you
have few or no other commitments. This minimizes stress
and allows flexibility for the interview to extend if needed.

Present yourself professionally: Regardless of the
interview format (in person or online), present yourself
professionally. While game industry dress codes may lean
toward casual, research the company's expectations and
opt for business casual attire if uncertain. This said, do not
overdress for the interview. Rarely is a suit and tie expected
in games, and can communicate a lack of research into the
industry.

Stay positive: Avoid excessive negativity, even if your job
search has been challenging. Present yourself as genuinely
excited about the opportunity, focusing on a positive
mindset; remember, this interview might lead to a job offer.

Practice interview: If you feel nervous, consider conducting a practice
interview. This helps familiarize yourself with common questions and boosts
your confidence. This can be done with a trusted friend or family member, or
simply by answering example interview questions out loud by yourself.

Interview Preparation

Online interview etiquette: If your interview is online, be sure implement the
following guidelines:

Choose a quiet location to avoid interruptions.
Test your camera, microphone, and audio in advance to prevent technical
issues.
Keep your phone and computer plugged in, or have your device chargers
nearby.
Pay attention to the background, ensuring it is neat and presentable.
Consider using a professional digital background if necessary.

The STAR method, which stands for Situation, Task, Action, and Result, is a
common approach where interviewers often frame questions to be best
addressed using this structured format.

The STAR interview method

Watch for questions that prompt you to describe past situations, discuss specific
challenges, or detail achieved results. When responding, structure your answers to
articulate the situation or task, the actions you took, and the positive outcomes
attained. This method provides a systematic way to highlight your problem-solving
and decision-making skills, aligning seamlessly with the industry's interview
expectations. Utilizing the STAR method enables you to stay focused, respond
succinctly, and demonstrate your skills with the interviewer's preferred format,
leaving a lasting positive impression.

Navigating job rejection

Navigating job rejection

Rejection isn’t personal: Job hunting is tough, especially when facing rejection or
lack of responses. Remember, these setbacks don't define your self-worth or skills.
They are often part of the process and not a reflection of your abilities or value.

It’s a numbers game: With sometimes hundreds of applicants for each job opening,
resumes can easily be overlooked. Rejections often stem from high competition and
timing, not necessarily your qualifications.

Decision complexity: Employers often must choose from several strong
candidates, meaning rejection doesn't always relate to your capability. It's often
about finding the best fit among qualified contenders, so don’t let this shake your
confidence.

Persistence pays off: Job hunting requires consistency and
perseverance. Rejection is part of the journey, but it doesn’t
determine your worth or future success. Use setbacks to refine
your approach, learn, and continue applying confidently.

Seek feedback: Whenever possible, reach out for constructive
feedback from recruiters to gain insights on how you
interviewed, which will help you enhance future efforts.
Remember, your aim is not just to land a job, but to find the
right fit for both yourself and the employer.

Focus on growth: Use downtime between applications to
improve skills, update your resume, and explore professional
development opportunities. This shows potential employers
your commitment to growth and boosts your confidence.

The development of this Universal Job Profile was made possible by the expertise and support of the
Employer Advisory Board (EAB). Composed of professionals from leading companies in the real-time
3D landscape, the EAB serves as dedicated subject matter experts for the initiative, offering
invaluable insights into the in-demand job roles within their respective industries. We extend our
sincere thanks to each member of the EAB for their commitment to the success of the Universal Job
Profiles. Their dedication not only showcases their professionalism but also highlights their
significant investment in shaping a brighter future for the RT3D industry. We appreciate the
collaborative spirit and contributions of the EAB, which have played a crucial role in advancing
careers and opportunities within the real-time field.

Acknowledgements

UNIVERSAL JOB PROFILE

Acknowledgements

With special thanks to:
With special thanks to: Alex Boyce, Anne Johnson, Brittany Gilbert-DeMarco, Dan
Hewlett, Jason Harrison, Jason Parks, Julian Chelo, Lianna Johnstone, Lyle
Maxon, Michael Courneya, Molly Kodros, Nick Janicki, Patrick Lenahan, Patrick
Owens, Renee Gittins, Ricardo Arango, Ryan Cassidy, Sarvesh Navelkar, Stacey
Long Genovese, Tanya Fraser, Turi Cacciatore, Ulises Pereida, William Garner,
and Zak Whaley

Employer Advisory Board Members

https://unity.com/
https://spvce.com/
https://nianticlabs.com/
https://blackbirdinteractive.com/
https://www.megacru.sh/
http://sorceri.ai/
https://www.nexefy.com/

About the Universal Job Profiles

About the Universal
Job Profiles

The Universal Job Profiles are developed as part of Elevate, a Unity initiative
dedicated to facilitating the entry of new talent into the games and creative 3D
industries by establishing robust and open lines of communication among job
seekers, educators, and employers.

Universal Job Profiles have been created to provide a unified framework for defining
job roles within the games and creative sectors. The goal of this document is to serve
as a handbook for anyone seeking a job, aiming to create a learning experience, or
vetting candidates. By standardizing job roles, aspiring professionals can confidently
acquire the necessary skills, educational institutions can design comprehensive
learning experiences covering the full spectrum of each job, and employers can easily
evaluate job candidates.

The data for Universal Job Profiles was gathered using the expertise of the Employer
Advisory Board: a group of experts from industry-leading companies across all parts
of the creative landscape, including games, media, training, and more. The board
serves as our subject matter expert resource, providing crucial industry insights
about in-demand job roles. By collaborating with the Employer Advisory Board, we
ensure that the information shared in the Universal Job Profiles is up-to-date,
accurate, and representative of actual industry needs.

These documents have been created in service to the games
and wider creative 3D industries, aiming to enable more diverse
and talented individuals to secure jobs in this dynamic field. As
such, Universal Job Profiles will always be freely available for
public use.

To learn more, check out the Elevate page.

https://unity.com/learn/elevate

Contributing to the UJPs

Contributing to the
Universal Job Profile

All Universal Job Profiles are living documents: they are reviewed by the EAB twice
annually to ensure that they remain accurate and up to date with the latest needs of the
games and creative 3D industries. We also welcome any suggestions from the
community to help improve the overall quality and usability of these documents.

If you have any suggestions, questions, or feedback regarding this
Universal Job Profile, please let us know by filling out this form:

Universal Job Profile Feedback

If you or your company has created a career development resource, such
as a learning experience, certification or mentorship program that aligns
with this Universal Job Profile and would like to have it included in this
document, please fill out this form:

Universal Job Profile course submission

The Employer Advisory Board is actively recruiting new
members. This is a volunteer board for companies that use
game engines and other 3D tools to ship their products and
personally employ staff that use these tool sets as part of
their day-to-day job. Members of the EAB advise on industry
standards, provide subject matter experts for informational
interviews, and help determine what Universal job profiles
should be made next. If your company is interested in learning
more and potentially joining the board, please fill out this form.

Employer Advisory Board Membership
Application

https://forms.gle/p1A9fVZ7bmFz6rPv6
https://docs.google.com/forms/d/e/1FAIpQLScuHAyXmwWgS53QHpvjwxdJ_4YvKai3p7I-jj2KuHL935PjMg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfjaXDesc9c6FCOjo_G_hSzKeUsW0Xy3UKTYX4yCHaEqdMpaw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfjaXDesc9c6FCOjo_G_hSzKeUsW0Xy3UKTYX4yCHaEqdMpaw/viewform

CHANGELOG

1.0-2025-02-18
New pages added:

Key words
Internships
Job boards

Updated skills format to better align to job listings
Reorganized pages for better ease of use
Update contact links
Updated EAB membership logos

0.0.2 - 2024-06-25
Early access release:

Minor layout adjustments
Updated contact links
Updated company logos
Added pay band info

0.0.1 - 2024-01-17
Initial review release

Changelog

