
© 2025 Unity Technologies

 ⟶ E - B O O K

Ultimate guide to
profiling Unity games
(Unity 6 edition)

Contents

Introduction. . 7

Profiling 101 . . 8

Understanding frame budget. . 9

Frames per second: A deceptive metric 10

The anatomy of a frame. . 11

Understanding if you are GPU or CPU bound 12

What is VSync? . . 13

Understanding profiling in Unity . . 14

Sample- vs instrumentation-based profiling. 14

Sample-based profiling 14

Instrumentation-based profiler. 15

Instrumentation vs sampling. 15

Instrumentation-based profiling in Unity. 15

Increase profiling detail with Profiler markers. 16

Profiler modules. . 17

Profiling workflow. . 19

From high- to low-level profiling. . 19

Profile early . . 20

Establish a profiling methodology 21

Are you within frame budget?. 23

If your game is in frame budget 25

CPU-bound. . 25

A real-world example of main
thread optimization . . 26

Common pitfalls for main thread bottleneck . . . 28

A real-world example of render
thread optimization . . 29

Common pitfalls for render thread bottlenecks. 30

Tools to solve the identified bottlenecks. 30

Worker threads. . 31

Common pitfalls for worker
thread bottlenecks. . 32

GPU-bound. .33

Mobile challenges: Thermal control
and battery lifetime. . 35

Adjust frame budgets on mobile 36

Reduce memory access operations. 37

Establish hardware tiers for benchmarking. 38

Memory profiling. . 39

Understand and define a memory budget. 40

Determine physical RAM limits. 41

Determine the lowest specification
to support for each target platform. 41

Consider per-team budgets for larger teams. 41

In-depth analysis with the Memory Profiler package . . . 42

A few tips to keep in mind when memory profiling 43

Unity profiling and debug tools . . 45

Unity Profiler. . 45

Get started with profiling in Unity 47

Unity Profiler tips. . 49

Disable the VSync and Others markers
 in the CPU Profiler module. 49

Disable VSync in the build. 49

Know when to profile in Play mode
or Editor mode . . 49

Use Standalone Profiler. 50

Profile in the Editor for quick iterations 50

Using the Memory Profiler module. 51

Profile Analyzer. . 52

Profile Analyzer views. . 55

Single view . . 55

Compare view. . 56

Comparing median and longest frames. 57

Profile Analyzer tips . . 58

Memory Profiler. . 59

The Summary tab . . 61

Unity Objects tab. . 64

Memory profiling techniques and workflows 65

Locating memory leaks. . 65

Locating recurring memory allocations
over application lifetime . . 66

Memory Profiler module in the Unity Profiler. . . 66

Timeline view in the CPU Usage Profiler 66

Allocation Call Stacks. . 67

The Hierarchy view in the CPU
Usage Profiler. . 68

Memory and GC optimizations. 68

Reduce the impact of garbage
collection (GC) . . 68

Time garbage collection whenever possible. . . 69

Use the Incremental Garbage Collector
to split the GC workload 69

Frame Debugger. . 70

Remote Frame Debugging . . 72

Rendering Debugger. . 73

Five rendering optimizations for common pitfalls. . . 74

Identify your performance bottlenecks first. . . . 74

Draw call optimization . . 75

Optimize fill rate by reducing overdraw. 76

Multi-core optimization for rendering. 77

Profile post-processing effects. 77

Project Auditor . . 78

Domain Reload. . 79

Deep profiling . . 80

When to use deep profiling. . 80

Using deep profiling. 81

Deep profiling tips . . 82

Top-to-bottom approach. 82

Deep profile only when necessary 82

Deep profiling in automated processes 83

Deep profiling on low-spec hardware. 83

Which profiling tools to use and when? 84

Automating key performance
and profiling metrics . . 85

Performance Testing Package
for Unity Test Framework. . 88

Profiling and debugging tools index . . 89

Native profiling tools. . 89

Android / Arm . . 89

Intel . . 89

Xbox / PC. . 90

PC / Universal. . 90

PlayStation . . 90

iOS. . 90

WebGL. . 90

GPU debugging and profiling tools. 91

Resources for advanced developers and artists 92

© 2025 Unity Technologies 7 of 92 | unity.com

Introduction

Smooth performance is essential to creating great gaming experiences that reach a broad
range of devices and players. Unity provides a full set of profiling and memory management
tools that Unity developers can use alongside the native profiling tools available for their
target platforms.

This guide brings together actionable advice on how to profile an application in Unity, manage
its memory, and optimize its power consumption from start to finish.

This second edition of the e-book has been updated to reflect the latest features in Unity 6, as
well as improvements based on feedback from the community.

Our profiling guide was created as a collaboration between the following internal Unity experts
and external game developer:

	— Steven Cannavan, senior software development consultant

	— Sean Duffy, software engineer and game developer

	— Peter Hall, Senior Manager, Software Engineering

	— Thomas Krogh-Jacobsen, senior manager, content marketing management

	— Steve McGreal, software engineer

	— Martin Tilo Schmitz, senior software engineer

	— Peter Harris, Arm

Additional guides on performance optimization in Unity 6 include, Optimize your game
performance for consoles and PC and Optimize your game performance for mobile, XR, and
the web in Unity.

https://unity.com/releases/lts
https://unity.com/blog/unity-6-features-announcement
https://unity.com/resources/console-pc-game-performance-optimization-unity-6
https://unity.com/resources/console-pc-game-performance-optimization-unity-6
https://unity.com/resources/mobile-xr-web-game-performance-optimization-unity-6

© 2025 Unity Technologies 8 of 92 | unity.com

Profiling 101

Before diving into the details of how to profile a game in Unity, let’s summarize some key
concepts and profiling principles.

Lean, performant code and optimized memory usage lead to a better user experience across
low- and high-end devices. This applies for everything, from being able to reach more users
on the low-end devices by tackling heat and battery consumption, to your players’ comfort
levels, and ultimately, factors that drive higher adoption and retention. It can also be a
requirement for passing distribution platform specifications.

A consistent, end-to-end profiling workflow is a “must have” for efficient game development; it
starts with a simple three-point procedure:

	— Profile before making major changes to establish a baseline.

	— Profile during development to track and ensure changes don’t break performance or
budgets.

	— Profile after to prove the changes had the desired effect.

Profilers are some of the most useful tools to have in your developer toolbelt for identifying
memory and performance bottlenecks in your code.

Think of profilers as detective tools that help you unravel the mysteries of why performance
in your application is lagging or why code is allocating excess memory. They help you
understand what is going on under the hood.

https://unity.com/releases/lts

© 2025 Unity Technologies 9 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Unity ships with a variety of profiling tools for analyzing and optimizing your code, both in the
Editor and on hardware. We’ll dive into each of these in the e-book but it’s also recommended
to use native profiling tools for each target platform, be it mobile and other untethered
devices, console, or PC.

Understanding frame budget
Gamers often measure performance using frame rate, or frames per second (fps), but as a
developer it’s generally recommended to use frame time in milliseconds instead. Consider the
following simplified scenario:

During runtime, your game renders 59 frames in 0.75 seconds. However, the next frame takes
0.25 seconds to render. The average delivered frame rate of 60 fps sounds good, but in reality
players will notice a stutter effect since the last frame takes a quarter of a second to render.

While Unity offers a variety of profiling tools for in-depth and precise analysis, you can also get a quick indication on the performance by
simply looking at the Statistics panel in the Game view.

This is one of the reasons why it’s important to aim for a specific time budget per frame. This
provides you with a solid goal to work toward when profiling and optimizing your game, and
ultimately, it creates a smoother and more consistent experience for your players.

Each frame will have a time budget based on your target fps. An application targeting 30 fps
should always take less than 33.33 ms per frame (1000 ms / 30 fps). Likewise, a target of 60
fps leaves 16.66 ms per frame.

You can exceed this budget during non-interactive sequences, when it’s not disruptive for the
immersive gaming experience, for example, when displaying UI menus or scene loading, but not
during gameplay. Even a single frame that exceeds the target frame budget will cause hitches.

https://unity.com/releases/lts

© 2025 Unity Technologies 10 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

A consistently high frame rate in VR games is essential to avoid causing nausea or
discomfort to players, and is often necessary for your game to get certification from the
platform holder.

Frames per second: A deceptive metric
Why is it recommended that you measure frame time in milliseconds instead of frames per
second? To understand why, look at this graph:

fps vs. frame time

Consider these numbers:

1000 ms/sec / 900 fps = 1.111 ms per frame
1000 ms/sec / 450 fps = 2.222 ms per frame

1000 ms/sec / 60 fps = 16.666 ms per frame
1000 ms/sec / 56.25 fps = 17.777 ms per frame

If your application is running at 900 fps, this translates into a frame time of 1.111 milliseconds
per frame. At 450 fps, this is 2.222 milliseconds per frame. This represents a difference of
only 1.111 milliseconds per frame, even though the frame rate appears to drop by one half.

If you look at the differences between 60 fps and 56.25 fps, that translates into 16.666
milliseconds per frame and 17.777 milliseconds per frame, respectively. This also represents
1.111 milliseconds extra per frame, but here, the drop in frame rate feels far less dramatic
percentage-wise.

This is why developers use the average frame time to benchmark game speed rather than fps.

https://unity.com/releases/lts

© 2025 Unity Technologies 11 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Don’t worry about fps unless you drop below your target frame rate. Focus on frame time to
measure how fast your game is running, then stay within your frame budget.

Read Robert Dunlop’s article “FPS versus Frame Time,” for more information.

The anatomy of a frame
Let’s build on the above and explore how Unity constructs frames, and how the CPU (central
processing unit) and GPU (graphics processing unit) collaborate during this process. While
targeting 60 frames per second results in 16.66 milliseconds per frame, Unity actually
maintains a pipeline where the CPU and GPU work on different frames simultaneously.

The CPU prepares rendering instructions that are handed off to the GPU.

On the CPU side, execution begins with Unity’s internal engine code (which is outside your
control), followed by your custom game logic (your scripts). After this, the CPU prepares
rendering instructions. These instructions are then handed off to the GPU; while the GPU
begins rendering frame N, the CPU is already working on the following frame (denoted as N+1).

Unity uses a dual-threaded system to streamline this workflow:

	— The main thread handles game logic, physics, animation, and input, while also queuing
up rendering commands.

	— The render thread converts these commands into GPU-friendly instructions.

Once the GPU receives the render instructions, it processes them through the graphics
pipeline, performing tasks like vertex shading, fragment shading, post-processing, and finally,
outputting the frame to the display.

This parallelized approach allows the CPU to begin preparing the next frame while the GPU
is still rendering the current one. However, the GPU must wait for the CPU to finish preparing
rendering data before it can proceed, making synchronization between the two critical for
performance.

16ms

CPU

Engine code Your code Render

GPU

https://unity.com/releases/lts
http://www.mvps.org/directx/articles/fps_versus_frame_time.htm

© 2025 Unity Technologies 12 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

To understand frame construction more deeply, refer to the event function execution order,
which outlines the sequence of operations such as input handling, physics, rendering, and GUI
updates that occur during each frame.

Understanding if you are GPU or CPU bound
CPU-bound vs. GPU-bound refers to which part of your system is limiting your game’s
performance and thus the key to understanding where to start your optimization journey.

CPU-bound means the CPU is the bottleneck. It’s taking longer than the GPU to process tasks
like scripts, physics, or draw call management. In this case, optimizing GPU settings won’t
improve frame rate. To remove the bottleneck you need to reduce CPU workload.

CPU

Engine code Your code Render

GPU

21ms

GPU

CPU CPU

Wait Wait

GPU-bound means the GPU is the bottleneck. It’s spending more time rendering graphics than
the CPU is spending on logic. Here, you’ll want to simplify shaders, reduce lighting complexity,
or lower resolution to improve performance, because optimizing your code on the CPU will not
improve your framerate.

CPU Wait CPU CPU

Engine code Your code Render

GPUGPU

19ms

This wait is Gfx.WaitForPresent in the profiler

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/execution-order.html

© 2025 Unity Technologies 13 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

With the new Highlights module in Unity 6, it’s easy to determine whether your application is
CPU- or GPU-bound on all platforms.

The Highlights module makes it easy to understand how your game is performing vs the set target frame time. In this example, a lot of
optimization work is needed on both the CPU and GPU to hit the target 60 fps.

What is VSync?
VSync synchronizes the application’s frame rate with the monitor’s refresh rate. This
means that if you have a 60Hz monitor and your game runs within the frame budget
of 16.66 ms, then it will be forced to run at 60 fps rather than allowed to run faster.
Synchronizing your fps with your monitor’s refresh rate lightens the burden on your GPU
and stops visual artifacts such as screen tearing. In Unity, you can configure the VSync
Count as a property in the Quality settings (Edit > Project Settings > Quality).

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ProfilerHighlights.html
https://en.wikipedia.org/wiki/Screen_tearing

© 2025 Unity Technologies 14 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Understanding profiling in Unity
Unity’s profiling tools are available in the Editor and via the Package Manager. These tools,
along with the Unity Frame Debugger, are covered in more detail in the section titled “Unity
profiling and debug tools”, but here is a quick overview:

	— The Unity Profiler measures the performance of the Unity Editor, and your application in
Play mode or development mode while connected to a device.

	— The Profiling Core package provides APIs that you can use to add contextual information
to Unity Profiler captures.

	— The Memory Profiler provides in-depth analysis of how much memory your game is
using and what objects are using it.

	— The Profile Analyzer enables you to compare two profiling datasets side by side to
analyze how your changes affect your application’s performance.

	— The Project Auditor reports insights and issues about the scripts, assets, and code in
your project, many of which relate to performance.

Unity also offers several debugging tools that complement its suite of profiling tools. The
Rendering Debugger’s Display Stats panel, for example, allows you to see a limited set of
performance numbers and markers (CPU + GPU) on development builds without having the
Editor connected.

Sample- vs instrumentation-based profiling
There are two common methods of profiling game performance:

	— Sample-based profiling

	— Instrumentation profiling

Sample-based profiling
Sample-based profiling works by taking periodic snapshots of what your code is doing at
regular intervals (typically in milliseconds). By analyzing these snapshots, you can see which
parts of your code are running most frequently and therefore consuming the most time.
Generally, the overhead is low but the data is high-level as you are capturing aggregated
snapshots. Increasing the sampling frequency can provide you with more data but without the
precision that comes with instrumentation-based profilers.

Sampling profilers usually use platform infrastructure to provide minimum overhead and
maximum sampling rate. Examples of such profilers are Windows Performance Analyzer in
conjunction with Event Tracing for Windows, Instruments, and Android Studio.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/performance-profiling-tools.html
https://docs.unity3d.com/6000.1/Documentation/Manual/Packages.html
https://docs.unity3d.com/6000.1/Documentation/Manual/FrameDebugger.html
https://docs.unity3d.com/2021.2/Documentation/Manual/FrameDebugger.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://docs.unity3d.com/6000.1/Documentation/Manual/Profiler.html
https://docs.unity3d.com/Packages/com.unity.profiling.core@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/index.html
https://docs.unity3d.com/6000.2/Documentation/Manual/urp/features/rendering-debugger.html
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/xperf/windows-performance-analyzer-overview
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/xperf/event-tracing-for-windows
https://developer.apple.com/tutorials/instruments
https://developer.android.com/studio/profile

© 2025 Unity Technologies 15 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Instrumentation-based profiler
Instrumentation-based profiling involves “instrumenting” the code by adding Profiler markers,
which record detailed timing information about how long the code in each marker takes to
execute. This profiler captures a stream of Begin and End event timestamps for each marker.
It doesn’t lose any information, but it does rely on markers being placed in order for profiling
data to be captured.

This allows you to explore the performance of your code, locate performance issues easily,
and spot quick optimization wins, with the option of going even deeper by adding custom
Profiler markers or using deep profiling. That also means the overhead is higher but that you
are able to capture very precise information to identify specific issues compared to sample-
based profiling.

Deep profiling automatically inserts Begin and End markers in every scripting method call,
including C# Getter and Setter properties. This system gives full profiling detail on the
scripting side, but it comes with an associated overhead that can inflate the reported timing
data based on how many calls are within the captured profiling scopes.

Instrumentation vs sampling
Generally, sample-based profiling analyzes the application’s high-level performance while
instrumentation-based profiling pinpoints critical performance but with higher overhead.

The overhead introduced by sampling profilers is constant no matter the work that the CPU
is doing while being profiled. You can change the sample rate to accommodate that but it’s
generally lower. The overhead introduced by instrumentation profiling varies with the number
of markers (i.e. adding a lot of markers will make the capture more expensive because the
markers themselves take time). Just be aware of this when using instrumented profilers,
because places in your project which call a lot of functions might look more expensive than
they really are. This can show up especially when deep profiling and distorts the timings in
your profiler capture.

Instrumentation-based profiling in Unity
The Unity Profiler combines both instrumentation-based and sample-based profiling,
depending on the mode being used. A good balance of detail vs overhead is struck by markers
being set in most of the Unity API surface. Important native functionality and scripting code
base message calls are instrumented to capture the most important “broad strokes” without
incurring too much overhead.

The scripting code base message calls mentioned above (instrumented explicitly by default)
usually include the first call stack depth of invocations from Unity native code to your
managed code. For example, common MonoBehaviour methods such as Start(), Update(),
FixedUpdate(), and others are included.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/Unity.Profiling.ProfilerMarker.html
https://docs.microsoft.com/en-us/visualstudio/profiling/understanding-performance-collection-methods-perf-profiler?view=vs-2022
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook

© 2025 Unity Technologies 16 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Profiling an example script shows Update() method calls.

You can also see child samples of your managed scripting code that call back into Unity’s
API in the Profiler. However, one caveat is the Unity API code in question needs to have
instrumentation Profiler markers itself. Most Unity APIs that carry performance overheads
are instrumented. For example, using Camera.main will result in a FindMainCamera marker
appearing in a profile capture. When examining a captured profiling dataset, it is useful to
know what the different markers mean. Use this list of common Profiler markers to learn more.

Increase profiling detail with Profiler markers
By default, the Unity Profiler will profile code timings that are explicitly wrapped in Profiler
markers. Manually inserting Profiler Markers into key functions in the code can be an efficient
way to increase the detail level of profiling runs. Adding your own markers avoids incurring the
full deep profiling overhead and the related problem of inaccurate times in your capture.

When deep profiling is enabled, Unity uses instrumentation-based profiling. This inserts
additional instructions to collect precise, fine-grained data for every function call, making it
possible to measure execution times and behaviors at the cost of higher runtime overhead.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/profiler-markers.html
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html

© 2025 Unity Technologies 17 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

Profiler modules
The Profiler captures per-frame performance metrics to help you identify bottlenecks. Drill
down into details by using the modules included in the Profiler, such as CPU Usage, GPU,
Rendering, Memory, Physics, and so on.

The main Profiler window shows the modules to the left and details panel at the bottom.

https://unity.com/releases/lts

© 2025 Unity Technologies 18 of 92 | unity.com

| Introduction | Profiling 101 | Profiling workflow |

The Profiler window lists details captured with the currently selected Profiler module in a panel
at the bottom of the view. The CPU Usage Profiler module, for instance, displays a Timeline or
Hierarchy view of the work of the CPU, along with specific times.

The Timeline view available with the CPU Usage module; this view shows the Main and Render Thread marker detail

Use the Unity Profiler to assess your application’s performance and dig into specific areas and
issues. By default, the Profiler will connect to the Unity Editor Player instance.

Be aware that you will see a large difference in performance between profiling in the Editor
and profiling a standalone build. Connecting the Profiler to a standalone build running directly
on your target hardware is always preferable since this yields the most accurate results
without Editor overhead.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ProfilerWindow.html#module
https://docs.unity3d.com/Manual/ProfilerCPU.html

© 2025 Unity Technologies 19 of 92 | unity.com

Profiling workflow

This section looks at some useful goals when profiling, and common performance bottlenecks,
such as being CPU-bound or GPU-bound. You’ll learn how to identify these situations and
investigate them in more detail. It also covers memory profiling, which is largely unrelated to
runtime performance, but important to know about because it can prevent game crashes.

From high- to low-level profiling
When profiling, you want to ensure you focus your time and effort on areas where you can
create the biggest impact. Thus it’s recommended to start with a top-to-bottom approach
when profiling, meaning you begin with a high-level overview of categories such as rendering,
scripts, physics, and garbage collection (GC) allocations. Once you’ve identified areas of
concern you can drill down into the deeper details. Use this high-level pass to collect data and
take notes on the most critical performance issues, including scenarios that cause unwanted
managed allocations or excessive CPU usage in your core game loop.

You’ll need to first gather call stacks for GC.Alloc markers. If you’re unfamiliar with this
process, find some tips and tricks in the section titled Locating recurring memory allocations
over application lifetime.

https://unity.com/releases/lts

© 2025 Unity Technologies 20 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

If the reported call stacks are not detailed enough to track down the source of the allocations
or other slowdowns, you can perform a second profiling session with Deep Profiling enabled in
order to find the source of the allocations. We cover deep profiling in more detail later in this
guide but in summary, it’s a mode in the Profiler that captures detailed performance data for
every function call, providing granular insights into execution times and behaviors, but with
significantly higher overhead compared to standard profiling.

When collecting notes on the frame time “offenders,” be sure to note how they compare
relative to the rest of the frame. This relative impact can be distorted when deep profiling is
enabled, because deep profiling adds significant overhead by instrumenting every method call.

Profile early
While you should always profile throughout the entire development cycle of your project, the
most significant gains from profiling are made when you start in the early phases.

Profile early and often so you and your team understand and memorize a “performance
signature” for the project you can use to benchmark against. If performance takes a nosedive,
you’ll be able to easily spot when things go wrong and fix the issue.

While profiling in the Editor gives you an easy way to identify the main issues, the most
accurate profiling results always come from running and profiling builds on target devices,
together with leveraging platform-specific tooling to dig into the hardware characteristics of
each platform. This combination will provide you with a holistic view of application performance
across all your target devices. For example, you might be GPU-bound on some mobile devices
but CPU-bound on others, and you can only learn this by measuring on those devices.

https://unity.com/releases/lts

© 2025 Unity Technologies 21 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Establish a profiling methodology
Profiling should be a structured process. Don’t leave issues to be randomly caught. Instead it’s
better to establish a profiling methodology.

The point of profiling is to identify bottlenecks as targets for optimization. If you rely on
guesswork, you can end up optimizing parts of the game that are not bottlenecks, resulting
in little or no improvement to overall performance. Some “optimizations” might even worsen
your game’s overall performance while other ones can be labor-intensive but yield insignificant
results. The key is to optimize the impact of your focused time investment.

The flow chart below illustrates the initial profiling process with the sections following it
providing detailed information on each step. They also present Profiler captures from real
Unity projects to illustrate the kinds of things to look for.

https://unity.com/releases/lts

© 2025 Unity Technologies 22 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Follow this flowchart and use the Profiler to help pinpoint where to focus your optimization efforts.

https://unity.com/releases/lts

© 2025 Unity Technologies 23 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

To get a holistic picture of all CPU activity, including when it’s waiting for the GPU, use the
Timeline view in the CPU module of the Profiler. Familiarize yourself with the common Profiler
markers to interpret captures correctly. Some of the Profiler markers may appear differently
depending on your target platform, so spend time exploring captures of your game on each of
your target platforms to get a feel for what a “normal” capture looks like for your project.

A project’s performance is bound by the chip and/or thread that takes the longest. That’s the
area on where optimization efforts should focus. For example, imagine the following scenarios
for a game with a target frame time budget of 33.33 ms and VSync enabled:

	— If the CPU frame time (excluding VSync) is 25 ms and GPU time is 20 ms, no problem!
You’re CPU-bound, but everything is within budget, and optimizing things won’t improve
the frame rate (unless you get both CPU and GPU below 16.66 ms and jump up to 60
fps).

	— If the CPU frame time is 40 ms and GPU is 20 ms, you’re CPU-bound and will need to
optimize the CPU performance. Optimizing the GPU performance won’t help; in fact, you
might want to move some of the CPU work onto the GPU, for example, by using compute
shaders instead of C# code where applicable, to balance things out.

	— If the CPU frame time is 20 ms and GPU is 40 ms, you’re GPU-bound and need to
optimize the GPU work.

	— If CPU and GPU are both at 40 ms, you’re bound by both and will need to optimize both
below 33.33 ms to reach 30 fps.

See these resources that further explore being CPU- or GPU-bound:

	— Structure of a frame, the CPU and GPU

	— Is your game draw call-bound?

Are you within frame budget?
Profiling and optimizing your project early and often throughout development will help you
ensure that all of your application’s CPU threads and the overall GPU frame time are within the
frame budget. The question which will guide this process is, are you within the frame budget
or not?

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ProfilerCPU.html#timeline
https://docs.unity3d.com/Manual/profiler-markers.html
https://docs.unity3d.com/Manual/profiler-markers.html
https://youtu.be/uXRURWwabF4?t=342?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://thegamedev.guru/unity-cpu-performance/draw-call-bound/

© 2025 Unity Technologies 24 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Below is an image of a profile capture from a Unity mobile game developed by a team that did
ongoing profiling and optimization. The game targets 60 fps on high-spec mobile phones, and
30 fps on medium/low-spec phones, such as the one in this capture.

This is a profile of a game running comfortably within the ~22 ms frame budget required for 30 fps without overheating. Note the
WaitForTargetfps padding the main thread time until VSync and the gray idle times in the render thread and worker thread. Also note that the
VBlank interval can be observed by looking at the end times of Gfx.Present frame over frame, and that you can draw up a time scale in the
Timeline view or on the Time ruler up top, to measure from one of these to the next.

Note how nearly half of the time on the selected frame is occupied by the yellow
WaitForTargetFPS Profiler marker. The application has set Application.targetFrameRate to 30
fps, and VSync is enabled. The actual processing work on the main thread finishes at around
the 19 ms mark, and the rest of the time is spent waiting for the remainder of the 33.33 ms
to elapse before beginning the next frame. Although this time is represented with a Profiler
marker, the main CPU thread is essentially idle during this time, allowing the CPU to cool and
use a minimum of battery power.

The marker to look out for might be different on other platforms or if VSync is disabled. The
important thing is to check whether the main thread is running within your frame budget or
exactly on your frame budget with some kind of marker that indicates that the application is
waiting for VSync and whether the other threads have any idle time.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html

© 2025 Unity Technologies 25 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Idle time is represented by gray or yellow Profiler markers. The screenshot above shows that
the render thread is idling in Gfx.WaitForGfxCommandsFromMainThread, which indicates
times when it has finished sending draw calls to the GPU on one frame, and is waiting for more
draw call requests from the CPU on the next. Similarly, although the Job Worker 0 thread
spends some time in Canvas.GeometryJob, most of the time it’s idle. These are all signs of an
application that’s comfortably within the frame budget.

If your game is in frame budget
If you are within the frame budget, including any adjustments made to the budget to account
for battery usage and thermal throttling, you’re finished with the key profiling tasks. You can
conclude by running the Memory Profiler to ensure that the application is also within its
memory budget.

CPU-bound
If your game is not within the CPU frame budget, the next step is to investigate what part of
the CPU is the bottleneck – in other words, which thread is the most busy.

It’s rare for the entire CPU workload to be the bottleneck. Modern CPUs have a number of
different cores, capable of performing work independently and simultaneously. Different
threads can run on each CPU core. A full Unity application uses a range of threads for different
purposes, but those that are the most common for finding performance issues are:

	— The main thread: This is where the majority of the game logic/scripts perform their work
by default. Most Unity systems, such as physics, animation, UI, and the initial stages of
rendering, execute here.

	— The render thread: This handles the preparation work (e.g., which objects in the scene
are visible to the camera and which are excluded/invisible because they’re outside the
view frustum, occluded, or culled by other criteria) that must happen before sending
rendering instructions to the GPU.

	— During the rendering process, the main thread examines the scene and performs
camera culling, depth sorting, and draw call batching, resulting in a list of things
to render. This list is passed to the render thread, which translates it from Unity’s
internal platform-agnostic representation to the specific graphics API calls (like
DirectX, Vulkan, or Metal) required to instruct the GPU on a particular platform.

	— The Job worker threads: Developers can make use of the job system to schedule
certain kinds of work to run on worker threads, which reduces the workload on the main
thread. Some of Unity’s systems and features also make use of the job system, such as
physics, animation, and rendering.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/JobSystem.html

© 2025 Unity Technologies 26 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

A real-world example of main thread optimization
The image below shows how things might look in a project that is bound by the main thread.
This project is running on a Meta Quest 2, which normally targets frame budgets of 13.88 ms
(72 fps) or even 8.33 ms (120 fps), because high frame rates are important to avoid motion
sickness in VR devices. However, even if this game was targeting 30 fps, it’s clear that this
project is in trouble.

Capture from a project which is main thread-bound

Although the render thread and worker threads look similar to the example which is within
frame budget, the main thread is clearly busy with work during the whole frame. Even
accounting for the small amount of profiler overhead at the end of the frame, the main thread is
busy for over 45 ms, meaning that this project achieves frame rates of less than 22 fps. There
is no marker that shows the main thread idly waiting for VSync; it’s busy for the whole frame.

https://unity.com/releases/lts

© 2025 Unity Technologies 27 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

The next stage of investigation is to identify the parts of the frame that take the longest time
and to understand why this is so. On this frame, PostLateUpdate.FinishFrameRendering
takes 16.23 ms, more than the entire frame budget. Closer inspection reveals there are five
instances of a marker called Inl_RenderCameraStack, indicating that five cameras are active
and rendering the scene. Since every camera in Unity invokes the whole render pipeline,
including culling, sorting, and batching, the highest-priority task for this project is reducing the
number of active cameras, ideally to just one.

BehaviourUpdate, the Profiler marker that encompasses all MonoBehaviour.Update()
method executions, takes 7.27 milliseconds in this frame.

In the Timeline view, magenta-colored sections indicate points where scripts are allocating
managed heap memory. Switching to the Hierarchy view, and filtering by typing GC.Alloc in
the search bar, shows that allocating this memory takes about 0.33 ms in this frame. However,
that is an inaccurate measurement of the impact the memory allocations have on your CPU
performance.

GC.Alloc markers are not timed by recording a Begin and End point like typical Profiler
samples. To minimize their overhead, Unity records only the timestamp of the allocation and
the allocated size.

The Profiler assigns a small, artificial sample duration to GC.Alloc markers solely to ensure
they are visible in the Profiler views.

The actual allocation can take longer, especially if a new range of memory needs to be
requested from the system. To see the impact more clearly, place Profiler markers around the
code that does the allocation; in deep profiling, the gaps between the magenta-colored GC.Alloc
samples in the Timeline view provide some indication of how long they might have taken.

Additionally, allocating new memory can have negative effects on performance that are harder
to measure and attribute to them directly:

	— Requesting new memory from the system might affect the power budget on a mobile
device, which can lead to the system slowing down the CPU or GPU.

	— The new memory likely needs to get loaded into the CPU’s L1 Cache and thereby pushes
out existing Cache lines.

	— Incremental or synchronous garbage collection may be triggered directly or with a delay
as the existing free space in Managed Memory is eventually exceeded.

At the start of the frame, four instances of Physics.FixedUpdate add up to 4.57 ms. Later
on, LateBehaviourUpdate (calls to MonoBehaviour.LateUpdate()) take 4 ms, and Animators
account for about 1 ms. To ensure this project hits its desired frame budget and rate, all of
these main thread issues need to be investigated to find suitable optimizations.

https://unity.com/releases/lts
https://unity.com/blog/games/optimize-game-performance-with-camera-usage
https://unity.com/blog/games/optimize-game-performance-with-camera-usage

© 2025 Unity Technologies 28 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Common pitfalls for main thread bottleneck
The biggest performance gains will be made by optimizing the things that take the longest
time. The following areas are often fruitful places to look for optimizing in projects that are
main thread-bound:

	— Physics calculations

	— MonoBehaviour script updates

	— Garbage allocation and/or collection

	— Camera culling and rendering on the main thread

	— Inefficient draw call batching

	— UI updates, layouts, and rebuilds

	— Animation

Read our optimization guides that offer a long list of actionable tips for optimizing some of the
most common pitfalls:

Get the e-book Get the e-book

Depending on the issue you want to investigate, other tools can also be helpful:

	— For MonoBehaviour scripts that take a long time but don’t show you exactly why that’s
the case, add Profiler Markers to the code or try deep profiling to see the full call stack.

	— For scripts that allocate managed memory, enable allocation call stacks to see exactly
where the allocations come from. Alternatively, enable deep profiling or use Project
Auditor, which shows code issues filtered by memory, so you can identify all lines of
code which result in managed allocations.

	— Use the Frame Debugger to investigate the causes of poor draw call batching.

https://unity.com/releases/lts
https://unity.com/resources/mobile-xr-web-game-performance-optimization-unity-6
https://unity.com/resources/console-pc-game-performance-optimization-unity-6

© 2025 Unity Technologies 29 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

A real-world example of render thread optimization
Here’s an actual project that’s bound by its render thread. This is a console game with an
isometric viewpoint and a target frame budget of 33.33 ms.

A Render thread-bound scenario

The Profiler capture shows that before rendering can begin on the current frame, the main
thread waits for the render thread, as indicated by the Gfx.WaitForPresentOnGfxThread marker.
The render thread is still submitting draw call commands from the previous frame and isn’t ready
to accept new draw calls from the main thread; it’s also spending time in Camera.Render.

You can tell the difference between markers relating to the current frame and markers from
other frames, because the latter appear darker. You can also see that once the main thread
is able to continue and start issuing draw calls for the render thread to process, the render
thread takes over 100 ms to process the current frame, which also creates a bottleneck during
the next frame.

https://unity.com/releases/lts

© 2025 Unity Technologies 30 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Further investigation showed that this game had a complex rendering setup, involving nine
different cameras and many extra passes caused by replacement shaders. The game was
also rendering over 130 point lights using a forward rendering path, which can add multiple
additional transparent draw calls for each light. In total, these issues combined to create over
3000 draw calls per frame.

Common pitfalls for render thread bottlenecks
The following are common causes to investigate for projects that are render thread-bound:

	— Poor draw call batching: This applies particularly on older graphics APIs such as
OpenGL or DirectX 11.

	— Too many cameras: Unless you’re making a split-screen multiplayer game, the chances
are that you should only ever have one active Camera.

	— Poor culling: This results in too many things being drawn. Investigate your Camera’s
frustum dimensions and cull layer masks.

The Rendering Profiler module shows an overview of the number of draw call batches and
SetPass calls every frame. The best tool for investigating which draw call batches your render
thread is issuing to the GPU is the Frame Debugger.

Tools to solve the identified bottlenecks
While the focus of this e-book is about identifying performance issues, the two
complementary performance optimization guides that we previously highlighted offer
suggestions on how to solve the bottlenecks, depending on whether your target platform is
PC or console or mobile. In the context of render thread bottlenecks it’s worth emphasizing
that Unity offers different batching systems and options depending on what problems you
have identified. Here is a quick overview of some of the options which we explain in greater
detail in the e-books:

	— SRP Batching reduces CPU overhead by storing material data persistently in GPU
memory. While it doesn’t reduce actual draw call count, it makes each draw call cheaper.

	— GPU instancing combines multiple instances of the same mesh using the same material
into a single draw call.

	— Static Batching combines static (non-moving) meshes sharing the same material and
thus can give you wins when working with a level design with many static elements.

	— GPU resident drawer automatically uses GPU instancing to reduce CPU overhead and
draw calls, by grouping similar GameObjects together.

	— Dynamic Batching combines small meshes at runtime which can be an advantage on
older mobile devices with high draw call costs. However, the downside is that the vertex
transformation can also be resource-intensive.

	— GPU occlusion culling uses compute shaders to determine object visibility by comparing
depth buffers from current and previous frames, reducing unnecessary rendering of
occluded objects without requiring pre-baked data.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ProfilerRendering.html
https://unity.com/resources/console-pc-game-performance-optimization-unity-6
https://unity.com/resources/mobile-xr-web-game-performance-optimization-unity-6
https://docs.unity3d.com/Manual/best-practice-guides.html

© 2025 Unity Technologies 31 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Additionally, on the CPU side, techniques such as Camera.layerCullDistances can be used
to reduce the number of objects sent to the render thread by culling objects based on their
distance from the camera, helping alleviate CPU bottlenecks during camera culling.

These are just some of the options available. Each one of these have different advantages and
drawbacks. Some are limited to certain platforms. Projects need to often use a combination of
several of these systems and to do so, an understanding of how to get the most out of them.

Worker threads
Projects bound by CPU threads other than the main or render threads are not that common.
However, it can arise if your project uses the Data-Oriented Technology Stack (DOTS),
especially if work is moved off the main thread into worker threads using the job system.

Here’s a capture from Play mode in the Editor, showing a DOTS project running a particle fluid
simulation on the CPU.

A DOTS-based project, heavy on simulation, bound by Worker threads

https://unity.com/releases/lts
https://unity.com/resources/dots-concepts-features-samples-resources-unity-6
https://docs.unity3d.com/Manual/job-system-overview.html

© 2025 Unity Technologies 32 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

It looks like a success at first glance. The worker threads are packed tightly with Burst-
compiled jobs, indicating a large amount of work has been moved off the main thread. Usually,
this is a sound decision.

However, in this case, the frame time of 48.14 ms and the gray WaitForJobGroupID marker of
35.57 ms on the main thread, are signs that all is not well. WaitForJobGroupID indicates the
main thread has scheduled jobs to run asynchronously on worker threads, but it needs the
results of those jobs before the worker threads have finished running them. The blue Profiler
markers beneath WaitForJobGroupID show the main thread running jobs while it waits, in an
attempt to ensure the jobs finish sooner.

Although the jobs are Burst-compiled, they are still doing a lot of work. Perhaps the spatial
query structure used by this project to quickly find which particles are close to each other
should be optimized or swapped for a more efficient structure. Or, the spatial query jobs can
be scheduled for the end of the frame rather than the start, with the results not required
until the start of the next frame. Perhaps this project is trying to simulate too many particles.
Further analysis of the jobs’ code is required to find the solution, so adding finer-grained
Profiler markers can help identify their slowest parts.

The jobs in your project might not be as parallelized as in this example. Perhaps you just have
one long job running in a single worker thread. This is fine, so long as the time between the job
being scheduled and the time it needs to be completed is long enough for the job to run. If it isn’t,
you will see the main thread stall as it waits for the job to complete, as in the screenshot above.

Common pitfalls for worker thread bottlenecks
Common causes of sync points and worker thread bottlenecks include:

	— Jobs not being compiled by the Burst compiler

	— Long-running jobs on a single worker thread instead of being parallelized across multiple
worker threads

	— Insufficient time between the point in the frame when a job is scheduled and the point
when the result is required

	— Multiple “sync points” in a frame, which require all jobs to complete immediately

You can use the Flow Events feature in the Timeline view of the CPU Usage Profiler module to
investigate when jobs are scheduled and when their results are expected by the main thread.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/Manual/ProfilerCPU.html#flow-events

© 2025 Unity Technologies 33 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

For more information about writing efficient DOTS code, see the DOTS Best Practices guide from Unity Learn.

GPU-bound
Your application is GPU-bound if the main thread spends a lot of time in Profiler markers like
Gfx.WaitForPresentOnGfxThread, and your render thread simultaneously displays markers
like Gfx.PresentFrame or <GraphicsAPIName>.WaitForLastPresent.

The best way of getting GPU frame times is using a target platform-specific GPU profiling tool,
but not all devices make it easy to capture reliable data.

The FrameTimingManager API can be helpful in those cases, providing low-overhead, high-
level frame times both on the CPU and GPU.

https://unity.com/releases/lts
https://learn.unity.com/course/dots-best-practices
https://docs.unity3d.com/ScriptReference/FrameTimingManager.html

© 2025 Unity Technologies 34 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

The following capture was taken on an Android mobile phone using the Vulkan graphics API.
Although some of the time spent in Gfx.PresentFrame in this example might be related to
waiting for VSync, the extreme length of this Profiler marker indicates the majority of this time
is spent waiting for the GPU to finish rendering the previous frame.

A capture from a GPU-bound mobile game

In this game, certain gameplay events triggered the use of a shader that tripled the number
of draw calls rendered by the GPU. Common issues to investigate when profiling GPU
performance include:

	— Expensive full-screen post-processing effects, like Ambient Occlusion and Bloom

	— Expensive fragment shaders caused by:

	— Branching logic inside shader code

	— Using full float precision rather than half precision, especially on mobile

	— Excessive use of registers, which affect the wavefront occupancy of GPUs

https://unity.com/releases/lts

© 2025 Unity Technologies 35 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

	— Overdraw in the Transparent render queue caused by:

	— Inefficient UI rendering

	— Overlapping or excessive use of particle systems

	— Post-processing effects

	— Excessively high screen resolutions, such as:

	— 4K displays

	— Retina displays on mobile devices

	— Micro triangles caused by:

	— Dense mesh geometry

	— Lack of Level of Detail (LOD) systems, which is a particular problem on mobile
GPUs, but can affect PC and console GPUs as well

	— Cache misses and wasted GPU memory bandwidth caused by:

	— Uncompressed textures

	— High-resolution textures without mipmaps

	— Geometry or tessellation shaders, which may be run multiple times per frame if dynamic
shadows are enabled

If your application appears to be GPU-bound you can use the Frame Debugger as a quick way
to understand the draw call batches that are being sent to the GPU. However, this tool can’t
present any specific GPU timing information, only how the overall scene is constructed.

The best way to investigate the cause of GPU bottlenecks is to examine a GPU capture from
a suitable GPU profiler. Which tool you use depends on the target hardware and the chosen
graphics API. See the profiling and debugging tools section of this guide for more information.

Mobile challenges: Thermal control and battery lifetime
Thermal control is one of the most important areas to optimize for when developing
applications for mobile devices. If the CPU or GPU spend too long working at full throttle due
to inefficient code, those chips will get hot. To avoid overheating and potential damage to the
chips the operating system will reduce the clock speed of the device to allow it to cool down,
causing frame stuttering and a poor user experience. This performance reduction is known as
thermal throttling.

Higher frame rates and increased code execution (or DRAM access operations) lead to increased
battery drain and heat generation. Bad performance can also make your game unplayable for
entire segments of lower-end mobile devices, which can lead to missed market opportunities.

https://unity.com/releases/lts

© 2025 Unity Technologies 36 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

When taking on the problem of thermals, consider the budget you have to work with as a
system-wide budget.

Combat thermal throttling and battery drain by profiling early to optimize your game from the
start. Dial in your project settings for your target platform hardware to combat thermal and
battery drain problems.

Adjust frame budgets on mobile
A general tip to combat device thermal issues over extended play times is to leave a frame idle
time of around 35%. This gives mobile chips time to cool down and helps to prevent excessive
battery drain. Using a target frame time of 33.33 ms per frame (for 30 fps), the frame budget
for mobile devices will be approximately 22 ms per frame.

The calculation looks like this: (1000 ms / 30) * 0.65 = 21.66 ms

To achieve 60 fps on mobile using the same calculation would require a target frame time
of (1000 ms / 60) * 0.65 = 10.83 ms. This is difficult to achieve on many mobile devices and
would drain the battery twice as fast as targeting 30 fps. For these reasons, many mobile
games target 30 fps rather than 60. Use Application.targetFrameRate to control this setting,
and refer to the Set a frame budget section for more details about frame time.

Frequency scaling on mobile chips can make it tricky to identify your frame idle time budget
allocations when profiling. Your improvements and optimizations can have a net positive
effect, but the mobile device might be scaling frequency down, and as a result, running cooler.
Use custom tooling such as FTrace or Perfetto to monitor mobile chip frequencies, idle time,
and scaling before and after optimizations.

As long as you stay within your total frame time budget for your target fps (say 33.33 ms for
30 fps) and see your device working less or logging lower temperatures to maintain this frame
rate, then you’re on the right track.

Monitor CPU frequency and idle states with tools such as FTrace or Perfetto to help identify the results of frame budget allowance
optimizations.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://www.kernel.org/doc/Documentation/trace/events-power.txt
https://perfetto.dev/docs/data-sources/cpu-freq

© 2025 Unity Technologies 37 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Another reason to add breathing room to frame budget on mobile devices is to account for
real-world temperature fluctuations. On a hot day, a mobile device will heat up and have
trouble dissipating heat, which can lead to thermal throttling and poor game performance. Set
aside a percent of the frame budget to help avoid this scenario.

Reduce memory access operations
DRAM access is typically a power-hungry operation on mobile devices. Arm’s optimization
advice for graphics content on mobile devices says that LPDDR4 memory access costs
approximately 100 picojoules per byte.

Reduce the number of memory access operations per frame by:

	— Reducing frame rate

	— Reducing display resolution where possible

	— Using simpler meshes with reduced vertex count and attribute precision

	— Using texture compression and mipmapping

When you need to focus on devices leveraging Arm CPU or GPU hardware, Arm Performance
Studio tooling (specifically, Streamline Performance Analyzer) includes some great
performance counters for identifying memory bandwidth issues. The available counters are
listed and explained for each Arm GPU generation in a corresponding user guide, for example,
Mali-G710 Performance Counter Reference Guide . Note that Arm Performance Studio GPU
profiling requires an Arm Immortalis or Mali GPU.

https://unity.com/releases/lts
https://developer.arm.com/documentation/102643/0100/Improving-thermally-bound-applications
https://developer.arm.com/documentation/102643/0100/Improving-thermally-bound-applications
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer
https://developer.arm.com/documentation/102813/latest

© 2025 Unity Technologies 38 of 92 | unity.com

| Profiling 101 | Profiling workflow | Memory profiling |

Arm’s Streamline Performance Analyzer includes a wealth of performance counter information that can be captured during live profiling
sessions on target Arm hardware. This is great for identifying performance issues such as memory bandwidth saturation that result from
overdraw.

A selected set of ARM hardware metrics is exposed to Unity Profiler and Players builds via
System metrics package.

Establish hardware tiers for benchmarking
In addition to using platform-specific profiling tools, establish tiers or a lowest-spec
device for each platform and tier of quality you wish to support, then profile and optimize
performance for each of these specifications.

As an example, if you’re targeting mobile platforms, you might decide to support three
tiers with quality controls that toggle features on or off based on the target hardware.
You then optimize for the lowest device specification in each tier. As another example,
if you’re developing a game for consoles make sure you profile on both older and newer
versions.

Our latest mobile optimization guide, (links to this guide and the PC/console optimization
guide are in a previous section) has many tips and tricks that will help you reduce thermal
throttling and increase battery life for mobile devices running your games.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.profiling.systemmetrics.mali@1.0/manual/index.html
https://unity.com/resources/mobile-xr-web-game-performance-optimization-unity-6

© 2025 Unity Technologies 39 of 92 | unity.com

Memory profiling

Memory profiling is largely unrelated to runtime performance but is useful for testing against
hardware platform memory limitations or if your game is crashing. It can also be relevant if you
want to improve CPU/GPU performance by making changes that actually increase memory
usage.

There are two ways of analyzing memory usage in your application in Unity.

1.	 The Memory Profiler module: This is a built-in Profiler module that gives you basic
information on where your application uses memory in the regular profiler.

2.	 The Memory Profiler: This is a dedicated tool available as a Unity package that you can
add to your project. It adds an additional Memory Profiler window to the Unity Editor,
which you can then use to analyze memory usage in your application in even more detail.
You can store and compare snapshots to find memory leaks, or see the memory layout
to find memory fragmentation issues. We will cover this in further detail later in this guide
and keep focus here on the general considerations you need to take into account.

https://unity.com/releases/lts

© 2025 Unity Technologies 40 of 92 | unity.com

| Profiling workflow | Memory profiling | A few tips to keep in mind when memory profiling |

The Memory Profiler package is a tool you can use to inspect the memory usage of your Unity application and the Unity Editor.

Both these tools enable you to monitor memory usage, locate areas of an application where
memory usage is higher than expected, and find and improve memory fragmentation.

Understand and define a memory budget
Understanding and budgeting for the memory limitations of your target devices are critical
for multiplatform development. When designing scenes and levels, you need to stick to the
memory budget that’s set for each target device. By setting limits and guidelines, you can
ensure that your application works well within the confines of each platform’s hardware
specification.

You can find device memory specifications in developer documentation.

It can also be useful to set content budgets around mesh and shader complexity, as well as for
texture compression. These all play into how much memory is allocated. These budget figures
can be referred to during the project’s development cycle.

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/windows/uwp/xbox-apps/system-resource-allocation

© 2025 Unity Technologies 41 of 92 | unity.com

| Profiling workflow | Memory profiling | A few tips to keep in mind when memory profiling |

Determine physical RAM limits
As each platform has a memory limit, your application will need a memory budget for each of
its target devices. Use the Memory Profiler to look at a captured snapshot of your memory
usage. The Hardware Resources snapshot (see image below) shows Physical Random
Access Memory (RAM) and Video Random Access Memory (VRAM) sizes. This figure doesn’t
account for the fact that not all of that space might be available to use. However, it provides a
useful ballpark figure to start working with.

It’s a good idea to cross reference hardware specifications for target platforms, as figures
displayed here might not always show the full picture. Developer kit hardware sometimes has
more memory, or you may be working with hardware that has a unified memory architecture.

The Hardware Resources snapshot shows the device RAM and VRAM figures the snapshot was captured on.

Determine the lowest specification to support for each target platform
Identify the hardware with the lowest specification of RAM for each platform you support,
and use this to guide your memory budget decision. Remember that not all of that physical
memory might be available to use. For example, a console could have a hypervisor running to
support older games which might use some of the total memory. Think about a percentage
(e.g., 80% of total) to use as a team depending on your specific scenario. For mobile platforms,
you might also consider splitting into multiple tiers of specifications to support better quality
and features for those with higher-end devices.

Consider per-team budgets for larger teams
Once you have a memory budget defined, consider setting memory budgets per team. For
example, your environment artists get a certain amount of memory to use for each level or
scene that is loaded, the audio team gets memory allocation for music and sound effects, and
so on. While this may seem rigid, think of it as guidelines to inform the creative decisions being
made vs the cost of the resources.

https://unity.com/releases/lts

© 2025 Unity Technologies 42 of 92 | unity.com

| Profiling workflow | Memory profiling | A few tips to keep in mind when memory profiling |

It’s important to be flexible with the budgets as the project progresses. If one team comes
in under budget, assign the surplus to another team if it can improve the areas of the game
they’re developing.

Once you decide on and set memory budgets for your target platforms, the next step is to
use profiling tools to help you monitor and track memory usage in your game, enabling you to
make informed decisions and take actions as needed.

In-depth analysis with the Memory Profiler package
The Memory Profiler package is useful for even more detailed memory analysis. Use it to store
and compare snapshots to find memory leaks or see the memory layout of your application to
find areas for optimization.

One great benefit of the Memory Profiler package is that, as well as capturing native objects
(like the Memory Profiler module does), it also allows you to view Managed Memory, save and
compare snapshots, and explore the memory contents via detailed, visual breakdowns of your
memory usage.

The Memory Profiler package allows you to compare snapshots.

Read more about the Memory Profiler package in the Unity profiling and debug tools section.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/performance-managed-memory.html

© 2025 Unity Technologies 43 of 92 | unity.com

A few tips to keep in
mind when memory
profiling

Remember to profile on the device that has the lowest specs for your overall target platform
when setting a memory budget. Closely monitor memory usage, keeping your target limits in
mind.

You’ll usually want to profile using a powerful developer system with lots of memory available
(space for storing large memory snapshots or loading and saving those snapshots quickly is
important).

Memory profiling is a different beast compared with CPU and GPU profiling because it can
incur additional memory overhead itself. You may need to profile memory on higher-end
devices (with more memory), but specifically watch out for the memory budget limit for the
lower-end target specification.

Settings such as quality levels, graphics tiers, and AssetBundle variants may have different
memory usage on more powerful devices. With that in mind, here are some details to keep in
mind to get the most from memory profiling:

	— The quality and graphics settings can affect the size of render textures used for shadow
maps.

	— The resolution scaling can affect the size of the screen buffers, render textures, and
post-processing effects.

	— Texture settings can affect the size of all textures.

	— The maximum LOD can affect models and more.

https://unity.com/releases/lts

© 2025 Unity Technologies 44 of 92 | unity.com

| Memory profiling | A few tips to keep in mind when memory profiling | Unity profiling and debug tools |

	— If you have AssetBundle variants like an HD (High Definition) and an SD (Standard
Definition) version, and you choose which one to use based on the specifications of
your target device, you might get different asset sizes based on which device you are
profiling on.

	— The screen resolution of your target device will affect the size of render textures used
for post-processing effects.

	— The supported graphics API of a device might affect the size of shaders based on which
variants of them it supports (or doesn’t support).

	— A tiered system that uses different quality and graphic settings, as well as AssetBundle
variants, is a great way to be able to target a wider range of devices.

	— For example, you can load a HD version of an AssetBundle on a 4GB mobile
device, and a SD version on a 2GB device. However, take the above variations in
memory usage in mind and make sure to test both types of devices, as well as
devices with different screen resolutions or supported graphics APIs.

Note: The Unity Editor will generally always show a larger memory footprint due to
additional objects that are loaded from the Editor and Profiler. Additionally, texture memory
footprint is higher since they are all forced to have read/write enabled in the Editor.

https://unity.com/releases/lts

© 2025 Unity Technologies 45 of 92 | unity.com

Unity profiling and
debug tools

Unity offers a suite of tools that help you prevent, identify, and fix performance problems. We
mentioned several of these throughout the guide so far. Now let’s take a closer look at when to
use which one.

Some of the tooling mentioned in this section falls under static analyzers or the debugging
tools category, for example, the Frame Debugger. While they’re not profilers, they’re important
to include in your toolkit when it comes to analyzing and improving your Unity projects.

What are the differences between profiling, debugging, and static analysis tools?

Profiling tools instrument and collect timing data relating to code execution.

Debugging tools allow you to step through the execution of a program, pause and examine
values, and provide many other advanced features. For example, the Frame Debugger lets you
step through the rendering of frames, examine shader values, and more.

Static analyzers are programs that can take source code or other assets as input and analyze
them using built-in rules to reason about the “correctness” of said input, without needing to
run the project.

Unity Profiler
The built-in Unity Profiler helps you detect the causes of any bottlenecks or freezes at runtime
and better understand what’s happening at a specific frame or point in time. As explained earlier
in this guide, the Profiler allows you to both profile builds of your application as well as profile

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/Profiler.html

© 2025 Unity Technologies 46 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

directly in the Editor. However, it adds some overhead and can skew your results. Also, keep in
mind that your development machine is probably more powerful than your target device.

The Unity Profiler in action, profiling the garden scene from the URP 3D Sample

The Profiler includes a Deep Profile setting, which is helpful when you need detailed insights
into the specific code being executed at runtime.

Additionally, the Unity Profiler enables comparison across different modules, allowing you to
focus on specific parts of your application. We recommend that you always enable the CPU,
Memory, and Renderer modules for a comprehensive view of your application’s performance.
Enable other modules as you need them, like Audio or Physics, based on the type of issues
you are investigating.

https://unity.com/releases/lts
https://unity.com/demos/urp-3d-sample
https://docs.unity3d.com/6000.1/Documentation/Manual/profiler-deep-profiling.html
https://docs.unity3d.com/6000.1/Documentation/Manual/ProfilerWindow.html#profiler-modules

© 2025 Unity Technologies 47 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Get started with profiling in Unity
If you are new to the Unity Profiler check out our video tutorial here.

Alternatively you can try following these steps to get started:

	— You must use a development build when profiling. Do this via File > Build Profiles and
then check the Development Build checkbox.

	— Tick the Autoconnect Profiler checkbox (this is optional).

	— Note: Autoconnect Profiler can add up to 10 seconds to initial startup time and
should only be enabled if you want to profile your first scene’s initialization. If you
don’t enable Autoconnect Profiler, you can always connect the Profiler to a running
development build manually.

	— Build for the target platform.

	— Open the Unity Profiler via Window > Analysis > Profiler.

	— Disable any Profiler modules you don’t need. Each enabled module incurs a performance
overhead for the player (you can observe some of this overhead using the Profiler.
CollectGlobalStats marker).

	— Set the Frame Count option in the Preferences > Profiler window. A higher number here
will give you more frames you can analyze in the Profiler window, at the expense of using
some extra memory on your Editor machine.

	— Disable your device mobile network, and leave WiFi enabled.

	— Run the build on your target device.

	— If you select Autoconnect Profiler, then the build will have the Editor machine’s IP
address baked in. At launch, the application will attempt to connect directly to the
Unity Profiler at this IP address. The Profiler will automatically connect and begin
displaying frame and profiling information.

	— If you did not select Autoconnect Profiler, then you will need to manually connect
to your Player using the Target Selection dropdown.

https://unity.com/releases/lts
https://www.youtube.com/watch?v=xjsqv8nj0cw

© 2025 Unity Technologies 48 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The new Highlights module in the top bar makes it easier to identify where your project struggles to meet the target frame rate.

To save on build time (at the cost of reduced accuracy), profile your application running
directly in the Unity Editor. Choose Play mode from the Attach to Player dropdown menu in
the Profiler window.

Using the Profiler to target the game running in Play mode

https://unity.com/releases/lts

© 2025 Unity Technologies 49 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Unity Profiler tips

Disable the VSync and Others markers in the CPU Profiler module
The VSync marker represents “dead time,” wherein the CPU main thread is idle while
waiting for VSync. Hiding markers can sometimes make it difficult to understand how
other category times came to be, or even how the total frame time is formed. With this
in mind, another option is to reorder the list so that VSync is at the top. This provides a
clearer view of the graph where the “noise” added by the VSync marker is reduced and
the overall picture clearer.

The Others marker represents profiling overhead and can be safely ignored since it won’t
be present in final builds of your project.

Disable VSync in the build
Another option for getting a clear picture of how the main thread, render thread, and GPU
are interacting is to profile a build in which VSync is disabled entirely. To do this:

1.	 Go to Edit > Project Settings…

2.	 Select Quality and click on the Quality Level(s) to be used on your target device.

3.	 Set VSync Count to Don’t Sync.

4.	 Make a Development build of the game and connect it to the Profiler.

Instead of waiting for the next VBlank, the game will begin a frame as soon as the
previous frame is complete. Disabling VSync can cause visual artifacts, such as tearing,
on some platforms (in which case, remember to re-enable it for release builds), but
removing the artificial wait can make profiler captures easier to read, particularly when
you’re investigating where the bottlenecks are in your project.

Know when to profile in Play mode or Editor mode
When using the Profiler, you can choose Play mode, Editor, or a remote or attached
device as the Player target.

Use Play mode to profile your game/application, and Editor mode to see what the Unity
Editor surrounding the game is doing.

Using the Editor as the target for profiling has a high impact on profiling accuracy. The
Profiler window is effectively profiling itself recursively. However, it can be valuable
to profile the Editor if its performance slows down. You can then identify scripts and
extensions that are slowing the Editor down and hampering productivity.

https://unity.com/releases/lts

© 2025 Unity Technologies 50 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Examples of when you might want to profile the Editor include:

	— If it takes a long time to enter Play mode after pressing the Play button

	— If the Editor becomes sluggish or unresponsive

	— If a project takes a long time to open

The blog post “Tips for working more effectively with the Asset Database” describes how
to use the -profiler-enable command line option to start profiling from the moment the
Editor starts running.

Use Standalone Profiler
Use the Standalone Profiler to launch the Profiler in its own dedicated process, separate
from the Unity Editor, when you want to perform Play mode or Editor profiling. This avoids
the Profiler UI or Editor from having an effect on measured timings. You’ll also get a
cleaner set of profiling data to filter and work with.

Starting the Profiler as a standalone process

Profile in the Editor for quick iterations
Profile in the Editor when you want to quickly iterate on fixing performance issues. For
example, if a performance problem is spotted in the build, profile in the Editor to verify
that you can also find it there. If you do find the problem, use Play mode profiling to
quickly iterate on changes toward a potential solution. Once the issue is solved, make a
build and verify the solution also works on target devices.

This workflow is optimal because you spend less time building changes and deploying to
devices. Instead, you can iterate quickly in the Editor and use profiling tools to validate
your change results.

https://unity.com/releases/lts
https://blog.unity.com/technology/tips-for-working-more-effectively-with-the-asset-database?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://docs.unity3d.com/6000.1/Documentation/Manual/profiler-standalone-process.html

© 2025 Unity Technologies 51 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Using the Memory Profiler module
Many of the features of the Memory Profiler module are superseded by the Memory Profiler
package, but you can still use the module to supplement your memory analysis efforts.

Use the Detailed view in the Memory Profiler module to drill down into the highest memory
trees to find out what is using the most memory.

The Memory Profiler module allows you to easily see how much memory you have allocated to the system.

Here are some more resources to help you explore additional use cases and features of the
Unity Profiler:

	— Profiler overview in the Unity manual

	— Introduction to profiling in Unity

	— How to profile and optimize a game

	— Unity Profiler Walkthrough & Tutorial

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/Profiler.html
https://youtu.be/uXRURWwabF4?t=73?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://www.youtube.com/watch?v=epTPFamqkZo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://www.youtube.com/watch?v=xjsqv8nj0cw

© 2025 Unity Technologies 52 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Profile Analyzer
While the standard Unity Profiler enables detailed analysis of individual frames, the Profile
Analyzer aggregates and visualizes marker data captured from multiple Unity Profiler frames,
providing a broader, “‘big picture” overview. This makes it easy to compare and analyze
performance data across multiple frames or across different profiling sessions.

To get started with the Profile Analyzer:

1.	 Install the Profile Analyze Package via Window > Package Management > Package
Manager.

2.	 Go to the Unity Registry and browse or use the search filter to find the Profile Analyzer
package.

Install the Profile Analyzer from the Package Manager.

The Profile Analyzer pulls a set of frames captured in the Unity Profiler and performs statistical
analysis on them. The data it displays provides useful performance timing information for each
function, such as Min, Max, Mean, and Median timings.

As the Profile Analyzer is great for performing comparisons of data sets, consider using it
throughout your game development to get clarity on performance and optimization challenges.
You can also use it to A/B test a game scenario for performance differences, compare before
and after profiling data for code refactoring and optimization, new features, or even Unity
version upgrades.

One useful tip is to save profiling sessions to compare before and after performance
optimization work when using the Profile Analyzer.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html

© 2025 Unity Technologies 53 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

A great companion to the Unity Profiler, the Profile Analyzer aggregates and compares multiple frames captured in profiling sessions. This is a
screenshot of the Single view.

To start, you first need to capture data using the Profiler and then populate the Profile
Analyzer with that data to perform an analysis.

Using aggregated data gives you a more informed way of looking at what’s going on in your
game, rather than viewing only one frame at a time. For example, in a 300-frame (10-second)
gameplay capture or a 20-second loading sequence you might need to know:

	— What are the biggest CPU costs on the main and render threads?

	— What is the mean/median/total cost of each of those markers?

Answering these essential questions can help you locate the biggest problems and prioritize
their optimizations.

The statistics and detail available with Profile Analyzer allow you to delve deeper into the
performance characteristics of your code when running across multiple frames, or even
compared with previous profile capture sessions.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/collecting-and-viewing-data.html

© 2025 Unity Technologies 54 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Use the Frame Control panel to select one, or a range, of frames. When selected, the Marker
Details pane updates to show aggregated data for the selection with a sortable list of markers
containing useful statistics.

Use the Frame Control Panel to select the range of frames you would like to focus on.

The Marker Summary pane displays in-depth information on selected markers. Each marker
in the list is an aggregation of all the instances of that marker, across all filtered threads in the
range of selected frames.

The Marker Summary panel contains detailed information about each marker aggregation selected in the Marker Details panel.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/frame-range-selection.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/frame-range-selection.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/single-view.html#marker-details-list
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/single-view.html#marker-details-list
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/marker-summary.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/marker-summary.html

© 2025 Unity Technologies 55 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Profile Analyzer views
Notice the Mode selection in the top of the window. The Profile Analyzer has multiple views
and approaches for analyzing profiling data. Use the different views to select, sort, view, and
compare sets of profiling data.

You can select between different modes in the top of the panel.

Single view
The Single view is the default starting point of the Profile Analyzer, providing answers to high-
level performance-over-time questions up front. The Single view displays information about
a single set of captured profile data. Use it to analyze how profile markers perform across
frames. This view is divided into several panels, which contain information on timings, as well
as min, max, median, mean, and lower/upper quartile values for frames, threads, and markers.

The Single view shows profile marker statistics and timings for a single or range of frames.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/single-view.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/single-view.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/single-view.html

© 2025 Unity Technologies 56 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The many useful insights it can provide makes the Single view an essential part of any profiling
toolkit.

Compare view
The Compare view is particularly effective for analyzing performance variations, as it allows
you to load two distinct data sets which are then displayed in different colors for clear, side-
by-side comparison.

Data set marker timings can be easily compared in the Compare view using the Marker Comparison pane and its color coding.

Use the following steps to compare performance changes using the Profile Analyzer. You can
either use the Pull Data option from an active Unity Profiler capture or the Load Data option
from a saved session. When loading, files must be in the Profile Analyzer’s .pdata format. For
Unity Profiler .data files, open them first in the Profiler window, then use Pull Data in the Profile
Analyzer. It’s also recommended to save your original .data files from the Profiler.

1.	 Prepare a test: Choose a consistent section of your game to profile for a meaningful
benchmark comparison. A scripted or repeatable manual playthrough works best so you
minimize random side effects that impact performance.

2.	 Capture “before” data:

	— Open Profile Analyzer (Window > Analysis > Profile Analyzer).

	— In the Unity Profiler, record a profiling session of your chosen gameplay before
making any optimizations.

	— In the Analyzer’s Compare tab, click the first Pull Data button. This loads the
current capture from the Profiler or, alternatively, you can save the session.

3.	 Optimize and capture “after” data:

	— Apply your code or performance improvements.

	— Clear the Unity Profiler’s previous data, then record a new profiling session of the
same gameplay.

	— In Profile Analyzer, click the second Pull Data button to load this new session.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/compare-view.html

© 2025 Unity Technologies 57 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

4.	 Analyze differences:

	— The Marker Comparison pane shows how marker timings differ between your
“before” (left) and “after” (right) captures.

	— Columns marked with < or > indicate which capture had a larger value for that
metric.

	— You can change which metrics are compared using the Marker Columns filter.

Refer to the Compare view entry page for more details on each Marker Comparison column.

Comparing median and longest frames
Compare the median and longest frames within a single Profiler capture to pinpoint things
happening in the latter that do not appear in the former, or to see what is taking longer than
average to complete.

Open the Profile Analyzer Compare view and load the same data set for both the left and right
sides. You can also load a data set in the Single view, then switch to Compare.

Right-click the top Frame Control graph, and choose Select Median Frame. Right-click the
bottom graph, and choose Select Longest Frame.

The Profile Analyzer Marker Comparison panel updates to display the differences.

Comparing the median and longest frames from a capture

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/compare-view.html

© 2025 Unity Technologies 58 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Another useful trick for comparing data is to sort both graphs by frame duration (Right-click
> Order By Frame Duration), then select a range in each set, either focusing on, or excluding,
the outlier frames (frames that are disproportionately long or short).

Ordering Frames by Duration and selecting an outlier range

This lets you compare the most typical frames against the most extreme ones. The data is
then displayed in the Marker Comparison table for the selected range, making it easier to
analyze what contributes to performance spikes or inconsistencies.

Learn more about the Profiler Analyzer with these resources:

	— Profile Analyzer Walkthrough & Tutorial

	— CPU performance analysis with Unity’s Profile Analyzer

	— Introduction to profiling

Profile Analyzer tips

	— Drill into user scripts (ignoring Unity Engine API levels) by selecting a Depth level
of 4. After filtering to this level and looking at the Unity Profiler in Timeline mode,
you can correlate the call stack depth to make a selection here – Monobehaviour
scripts will appear in blue on the fourth level down. This is a quick way to see if
your specific logic and gameplay scripts are taxing by themselves without any other
“noise.”

	— Filter data in the same way for other areas of the Unity engine, such as animators or
engine physics.

	— On the right side in the Frame Summary section, you’ll find the highlighted method’s
performance range histogram. Hover over the Max Frame number (the exact frame
in which max timing was found) to get a clickable link to view the frame selection in
the Unity Profiler. Use this view to analyze other factors that potentially contribute
to the high maximum frame time.

	— If you have a widescreen or two monitors available it can be useful to open the
Profile Analyzer and the Unity Profiler side by side. This setup enables you to
double-click a frame in the Profile Analyzer to automatically select the same frame
in the Unity Profiler, from where you can further investigate it using the Timeline or
Hierarchy views.

https://unity.com/releases/lts
https://www.youtube.com/watch?v=Ypg84Fr20Sw
https://www.youtube.com/watch?v=0lzqdDdE9Tc?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://youtu.be/uXRURWwabF4?t=1635?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook

© 2025 Unity Technologies 59 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Memory Profiler
The Memory Profiler package can help you understand and optimize your project’s memory
usage. It allows you to capture ‘snapshots’ of your application’s memory at specific moments,
both within the Unity Editor and in running Player builds on your target device.

The snapshots provide a comprehensive breakdown of how memory is being utilized, showing
allocations throughout the engine. This helps you identify sources of excessive or unnecessary
memory usage, track down memory leaks, and inspect issues like heap fragmentation.

The Memory Profiler is a package available in Package Manager.

After installing the Memory Profiler package, open it via Window > Analysis > Memory
Profiler.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html

© 2025 Unity Technologies 60 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Memory Profiler’s top menu bar allows you to change the player selection target and capture
or import snapshots. The Target selection dropdown in the top-left corner (in the image below,
the target chosen is “Editor”) allows you to profile memory directly on your target hardware by
connecting the Memory Profiler to the remote device. Note that profiling in the Unity Editor will
give you inaccurate figures due to overheads added by the Editor and other tooling.

 Change player selection and capture or import memory snapshots.

On the left side of the Memory Profiler window is the Snapshots component. Use this to
manage and open or close saved memory snapshots. The Snapshot component provides two
views, Single Snapshot and Compare Snapshot.

You can manage multiple memory snapshots.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/snapshots-component.html

© 2025 Unity Technologies 61 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Similar to the Profile Analyzer, the Memory Profiler allows you to load and compare two
memory snapshots side by side. Use this comparison to track memory growth over time,
analyze usage between scenes, or identify potential memory leaks.

Memory Profiler has a number of tabs in the main window that allow you to dig into memory
snapshots, the key ones being Summary, Unity Objects, and All of Memory. Let’s look at each
of these options in detail.

The Summary tab
The Summary tab gives you a high-level snapshot of your project’s memory usage at the
moment a memory capture was taken. It’s perfect for when you want a fast and informative
overview without diving into detailed analysis.

This view highlights key metrics and can help you quickly spot potential memory issues or
unexpected usage patterns. It’s especially useful when comparing snapshots or debugging
memory usage over time. Let’s look at a few of its key sections.

The Summary tab displays an overview of memory at the time the snapshot was captured.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/main-component.html#summary-tab

© 2025 Unity Technologies 62 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Tips: In the right panel (see image below), you’ll find helpful contextual information about your
snapshot. These can alert you to possible problems or guide you in interpreting results.

The right panel provides helpful hints about your snapshot.

Memory Usage on Device: This shows the application footprint in physical memory. It includes
all Unity and non-Unity allocations resident in memory at the time of the capture.

Allocated Memory Distribution: This view visualizes how allocated memory is distributed
across different memory categories.

https://unity.com/releases/lts

© 2025 Unity Technologies 63 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Note the Untracked* memory bar. It corresponds to the memory that Unity does not track
through its memory management system. Such allocations may come from native plugins and
drivers. Use the platform-specific profiler to analyze Untracked memory usage for your target
device.

Managed Heap Utilization: In this view, you’ll get a breakdown of the memory that Unity’s
scripting VM manages, which includes managed heap memory used for managed objects,
empty heap space that might have previously been used by objects or been reserved during
the last heap expansion, and memory used by a virtual machine itself.

Top Unity Object Categories: This displays which types of Unity objects use the most memory
in the snapshot (e.g., Texture2D, mesh, GameObject).

https://unity.com/releases/lts

© 2025 Unity Technologies 64 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Unity Objects tab
The Unity Objects tab displays any Unity objects that allocated memory, how much native and
managed memory the object uses, and the combined total. Use this information to identify
areas where you can eliminate duplicate memory entries or to find which objects use the most
memory. And via the search bar, you can find the entries in the table which contain the text
you enter.

The Unity Objects tab allows you to drill down into captured snapshot memory usage with high granularity.

By default, the table lists all relevant objects by Allocated Size in descending order. You can
click on a column header name to sort the table by that column or to change whether the
column sorts in ascending or descending order.

Use this to your advantage when optimizing memory usage and aiming to pack memory more
efficiently for hardware platforms where memory budgets are limited.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/main-component.html#unity-objects-tab

© 2025 Unity Technologies 65 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Memory profiling techniques and workflows
Begin by analyzing a Memory Profiler snapshot to identify high-memory usage areas. Once
you capture or load a Memory Profiler snapshot, use the Unity Objects tab to inspect the
categories, ordered from largest to smallest in memory footprint size.

Project assets are often the highest consumers of memory. Using the Table mode, locate
textures, meshes, audio clips, render textures, shader variants, and preallocated buffers.
These are often good candidates to start with when optimizing memory usage. The Project
Auditor is a great complementary tool here as it can provide some recommendations about
how to reduce memory use for assets (making sure the asset is set up properly in the Import
Settings Inspector is a good starting place).

Locating memory leaks
A memory leak is a situation where unused assets, objects, or resources are not properly
released from memory. This can lead to progressively increasing memory usage and
performance issues or crashes.

A memory leak typically happens when:

	— An object is not released manually from memory through the code.

	— An object unintentionally remains in memory because another object still holds a
reference to it.

The Memory Profiler has a Compare Snapshots mode which can help find memory leaks by
comparing two snapshots over a specific time frame. This comparison can reveal objects that
persist in memory when they should be deallocated.

Compare two snapshots to see the diffences.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/main-component.html#all-of-memory-tab
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/find-memory-leaks.html

© 2025 Unity Technologies 66 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

A frequent scenario for memory leaks in Unity games is after unloading a scene. Objects from
the unloaded scene might not be correctly garbage collected if references to them still exist.

Locating recurring memory allocations over application lifetime
Through differential comparison of multiple memory snapshots, you can identify the source of
continuous memory allocations during application lifetime.

Here are some tips to help identify managed heap allocations in your projects.

Memory Profiler module in the Unity Profiler
The Memory Profiler module in the Unity Profiler represents managed allocations per
frame with a red line. This should be 0 most of the time, so any spikes in that line indicate
frames you should investigate for managed allocations.

Any spikes seen for GC Allocated In Frame give you pointers to investigate for managed allocations.

Timeline view in the CPU Usage Profiler
The Timeline view in the CPU Usage Profiler shows allocations, including managed ones,
in pink, making them easy to see and hone in on.

Managed allocations appear as pink-colored markers in the Timeline view.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/find-memory-leaks.html

© 2025 Unity Technologies 67 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Allocation Call Stacks
Allocation call stacks provide a quick way to discover managed memory allocations in
your code. These will provide the call stack detail you need at less overhead compared
to what deep profiling would normally add, and they can be enabled on the fly using the
standard Profiler.

Allocation call stacks are disabled by default in the Profiler. To enable them, click the
Call Stacks button in the main toolbar of the Profiler window. Change the Details view to
Related Data.

Note: If you’re using an older version of Unity (prior to allocation call stack support), then
deep profiling is a good way to get full call stacks to help find managed allocations.

Enable allocation call stacks in the Profiler to follow the call stack back to the source for managed allocations.

The Related Data panel in the Hierarchy view also reveals allocation call stack details.

GC.Alloc samples selected in the Hierarchy or Raw Hierarchy will now contain their call
stacks. You can also see the call stacks of GC.Alloc samples in the selection tooltip in
Timeline.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ProfilerCPU.html#call-stacks

© 2025 Unity Technologies 68 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Hierarchy view in the CPU Usage Profiler
The Hierarchy view in the CPU Usage Profiler lets you click on column headers to use
them as the sorting criteria. Sorting by GC Alloc is a great way to focus on those.

Use the Hierarchy view in the CPU Usage Profiler module to filter and focus on managed allocations.

Memory and GC optimizations

Reduce the impact of garbage collection (GC)
Unity uses the Boehm-Demers-Weiser garbage collector to automatically clean up
memory when it’s no longer needed for your application. The GC stops running your
program code and only resumes normal execution once its work is complete.

While the automatic management is convenient, unnecessary or frequent allocations can
lead to performance hiccups because the garbage collector has to pause your game to
clean up unused memory (also known as GC spikes). Here are some common pitfalls to
keep in mind:

	— Strings: In C#, strings are reference types, not value types. This means that every
new string will be allocated on the managed heap, even if it’s only used temporarily.
Reduce unnecessary string creation or manipulation. Avoid parsing string-based
data files such as JSON and XML, and store data in ScriptableObjects or formats
like MessagePack or Protobuf instead. Use the StringBuilder class if you need to
build strings at runtime.

	— Unity function calls: Some Unity API functions create heap allocations, particularly
ones which return an array of temporary managed objects. Cache references to
arrays rather than allocating them in the middle of a loop. Also, take advantage of
certain functions that avoid generating garbage. For example, use GameObject.
CompareTag instead of manually comparing a string with GameObject.tag (as
returning a new string creates garbage).

You can also use the Project Auditor to list these alternatives; this can help ensure
that you’re using the non-allocating versions wherever possible.

	— Boxing: Boxing occurs when a value type (e.g., int, float, struct) is converted to
a reference type (e.g., object). Avoid passing a value-typed variable in place of
a reference-typed variable. This creates a temporary object, and the potential

https://unity.com/releases/lts
https://www.hboehm.info/gc/
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder

© 2025 Unity Technologies 69 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

garbage that comes with it implicitly converts the value type to a type object (e.g.,
int i = 123; object o = i). Instead, try to provide concrete overrides with the value
type you want to pass in. Generics can also be used for these overrides.

	— Coroutines: Though yield does not produce garbage, creating a new
WaitForSeconds object does. Cache and reuse the WaitForSeconds object rather
than creating it in the yield line.

	— LINQ and Regular Expressions: Both of these generate garbage from behind-the-
scenes boxing. Avoid LINQ and Regular Expressions if performance is an issue.
Write for loops and use lists as an alternative to creating new arrays.

	— Generic Collections and other managed types: Don’t declare and populate a List or
collection every frame in Update (for example, a list of enemies within a certain radius
of the player). Instead, make the List a member of the MonoBehaviour and initialize it
in Start. Simply empty the collection with Clear every frame before using it.

Time garbage collection whenever possible
If you are certain that a garbage collection freeze won’t affect a specific point in your
game, you can trigger garbage collection with System.GC.Collect. A classic example of
this is when the user is in a menu or pauses the game, where it won’t be noticable.

See Understanding Automatic Memory Management for examples of how to use this to
your advantage.

Use the Incremental Garbage Collector to split the GC workload
Rather than creating a single, long interruption during your program’s execution,
incremental garbage collection uses multiple, shorter interruptions that distribute the
workload over many frames. If garbage collection is causing an irregular frame rate, try
this option to see if it reduces the problem of GC spikes. Use the Profile Analyzer to verify
its benefit to your application.

Note that using the GC in Incremental mode adds read-write barriers to some C# calls,
which comes with some overhead that can add up to ~1 ms per frame of scripting call
overhead. For optimal performance, it’s ideal to have no GC Allocs in the main gameplay
loops so that you don’t need the Incremental GC for a smooth frame rate and can hide the
GC.Collect where a user won’t notice it, for example, when opening the menu or loading
a new level. In such optimized scenarios, you can perform full, non-incremental garbage
collections (using System.GC.Collect()).

To learn more about the Memory Profiler check out the following resources:

	— Memory Profiler Walkthrough and Tutorial

	— Memory Profiler documentation

	— Improve memory usage with the Memory Profiler in Unity

	— Memory Profiler: The Tool for Troubleshooting Memory-related Issues

	— Working with the Memory Profiler

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/api/system.gc.collect?view=net-5.0
https://docs.unity3d.com/Manual/UnderstandingAutomaticMemoryManagement.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://www.youtube.com/watch?v=Uuzd39AjFWQ
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@0.4/manual/index.html
https://www.youtube.com/watch?v=I9wB4Cvgz5g?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://www.youtube.com/watch?v=5b79ZIQBXsg?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://learn.unity.com/tutorial/working-with-the-memory-profiler-2019-3

© 2025 Unity Technologies 70 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Frame Debugger
The Frame Debugger helps you debug and optimize rendering by letting you freeze playback
for a running game on a specific frame and view the individual draw calls used to render it. You
can step through the list of draw calls, one by one, to see the frames as they are constructed
to form a scene from its graphical elements.

The Frame Debugger makes it easy to see where a draw call corresponds to the geometry
of a GameObject. It highlights the GameObject in the main Hierarchy panel to assist with
identification.

Understanding draw calls:
A draw call in Unity is a request sent from the CPU to the GPU to render a specific set of
geometry (like a mesh, skybox, user interface, etc.) with a particular material and shader.
Each time Unity needs to render a different object, material, or state change, it issues a
new draw call.

The Frame Debugger can also be used to test for overdraw by analyzing the rendering order
frame-by-frame. See the optimization tips below for more information.

Use the Frame Debugger to analyze how identified overdraw occurs.

Open the Frame Debugger from the Window > Analysis > Frame Debugger menu.

With your application running in the Editor or on a device, click Enable. This will pause the
application, and all the draw calls for the current frame will be captured and listed in sequence
on the left side of the Frame Debugger window. The capture will include additional details,
such as framebuffer clear events.

The slider at the top of the Debugger window lets you scrub rapidly through the draw calls to
quickly locate an item of interest.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/FrameDebugger.html

© 2025 Unity Technologies 71 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Frame Debugger window lists draw calls and events on the left side and provides a slider to visually step through each one.

Unity issues draw calls from the CPU to the graphics API to draw geometry on the screen.
A draw call tells the graphics API what to draw and how. Each draw call contains all the
information the graphics API needs, such as information about textures, shaders, and buffers.
Often, the preparation for a draw call is more resource-intensive than the draw call itself.

This preparation process is known as the render state, and you can improve its performance
by minimizing changes to it.

Use the Frame Debugger to identify where draw calls originate and visualize the rendering
process. This helps inform your decisions about how to group draw calls to reduce render
state changes.

Reference the Frame Debugger’s list hierarchy to locate where interesting draw calls originate
from. Selecting an item from the list will show the scene (in the Game window) as it appears
up to and including that draw call.

Minimizing draw calls is crucial for performance, especially on mobile or VR platforms, because
each call adds CPU overhead. Techniques like batching, GPU instancing, and texture atlasing
help reduce the number of draw calls by combining objects that share materials or meshes.

https://unity.com/releases/lts

© 2025 Unity Technologies 72 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Game window displays a scene frame constructed up to and including the selected draw call (near the end of applying post-processing
effects) in the Frame Debugger. The panel to the right of the list hierarchy provides information about each draw call, such as the geometry
details and the shader used for rendering.

Other useful information includes reasons for why a draw call couldn’t be batched with
previous ones, and a breakdown of the exact property values that were fed into shaders.

Remote Frame Debugging
You can remotely debug frames by attaching the Frame Debugger to a running Unity Player
on supported platforms (WebGL is not supported). For Desktop platforms, enable Run In
Background for builds.

To set up remote frame debugging:

1.	 Create a standard build of the project to your target platform (select Development Build).

2.	 Run the player.

3.	 Open the Frame Debugger window from the Editor.

4.	 Click the Player selection dropdown and choose the active player that is running.

5.	 Click the Enable button.

You can now step through draw calls and events in the Frame Debug list hierarchy and
observe the results in the active player.

https://unity.com/releases/lts

© 2025 Unity Technologies 73 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Rendering Debugger
The Rendering Debugger provides multiple debug views and modes that display information
about overdraw, lighting complexity, rendering, and material properties, allowing you to
pinpoint rendering issues and optimize scenes for URP and HDRP.

To open the tool go to Window > Analysis > Rendering Debugger in the Editor. You can also
use the shortcut LeftCtrl+Backspace (LeftCtrl+Delete on macOS) in playmode or for desktop
player build.

The Rendering Debugger lets you visualize various lighting, rendering, and material properties so you can identify rendering issues and
optimize scenes.

This can help in diagnosing visual artifacts or performance bottlenecks related to rendering.
Note that the window with the detailed statistics is only available for Development builds, and
there can be limitations with how it interacts with non-pipeline-specific shaders or external
rendering objects.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/urp/features/rendering-debugger.html

© 2025 Unity Technologies 74 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

You can open the Rendering Debugger window in the Editor, or as an overlay in Game view, Play mode, or your built application.

Five rendering optimizations for common pitfalls
Use these tips and tricks to optimize common rendering performance issues that can be
identified using the Frame Debugger and other render debug tools.

Identify your performance bottlenecks first
To begin, locate a frame with a high GPU load. The majority of platforms provide solid
tools for analyzing your project’s performance on both the CPU and the GPU. Examples
include Arm Performance Studio for Arm hardware / Immortalis and Mali GPUs, PIX for
Microsoft Xbox, Razor for Sony PlayStation, and Xcode Instruments for Apple iOS.

Use your respective native profiler to break down the frame cost into its specific parts.
This is your starting point to improve graphics performance.

https://unity.com/releases/lts

© 2025 Unity Technologies 75 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

This view was GPU-bound on a PS4 Pro at roughly 45 ms per frame.

Draw call optimization
PC and current generation console hardware can push a lot of draw calls, but the
overhead of each call is still high enough to warrant trying to reduce them. On mobile
devices, draw call optimization is often vital. Draw call batching is a method that
combines meshes so that Unity can render them in fewer draw calls.

Use the Frame Debugger as explained above to help identify draw calls that can be
reorganized for optimal group and batch. The tool also helps to identify why certain draw
calls can’t be batched.

Techniques to help reduce draw call batches include:

	— Occlusion Culling removes objects hidden behind foreground objects and reduces
overdraw (when the GPU redraws the same pixel multiple times due to overlapping
transparent objects) of the non-visible elements. Be aware this requires additional
CPU processing, so use the Profiler to ensure moving work from the GPU to CPU is
beneficial and that you are not creating new bottlenecks.

	— GPU instancing reduces drawcalls by rendering many objects that share the
same mesh and material in fewer batches. It allows complex scenes with fewer
performance costs and minimal visual repetition.

	— The SRP Batcher reduces the GPU setup between draw calls by batching Bind
and Draw GPU commands. To benefit from SRP batching, use as many Materials
as needed, but restrict them to a small number of compatible shader variants, e.g.,
Lit and Unlit Shaders in URP and HDRP, with as few variations between keyword
combinations as possible.

	— GPU Resident Drawer uses GPU instancing to draw many GameObjects, which
significantly reduces the number of draw calls. This frees up CPU processing
time by shifting more of the rendering workload to the GPU, leading to improved
performance, especially in scenes with many similar objects.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/6000.1/Documentation/Manual/SRPBatcher.html
https://docs.unity3d.com/6000.1/Documentation/Manual/urp/gpu-resident-drawer.html

© 2025 Unity Technologies 76 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Optimize fill rate by reducing overdraw
Objects rendering on top of one another create overdraw. Overdraw can indicate an
application is trying to draw more pixels per frame than the GPU can cope with. Not only
is performance at risk, but thermals and battery life on mobile devices suffer too. You can
combat overdraw by understanding how Unity sorts objects before rendering them.

The Built-In Render Pipeline sorts GameObjects according to their Rendering Mode and
renderQueue. Each object’s shader places it in a render queue, which often determines its
draw order.

If you’re using the Built-In Render Pipeline, use the Scene view control bar to visualize
overdraw. Switch the draw mode to Overdraw.

Overdraw in the Scene
view control bar

HDRP controls the render queue slightly differently. Read the section on Renderer and
Material Priority to understand this approach in greater detail.

You can use the Rendering Debugger for identifying overdraw in URP and HDRP as we
described above.

A scene in Standard shaded view

The same scene as above, now in Overdraw view;
overlapping geometry is often a source of overdraw

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterRenderingMode.html
https://docs.unity.cn/2023.2/Documentation/ScriptReference/Material-renderQueue.html
https://docs.unity3d.com/ScriptReference/Rendering.RenderQueue.html
https://docs.unity3d.com/Manual/ViewModes.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.7/manual/Renderer-And-Material-Priority.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.7/manual/Renderer-And-Material-Priority.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook

© 2025 Unity Technologies 77 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Visualizing overdraw with HDRP and the Fullscreen Debug Mode

Examine your most expensive shaders

This is a deep topic, but in general, aim to reduce shader complexity where possible.
Some easy wins here involve reducing precision where possible, i.e., use half precision
floating point variables if you can. You can also learn about wavefront occupancy for
your target platform and how to use GPU profiling tools to assist in getting a healthy
occupancy.

Multi-core optimization for rendering
Enable Graphics Jobs in Player Settings > Other Settings to take advantage of the multi-
core processors on desktop and consoles. Graphics Jobs allows Unity to spread the
rendering work across multiple CPU cores, removing pressure from the render thread. See
this Multithreaded Rendering and Graphics Jobs tutorial for details.

Profile post-processing effects
Ensure that your post-processing assets are optimized for your target platform. Tools
from the Unity Asset Store that were originally authored for PC games might consume
more resources than necessary on consoles or mobile devices. Profile your target
platform using its native profiler tools. When authoring your own post-processing effects
for mobile or console targets, keep them as simple as possible.

There are many more tools available to help with frame debugging and analysis. Take a look at
the profiling and debug tools index for further inspiration.

https://unity.com/releases/lts
https://unity.com/how-to/performance-optimization-high-end-graphics
https://learn.unity.com/tutorial/optimizing-graphics-in-unity

© 2025 Unity Technologies 78 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

To learn more about about the Unity Frame Debugger, check out the following resources:

	— Unity Frame Debugger documentation

	— Working with the Frame Debugger

	— Profiling Rendering

Project Auditor
The Project Auditor, introduced as a package in Unity 6.1, is a powerful analysis tool for Unity
projects, designed to help developers optimize performance, maintain best practices, and
identify potential issues and bottlenecks in their projects.

Project Auditor scans your entire project and provides detailed reports about inefficiencies,
such as heavy scripting calls, unused assets, excessive entity counts, etc.

The Project Auditor Summary view

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/FrameDebugger.html
https://learn.unity.com/tutorial/working-with-the-frame-debugger#
https://youtu.be/uXRURWwabF4?t=2072?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://docs.unity3d.com/Packages/com.unity.project-auditor@latest

© 2025 Unity Technologies 79 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Project Auditor covers several different areas:

	— Performance optimization: It identifies problems that could impact your project’s
runtime performance, such as excessive garbage generation, unnecessary object
allocations, or expensive function calls.

	— Code and asset review: It highlights unused assets, inefficient code patterns, or
outdated APIs that can be refactored. This helps reduce build size, improve overall
project maintainability, and optimize memory use.

	— Diagnostics and best practices: It provides recommendations based on Unity best
practices and highlights errors or warnings related to your project setup, like missing
references, or suboptimal Player or Quality settings.

	— Customizable reports: It organizes the results into categories, making it easy to
prioritize optimizations. You can also create custom rules to tailor the analysis to your
specific project or needs.

💡Tips:

	— Run the Project Auditor at key stages of development (e.g., before milestones, beta
releases, final builds). Regular audits help catch performance bottlenecks, unused
assets, or outdated code early, preventing problems from growing larger as your project
scales.

	— You can automate running Project Auditor as part of your CI or build setup (as shown
here in the manual) and use the reports to make sure no one checks in any assets or
code that add new issues (using the API detailed here).

	— You can add your own rules if there are particular things you want to make sure you
catch in your game; e.g. texture settings, sizes, or more complicated rules. See this
page in the manual for more details about how to do this.

The reports generated by the Project Auditor are categorized by severity (Major, Moderate,
and Info). Focus on the most severe issues first, as they often highlight performance-critical
problems, such as over-allocation of memory or excessive garbage collection. They’re also
likely to be in code paths that are called more frequently, like Update, where any performance
problems they bring will be more obvious to players.

The Project Auditor also checks settings like Player settings and Quality settings and makes
recommendations about what you might change. Use this to ensure your build targets,
resolution, text compression, or other project settings are optimized for your intended
platform.

Domain Reload
The Unity Editor allows you to configure settings about entering Play mode; this page has
more details about it, but you can often speed up your Editor iteration time by disabling
Domain Reload. However, this will no longer reset your scripting state every time you enter
Play mode, so you have to do this manually in your code.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/run-from-command-line.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/compare-issues.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/custom-analyzers.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/custom-analyzers.html
https://docs.unity3d.com/6000.0/Documentation/Manual/configurable-enter-play-mode.html

© 2025 Unity Technologies 80 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

The Code area in Project Auditor can analyze the scripts in your project to help you find
anywhere that you need to reset your script variables. It’s considered best practice to fix
all the issues displayed in the Domain Reload view and then to disable domain reload. To
populate this view with data, you must enable the Use Roslyn Analyzers setting in the
Preferences window. Then you can run through the list of issues, following the instructions
in the manual to fix them. Once they’re all addressed you can disable Domain Reload when
entering play mode.

Deep profiling
As mentioned in the Profiling 101 section, by default Unity only profiles code that’s explicitly
wrapped in Profiler markers. This includes the first call stack depth of managed code invoked
by the engine’s native code.

Enabling Deep Profiling will result in the insertion of Profiler markers at the beginning and end
of each function call. This allows a great deal of detail to be captured. Use the Deep Profile
setting to work out what’s happening inside long Profiler markers that don’t show enough of
their call stacks.

This granular approach to measuring game performance can be preferable to snapshot-based
profiling (sample profiling), which has the potential to miss detail in captures.

Be sure to check out the ProfileMarker API as a way to manually instrument problematic
areas of code.

They can have a much lower performance impact than deep profiling. Sometimes it’s even
quicker to add a ProfileMarker and rebuild your game than it is to get to the part of the
game you want to test with Deep Profiling enabled.

Another alternative to get full call stacks on a device build is to run a native CPU Usage
Profiler. In some cases, this is easier and less intrusive to performance than deep
profiling.

When to use deep profiling
You should only enable the Deep Profile setting once you have identified the specific part of
your application or managed code that needs to be examined in greater detail. Deep profiling
is resource-intensive and consumes a lot of memory. Your application will run slower when it’s
enabled.

Deep profiling allows you to traverse down the call tree in detail and spot inefficiencies or
problems in your code.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/domain-reloading-issues.html
https://docs.unity3d.com/Packages/com.unity.project-auditor@1.0/manual/domain-reloading-issues.html
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html

© 2025 Unity Technologies 81 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Deep profiling opens up a huge amount of detail when you need to trace and understand specific issues.

However, deep profiling adds a marker to the start and end of every function call, and each
marker adds some overhead. This means that a part of your code which has a deep callstack
(say MyDeepFunction) will show up as more expensive than places which do all their work
inside a single function (MySingleFunction). That means you cannot rely on the relative
timing of these two pieces of code – MyDeepFunction might look more expensive than
MySingleFunction with deep profiling enabled, but this cost could all be in the extra markers
added.

Note: Support for deep profiling in both the Mono and IL2CPP backends was added from Unity
2019.3 onward, which is great news for platforms where IL2CPP is mandatory, such as iOS.

Using deep profiling
To use deep profiling with player builds, you’ll need to enable it via File > Build Settings >
Enable Deep Profiling Support.

Enabling Deep Profiling Support

https://unity.com/releases/lts

© 2025 Unity Technologies 82 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Once support is enabled, you can easily toggle Deep Profiling on or off for your build in the
Profiler window as needed.

A Deep Profile button that’s faded out when attached to the player indicates that Deep
Profiling Support was not enabled for your build.

Deep profiling reveals much more information about the performance and timing of your application code. It shows the full method call tree,
helping you dig into where managed allocations are happening.

Deep profiling tips

Top-to-bottom approach
When profiling your application, start at a high level and try to locate areas where
performance can be improved without using deep profiling. As you need more
information, you can enable Deep Profiling in the Profiler to dig in at a more granular
level. Using this approach will help to keep the level of information being displayed in the
Profiler Hierarchy to a minimum, allowing you to focus on the goal at hand.

Deep profile only when necessary
In general, it’s best to use deep profiling when you need to get much lower-level detail
about the performance of your code. While leaving the Deep Profiling flag enabled for
builds will not affect performance without actually toggling the feature to enabled, when
it is enabled, it causes your application to run slowly.

https://unity.com/releases/lts

© 2025 Unity Technologies 83 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

If you are only interested in finding the source of managed allocations in your code,
remember that versions of Unity from 2019.3 and newer allow you to do this without
the need to enable Deep Profiling. Use the Call Stacks toggle and Calls dropdown in the
Profiler to help locate managed allocations.

Deep profiling in automated processes
To toggle Deep Profiling on when profiling from the command line, add the -deepprofiling
argument to your build executable. For Android / Mono scripting backend builds use the
adb command line argument like this:

adb shell am start -n com.company.game/com.unity3d.player.UnityPlayerActivity -e
‘unity’ ‘-deepprofiling’

Deep profiling on low-spec hardware
Lower-spec hardware has limited memory and performance that can affect your ability
to use deep profiling. Unity’s Profiler samples are stored in a ring buffer, which can fill up
when using the Deep Profile setting on slower devices. If this happens, Unity will display
an error message.

You can allocate more memory to the Profiler for this buffering data by setting the
Profiler.maxUsedMemory property (bytes). The default is 128 MB for Players and 512
MB for the Editor. Increase this as required on slower-device Player builds if you run into
problems when deep profiling.

If you need to profile code in higher detail on hardware that runs too slowly (or not at
all) due to the overhead that deep profiling adds, you can profile deeper with your own
markers.

Instead of enabling the Deep Profile setting, add Profiler markers to the specific areas of
interest in your code. These markers will appear in the Profiler Timeline or Hierarchy when
viewing the CPU Usage module.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Profiling.Profiler-maxUsedMemory.html
https://docs.unity3d.com/ScriptReference/Unity.Profiling.ProfilerMarker.html

© 2025 Unity Technologies 84 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Add Profiler markers to profile deeper layers of code when deep profiling adds too much overhead.

Which profiling tools to use and when?
Profiling provides the best benefit when started at the beginning of a project lifecycle. By
starting early, you can establish baselines that are useful for comparisons at checkpoints
further into your game and application development. It’s important to know which tool to
select from the “profiling tool belt” and when.

Once you understand the uses and benefits of each tool, it will be easier for you to know when
to use them. Be sure to learn about each profiling tool Unity has to offer in the Unity profiling
and debug tools section.

To help answer the “when,” here is a list of checkpoint ideas in a project’s life cycle, which may
be useful to reference when planning a profiling strategy.

	— Prototyping: Profiling is important to reduce risk in the prototype stage of a project. If
the game design document calls for 10,000 enemies onscreen, you need to be able to
build and profile a prototype that proves such a thing is possible on the target platform.
If it’s not, you need to change the design.

	— Early stages of the project: Establish a baseline for project performance across a
selection of target device hardware. Get a rough idea of memory usage using the

https://unity.com/releases/lts

© 2025 Unity Technologies 85 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Memory Profiler, and ensure that plans for the project’s scope are not trending to a point
where memory limits on target hardware will become an issue further on.

	— End of sprint: If you’re working in sprints on an Agile team, then the end-of-sprint
release candidate (RC) is a great point at which to run a standardized suite of profiling
tools. Ensure you have a standard format to record results and metrics, in a database or
spreadsheet, for example. Perform the following profiling activities and data capturing
with the Unity Profiler:

	— CPU Usage

	— GPU Usage

	— Memory usage

	— Rendering

	— Physics

Go deeper and use these tools to record results and key difference metrics (differential
against prior sprint releases):

	— Profile Analyzer: Load previous release profiling data captures and compare and record
differences.

	— Memory Profiler: Compare prior release candidate build memory snapshots and record
difference in memory increase or reduction.

Automating key performance and profiling metrics
Level up your project profiling and data capture by automating common and recurring tasks.
This will save you time, and you’ll benefit from metrics that are always up to date.

Metrics can be graphed and added to a project dashboard, allowing the team to see where
performance has taken a nosedive (a newly added feature or bug for example), or where
things have improved after an optimization and bug fixing sprint.

Automated weekly build profiling data captured and visualized in a Grafana dashboard

https://unity.com/releases/lts
https://github.com/grafana/

© 2025 Unity Technologies 86 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Chart a project’s overall memory usage profile across all levels of the game over time. By
capturing memory snapshots with the Memory Profiler and averaging the figures out across all
levels, you can record a memory footprint per target device/platform, sprint, or release cycle.

If you wish to record high-level profiling statistics, use a ProfilerRecorder to record
metrics such as Total Reserved Memory or System Used Memory and output these to a CI
(Continuous Integration), directing them to a chart or graphing tool such as Grafana.

Use Unity DevOps tools to automate the creation of release builds and integrate this process
with an automated device profiling workflow.

Check the results of your builds via the Build Automation > Build History feature available from the Unity Cloud dashboard. If any of them
have failed, you can troubleshoot the failure by checking the logs. Learn more about project organization and Unity services in the e-book,
Best practices for project organization and version control (Unity 6 edition).

An automated profiling pipeline example

Automation can help ensure your team realizes the benefits of profiling builds without the
worry that this process will be deprioritized due to time constraints.

This example workflow shows how you can use automation to ensure that build profiling
happens frequently and accurately.

	— Use Unity Build Automation to create automated build releases.

	— After each release, use a script to start a build player and capture raw profiling data over
2000 frames, e.g.:

	— AngryBots2.exe -profiler-enable -profiler-log-file profile1.raw -profiler-capture-
frame-count 2000. To learn more about the command line arguments, check
Unity documentation.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/Unity.Profiling.ProfilerRecorder.html
https://docs.unity.com/ugs/en-us/manual/devops/manual/get-started-end-users
https://unity.com/resources/best-practices-version-control-unity-6
https://docs.unity.com/ugs/en-us/manual/devops/manual/build-automation/overview
https://docs.unity3d.com/Manual/ProfilerWindow.html#command-line

© 2025 Unity Technologies 87 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

Note: Another option here would be to use a script to switch to a new log file
(e.g., profile_<N+1>.raw) every 300–2000 frames, or to profile key points in an
application’s test cycle (checkpoints in an automated level playthrough). This
stored data can then be referenced if problem areas are spotted in dashboard
graphs later on.

	— Profiling data is captured in the profile1.raw file and can now be parsed for interesting
metrics.

	— The next step uses ProfileReader (a tool for parsing and converting raw profile data to
CSV format) to convert the raw profile data to a more readable CSV format.

The Editor interface for ProfileReader

	— ProfileReader can be used on the command line, so this stage of the pipeline would be a
script to execute it:

	— Unity.exe -batchMode -projectPath “AngryBots2” -logFile .\Editor.log
-executeMethod UTJ.ProfilerReader.CUIInterface.ProfilerToCsv -PH.inputFile
“profile1.raw” -PH.timeout 2400 -PH.log

	— With data parsed from CSV, the automated pipeline uploads data for your nightly,
weekly, or sprint releases to a tool such as Grafana for visualization.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Profiling.Profiler-logFile.html
https://github.com/unity3d-jp/ProfilerReader

© 2025 Unity Technologies 88 of 92 | unity.com

| A few tips to keep in mind when memory profiling | Unity profiling and debug tools | Profiling and debugging tools index |

This image is of a Grafana dashboard visualizing automated profiling data. It looks like someone let a physics object creation bug creep into
the build.

With data visualized and updated automatically, your team can easily spot when graphs spike
to identify issues more quickly. They can also view the results of a performance optimization
task or the results of the level design team doing a memory optimization pass across various
levels in a game.

Performance Testing Package for Unity Test Framework
The Unity Performance Testing Package enhances the Unity Test Framework by adding tools
for performance testing. It introduces APIs and test decorators that allow you to capture
samples from Unity Profiler markers and custom performance metrics, both in the Editor and in
built players.

In addition to measurement capabilities, the package collects configuration metadata such
as build settings and hardware details, making it easier to compare results across different
environments.

This package is designed to work alongside the Unity Test Framework. To use it effectively,
you should be familiar with creating and running tests as outlined in the Unity Test Framework
documentation.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.test-framework.performance@3.1/manual/index.html

© 2025 Unity Technologies 89 of 92 | unity.com

Profiling and
debugging tools index

Start your profiling with Unity’s tools, and if you need greater detail, reach for the native profilers
and debugging tools available for your target platform. See the index of such tools below.

Native profiling tools

Android / Arm

	— Android Studio:The latest Android Studio includes a new Android Profiler that replaces
the previous Android Monitor tools. Use it to gather real-time data about hardware
resources on Android devices.

	— Arm Performance Studio: A suite of tools to help you profile and debug your games in
great detail, catered for devices running Arm hardware.

	— Snapdragon Profiler: Specifically for Snapdragon chipset devices only. Analyze CPU,
GPU, DSP, memory, power, thermal, and network data to help find and fix performance
bottlenecks.

Intel

	— Intel VTune: Quickly find and fix performance bottlenecks on Intel platforms with this
suite of tools. For Intel processors only.

	— Intel GPA suite: A suite of graphics focused tools to help you improve your game’s
performance by quickly identifying problem areas.

https://unity.com/releases/lts
https://developer.android.com/studio/profile
https://developer.android.com/studio/profile/android-profiler
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html

© 2025 Unity Technologies 90 of 92 | unity.com

| Unity profiling and debug tools | Profiling and debugging tools index | Resources for advanced developers and artists

Xbox / PC

	— PIX: PIX is a performance tuning and debugging tool for Windows and Xbox game
developers using DirectX 12. It includes tools for understanding and analyzing CPU and
GPU performance as well as monitoring various real-time performance counters.

PC / Universal

	— AMD μProf: AMD uProf is a performance analysis tool for understanding and profiling
performance for applications running on AMD hardware.

	— NVIDIA NSight: Tooling that enables developers to build, debug, profile, and develop
class-leading and cutting-edge software using the latest visual computing hardware
from NVIDIA.

	— Samply: Samply is an open source command line CPU profiler which uses the Firefox
profiler as its UI. It works on macOS, Linux, and Windows.

	— Superluminal: Superluminal is a high-performance, high-frequency profiler that supports
profiling applications on Windows, Xbox One, and PlayStation written in C++, Rust and
.NET. It is a paid product, though, and must be licensed to be used. Check out our
discussions article for a quick intro on how to get started.

PlayStation

	— CPU profiler tools are available for PlayStation hardware. For more details, you need to
be a registered PlayStation® developer, start here.

iOS

	— Xcode Instruments and the XCode Frame Debugger: Instruments is a powerful and
flexible performance-analysis and testing tool that’s part of the Xcode toolset.

WebGL

	— Firefox Profiler: Dig into the call stacks and view flame graphs for Unity WebGL builds
(among other things) with the Firefox Profiler. It also features a comparison tool to look
at profiling captures side by side.

	— Chrome DevTools Performance: Another web browser tool that can be used to profile
Unity WebGL builds.

https://unity.com/releases/lts
https://devblogs.microsoft.com/pix/introduction/
https://developer.amd.com/amd-uprof/
https://developer.nvidia.com/tools-overview
https://github.com/mstange/samply
https://superluminal.eu/
https://discussions.unity.com/t/unity-profiling-using-superluminal/1614358
https://partners.playstation.net/
https://developer.apple.com/library/archive/documentation/AnalysisTools/Conceptual/instruments_help-collection/Chapter/Chapter.html
https://profiler.firefox.com/
https://developer.chrome.com/docs/devtools/evaluate-performance/

© 2025 Unity Technologies 91 of 92 | unity.com

| Unity profiling and debug tools | Profiling and debugging tools index | Resources for advanced developers and artists

GPU debugging and profiling tools
While the Unity Frame Debug tool captures and illustrates draw calls that are sent from
the CPU, the following tools can help show you what the GPU does when it receives those
commands.

Some are platform-specific and offer closer platform integration. Take a look at the tools
relevant to the platforms of interest:

	— Arm Streamline: Part of Arm’s Performance Studio software suite, focusing on low-
overhead performance measurement of the CPU and GPU.

	— Arm Frame Advisor: Part of Arm’s Performance Studio software suite, focusing on frame-
based API profiling.

	— RenderDoc: GPU debugger for desktop and mobile platforms, focusing on frame-based
API debugging.

	— Intel GPA: Graphics profiling for Intel-based platforms

	— Apple Frame Capture Debugging Tools: GPU debugging for Apple platforms

	— Visual Studio Graphics Diagnostics: Choose this and/or PIX for DirectX-based platforms
such as Windows or Xbox

	— NVIDIA Nsight Frame Debugger: OpenGL-based frame debugger for NVIDIA GPUs

	— AMD Radeon Developer Tool Suite: GPU profiler for AMD GPUs

	— Xcode frame debugger: For iOS and macOS.

https://unity.com/releases/lts
https://developer.arm.com/Tools%20and%20Software/Streamline%20Performance%20Analyzer
https://developer.arm.com/Tools%20and%20Software/Frame%20Advisor
https://docs.unity3d.com/Manual/RenderDocIntegration.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=profiling-for-performance&utm_content=the-ultimate-guide-to-profiling-ebook
https://software.intel.com/content/www/us/en/develop/tools/graphics-performance-analyzers.html
https://developer.apple.com/documentation/metal/frame_capture_debugging_tools/
https://learn.microsoft.com/en-gb/visualstudio/debugger/graphics/visual-studio-graphics-diagnostics?view=vs-2022&redirectedfrom=MSDN
https://docs.nvidia.com/nsight-graphics/2018.4/content/nsight_graphics/frame_debugging.htm
https://gpuopen.com/tools/
https://docs.unity3d.com/Manual/XcodeFrameDebuggerIntegration.html

© 2025 Unity Technologies 92 of 92 | unity.com

Resources for
advanced developers
and artists

You can download many more e-books for advanced Unity developers and creators from the
Unity best practices hub. Choose from over 30 guides, created by industry experts, and Unity
engineers and technical artists. Get best practices that will help you develop your games
efficiently with Unity’s toolsets and systems.

You’ll also find tips, best practices, and news on the Unity Blog and Unity Discussions, as well
as through Unity Learn and the #unitytips hashtag.

https://unity.com/releases/lts
https://unity.com/how-to
https://unity.com/how-to
https://unity.com/blog
https://discussions.unity.com/
https://learn.unity.com/

unity.com

https://unity.com/
https://unity.com/

	Introduction
	Profiling 101
	Understanding frame budget
	Frames per second: A deceptive metric
	The anatomy of a frame
	Understanding if you are GPU or CPU bound

	What is VSync?
	Understanding profiling in Unity

	Sample- vs instrumentation-based profiling
	Sample-based profiling
	Instrumentation-based profiler
	Instrumentation vs sampling

	Instrumentation-based profiling in Unity
	Increase profiling detail with Profiler markers
	Profiler modules

	Profiling workflow
	From high- to low-level profiling
	Profile early

	Establish a profiling methodology
	Are you within frame budget?
	If your game is in frame budget

	CPU-bound
	A real-world example of main thread optimization
	Common pitfalls for main thread bottleneck
	A real-world example of render thread optimization
	Common pitfalls for render thread bottlenecks
	Tools to solve the identified bottlenecks
	Worker threads
	Common pitfalls for worker thread bottlenecks

	GPU-bound
	Mobile challenges: Thermal control and battery lifetime

	Adjust frame budgets on mobile
	Reduce memory access operations
	Establish hardware tiers for benchmarking

	Memory profiling
	Understand and define a memory budget
	Determine physical RAM limits
	Determine the lowest specification to support for each target platform
	Consider per-team budgets for larger teams
	In-depth analysis with the Memory Profiler package

	A few tips to keep in mind when memory profiling
	Unity profiling and debug tools
	Unity Profiler
	Get started with profiling in Unity
	Unity Profiler tips
	Disable the VSync and Others markers in the CPU Profiler module
	Disable VSync in the build
	Know when to profile in Play mode or Editor mode
	Use Standalone Profiler
	Profile in the Editor for quick iterations

	Using the Memory Profiler module
	Profile Analyzer

	Profile Analyzer views
	Single view
	Compare view

	Comparing median and longest frames
	Profile Analyzer tips
	Memory Profiler

	The Summary tab
	Unity Objects tab
	Memory profiling techniques and workflows
	Locating memory leaks
	Locating recurring memory allocations over application lifetime
	Memory Profiler module in the Unity Profiler
	Timeline view in the CPU Usage Profiler
	Allocation Call Stacks
	The Hierarchy view in the CPU Usage Profiler

	Memory and GC optimizations
	Reduce the impact of garbage collection (GC)
	Time garbage collection whenever possible
	Use the Incremental Garbage Collector to split the GC workload

	Frame Debugger

	Remote Frame Debugging
	Rendering Debugger
	Five rendering optimizations for common pitfalls
	Identify your performance bottlenecks first
	Draw call optimization
	Optimize fill rate by reducing overdraw
	Multi-core optimization for rendering
	Profile post-processing effects

	Project Auditor

	Domain Reload
	Deep profiling

	When to use deep profiling
	Using deep profiling
	Deep profiling tips
	Top-to-bottom approach
	Deep profile only when necessary
	Deep profiling in automated processes
	Deep profiling on low-spec hardware

	Which profiling tools to use and when?

	Automating key performance and profiling metrics
	Performance Testing Package for Unity Test Framework

	Profiling and debugging tools index
	Native profiling tools
	Android / Arm
	Intel
	Xbox / PC
	PC / Universal
	PlayStation
	iOS
	WebGL

	GPU debugging and profiling tools

	Resources for advanced developers and artists

	Botón 3:
	Página 7:
	Página 8:
	Página 19:
	Página 39:
	Página 43:
	Página 45:
	Página 89:
	Página 92:

