— E-BOOK eﬁ

Create modular game
architecture in Unity
with ScriptableObjects

© 2025 Unity Technologies Unity®

Contents

Introduction ...t i i 5
What are ScriptableObjects?0o... 6
Serialization 8
ScriptableObjects versus MonoBehaviours 10
CoMPaAriSON . .ttt e e 11
Callbacks and messages vvii it 12

Files . 13

YAML ain't markup language, 14
Creationandlifecycle........... ... o ... 15
Destroying ScriptableObjects................... 16
Datacontainers............ccoiiuiiiiiiiniinnnnennn, 1V
ScriptableObject data versus persistentdata 20
Reducing duplicatedata. 20
Designpatterns 21
Refactoringexample.o, 23

Code conventions inthisguide 24
Custominspectors. ..., 25
Architectural benefits. L 27
ScriptableObject variables 29

Dual serialization. i 30
Protectyourdata............ 33

The Extendable enumspattern 34
Enum-like categories i i, 34

Extending behavior.......... i, 36

Pattern: Delegateobjectsciiiiiiiiine, 39

Delegates versusevents. 39
ScriptableObjects methods 40
Modifying ScriptableObjectdata................ 41

Pluggable behavior.......... i, 42
Gameplay Al with ScriptableObjects................. 43
Example: Audiodelegates, 43

The glorious ScriptableObject revolution............. 44
TheObserverpatternccoiiiiiiiieinnennnnns 45
Avoiding singletons. 45
ScriptableObject-based events. 47
Example: Eventchannels 49
System.Action or UnityAction 49
Debugging eventchannels. 54
Example: InputReader., 55
Static versus non-staticevents..................... 58
TheCommandpatterniiiiiiiiiiiinnnnn. 59
ScriptableObjects or C#classes? 63

The Runtime Setpattern................, 64
BasicRuntime Set........... i, 64
Genericversion.t 67

Fun facts about fooand bar........................ 69
Explore the sampleproject...............cciiiiina.. 70

001 To3 113 o o 5 S0 72

MOrE rESOUNCES . v i ittt i iitiitieeereeeneeneeneenennns 73

Documentationc i 73
Technical e-books from Unity 73
FromUnite 74
More projectexamples. i 74
Forgamedesigners 74

Professional training.......... 75

Introduction

You will often hear ScriptableObjects described as “data containers.” That label, however,
doesn’t quite do them justice. Applied correctly, ScriptableObjects can also help you speed up
your Unity workflow, reduce memory usage, and simplify your code architecture.

This guide assembiles tips and tricks from professional developers for deploying
ScriptableObjects in production. These include examples of how to apply them to specific
design patterns and how to avoid common pitfalls.

ScriptableObjects can help promote clean coding practices by separating data from logic.
They make it easier to make changes without causing unintended side effects, improving
testability and modularity.

Because you can work with them interactively in the Editor, you'll discover that
ScriptableObjects are especially useful for collaboration between programmers and non-
programmers, such as artists and designers. In this guide we will cover several techniques
and ways to leverage Scriptable Objects. We hope that some of these can complement your
existing workflow and streamline your project setup.

Let’s explore the unsung hero of game architecture, the humble ScriptableObject.

© 2025 Unity Technologies 5 of 75 | unity.com

https://unity.com/releases/lts

What are

ScriptableObjects?

A ScriptableObject is a Unity object that’s not part of a GameObject instance. You can use it
to create a custom class with its own variables and methods, but with less overhead than a
MonoBehaviour.

A ScriptableObject does not have a Transform and exists outside of the Scene Hierarchy.
Instead, it lives at the project level as an asset, much like a material or 3D model.

You can declare a ScriptableObject like this:

[CreateAssetMenu(fileName="MyScriptableObject")]
public class MyScriptableObject: ScriptableObject
{

public int someVariable;

As you can see in the code above rather than deriving from MonoBehaviour, you inherit from
ScriptableObject.

You can't use this directly on a GameObject. Instead, the CreateAssetMenu attribute gives you
an extra action in your menus.

© 2025 Unity Technologies 6 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/6000.1/Documentation/Manual/class-ScriptableObject.html

Q | What are ScriptableObjects? |

Navigate to Assets > Create > MyScriptableObject (or right-click in the Project window), and
you can instantiate a custom asset from your ScriptableObject class.

@ GameSystemCookbook - SampleScene - Windows, Mac, Linux - Unity 2021.3.7f1 Personal <DX11>
File Edit Assets GameObject Component Jobs Window Help

W~ & @ My Scriptable Object

= Hierarchy L e s Game Folder
i O P @@ | B
@_S_smp\e?:ene H C# SCFiDt
’ ¥

20 :
Show in Explorer Visual Scripting ’
Open Shader Graph 4

Shader ’
Shader Variant Collection
Copy Path Alt+Ctrl +C Testing ’
Playables ’
Assembly Definition
Assembly Definition Reference
Import New Asset... Text >
Import Package b TextMeshPro i

Export Package... Scene

. Scene Template
Select Dependencies

Refresh Ctrl+R Volume Profile
Reimport Scene Template Pipeline
Reimport All Prefab

Audio Mixer

Update UXML Schema

i Rendering 4
Open C# Project .
N - . Material
View in Import Activity Window
Lens Flare
Properties... Lens Flare (SRP)
Render Texture

Lightmap Parameters
M Packages Lighting Settings
Custom Render Texture

Creating a ScriptableObject

Any other script can then reference this ScriptableObject asset from any scene, using a field:

public class MyMonoBehaviour : MonoBehaviour

{
public ScriptableObject soInstance;

ScriptableObjects are especially useful for anything that doesn’t need to change at runtime.

© 2025 Unity Technologies 7 of 75 | unity.com

https://unity.com/releases/lts

@ | What are ScriptableObjects? |

Because Unity treats ScriptableObjects as first-class objects, you can:

— Store them in variables

— Dynamically create or destroy them at runtime
— Pass them as arguments

— Return them from a method

— Include them in data structures

— Serialize/deserialize them

This last bullet point highlights one of ScriptableObjects’s key features: the ability to appear in
the Inspector. This means that its fields are easy to read and modify in the Editor.

Change values in a ScriptableObject at runtime, and your game application updates
immediately. Exit Play mode, and those values remain in place. This makes them useful for
game designers who need to balance game settings without having to write code. As a plus,
ScriptableObjects can often store changes while the application is running. This offers a few
advantages over using MonoBehaviours alone.

o Serialization

Serialization is the automatic process of transforming data structures or object states into
a format that's easier to store and reconstruct later. Unity’s serialization backend takes
data that's scattered over memory and then lays it out sequentially.

This reorganized data stream then can be stored in a database, a file, or memory.
“Deserialization” is the reverse process.

]

Serialization Deserialization

S KCES

Database

Serialization is the process of converting an object into a stream of bytes to store the object or transmit it to memory, a database, or a
file.

© 2025 Unity Technologies 8 of 75 | unity.com

https://unity.com/releases/lts
https://blog.unity.com/technology/systems-that-create-ecosystems-emergent-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/

@ | What are ScriptableObjects? |

Although memory layout is easy to overlook in C# development, we should be aware of
several built-in Unity features that use serialization:

Saving and loading: If you open a .unity scene file with a text editor and have set
unity to “force text serialization,” the serializer is run with a YAML backend.

The Inspector window: This interface doesn’t talk to the C# API to figure out the
values of whatever it’s inspecting. Instead, it asks the object to serialize itself and
displays the serialized data.

Prefabs: Internally, a prefab is the serialized data stream of GameObjects and
components. A prefab instance is a list of modifications that should be made on top
of the serialized data.

Instantiation: When you instantiate a prefab (or a GameObject that lives in the
scene), you serialize the object, create a new object, and then deserialize the data
onto the new object.

For more information about serialization in Unity, see this blog post or watch “How Unity’s
Serialization system works.”

© 2025 Unity Technologies

9 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/YAML
https://docs.unity3d.com/6000.1/Documentation/Manual/Prefabs.html
https://blog.unity.com/technology/serialization-in-unity?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=N-HJvfVuKRw?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=N-HJvfVuKRw?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

ScriptableObjects
VEersus
MonoBehaviours

On the surface, ScriptableObjects are simple. The API sports only a few methods. In this case,
that’s a good thing. Simplicity means less can go wrong.

Monobehaviour ScriptableObject

Unity Object UML

Like MonoBehaviour, the ScriptableObject class derives from UnityEngine.Object class.

© 2025 Unity Technologies 10 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Object.html

@ | ScriptableObjects versus MonoBehaviours

Comparison

Probably the best way to understand ScriptableObjects is to compare them with their siblings,
MonoBehaviours. This chart breaks down their similarities and differences.

MonoBehaviour ScriptableObject

MonoBehaviours and ScriptableObjects are both scripts.

MonoBehaviour and ScriptableObject classes derive from UnityEngine.Object.

MonoBehaviours receive callbacks from ScriptableObjects do not receive most Unity
Unity. lifecycle callbacks from Unity like Update, Start
or FixedUpdate.

Connect your methods to the game engine’s
player loop by naming them according to ScriptableObjects support a limited number of
MonoBehaviour’s event functions like Update(). | event functions, including Awake, OnEnable,
OnDestroy, and OnDisable at runtime. The Editor
e.g., Start, Awake, Update, OnEnable, also calls OnValidate and Reset from the Inspector.
OnDisable, OnCollisonEnter
You can create other methods on a
ScriptableObject, but the player loop does not
invoke them automatically.

MonoBehaviours must be attached to ScriptableObjects are not attached to any
GameObijects at runtime. specific GameObject.

If you create one at runtime, use the Save ScriptableObjects into their own asset
AddComponent API. files at the Project level. Then, reference the

ScriptableObject asset from a Monobehaviour or
other script.

When we do save them, we save Each ScriptableObject instance can be saved
MonoBehaviours data into Scenes and into its own file at the Project level.

prefabs.

In the Editor, changes to MonoBehaviour In the Editor, changes to ScriptableObject values
values reset when exiting Play mode. do not reset when exiting Play mode.

In a standalone build, changes to
ScriptableObject values at runtime are not
saved.

MonoBehaviours and ScriptableObjects are both serializable and can be viewed in the Inspector.

© 2025 Unity Technologies 1 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/event-functions.html

@ | ScriptableObjects versus MonoBehaviours

Callbacks and messages

ScriptableObjects have a subset of the event functions available to MonoBehaviours.
You can create your own methods in your ScriptableObjects too, but you need to call them
yourself. The table below shows only the methods that will be called automatically in the

PlayerLoop.

Event function | When it executes

(runtime)

Awake This is called as the ScriptableObject script starts, similar to MonoBehaviour’s
Awake callback.

This also executes when the game is launched or if a scene loads with a reference
to the ScriptableObject asset.

OnEnable This is called when the ScriptableObject is loaded or instantiated, immediately
after the Awake callback.

OnEnable executes during the ScriptableObject.Createlnstance or after successful
script recompilation.

OnDisable This is called when the ScriptableObject goes out of scope. This happens if you
load a Scene without references to the ScriptableObject asset or right before the
ScriptableObject’s OnDestroy.

Unity also executes OnDisable before script recompilations. When entering Play
mode, OnDisable runs right before OnEnable.

OnDestroy This is called when something destroys the ScriptableObject, either deleting it in
the Editor or from code.

If you've created the ScriptableObject at runtime, OnDestroy also invokes when
the application quits or if the Editor exits Play mode. Note: This only destroys the
native C++ part of the object. See Lifecycle and Creation for more information.

Editor-only When it executes

functio ns

OnValidate OnValidate executes when the script is loaded or a value changes in the Inspector.
This can be used to ensure that your data stays within a certain range.

Reset Reset invokes when you hit the Reset button in the Inspector context menu.

To destroy a ScriptableObject, remove it from the Editor or call Destroy/Destroylmmediate at
runtime.

Here’s a brief overview of a ScriptableObject’s event functions and life cycle. Compare this
with the order of execution of MonoBehaviour event functions, starting from the top.

© 2025 Unity Technologies 12 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

Q | ScriptableObjects versus MonoBehaviours

Awake

Initialization
OnEnable

Reset Editor

OnDisable

D o Decommissioning

ScriptableObject event functions and execution order

Files

One of their biggest differences between MonoBehaviours and ScriptableObjects is how they
save their data.

Unity serializes MonoBehaviours within either a Scene or a prefab file. The saved data
contains:

— The MonoBehaviour itself
— The attached GameObject
— Its Transform

— Any other components and MonoBehaviours on the attached GameObject

~ GameObject

Tag Untagged ~ Layer Default

form

My Monobehaviour (Script)
MonoBehaviour attaches
to GameObject

Add Component

ScriptableObject
appears in project

ScriptableObject versus MonoBehaviour

In contrast, Unity saves ScriptableObjects into their own asset files. These files are smaller
and more compartmentalized than MonoBehaviours.

© 2025 Unity Technologies 13 of 75 | unity.com

https://unity.com/releases/lts

@ | ScriptableObjects versus MonoBehaviours

If you choose to use Mode: Force Text in the Project Settings > Asset Serialization window,
you can open a ScriptableObject asset in a text editor. It might look something like this:

YAML 1.1
TAG !u!
--- lull114 &11400000

MyScriptableOb..

- : 115000080, : 3fc7a749f692b41419234501022d8428,
: MyScriptableObject

H

A ScriptableObject instance, serialized as text

o YAML ain’t markup language

Unity uses a high performance serialization library that implements a subset of the YAML
specification. This is a lightweight, easy-to-read language related to XML and JSON.

In YAML, data is organized as a hierarchy of nested elements. Each object has a Class ID,
File ID, and object type. Note that ScriptableObjects use “MonoBehaviour” as their object
type, instead of defining their own.

ClassID File ID

y

—— !y!114 &£11400000
Object type — :

Key-value pairs

An object header in YAML
Under each object are its serialized properties, represented by key-value pairs.

For more information, read the blog post “Understanding Unity’s serialization language,
YAML"

© 2025 Unity Technologies 14 of 75 | unity.com

https://unity.com/releases/lts
https://blog.unity.com/technology/understanding-unitys-serialization-language-yaml?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/technology/understanding-unitys-serialization-language-yaml?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

@ | ScriptableObjects versus MonoBehaviours

Creation and lifecycle

The lifecycle of a ScriptableObject is similar to that of any other asset (materials, textures, and
so on) in your project.

As in the previous example, apply the [CreateAssetMenu] attribute to your script in order
to add a custom menu action to the Editor. You can optionally specify the default fileName or
menu item order. The following code is the most common way to create a ScriptableObject
asset.

[CreateAssetMenu(fileName="MyScriptableObject"]
public class MyScriptableObject: ScriptableObject

{

public int SomeVar;

If you need to make a ScriptableObject instance at runtime, you can call the static
CreateInstance method:

ScriptableObject.CreateInstance<MyScriptableObjectClass>();

© 2025 Unity Technologies 15 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-fileName.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-order.html

@ | ScriptableObjects versus MonoBehaviours

o Destroying ScriptableObjects

Like other Unity objects, a ScriptableObject consists of a native C++ portion, as well as
a C# managed portion. You can destroy the native C++ directly, but the managed part
remains until the asset garbage collector (GC) clears it. The GC cleanup occurs if you
change scenes or call Resources.UnloadUnusedAssets.

Native side Managed side

C++ (> C#

Instance of standard LJ Instance of your
engine object for SOs own class

Reference from
some other field

ScriptableObjects have both a native and managed side.

Explicitly set any references to the ScriptableObject asset to null to avoid delaying
garbage collection.

Note: It's important to do this before calling Destroy or DestroyImmediate. Otherwise,
the reference to the object may be nominally marked “null” in the Editor, even if it

isn’t really null. GC cleanup only happens once there are no more references to the
ScriptableObject.

Once you have the knack of creating and destroying your own ScriptableObjects, it’s time to
explore some creative ways to use them in your game application.

© 2025 Unity Technologies 16 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Resources.UnloadUnusedAssets.html

Data containers

The most common use for ScriptableObjects is as data containers for shared static data,
particularly for game configuration data that doesn’t change at runtime.

Typical use cases of ScriptableObjects may include:

— Inventories like item type, icon, rarity, effects

— Enemy, player, or item statistics like health, damage, speed, Al parameters

— Audio collections like audio clip groups for footsteps, Ul sounds, or ambient loops

— Config Files like difficulty settings, progression curves, spawn tables

— Dialogue data

At runtime, you could store this data on MonoBehaviours, but doing so can be inefficient. As
you saw in the previous comparison, MonoBehaviours carry extra overhead since they require

a GameObject — and by default a Transform - to act as a host. That means that you need to
create a lot of unused data before storing a single value.

© 2025 Unity Technologies 17 of 75 | unity.com

https://unity.com/releases/lts

Q | Data containers |

To see for yourself, generate a new GameObject with an otherwise empty MonoBehaviour.
Then, open the serialized object in a text editor and it will look something like this:

: 7467558130563611466
. : 2006805663113952451
: 0
: GameObject
: Untagged
]
: 0
]

!
—— Ilul4 &7467558130563611466

: 0

HIL
H/
: 338842853706088653
SO LR N
: -1.1780801, y: -2.6573246, z: -0.01486098
T 68 ke eyl
: 0

H
. e T
—— Iuy!ll4 &2006805663113952451

H
H
: 0
: 338842853706088653

H
: 11500000, : 4d1457d233f8d479795a301859537d5f,

A new GameObject with a barebones MonoBehaviour

© 2025 Unity Technologies 18 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

Compare that with an empty ScriptableObject and you see its notably leaner:

: 11500000, : a2d85be56clae45d69604547c4544bas,
: PlayerID

A ScriptableObject reduces overhead for storing data.

The ScriptableObject slims down this memory footprint and drops the GameObject and
Transform which can have a significance at large scale commercial projects. It also stores the
data at the project level. That can be helpful, especially if you need to access the same data
from multiple scenes.

The extra data from a MonoBehaviour might not impact your application’s performance at
first, but as your game grows to commercial scale, with many more objects, it will become
noticeable.

© 2025 Unity Technologies 19 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

0 ScriptableObject data versus persistent data

When ScriptableObjects are referred to as data containers, this usually refers to static or
shared configuration data that does not need to change at runtime in a permanent way.

While changes to ScriptableObject data do persist within the Editor (much like modifying
a material or a prefab), these changes won’t save at runtime in an application build. Any
changes made to a ScriptableObject instance during gameplay exist only in memory and
are lost when the session ends.

Persistent data that needs to be saved from one session and then loaded into another is
typically stored in a different file format (e.g., JSON, XML, MessagePack, Protocol Buffers,
and so on). See Dual Serialization below for more details.

It's possible to change ScriptableObject data at runtime (e.g., ScriptableObject variables
and Runtime Sets) in the game build, but these changes are temporary. Starting a new
game session will revert the ScriptableObject data back to its original state at build time.

Think of ScriptableObject data as “read-only” for persistent data purposes. Persistent
data should be “read-write” and stored externally.

Reducing duplicate data

Imagine you have a thousand GameObjects with custom MonoBehaviours, each with several
fields.

If each component holds its own copy of these values, you're duplicating a lot of data in
memory. This is inefficient, especially when the data is identical across instances and doesn’t
change at runtime.

Many objects with duplicate, local data leads to performance inefficiencies.

© 2025 Unity Technologies 20 of 75 | unity.com

https://unity.com/releases/lts
https://msgpack.org/index.html
https://developers.google.com/protocol-buffers

@ | Data containers |

Instead of duplicating this static data, you can funnel it into a ScriptableObject. Then, each of
the thousand objects can point to this shared data asset. Each object stores a reference to the
data rather than copying the data itself.

shared
LEVE]

Many objects sharing data via a ScriptableObject

In software design, this is an optimization known as the flyweight pattern. Restructuring your
code in this way avoids copying a lot of values and reduces your memory footprint.

o Design patterns

Design patterns can help developers create more maintainable and flexible code, which
can be useful in the often-changing world of game development.

Download the free e-book Level up your code with design patterns and SOLID for more
about SOLID principles and design patterns.

A reference to the ScriptableObject (instead of a full copy of the data) is comparatively small.
As you scale up, the memory savings from not duplicating data can become significant.

© 2025 Unity Technologies 210f 75 | unity.com

https://unity.com/releases/lts
http://www.gameprogrammingpatterns.com/flyweight.html
https://unity.com/resources/design-patterns-solid-ebook

@ | Data containers |

Memory Usage

Managed Memory

- - -

Removing duplicate data
saves resources

The Memory Profiler compares memory usage of duplicate (A) versus shared data (B).
You can store large quantities of shared data in this manner. Consider ScriptableObjects for:

— Saving and storing data during an Editor session
— Saving data as an Asset for use at runtime
Unlike MonoBehaviours, ScriptableObjects can’t be attached to a GameObject. Instead, you

save them as assets in your project. This is especially useful if you have a prefab that uses
unchanging data in its MonoBehaviours.

© 2025 Unity Technologies 22 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

Refactoring example

Consider a MonoBehaviour that controls an NPC’s health. You might define its class like this:

public class NPCHealthUnrefactored : MonoBehaviour
{

[Range (10, 100)]

public int MaxHealth;

[Range (10, 100)]

public int HealthThreshold;

public int CurrentHealth;
}

This works, but you have data that you won’t expect to change at runtime. If you have many
objects with NPCHealthUnrefactored attached, this can lead to a lot of unnecessarily

duplicated data.
0 Inspector

|<-£3| + MNPCUnrefactored

-

Tag Untagged Layer Default

i Transform

MPC Health Unrefactored (Script)

Max Health
Health Threshold
d Health Ai

Low Health Ai

Current Health

An NPCHealth MonoBehaviour before refactoring

© 2025 Unity Technologies 23 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

Any data that does not need to change can move it into a ScriptableObject:

[CreateAssetMenu(fileName="NPCConfig")]
public class NPCConfigSO : ScriptableObject
{

[Range (10, 100)]

public int maxHealth;

[Range (10, 100)]

public int healthThreshold;
}

Use the CreateAssetMenu attribute to configure the menu action. You can optionally specify
the default fileName or menu item order.

0 Code conventions in this guide

Many of the code samples in this guide are simplified for illustrative purposes and easier
readability (e.g., public fields).

In production, use private fields and public properties for additional encapsulation and
flexibility. Apply the SerializeField attribute to private fields to make them appear in
the Editor’s Inspector.

A naming convention can also help differentiate scripts for ScriptableObjects from
MonoBehaviours. One way to achieve this is to add a “Data” or “SO” suffix at the end of
the class name. While this isn't necessary, it can help keep your project organized and
reduce ambiguity.

It's recommended that you maintain and follow a code style guide as your codebase
grows. See Create a C# style guide (Unity 6 edition) for more information.

Then the refactored NPCHealth component simplifies to this:

public class NPCHealth: MonoBehaviour

{
// Reference to our ScriptableObject
public NPCConfigSO Config;
public int CurrentHealth;

}

© 2025 Unity Technologies 24 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-fileName.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-order.html
https://learn.unity.com/tutorial/creating-properties
https://docs.unity3d.com/ScriptReference/SerializeField.html
https://unity.com/resources/c-sharp-style-guide-unity-6

Q | Data containers |

The MonoBehaviour now contains a reference to this new ScriptableObject. In the Inspector,
everything after refactoring looks similar, except the data is split.

© Inspector

@ v NPCHealth

v

g Untagged » Layer Default

P Transform

B} NPC Health (Script)

>onfig (NPC Config)

Current Health

Reference to
ScriptableObject

© Inspector

=t
ScriptableObj¢ {}

Max Health
Health Threshold
Health Ai

Low Health Ai
NPCConfig

Refactoring splits data between a MonoBehaviour and ScriptableObject

o Custom Inspectors

When separating data into a ScriptableObject, you have data contained in two places, the
ScriptableObject asset and the MonoBehaviour referencing it.

To make your MonoBehaviours easier to navigate, consider creating a custom editor.
Below is an example for the NPCHealth.

NPCHealth
Untagged ¥ Layer Default

Transform
NPC Health (Script)

Current Health

Health

A custom Inspector shows the ScriptableObject’s variables in the MonoBehaviour.

© 2025 Unity Technologies 25 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

This allows you to inspect the NPCConfig’s variables alongside the other properties in the
MonoBehaviour. If you select the original NPCHealth prefab, you can easily edit values in
both objects.

A custom editor requires only a few lines of code:

— Derive a new class from Editor, and store this in a folder named “Editor.” Apply the
CustomEditor attribute with the NPCHealth type.

— Reserve a temporary editor for the NPCConfig ScriptableObject.

— InOnInspectorGUI, create the editor for the NPCHealth component.

— Draw the inspectors from the base class and new custom Inspector.

using UnityEditor;

[CustomEditor (typeof(NPCHealth))]
public class NPCHealthEditor : Editor
{

private Editor editorInstance;

private void OnEnable()

{
// Reset the editor instance

editorInstance = null;

public override void OnInspectorGUI()

{
// The inspected target component
NPCHealth npcHealth = (NPCHealth)target;

if (editorInstance == null)

editorInstance = Editor.CreateEditor(npcHealth.config);

// Show the variables from the MonoBehaviour

base.OnInspectorGUI();

© 2025 Unity Technologies 26 of 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

// Draw the ScriptableObjects inspector

editorInstance.DrawDefaultInspector();

You can expand on this example with custom property drawers and editor attributes. This
can even make for a better user experience when working with ScriptableObjects.

Architectural benefits

With ScriptableObjects, you can cleanly separate shared and unshared data. Anything unique
and dynamic to the GameObject instance remains inside the MonoBehaviour, while the shared
data is stored in the ScriptableObject. Architecture with ScriptableObjects, however, goes
beyond just saving memory.

There are a few benefits to restructuring the code architecture:

— Designers can work more independently from software developers: Storing data and
logic on a single MonoBehaviour creates the potential for developers and game designers
to step over each other’s work. If two people change different parts of the same prefab or
scene, this results in a time-wasting merge conflict. Breaking off shared data into smaller
files and assets reduces these problems. Architecting with ScriptableObjects also enables
designers to build gameplay without always relying on a programmer.

© 2025 Unity Technologies 27 of 75 | unity.com

https://unity.com/releases/lts

© 2025 Unity Technologies

| Data containers |

Just be prepared to define a clear workflow between your teams when sharing data.
Good communication and establishing some boundaries can help prevent issues here.
Some extra error checking or data validation may be necessary as well (e.g., use a
Range attribute or OnValidate to prevent bad values).

Editing shared data is faster and less error-prone: Changes to the shared data now
happen all at once. If you need to modify a setting for your NPCs, for example, you
could adjust it in just one location, and have it propagate the changes for every affected
component in every scene.

This reduces any potential errors from mass editing a large number of individual
GameObjects by hand. Offloading data into ScriptableObjects can also help with version

control and prevent merge conflicts when teammates work on the same scene or prefab.

Save gameplay tweaks in Play mode: Play mode in the Editor is an opportunity for
designers to experiment with gameplay and settings. However, any modifications
made to MonoBehaviours are lost when exiting Play mode because Unity discards the
temporary copy of the scene.

Because the ScriptableObjects are assets, changes to their values are saved regardless
of whether Unity is in Play mode. This can be useful if you want to make adjustments at
runtime.

This can, however, also be a liability if you want to revert those changes. Just remember
to rely on Unity Version Control or another version control system, so you can always
restore your work if necessary. See the guide Version control and project organization
best practices (Unity 6 edition) for more information.

Improve scene loading times: When saving a scene or prefab, Unity serializes
everything inside of them. That includes every GameObject, every component attached
to those GameObjects, and every public field. Unity does this without checking for
duplicate data.

Moving data to ScriptableObjects can reduce your scene and prefab sizes which can
noticeably impact loading and saving.

28 of 75 | unity.com

https://unity.com/releases/lts
https://unity.com/resources/best-practices-version-control-unity-6
https://unity.com/resources/best-practices-version-control-unity-6

@ | Data containers |

o ScriptableObject variables

You can make your shared data containers even more granular with a ScriptableObject
representing just one value. For instance, you could create a ScriptableObject class called
IntVariable that holds one public field called value:

using UnityEngine;

[CreateAssetMenu(menuName = "Variables/Int", order = 1)]
public class IntVariableSO : ScriptableObject

{

public int value;

Then, you could use the IntVariable in a MonoBehaviour. Structuring a PlayerHealth
class would then look like this:

public class PlayerHealth : MonoBehaviour

{
public IntVariableSO health;

}

Though we normally think of ScriptableObjects as holding unchanging values, you can
give them methods that update this data at runtime (and reset to an initial value when
exiting Play mode). In this way, you can make ScriptableObjects that essentially function
as variables — containing integers, floats, booleans, and so on.

Your designers can then reserve data for game logic without needing a software
developer each time they want to do it. However, this requires planning to be successful.
Decide with your designers how to divide authoring gameplay data.

The key is to set some boundaries on how to collaborate. For example, the programming
team might do the initial setup of ScriptableObjects for use with an inventory system.
Then, the design team could use those to fill in each item’s in-game stats or behaviors.

With some extra Editor scripting, this can become a near-seamless experience. Another
possibility is making the fields in the Inspector toggle between using a shared value from
a ScriptableObject and a constant. This can allow the game design team greater freedom
to override the ScriptableObject data per instance.

© 2025 Unity Technologies 29 of 75 | unity.com

https://unity.com/releases/lts

Q | Data containers |

Al 31 F
Unity Atoms

\')

IntVariabile

Example of a ScriptableObject-based IntVariable from the open source Unity Atoms project

See the Game architecture with ScriptableObjects presentation from Unite Austin for how
to implement this behavior in your own projects. You can also download the open source
Unity Atoms project to see a working implementation of ScriptableObject variables.

Dual serialization

You can mix how to serialize data within Unity. This allows you to work with ScriptableObjects
in the Editor, but then store their data in another location, such as a JSON or XML file. This
allows you to take advantage of each format’s strengths.

File formats like JSON and XML are suitable for storing persistent data, such as save game
data or settings, but can be difficult to work with in the Editor; however, they’re easy to modify
outside of Unity with any text editor.

In contrast, ScriptableObjects work well in the Editor and can be swapped with a quick drag-
and-drop operation. However, they aren’t easy to modify outside of Unity or share within your
community of players.

Mixing serialized formats could open up new possibilities for your game, such as level editing
or modding. At build time, a script can convert the other files into ScriptableObjects, which is
faster to load than plain text.

While you'll want to keep some sensitive data safely tucked away on your servers (e.g., virtual

currency, account information), exposing part of your game data to the community may
enhance gameplay by allowing sandbox levels for user experimentation.

© 2025 Unity Technologies 30 of 75 | unity.com

https://unity.com/releases/lts
https://www.youtube.com/watch?v=raQ3iHhE_Kk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://github.com/unity-atoms/unity-atoms

@ | Data containers |

Imagine a ScriptableObject that defines your game level layout. It may simply contain a
number of Transforms that define placement of prefabs, starting configurations, and so on.
Your game scripts will use this data to assemble each level.

Imagine the walls and starting positions of a game, stored within a ScriptableObject:

[CreateAssetMenu(fileName ="Levellayout")]

public class Levellayout : ScriptableObject

{
public Vector3[] wallPositions = new Vector3[2];
public Vector3[] playerPositions = new Vector3[2];
public Vector3[] goalPositions = new Vector3[2];
public Vector3 ballPosition;

}

This defines how you set up the level. Your level management scripts can read the data from
the LevellLayout object, then instantiate your prefabs in their correct positions.

A custom script can use JsonUtility to export this same data to disk. This results in a text file
outside of the Editor that your users can modify with external tools.

To load a custom modded level, ScriptableObject.CreateInstance can generate
a ScriptableObject at runtime. Then, read the text from the JSON file to populate the
ScriptableObject. This LoadLevelFromJson example method shows that in action:

using System.IO;

public class LevelManager : MonoBehaviour

{
public ScriptableObject levellayout;

public void LoadlLevelFromJson(string jsonFile)

{
if (levellLayout == null)
{

levellayout = ScriptableObject.
CreateInstance<Levellayout>();

}

var importedFile = File.ReadAllText(jsonFile);

JsonUtility.FromJsonOverwrite(importedFile, levellayout);

© 2025 Unity Technologies 310f 75 | unity.com

https://unity.com/releases/lts

@ | Data containers |

Your custom data replaces the contents of the ScriptableObject and allows you to use this
externally modded level like any other in your game. The application is none the wiser.

Be sure to see this work for yourself in the sample project. If we load a modified JSON file, this
customized level overrides the default level data on the ScriptableObject.

Default settings

!

Gameplay

4

(N

JSON

Runtime Customization JSON file
instance or mods

Mix serialized formats for more flexibility

Note: When deserializing JSON into ScriptableObjects with JsonUtility, you must use the
FromJsonOverwrite method.

Instead of creating a new object and loading the JSON data into it, JsonUtility loads the JSON
data into an existing object. This updates the values stored in classes or objects without any
allocations.

© 2025 Unity Technologies 32 of 75 | unity.com

https://unity.com/releases/lts
https://assetstore.unity.com/packages/templates/tutorials/scriptableobjects-paddle-ball-project-325743
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/JsonUtility.FromJsonOverwrite.html

@ | Data containers |

o Protect your data

The simple mod example described above demonstrates one possible application of
ScriptableObjects. However, when exposing game data for modification, you should
exercise caution to avoid players tampering with the rest of your application.

Here are common ways to protect anything that you don’t want modded:

— Encryption: Use encryption to protect data files from being easily read or modified.
This can make it more difficult for users to alter critical data.

— Digital signatures: You can use a fingerprint algorithm to verify that your data files
have not been tampered with.

— Server-side validation: If your game relies on data that is stored on a server,
check the data on the server before it is used in the game, and reject any data that
appears to have been manipulated.

No single approach is foolproof, and it's generally a good idea to use a combination of

these techniques so your players don't introduce any bugs or vulnerabilities into your
game.

© 2025 Unity Technologies 33 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Fingerprint_(computing)

The Extendable

enums pattern

Game development often requires the task of solving recurring or similar problems.
Fortunately, you can tap into the collective knowledge of software engineers who've already
“been there and done that” with design patterns.

Design patterns are general solutions that can help you build larger, scalable applications.
They can improve code readability and make your codebase cleaner. Design patterns reduce
refactoring and the time spent testing.

Think of a design pattern as template for solving common issues like:

— Storing a lot of data efficiently

— Getting objects from different game systems to speak to each other

— Swapping out behavior on the fly at runtime

ScriptableObjects can help implement some of these patterns. You've already seen how they

can function as data containers, but they can do more than simply save values or settings. The
next few sections explore how you can go beyond using ScriptableObjects to save data.

Enum-like categories

In fact, ScriptableObjects actually don’t have to contain anything at all to be useful. If you
create an empty ScriptableObject, you'll discover that it still has utility, even if it's only used for
comparing against other ScriptableObjects.

© 2025 Unity Technologies 34 of 75 | unity.com

https://unity.com/releases/lts
https://unity.com/resources/design-patterns-solid-ebook

@ | The Extendable enums pattern |

In your game application, suppose you make a number of assets from an empty GameItemSO
ScriptableObject, like so:

Using UnityEngine;

[CreateAssetMenu(fileName="GameItem")]

public class GameItemSO : ScriptableObject
{

Scripts > ExtendableEnums

#

Gameltem

Empty ScriptableObjects work as enums.

This allows you to generate any number of assets within the project. Even without containing
any data, the ScriptableObject itself can represent a category or item type, similar to an enum.

Do two variables refer to the same ScriptableObject? Then they’re the same item type.
Otherwise, they’re not.

So, you could have a ScriptableObject that defines special damage effects (e.g., cold, heat,
electrical, magic, and so on) or rock-paper-scissors designations from your favorite zero-sum
game.

Scissors

Comparing ScriptableObjects

© 2025 Unity Technologies 35 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Rock_paper_scissors
https://en.wikipedia.org/wiki/Rock_paper_scissors

@ | The Extendable enums pattern |

If your application requires an inventory system to equip gameplay items, ScriptableObjects
can represent item types or weapon slots. The fields in the Inspector then function as a drag-

and-drop interface for setting them up.

© Inspector

I 3
v Inventory

ableEnums ventoryEx -
Tag Untagged

Transform

Inventory slots
categorized by
ScriptableObject

Add Component

PlateArmor

Drag and drop ScriptableObject-based categories

This artist-friendly Ul allows your designers how to modify and extend gameplay data without
extra support from a developer. Giving the design team the means and responsibility of
maintaining gameplay data allows everyone to focus on what they do best.

Extending behavior

Using ScriptableObjects as enums becomes more interesting when you want to extend them
by adding more data. Unlike normal enums, ScriptableObjects can have extra fields and

methods.

Here’s the adapted rock-paper-scissors GameItem. The ScriptableObject asset itself still
defines the enum-like category, but this time it's no longer empty.

© 2025 Unity Technologies 36 of 75 | unity.com

https://unity.com/releases/lts

@ | The Extendable enums pattern |

public class GameItem : ScriptableObject
{

public GameItem weakness;

public bool IsWinner(GameItem other)

{

return other.weakness == this;

}

}

The ScriptableObject now contains a weakness field that determines which other item wins in
a potential interaction. In addition to storing data, each ScriptableObject also contains simple
comparison logic in IsWinner.

Each gameplay item then needs a MonoBehaviour that references a specific ScriptableObject
asset. This example works as a controller script:

public class GameItemController : MonoBehaviour
{
// rock, paper, scissors
public GameItem gameItem;
private void OnTriggerEnter(Collider other)
{
GameItemController otherController = other.GetComponent<GameIltem
Controller>();
GameItem otherGameIltem = otherController.gameltem;
if (gameItem.IsWinner(otherGameItem))
{
Debug.Log(gameIltem.name + " beats " + otherGameItem.name);
}
}
}

© 2025 Unity Technologies 37 of 75 | unity.com

https://unity.com/releases/lts

@ | The Extendable enums pattern |

It references a ScriptableObject as a field. In OnTriggerEnter, you can check the IsWinner
method to see which emerges victorious when the gameItem comes in contact with another.
This sets the stage for some Rochambeau-like conflict.

Unlike enums, ScriptableObjects are easy to extend. There’s no need to have a separate
lookup table or to correlate with a new array of data. Simply add an extra field and/or method

to handle the logic.

Scissors

+weakness +weakness

“

ScriptableObjects with comparison logic
Source:

Compare that with maintaining a traditional enum. If you have a long list of enum values
without explicit numbering, inserting or removing an enum can change their order. This
reordering can introduce subtle bugs or unintended behavior.

ScriptableObject-based enums have no such issues. Add more to your project (or delete
existing ones), and everything just works.

Suppose you wanted to make the item equippable in an RPG. You could append an extra
boolean field to the ScriptableObject to do that. Are certain characters not allowed to hold
certain items? Are some items magical or have special abilities? ScriptableObject-based
enums can do that.

Your gameplay data can thus evolve as you work to implement the game design. While you'll

need to coordinate how to set up fields initially, later the designers can fill out the details
independently.

© 2025 Unity Technologies 38 of 75 | unity.com

https://unity.com/releases/lts
https://youtu.be/JKsn-PaNo1Y?t=3019
https://www.flaticon.com/free-icon/rock-paper-scissors_4144475

Pattern:

Delegate objects

ScriptableObjects in Unity aren’t just for storing data; you can also put methods in them,
meaning they can hold both what to do (logic) and what to use (data).

0 Delegates versus events

Delegates and events are closely related concepts in C#, but they serve different
purposes. A delegate is a type that defines a method signature. This allows you to pass
methods as arguments to other methods. Think of it like a variable that holds a reference
to a method, instead of a value.

An event, on the other hand, is essentially a special type of delegate that allows classes
to communicate with each other in a loosely coupled way. Events are explored in more
detail in the Pattern: Observer chapter.

For general information about the differences between delegates and events, see
Distinguishing Delegates and Events in C#.

The idea is that if you need to perform specific tasks, you encapsulate the algorithms for
doing those tasks into their own objects. The original Gang of Four refers to this general
design as the strategy pattern.

Suppose you want a pathfinding object that calculates a route through a maze. The object

itself wouldn’t actually contain any pathfinding logic. Instead, it just keeps a reference to
another object that does.

© 2025 Unity Technologies 39 of 75 | unity.com

https://unity.com/releases/lts
https://learn.microsoft.com/en-us/dotnet/csharp/distinguish-delegates-events
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Strategy_pattern

@ | Pattern: Delegate objects |

If you want to solve the maze with a specific path search technique (e.g., A* Dijkstra, etc.),
implement the correct solution within this separate “strategy” object. At runtime, you can then
swap to a different algorithm by exchanging objects.

ScriptableObjects methods

In Unity, one way to implement this pattern is to have a MonoBehaviour reference a
ScriptableObject containing the necessary logic. When the MonoBehaviour performs a task, it
calls the external methods on the ScriptableObject rather than its own.

However, there a few limitations to this:

— Methods on a ScriptableObject won't be called automatically from the MonoBehaviour’s
player loop (like Start(), Update(), and OnCollisionEnter()). You need to call them
yourself.

— Like prefabs, ScriptableObjects can't reference scene objects directly. If they need to
perform work on a scene object, you'll need to pass that object in as a parameter.

When calling the ScriptableObject’s methods, a MonoBehaviour can often pass in itself as
the argument or pass in any other dependencies. This gives you the flexibility to execute
logic, run coroutines, etc. even though the ScriptableObject exists at the project level.

© 2025 Unity Technologies 40 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Pathfinding

@ | Pattern: Delegate objects |

Monobehaviour references
ScriptableObject

EnemyAl

ScriptableObject contains
methods and logic

+MoveUnit
+SetTarget

ScriptableObjects can contain pluggable implementations of behavior or logic.

For example, you can define several enemy units in a game with different movement behavior.
Let’s suppose some of them need to patrol, stand idle, or flee from the player.

A single EnemyUnit MonoBehaviour can reference a EnemyAI ScriptableObject that contains
a method called MoveUnit. The EnemyUnit script itself doesn’t contain any movement or
behavior logic. It only executes the ScriptableObject’s MoveUnit at the appropriate time.

If the method needs data from the scene, the EnemyUnit object can pass in a reference to itself
as a parameter. Any other necessary dependencies in the scene can be passed in as well.

o Modifying ScriptableObject data

At runtime, you actually can change ScriptableObject data, but be careful whenever doing
so. Multiple Monobehaviour sharing the same ScriptableObject can cause problems if
they modify the same data.

Remember that you can create an instance of a ScriptableObject at runtime to avoid this
issue. The initial ScriptableObject then acts like a template with all the logic and data.
Each MonoBehaviour can then make its own instance of that ScriptableObject which can
be modified freely.

© 2025 Unity Technologies 410f 75 | unity.com

https://unity.com/releases/lts

@ | Pattern: Delegate objects |

Pluggable behavior

You can make this pattern more useful by defining the EnemyAI ScriptableObject as an
abstract class. This allows it to act as a template for a variety of ScriptableObjects that are
compatible with the EnemyUnit MonoBehaviour, so the abstract ScriptableObject can stand in
for more than one algorithm.

Monobehaviour references
ScriptableObject

EnemyAl

Base ScriptableObject
+MoveUnit (abstract)
+SetTarget

Derived
ScriptableObject
classes
(concrete)

Swap at
+MoveUnit runtime
+SetTarget

+MoveUnit
+SetTarget

Pluggable behaviors can change at runtime or in the Editor.

Thus, you could have concrete ScriptableObject classes for behaviors like Patrol, Idle, or
Flee that derive from the base EnemyAl. Even though they all implement the same MoveUnit
method, each can produce very different results.

In the Editor, each asset is interchangeable. You can just drag and drop the ScriptableObject of
choice into the EnemyAI field. Any compatible ScriptableObject is “pluggable” in this fashion.

© 2025 Unity Technologies 42 of 75 | unity.com

https://unity.com/releases/lts

@ | Pattern: Delegate objects |

The EnemyUnit or another component can behave as the “brain” that monitors when to switch
ScriptableObjects and also swap behavior at runtime. This is one way the EnemyUnit can
react to gameplay events like transitioning from a patrolling to a fleeing state. Simply switch
EnemyATI ScriptableObjects on each state change.

In production, a second developer or designer can implement the actual movement or Al
logic within the ScriptableObject. As additional movements or behaviors get added to the
game (e.g., DuckAndCover, Chase, etc.), the original EnemyUnit script remains unchanged.
This pattern can help keep your codebase more extensible, in keeping with the open-closed
principle from SOLID programming. Because everything is already split into smaller objects,
the resulting project is more scalable as you add team members or as game design changes.

o Gameplay Al with ScriptableObjects

For a more detailed example of using ScriptableObjects to drive behavior, see the
Pluggable Al With Scriptable Objects video series. These recorded live sessions
demonstrate a finite state machine-based Al system that can be configured using
ScriptableObjects for states, actions, and transitions between those states.

Example: Audio delegates

The behavior contained in the ScriptableObject does not necessarily need to be complex. It
can be something as basic as playing back a customized sound.

Here's an example of a “sound delegate” ScriptableObject that can help add variations to your
AudioClips. The AudioDelegateSO0 defines an abstract class with a Play method that takes
an AudioSource as a parameter.

using UnityEngine;
using Random = UnityEngine.Random;

using System;

[Serializable]

public struct RangedFloat

{
public float MinValue;

public float MaxValue;

public abstract class AudioDelegateSO: ScriptableObject
{

public abstract void Play(AudioSource source);

© 2025 Unity Technologies 43 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Open–closed_principle
https://en.wikipedia.org/wiki/Open–closed_principle
https://en.wikipedia.org/wiki/SOLID
https://www.youtube.com/watch?v=cHUXh5biQMg?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

@ | Pattern: Delegate objects |

This concrete SimpleAudioDelegate ScriptableObject can then select a random clip
from the available choices and vary its volume and pitch during playback. This reduces the
monotony of repeating the same sound.

[CreateAssetMenu(fileName ="AudioDelegate")]
public class SimpleAudioDelegateSO : AudioDelegateSO
{
public AudioClip[] Clips;
public RangedFloat Volume;
public RangedFloat Pitch;
public void Play(AudioSource source)
{
if (clips.Length == || source == null)
return;
source.clip = clips[Random.Range(@, Clips.Length)];
source.volume = Random.Range(Volume.minValue, Volume.maxValue);
source.pitch = Random.Range(Pitch.minValue, Pitch.maxValue);
source.Play();
}
}

Any MonoBehaviour can then use a ScriptableObject instance derived from the
AudioDelegateSO0 class. You can also make variations of the AudioDelegate for different
audio effects.

Having methods on a ScriptableObject opens up several possibilities. In addition to performing
actions, its methods can send messages to any object in the scene.

Next, let’s look at a ScriptableObject-based event system with the observer pattern.

0 The glorious ScriptableObject revolution

Richard Fine’s Overthrowing the MonoBehaviour tyranny in a glorious ScriptableObject
revolution presentation at Unite 2016 lay the foundation for much of this e-book. Part of
the demo (called AudioEvent in the original project) has been modified for this example.

See the sample project for implementation details and an example using
ScriptableObjects.

© 2025 Unity Technologies

44 of 75 | unity.com

https://unity.com/releases/lts
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://assetstore.unity.com/packages/templates/tutorials/scriptableobjects-paddle-ball-project-325743

The Observer pattern

When developing a game, it's common to have multiple GameObjects that need to share data
or states with each other. In a small game, you can make direct references between these
objects, but this doesn’t scale very well. Managing these dependencies can require significant
effort and is often a source of bugs.

You'll need a better solution as your application grows in size.

Avoiding singletons

Many developers opt to use singletons — one global instance of a class that survives scene
loading. Singletons, however, introduce global states and make unit testing difficult.

If you're working with a prefab that references a singleton, you'll end up importing all of its
dependencies just to test an isolated function. This reduces modularity and makes your code

harder to debug.

As an alternate solution you can use ScriptableObject-based events to help your objects
communicate.

© 2025 Unity Technologies 45 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

o More on singletons

The subject of singletons in Unity game development is often cause for debate.
Singletons can be a suitable solution for smaller projects or prototyping. In large
applications, the cons of using singletons often outweigh their advantages. Many
developers consider the singleton to be an anti-pattern for this reason.

Singletons are easy to learn and understand but can introduce issues when they’re used
incorrectly. Most of the patterns described here will help you avoid relying on singletons.

If you want easy access to shared data, consider a Runtime Set based on
ScriptableObjects (see below). If you need a way to send messages between objects,
try a ScriptableObject-based event channel. Restructuring your architecture away from
singletons may improve scalability and testability.

Read the e-book Level up your code with design patterns and SOLID to learn more about
the pros and cons of singletons.

© 2025 Unity Technologies 46 of 75 | unity.com

https://unity.com/releases/lts
https://unity.com/resources/design-patterns-solid-ebook

@ | The Observer pattern |

ScriptableObject-based events

As you've already seen, ScriptableObjects aren't just for handling data. They can contain
methods, just like any other script. These methods can serve as a means for objects to
communicate.

In the observer design pattern, a subject broadcasts a message to one or more loosely
coupled observers. Each observing object can react independently of the subject but is
unaware of the other observers. The subject can also be referred to as the “publisher” or
“broadcaster.” The observers are also known as “subscribers” or “listeners.”

An event-based architecture only executes when needed, rather than running each frame. For
this reason, it's often more optimized than adding logic to a MonoBehaviour’s update methods.
Subscribers

Observer

@
2

Publisher

Observer

@
=

Observer

@
2

The basic observer pattern

You can implement the observer pattern with MonoBehaviours or C# objects. While this is
already common practice in Unity development, a script-only approach means your designers
will rely on the programming team for every event needed during gameplay.

An alternative is to create ScriptableObject-based events. This is a designer-friendly way to

set up the observer pattern. Here, the ScriptableObject works as an intermediary between
subject and observer, providing a graphical interface in the Editor.

© 2025 Unity Technologies 47 of 75 | unity.com

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Observer_pattern
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/events/

@ | The Observer pattern |

Subscribers

Observer

Publisher Event
Channel

Observer

el

NG
2

Scriptable
Object Observer

/]
3

G
2

The ScriptableObject-based event channel

While at first glance it appears that you've only added a layer of overhead to the observer
pattern, this structure offers some advantages. Because ScriptableObjects are assets, they
are accessible to all objects in your Scene Hierarchy and don’t disappear on scene loading.

This is why many developers use singletons in the first place: easy, persistent access to
certain resources. ScriptableObjects can often provide the same benefits without introducing
as many unnecessary dependencies.

In ScriptableObject-based events, any object can serve as publisher (which broadcasts
the event), and any object can serve as a subscriber (which listens for the event). The
ScriptableObject sits in the middle and helps relay the signal, acting like a centralized
intermediary between the two.

One way to think about this is as an “event channel.” Imagine the ScriptableObject as a radio

tower that has any number of objects listening for its signals. An interested Monobehaviour
can simply subscribe to the event channel and respond when something happens.

© 2025 Unity Technologies 48 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

Example: Event channels

Any ScriptableObject that includes the following can function as an event channel:

— A delegate (UnityAction or System.Action): This notifies subscribers and passes the
appropriate data as parameters. Use a UnityAction for a more artist-friendly experience;
otherwise, the System.Action delegate works well here.

The event keyword limits the delegate so that it can only be invoked from within the
ScriptableObject class (or derived class where it's declared).

— An event-raising method: This public method invokes the delegate.
And that’s it.

You can set up any number of event channels to determine various aspects of gameplay.
Because they exist at the project level, ScriptableObjects can raise events that are globally
accessible. This can connect otherwise unrelated objects in the scene in a scalable way.

0 System.Action or UnityAction

System.Action is a general purpose delegate type defined in the .NET Framework’s
System namespace. It can be used in your Unity projects without needing to declare a
custom delegate. Adding the event keyword makes the delegate type read only; other
objects can listen for the delegate’s registered methods, but they can’t invoke those
methods directly.

UnityAction is a delegate type that’s specifically defined within the UnityEngine.Events
namespace. You will typically use it with the UnityEvent class, which is an alternative
means of creating events in Unity. UnityEvents and UnityActions appear in the Inspector,
so they often serve as a more user- or artist-friendly way to implement the observer
pattern.

In general, you can use either System.Action or UnityAction, depending on your specific
needs. You have the option of deploying either or both in the same project.

If you want a more general purpose delegate that is not tied to the Unity game engine,

use System.Action. If you want a delegate specifically designed for UnityEvents, use
UnityAction.

© 2025 Unity Technologies 49 of 75 | unity.com

https://unity.com/releases/lts
https://learn.microsoft.com/en-us/dotnet/api/system.action?view=net-7.0
https://docs.unity3d.com/ScriptReference/Events.UnityAction.html
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html

@ | The Observer pattern |

Here, you can make a VoidEventChannelSO that raises an event without passing any
parameters. This one contains a UnityAction named OnEventRaised.

[CreateAssetMenu(menuName = "Events/Void Event Channel")]
public class VoidEventChannelSO : ScriptableObject
{

public event UnityAction OnEventRaised;

public void RaiseEvent()

{

if (OnEventRaised != null)
OnEventRaised.Invoke();

}

}

Once you create a ScriptableObject of type VoidEventChannelS0, any MonoBehaviour can
listen for OnEventRaised. For example, we can make a StartNewGame ScriptableObject that
is of type VoidEventChannelSO.

Another object can invoke the public RaiseEvent method to trigger the event.

I Project & Console
+ v Q

-_— e uOL L e

; Assets > ScriptableObjects ventCha 5 i
e Dialogue t ScriptableObjects > EventChannels > MainMenu

I Gameplay
m Health
m Interaction
= Inventory
m MainMenu
I Questlines
B QuestSystem
e SceneManagement
e Settings
i Ui

s Gameplay

ContinueGameEv StartNewGame

A ScriptableObject-based event, an example of an event channel

Another MonoBehaviour can reference the event channel ScriptableObject in the Inspector,
then subscribe/unsubscribe to OnEventRaised.

© 2025 Unity Technologies 50 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

This invokes StartNewGame as a response whenever the event channel calls OnEventRaised:

public class StartGame : MonoBehaviour

{

[SerializeField] private VoidEventChannelSO m_onNewGameButton =
default;

private void Start()

{

m_onNewGameButton.OnEventRaised += StartNewGame;

private void OnDestroy()

{

m_onNewGameButton.OnEventRaised -= StartNewGame;

private void StartNewGame()

{
// load level logic here..

}

For more artist- or designer-friendly listening components, you could instead create a
MonoBehaviour that doesn’t require any script setup. This VoidEventListener class doesn’t
add extra functionality but has fields that are accessible in the Inspector:

public class VoidEventlListener : MonoBehaviour

{

[SerializeField] private VoidEventChannelSO m_channel = default;

public UnityEvent OnEventRaised;

private void OnEnable()

{

if (m_channel !'= null)

m_channel.OnEventRaised += Respond;

© 2025 Unity Technologies 510f 75 | unity.com

https://unity.com/releases/lts

Q | The Observer pattern |

private void OnDisable()

{
if (m_channel !'= null)

m_channel.OnEventRaised -= Respond;

private void Respond()

{
if (OnEventRaised != null)

OnEventRaised.Invoke();

Simply add the VoidEventListener to a GameObject, then drag the event channel
ScriptableObject into the _channel field in the Inspector. Create UnityActions on the
OnRaisedEvent in order to respond to the event.

+ Void Event Channel Listener (Script)

AudioSource.Play

An Event Listener allows a nonprogrammer to set up event-driven actions.

Regardless of which component you choose to listen for events, the event channels provide a
means of communicating between your objects at runtime. Did the player complete a task or
score a point? Is the game over? An event can notify any GameObject in the scene that needs
that information.

Because they are assets at the project level, ScriptableObject-based events can then drive

much of the infrastructure of your application. This is especially useful for sending messages
between the different systems that underpin the game architecture.

© 2025 Unity Technologies 52 of 75 | unity.com

https://unity.com/releases/lts

Q | The Observer pattern |

Some common management systems include:

— Audio management: Many things in your game can trigger sounds. This system can play
AudioClips or adjust the AudioMixer in response to application events.

— Scene management: This system handles loading and unloading of Unity scenes and
game levels.

— Ul'management: This is responsible for menu screens before, during, and/or after
gameplay.

— Save Data management: This handles saving and loading game data, as well as settings
to your file system.

These systems all specialize in different tasks, but they need to talk to one another. Events
can form the glue that keeps them connected.

Explore the accompanying sample project for more examples of how to implement your own
ScriptableObject-based events.

+~ GameManage
EventChannels
Untagged =
Open

Transform

Position X 0 Y 0.4861715
Rotation) il O

v Game Manager (Script)

Auto Start

ScriptableObjects

nt Channel !«

nel

The sample project’'s GameManager uses event channels.

Note that you can send different types of data with each event, using different event
payloads. For example, the ScriptableObject-based events include IntEventChannelSO0, a
Vector2EventChannelS0, a VoidEventChannelsS0, and so on. The event used will depend
on the context.

Customize additional event types according to gameplay. For instance, a damage event may
need to pass along who inflicted the damage and how much was done.

© 2025 Unity Technologies 53 of 75 | unity.com

https://unity.com/releases/lts
https://assetstore.unity.com/packages/templates/tutorials/scriptableobjects-paddle-ball-project-325743

| The Observer pattern |

How you deploy these event channels is limited only by your creativity. In addition to the core
systems above, events can often help join very different in-game systems so that they can
interact:

Cameras: These are used to add dramatic or cinematic effects, such as shaking or
cutting to a different perspective.

Quests: These are tasks or objectives that the player must complete in order to progress
through the game or receive a reward. Quests often involve a variety of gameplay
elements, such as fetching items, defeating enemies, or solving puzzles.

Health: This important aspect of many games connects the player, enemies, and any
objects or actions that can cause damage to the player.

Achievements: Like quests, these are special rewards that players can unlock by completing
certain tasks or objectives within the game. Achievements can span different gameplay
elements, such as reaching a certain level or accumulating a certain number of points.

These gameplay elements, in turn, will interact with other management systems, such as
audio, Ul, and save data, through the use of events. This approach promotes modularity
and independence within each component of the architecture while still allowing for
communication with other systems.

o Debugging event channels

A custom Editor or property drawer can create a “Raise Event” button in the Inspector.
This can help you manually invoke the event for debugging.

For example, here’s a basic Editor script that creates a custom Inspector button for the
VoidEventChannelSO:

[CustomEditor (typeof(VoidEventChannelS0))]
public class VoidEventChannelSOEditor : Editor

{

© 2025 Unity Technologies

public override void OnInspectorGUI()

{
DrawDefaultInspector();
VoidEventChannelSO eventChannel = (VoidEventChannelSO)target;
if (GUILayout.Button("Raise Event"))
{
eventChannel.RaiseEvent();
}
}

54 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

This creates a button that allows you to raise the event at will, making it easier to
diagnose issues at runtime.

A custom Editor button can help test event channels.

With a little more work, you can make buttons for event channels that carry data as

well. Reserve a field for a debug value in the event channel itself, then pass this to the
Editor script. You can find examples of how to implement this in the SOAP or Unity Atoms
projects.

As you continue using event channels for object decoupling, consider developing
debugging tools, such as keeping a record of all listeners for each event. The event

channel class can have methods to subscribe and unsubscribe objects, making it easier
to identify which events are causing specific behaviors during runtime.

Example: InputReader

Objects that listen for user input need a specialized type of event channel. Unity’s Input System
uses InputActions to represent raw input data as logical concepts (e.g., jump, walk, etc.).

Each InputAction, in turn, includes its own started, performed, and canceled events.

© 2025 Unity Technologies 55 of 75 | unity.com

https://unity.com/releases/lts
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107
https://github.com/unity-atoms/unity-atoms
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.14/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.14/api/UnityEngine.InputSystem.InputAction.html

Q | The Observer pattern |

PlayerinputActions (Input Actions)

Action Properties
GamePla

Mei

Setting up Actions and Action Maps in the Input System Editor
In order to decipher the InputAction bindings, you can create a special InputReader
ScriptableObject. Again, this acts as an intermediary between the subject and observers. In

this case, however, MonoBehaviours won't raise the events explicitly.

Instead, the Input System takes the place of the subject or broadcaster:

Observer

Game Input Move

(Input Action (Input Action) Input OnMove Observer

Asset) Reader (Event)
- 5 3 T

i &

Scriptable

- Object Observer
Unity Input System

T

MonoBehaviours

A ScriptableObject InputReader relays events from InputActions.

Here, we set up Actions and ActionMaps in the Input System. Each InputAction describes a

separate axis of input and binds to the keyboard, gamepad, or whatever input device you like
to use.

© 2025 Unity Technologies 56 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

Rather than directly subscribing to the InputActions themselves, the paddle controllers listen
for the OnMoveP1.performed event and OnMoveP2 . performed events, respectively.

Paddile1

Changes to Input System

only affect InputReader OnMoveP1
m Gamepad 2 5 (Event)

Game Input Mot
(Input Action Actions Input OnMoveP2
Asset) Reader (Event)

N

Unity Input System

—

ScriptableObject OnMove

(Event)

Keyboard

Inputs =
MonoBehaviours

The InputReader insulates objects from direct dependency on the inputs.

The resulting InputReader standardizes how your GameObjects will process gamepad or
keyboard actions. Any GameObject that needs input:

— Maintains a reference to the InputReader ScriptableObject
— Subscribes to the relevant events and connects its event-handling methods

While this pattern may be overkill for a smaller game, we demonstrate this to make the
concept easier to digest.

The benefits won't be apparent until your project grows and you add many more components.
Decoupling the inputs from the GameObjects consuming them gives added flexibility and
reusability.

If you have to modify the InputActions during development, you only need to maintain the
InputReader itself. The listening objects are unaffected if the events don’t need to change.
Thus, maintaining the connection from input to observers becomes less work — especially
when you have a lot of observers.

© 2025 Unity Technologies 57 of 75 | unity.com

https://unity.com/releases/lts

@ | The Observer pattern |

o Static versus non-static events

You can choose to use static events to ease the burden of locating the ScriptableObject
on the listening objects.

For example, a MonoBehaviour could subscribe to the InputReader’s static MoveP1Event
and MoveP2Event events in its OnEnable method:

InputReader .MoveP1Event += OnMoveP1;
InputReader .MoveP2Event += OnMoveP2;

When using static events, be extra diligent when managing subscriptions. Don’t forget to
unsubscribe in OnDisable:

InputReader .MoveP1Event -= OnMoveP1;

InputReader .MoveP2Event -= OnMoveP2;
Static events will always be reachable and won't be collected by the garbage collector if
they have active subscribers. Any dangling subscribers will prevent their cleanup for the
duration of your application.
Static events, however, aren’t serializable. If you want to work interactively in the Editor,

choose non-static events and make sure you reference the appropriate ScriptableObject
in the Inspector.

© 2025 Unity Technologies 58 of 75 | unity.com

https://unity.com/releases/lts

The Command pattern

Instead of invoking a method directly, the command pattern allows you to encapsulate one or
more method calls as a “command object.”

© 2025 Unity Technologies 59 of 75 | unity.com

https://unity.com/releases/lts

@ | The Command pattern |

Then, you store these command objects in a collection, like a queue or a stack, which works
as a small buffer. This gives you extra flexibility to control each command object’s execution.
Common applications include playing back a series of actions with specific timing or making
those actions undoable.

You've likely encountered this in some of your favorite game genres:

— In areal-time strategy game, the command pattern could be used to queue up actions of
units and buildings. The game would then execute each building command as resources
became available or as a series of movement actions for the unit.

— In a turn-based strategy game, the player could select a unit and then store its moves or
actions in a queue or other collection. At the end of the turn, the game could execute all
of the commands in the player’s queue.

— In a puzzle game, the command pattern could allow the player to undo and redo actions.
— In afighting game, reading button presses or gamepad motions in a specific command
list could perform combos and special moves.

You can use ScriptableObjects to implement the command pattern.

For example, you could create a command to define a Transform’s movement. Wrapping each
action within a separate object results in extra control.

You'll define an interface ICommand an Execute method and an Undo method (you could also
use an abstract class):

public interface ICommand

{
public abstract void Execute();
public abstract void Undo();

}

© 2025 Unity Technologies 60 of 75 | unity.com

https://unity.com/releases/lts

@ | The Command pattern |

Then, have a ScriptableObject implement the ICommand interface. Each Command object fills
out its own Execute and Undo methods with its own implementation details.

<<interface>>
IComm

+Execute()
+Undo()

| implements
MoveCommandSO

+Execute()
+Undo()

Implementing the command pattern with a ScriptableObject

A MonoBehaviour or ScriptableObject can then define a command buffer that will contain the
command objects. This can be a collection, such as a list, stack, array, or queue.

<<interface>>
IComm
depends
+CommandBuffer:
List<ICommand>
+0OnExecute() +Execute()

+0nUndo() +Undo()

Higher-level object

+Execute()
+Undo()

Lower-level object

A CommandManager maintains a collection of ICommand objects.

© 2025 Unity Technologies

610f 75 | unity.com

https://unity.com/releases/lts

@ | The Command pattern |

This simple structure lets you execute the commands in sequence. Imagine a tutorial or
cutscene that moves a GameObject through a prescribed set of actions or animations. The
command pattern is well suited for that.

Because each command is a separate object, it's easy to reorder them. Just decide how you
want to maintain the CommandBuffer:

— If creating it as a stack, you push commands to the stack when executing them. When
undoing an action, you can pop it off and keep a separate redo stack.

— If you're using a list or array, track the current Command’s index, then increment or
decrement the index as you need to undo or redo commands.

See the MoveCommandSO and CommandManager classes in the sample project for one
example of undoable movement. Here, a rudimentary tutorial scene labels parts of the game
board to explain how to play.

Click the Next button to advance through the explanatory text. Likewise, click the Back button
to cycle in reverse through the instructions.

THIS SHOWS HOW TO
USE SCRIPTRBLE
OBJECTS WITH THE
COMMAND PATTERN.

HOW TO PLAY

MOVE THE PRDDLES.

P2
= = uP OR DOWN
— T

Back and Next
buttons

A simple implementation of the command pattern.
You can find out more about the command pattern in the e-book Level up your code

with design patterns and SOLID. Also, see this community post, Command pattern with
ScriptableObjects, which demonstrates this pattern with ScriptableObjects.

© 2025 Unity Technologies 62 of 75 | unity.com

https://unity.com/releases/lts
https://assetstore.unity.com/packages/templates/tutorials/scriptableobjects-paddle-ball-project-325743
https://unity.com/resources/design-patterns-solid-ebook
https://unity.com/resources/design-patterns-solid-ebook
https://bronsonzgeb.com/index.php/2021/09/25/the-command-pattern-with-scriptable-objects/
https://bronsonzgeb.com/index.php/2021/09/25/the-command-pattern-with-scriptable-objects/

@ | The Command pattern |

o ScriptableObjects or C# classes?

When deciding on the right code architecture for your project, it's important to consider
the skills and preferences of your team, as well as your game’s performance requirements.
While some designers may prefer to use the Unity Editor interactively, others may prefer
to work entirely in C# code.

Take these factors into account when creating a codebase that’s easy for everyone on
your team to work with. Of course, no design pattern is a one-size-fits-all solution, and it’s

important to carefully evaluate the pros and cons of each before implementing it.

Remember that the “right” code architecture is just the one that works best for your team
and your project.

© 2025 Unity Technologies 63 of 75 | unity.com

https://unity.com/releases/lts

The Runtime

Set pattern

At runtime, you'll often need to track a list of GameObjects or components in your scene. For
example, you may need to maintain a list of enemies or NPCs.

Because a ScriptableObject instance appears at the project level, it can store data that’s
available to any object from any scene. Again, this replicates much of the easy global access
of a singleton without that pattern’s known drawbacks.

Reading data directly from a ScriptableObject is also more optimal than searching the Scene
Hierarchy with a find operation such as Object.FindObjectOfType or GameObject.
FindWithTag. Depending on your use case and the size of your hierarchy, these are relatively
expensive methods that can be inefficient for per-frame updates.

Basic Runtime Set

Instead, consider storing data on a ScriptableObject as a “Runtime Set.” This is a specialized
data container that maintains a public collection of elements but also provides basic methods
to add and remove to the collection.

© 2025 Unity Technologies 64 of 75 | unity.com

https://unity.com/releases/lts

@ | The Runtime Set pattern |

@ RuntimeSetSO
objects/components

+Add
+Remove

Retrieves collection MonoBehaviour

from any scene

A Runtime Set provides global access to a collection of data.

Here’s a basic Runtime Set that tracks a list of GameObjects:

using System.Collections.Generic;

using UnityEngine;

[CreateAssetMenu(menuName = "GameObject Runtime Set", fileName = “GORun-
timeSet”)]

public class GameObjectRuntimeSetSO : ScriptableObject
{
private List<GameObject> items = new List<GameObject>();

public List<GameObject> Items => items;

public void Add(GameObject thingToAdd)
{
if (!items.Contains(thingToAdd))
items.Add(thingToAdd) ;

© 2025 Unity Technologies 65 of 75 | unity.com

https://unity.com/releases/lts

@ | The Runtime Set pattern |

public void Remove(GameObject thingToRemove)
{
if (items.Contains(thingToRemove))

items.Remove(thingToRemove) ;

At runtime, any MonoBehaviour can reference the public Items property to obtain the full list.
Another script or component must be responsible for managing how the GameObjects are
added or removed from this list.

Project Hierarchy

GameObject

~—"
.' Add GameObject references

to RuntimeSet using events
GameObject

GameObjectRuntimeSetSO

LT
+Items List<GameObject> GameObject

ltems
List<GameObject>

MonoBehaviour

A GameObject Runtime Set
Reference the Runtime Set in a MonoBehaviour. Then, in the OnEnable and OnDisable event

functions, add or remove the object from the Runtime Set’s Items list. Alternatively, use an
event channel to send a GameObject as its payload (e.g., GameObjectEventChannel).

© 2025 Unity Technologies 66 of 75 | unity.com

https://unity.com/releases/lts

@ | The Runtime Set pattern |

Generic version

You may want to use a Runtime Set with a specific type of MonoBehaviour. For instance,
this could allow you to maintain a list of enemy or pickup items accessible to anything

in your scene. In that case, you could create specific Runtime Sets for each type (e.g.,
EnemyRuntimeSet, PickupRuntimeSet, etc.).

One way to streamline the creation of additional Runtime Sets is to use a generic abstract
class:

public abstract class RuntimeSetSO<T> : ScriptableObject

{
[HideInInspector]

public List<T> Items = new List<T>();

public void Add(T thing)
{
if (!Items.Contains(thing))
Items.Add(thing);

public void Remove(T thing)
{
if (Items.Contains(thing))

Items.Remove(thing);

This works similarly to the original GameObjectRuntimeSet but with added flexibility. If you
wanted to create a Runtime Set for a custom Foo component, you would create a concrete
FooRuntimeSetSO like so:

[CreateAssetMenu(menuName = "Foo Runtime Set", fileName = "FooRuntime-
Set")]

public class FooRuntimeSetSO : RuntimeSet<Foo>
{
}

© 2025 Unity Technologies 67 of 75 | unity.com

https://unity.com/releases/lts

| The Runtime Set pattern |

Build as many concrete classes as needed for gameplay (e.g., enemies, NPCs, inventory items,
quests, and more can all have their own Runtime Sets). You just need to declare a new empty
class with the right type.

As an alternative to using events, each Foo component can add or remove itself using its
OnEnable or OnDisable methods. Then, if you set the FooRuntimeSet field in the Inspector,
the Foo component will appear in the Runtime Set automatically. This is especially handy if
you're using the Foo component with prefabs.

public class Foo : MonoBehaviour

{
public FooRuntimeSetSO RuntimeSet;

private void OnEnable()

{
RuntimeSet.Add(this);

private void OnDisable()

{

RuntimeSet.Remove(this) ;

Note: One limitation of this technique is that if you inspect the ScriptableObject at runtime,
you won't be able to see the contents of the Runtime Set list in the Inspector. If you try to
publicly expose the list in the Inspector, you'll see this:

Runtime Sets won't show scene objects or components in the Inspector.

© 2025 Unity Technologies

68 of 75 | unity.com

https://unity.com/releases/lts

@ \ The Command pattern | The Runtime Set pattern \ Explore the sample project

By default, a “Type mismatch” appears in each element field since a ScriptableObject

won't be able to serialize a scene object. The list works normally, but the data does not
display correctly. Use a public property or the Hidelninspector attribute if you want to avoid
confusion and prevent the list from showing in the Inspector. You can also fix this issue with
a custom Editor script and Inspector. For a good example of this, see SOAP (ScriptableObject
Architectural Pattern) on the Asset Store.

Scriptable Lists

Level: 10'

| ’

WASD / Arrow Keys to Move
) ’y
’
Count: 11

Custom Inspector

A custom Editor in SOAP shows the contents of a Runtime Set.

o Fun facts about foo and bar

The terms foo and bar are common placeholder names in programming. These terms
were likely chosen because they are short, easy to remember, and sound distinctive.

While their exact origins are unclear, some people believe that the terms originated from
radar operators in World War Il. The nonsense word “foo” also appeared as a catchphrase
in a 1930’s comic strip.

In a programming context, their use is generally credited to the Tech Model Railroad Club
at MIT circa the 1960s. The MIT train room had two general-purpose buttons by the door
labeled “foo” and “bar.” MIT hackers often repurposed these names for their ideas, hence
the adoption of foo and bar as general variable names.Today, the use of foo and bar as
dummy variable names is a widespread convention in the programming community.

© 2025 Unity Technologies 69 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/HideInInspector.html
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107
https://en.wikipedia.org/wiki/Foobar
https://en.wikipedia.org/wiki/Smokey_Stover
https://en.wikipedia.org/wiki/Tech_Model_Railroad_Club

Explore the sample
project

Accompanying this guide is a sample project for you to work with and learn about
ScriptableObjects. Inspired by classic ball and paddle game mechanics, this project is a great
opportunity to see how ScriptableObjects can improve the architecture of your Unity project.

By following SOLID principles and using techniques often employed in larger projects, you can
demonstrate how ScriptableObjects can help to restructure your code.

The sample project

© 2025 Unity Technologies 70 0f 75 | unity.com

https://unity.com/releases/lts
http://http://https://unity.com/solutions/accelerate-solutions-games

| Explore the sample project |

Here, you will have the chance to see how ScriptableObjects can be applied, and gain a better
understanding of how they can be used to improve the efficiency and organization of your
projects.

The sample includes many of the patterns explored in this guide:

Data containers: Shared settings data is extracted as ScriptableObjects. Then,
gameplay settings or common states are stored as assets in the project. Also, you can
change the initial level layout by swapping ScriptableObjects.

Extendable enums: Empty ScriptableObjects function as enums to categorize different
players.

Delegate objects: A simple audio delegate shows how you can randomize the

ball's collision sounds just by swapping ScriptableObjects. Objectives are also
ScriptableObjects that plug into the game management system for determining win-lose
conditions.

Event channels: The observer pattern helps you set up game events for Ul, sounds, and
scoring. Different GameObjects can subscribe to different “event channels,” similar to
tuning in to a specific radio broadcast.

Dual serialization: Some game data is stored like the level layout in ScriptableObjects for
ease of use in the Editor but with the option to save it as JSON files. Externally modded
JSON data can then rebuild a ScriptableObject, which works with the original setup
script.

Of course, the game itself is not the main focus of this sample. A paddle-and-ball arcade
game can be built with far fewer lines of code. Instead, the idea with the sample project is to
demonstrate how ScriptableObjects can help you create components that are testable and
scalable, while still being designer-friendly.

© 2025 Unity Technologies

710f 75 | unity.com

https://unity.com/releases/lts
https://assetstore.unity.com/packages/templates/tutorials/scriptableobjects-paddle-ball-project-325743

Cconclusion

ScriptableObjects can be a versatile addition to your toolset. Think of these design patterns as
extra possibilities for organizing your Unity development.

Note that you can achieve many of the techniques in this guide using C# classes instead

of ScriptableObjects, and there will always be developers who prefer to do this in some
scenarios. However, the Unity Editor provides the convenience of viewing and editing
ScriptableObjects more easily. This can help your artistic and design teams interface with your
project, instead of having everything being controlled through code.

Do your designers want to set up gameplay data without constant support from the software
team? If so, then maybe Scriptable Objects have a place in your project.

Of course, not using a pattern can be just as valuable as using one. What may seem like
a natural fit for one application may not be for another. Evaluate the advantages and

disadvantages of a pattern before deploying it.

There are no hard-and-fast rules for how to structure your Unity project. Balance the skill sets
and personal preferences of your team with your code architecture.

Then, you can focus on the important thing: making your game an engaging experience for
your players.

© 2025 Unity Technologies 72 of 75 | unity.com

https://unity.com/releases/lts

More resources

Documentation

— The ScriptableObject Scripting API

— ScriptableObjects Manual page

Technical e-books from Unity

Related to design patterns and coding in Unity

— Level up your code with design patterns and SOLID contains an introduction to SOLID
development and design patterns in Unity.

— Create a C# style guide (Unity 6 edition) covers some of the best practices when setting
up your project.

Other best practice guides

— Advanced best practice guides in Unity documentation

— Unity best practices hub

© 2025 Unity Technologies 73 of 75 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://unity.com/resources/design-patterns-solid-ebook
https://unity.com/resources/c-sharp-style-guide-unity-6
https://docs.unity3d.com/Manual/best-practice-guides.html
https://unity.com/how-to

Q | More resources

From Unite

— Overthrowing the MonoBehaviour tyranny in a glorious ScriptableObject revolution

— Game Architecture with ScriptableObjects

For general information about code architecture, we also recommend:

— From Pong to 15-person project

More project examples

These community project examples show extensive use of ScriptableObjects in their
architecture:

— The Tanks Demo presentation from Unite, by Richard Fine, uses ScriptableObjects to
customize audio, pluggable Al, and destructible buildings.

— Ryan Hipple, a senior full stack game engineer at Meta, has a GitHub project that
illustrates much of his Unite Austin presentation. You can also read his corresponding
blog post.

— Soap (Scriptable Object Architectural Pattern) on the Asset Store implements many
of the patterns described in this e-book and adds many quality of life features when
working with Scriptable Objects.

— The Unity Atoms project is an open source library that makes extensive use of
ScriptableObjects. Read this page to get started with it.

— The Reactive Menu System uses ScriptableObjects to build a UGUI system to handle Ul
state changes and menu management.

— The Unity Open Project (Chop Chop) heavily relies on ScriptableObjects and manages
gameplay with event channels.

For game designers

Christo Nobbs, a senior technical game designer who specializes in systems game design and
Unity (C#), was a contributor to The Unity game designer playbook, as well as the main author
of a short series of blog posts on designing game systems in Unity:

— Systems that create ecosystems: Emergent game design

— Unpredictably fun: The value of randomization in game design

— Animation curves, the ultimate design lever

© 2025 Unity Technologies 74 of 75 | unity.com

https://unity.com/releases/lts
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=raQ3iHhE_Kk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=1le4vScG3gk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://github.com/richard-fine/scriptable-object-demo
https://github.com/roboryantron/Unite2017
http://www.roboryantron.com/2017/10/unite-2017-game-architecture-with.html
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107
https://github.com/unity-atoms/unity-atoms
https://unity-atoms.github.io/unity-atoms/
https://github.com/makeplayhappy/reactive-menu-system
https://github.com/UnityTechnologies/open-project-1
https://unity.com/open-projects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/game-designer-playbook?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/technology/systems-that-create-ecosystems-emergent-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/technology/unpredictably-fun-the-value-of-randomization-in-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/games/animation-curves-the-ultimate-design-lever?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

| More resources

Professional training

Unity Professional Training offers both online and in-person training to give you and your team
additional skills and knowledge to work more productively, and collaborate efficiently, in Unity.

Learn more about Unity Professional Training here.

© 2025 Unity Technologies 75 of 75 | unity.com

https://unity.com/releases/lts
https://unity.com/learn/professionals

unity.com

https://unity.com

	Introduction
	What are ScriptableObjects?
	Serialization

	ScriptableObjects versus MonoBehaviours
	Comparison
	Callbacks and messages
	Files
	YAML ain’t markup language
	Creation and lifecycle

	Destroying ScriptableObjects

	Data containers
	ScriptableObject data versus persistent data
	Reducing duplicate data

	Design patterns
	Refactoring example

	Code conventions in this guide
	Custom Inspectors
	Architectural benefits

	ScriptableObject variables
	Dual serialization

	Protect your data

	The Extendable enums pattern
	Enum-like categories
	Extending behavior

	Pattern:
Delegate objects
	Delegates versus events
	ScriptableObjects methods

	Modifying ScriptableObject data
	Pluggable behavior
	Gameplay AI with ScriptableObjects
	Example: Audio delegates
	The glorious ScriptableObject revolution

	The Observer pattern
	Avoiding singletons
	ScriptableObject-based events
	Example: Event channels
	System.Action or UnityAction
	Debugging event channels
	Example: InputReader
	Static versus non-static events

	The Command pattern
	ScriptableObjects or C# classes?

	The Runtime
Set pattern
	Basic Runtime Set
	Generic version
	Fun facts about foo and bar

	Explore the sample project
	Conclusion
	More resources
	Documentation
	Technical e-books from Unity
	From Unite
	More project examples
	For game designers
	Professional training

	Botón 3:
	Página 5:
	Página 6:
	Página 10:
	Página 17:
	Página 34:
	Página 39:
	Página 45:
	Página 59:
	Página 64:
	Página 70:
	Página 72:
	Página 73:

