
U N I T Y F O R D E V E L O P E R S ⟶ E - B O O K

T

Write cleaner code that scales

C R E A T E A C #
S T Y L E G U I D E

Contents

Introduction. . .3

What is clean code, anyway? . 4

Developing.as.a.team. . .5

Keep it simple, stupid . 6

The KISS principle . 6

The YAGNI principle . 6

Don’t code around the problem . 7

Improve incrementally, every day . 7

Plan, but adapt . 7

Be consistent . 8

It takes a village . 8

A style guide for you and your team . 8

Create.a.style.guide. . .9

Naming conventions . 10

Identifier names . 10

Casing terminology . 11

Camel case . 11

Pascal case . 11

Snake case . 11

Kebab case . 11

Hungarian notation . 12

Fields and variables . 12

Enums . 15

Classes and interfaces . 16

Methods . 17

Events and event handlers . 18

Namespaces . 20

Formatting . . .21

Properties . 22

Serialization . 23

What is EditorConfig? . 28

Horizontal spacing . 28

Vertical spacing . 30

Regions . 31

Code formatting in Visual Studio . 31

Classes. . 34

The newspaper metaphor . 35

Class organization . 35

Single-responsibility principle . 36

Refactoring example . 37

Methods . . 38

Extension methods . 39

The DRY principle: Don’t repeat yourself 41

Comments . . 43

Common.pitfalls . . 47

Conclusion. . 49

References . 49

Appendix:.Script.templates . . .51

Appendix:.Testing.and.debugging . . 55

Unity.Test.Framework . . 57

3.of.58.| unity .com© 2022 Unity Technologies

Creativity can be messy .

A flash of inspiration becomes a flurry of code, which then spawns a working
prototype . Success! Congratulations on passing the first hurdle . However,
simply getting your code to work won’t be enough . There’s much more to game
development .

Once your logic is functional, then the process of refactoring and cleaning up
begins .

This guide compiles advice from industry experts on how to create a code
style guide . Establishing ssuch a guide for each member of your team to follow
will help ensure your codebase can grow your project to a commercial-scale
production .

These tips and tricks will help your development process in the long term, even
if they cost you extra effort up front . A cleaner, more scalable codebase also
facilitates the efficient onboarding of new developers as you expand your team .

Keep your code clean to make life easier for yourself and everyone involved in
the project .

Contributors

This guide was written by Wilmer Lin, a 3D and visual effects artist with over
15 years of industry experience in film and television, who now works as an
independent game developer and educator . Significant contributions were also
made by senior technical content marketing manager Thomas Krogh-Jacobsen
and senior Unity engineers Peter Andreasen, Scott Bilas, and Robert LaCruise .

C L E A N CO D E A LWAYS LO O KS
L I K E I T WA S W R I T T E N BY
S O M E O N E W H O C A R E S .”

“

– Michael Feathers, author of Working Effectively with Legacy Code

I N T RO D U C T I O N

https://unity.com/

4.of.58.| unity .com© 2022 Unity Technologies

What is clean code, anyway?

Most game developers would agree that clean code is any code that’s easy to
read and maintain .

Clean code is elegant, efficient, and readable .

There’s good reasons for this congruence . Something that might be obvious to
you as the original author might be less apparent to another developer . By the
same token, when you implement some logic now, you might not remember
what that same code snippet does three months later .

Clean code aims to make development more scalable and conform to a set of
production standards, including:

 — Follow consistent naming conventions

 — Format your code for legibility

 — Organize classes and methods to keep them small and readable

 — Comment on any code that isn’t self-explanatory

Whether you’re building a puzzler for mobile or a massive MMORPG targeted
at consoles, keeping your codebase clean reduces the total cost of software
maintenance . You can then implement new features or patch your existing
software more easily .

Your future teammates – and your future self – will be thankful for that .

https://unity.com/

D E V E L O P I N G
A S A T E A M1

A N Y F O O L C A N W R I T E CO D E T H AT
A CO M P U T E R C A N U N D E R STA N D.
G O O D P RO G R A M M E R S W R I T E CO D E
T H AT H U M A N S C A N U N D E R STA N D.”

“

– Martin Fowler, author of Refactoring

6.of.58.| unity .com© 2022 Unity Technologies

No developer is an island . As the technical needs of your game application grow,
you’ll need help . Inevitably, you’ll add more team members with diverse skill
sets . Clean code introduces coding standards for your ever-expanding team so
everyone is on the same page . Now everybody can work on the same project
with a more uniform set of guidelines .

Before looking into how to create the style guide, let’s go over some general
rules to help you scale up your Unity development .

KISS (keep it simple, stupid)

Let’s face it: Engineers and developers can overcomplicate things, even though
computing and programming are hard enough . Use the KISS principle of “keep
it simple, stupid” as a guide for finding the simplest solution to the problem
at hand .

There’s no need to reinvent the wheel if a proven and simple technique solves
your challenge . Why use a fancy new technology just for the sake of using it?
Unity already includes numerous solutions in its Scripting API . For example, if
the existing Hexagonal Tilemap works for your strategy game, skip writing your
own . The best code you can write is no code at all .

The KISS principle

The well-known KISS principle emphasizes simplicity in design, an idea that’s
been popular throughout different times, as these quotes attest:

“Simplicity is the ultimate sophistication .”

– Leonardo da Vinci

“Make simple tasks simple!”

– Bjarne Stroustrup

“Simplicity is a prerequisite for reliability .”

– Edsger W . Dijkstra

“Everything should be made as simple as possible, but no simpler .”

– Albert Einstein

In programming, that means keeping your code as streamlined as possible .
Avoid adding unnecessary complexity

The YAGNI principle

The related YAGNI principle (“you aren’t gonna need it”) instructs you to
implement features only as you need them . Don’t worry about features that you
might need once the stars align . Build the simplest thing that you need now and
build it to work .

https://unity.com/
https://en.wikipedia.org/wiki/KISS_principle
https://docs.unity3d.com/Manual/Tilemap-Hexagonal.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

7.of.58.| unity .com© 2022 Unity Technologies

Don’t code around the problem

The first step of software development is to understand what you are trying to
solve . This idea might seem like common sense, but too often developers get
bogged down in implementing code without understanding the actual problem,
or they'll modify the code until it works without fully grasping why .

What if, for example, you fixed a Null Reference Exception with a quick if-null
statement at the top of a method . Are you sure that was the real culprit, or was
the problem a call to another method deeper inside?

Instead of adding code to fix a problem, investigate the root cause . Ask yourself
why it’s happening rather than applying a band-aid solution .

Improve incrementally, every day

Making clean code is a fluid and ongoing process . Get the whole team into this
mindset . Expect code cleanup to be part of your day-to-day life as a developer .
Most people don’t intend to write broken code . It just evolves that way over
time . Your codebase needs constant maintenance and upkeep . Budget time for
that and make sure it happens .

Make it good, not perfect

On the flip side, don’t strive for perfection . When your code meets production
standards, it’s time to commit it and move on .

Ultimately your code needs to do something . Balance implementing new
functionality with code cleanup . Don’t refactor for the sake of it . Refactor when
you think it will provide a benefit to you or somebody else .

Plan, but adapt

In The Pragmatic Programmer, Andy Hunt and Dave Thomas write, “Rather than
construction, programming is more like gardening .” Software engineering is an
organic process . Be prepared if everything does not go according to plan .

Even if you make the most elaborate drawing, designing a garden on paper will
not guarantee results . Your plants may bloom differently than you expected .
You’ll need to prune, transplant, and replace parts of your code to make this
garden successful .

Software design isn’t quite like an architect drawing blueprints because it's more
malleable and less mechanical . You’ll need to react as your codebase grows .

https://unity.com/
https://en.wikipedia.org/wiki/Five_whys
https://en.wikipedia.org/wiki/Five_whys

8.of.58.| unity .com© 2022 Unity Technologies

Be consistent

Once you decide how to tackle a problem, approach similar things the same
way . It’s not difficult but will take constant effort . Apply this principle to
everything from naming (classes and methods, casing, etc .) to organizing
project folders and resources .

Above all, have your team agree on a style guide and then follow it .

It takes a village

Although keeping code clean and simple is in everyone’s best interest, “clean
and simple” is not the same as “easy .” Clean and simple takes effort and is hard
work for beginners and experienced developers alike .

Your project will become messy if left unchecked . It’s a natural consequence of
so many people working on different parts of a project . Everyone is responsible
for pitching in and preventing code clutter, and each team member will need to
read and follow the style guide . Cleanup is a group effort .

A style guide for you and your team

This guide focuses on the most common coding conventions you’ll encounter
during Unity development . These are a subset of the Microsoft Framework
Design Guidelines, which include an extensive number of rules beyond what is
presented here .

These guidelines are recommendations, not hard and fast rules . Customize
them according to your team’s preferences . Pick a style that suits everyone,
and ensure they apply it .

Consistency is king . If you follow these suggestions and need to modify your
style guide in the future, a few find-and-replace operations can migrate your
codebase quickly .

When your style guide conflicts with this document or the Microsoft Framework
Design Guidelines, it should take precedence over them because this will allow
your team to maintain a uniform style throughout your project .

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

C R E A T E A
S T Y L E G U I D E2

T H E R E A R E O N LY T WO H A R D
T H I N G S I N CO M P U T E R S C I E N C E :
C AC H E I N VA L I DAT I O N &
N A M I N G T H I N G S .”
– Phil Karlton, software engineer

“

10.of.58.| unity .com© 2022 Unity Technologies

Your application is the collective product of individuals who might think
differently from one another . A style guide helps rein in those differences to
create a cohesive final product . No matter how many contributors work on a
Unity project, it should feel like it’s been developed by a single author .

Microsoft and Google both offer comprehensive example guides:

— Microsoft C# Coding Conventions

— C# at Google Style Guide

These are excellent starting points for managing your Unity development . Each
guide offers solutions for naming, formatting, and commenting . If you’re a solo
developer, this might feel like a constraint at first, but following a style guide is
essential when working in teams .

Think of a style guide as an initial investment that will pay dividends later .
Maintaining a single set of standards can reduce the time spent on relearning if
you move anyone onto another project .

Style guides take the guesswork out of coding conventions and formatting .
Consistent style then becomes a matter of following directions .

We created an example C# style sheet that you can also use as a reference as
you assemble your own guide . Feel free to copy and tweak it as needed .

Let’s dive in .

Naming conventions

There’s a deep psychology involved in giving something a name . A name tells us
how that entity fits into the world . What is it? Who is it? What can it do for us?

The names of your variables, classes, and methods aren’t mere labels . They
carry weight and meaning . Good naming style impacts how someone reading
your program can comprehend the idea you’re trying to convey .

Here are some guidelines to follow for naming .

Identifier.names

An identifier is any name you assign to a type (class, interface, struct, delegate,
or enum), member, variable, or namespace . Identifiers must begin with a letter
or an underscore (_) .

Avoid special characters (backslashes, symbols, Unicode characters) in your
identifiers, even though C# permits them . These can interfere with certain Unity
command-line tools . Steer clear of unusual characters to ensure compatibility
with most platforms .

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://google.github.io/styleguide/csharp-style.html
https://github.com/thomasjacobsen-unity/Unity-Code-Style-Guide
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#identifiers

11.of.58.| unity .com© 2022 Unity Technologies

Casing terminology

You can’t define variables with spaces in the name because C# uses the space
character to separate identifiers . Casing schemes can alleviate the problem of
using compound names or phrases in source code . There are several well-
known naming and casing conventions .

Camel.case

Also known as camel caps, camel case is the practice of writing phrases
without spaces or punctuation, separating words with a single capitalized
letter . The very first letter is lowercase . Local variables and method parameters
are camel case .

For example:
examplePlayerController

maxHealthPoints

endOfFile

Pascal.case

Pascal case is a variation of camel case, where the initial letter is capitalized .
Use this for class and method names in Unity development . Public fields can
be pascal case as well . For example:

ExamplePlayerController

MaxHealthPoints

EndOfFile

Snake.case

In this case, spaces between words are replaced with an underscore character .
For example:

example_player_controller

max_health_points

end_of_file

Kebab.case

Here, spaces between words are replaced with dashes . The words appear on a
“skewer” of dash characters . For example:

example-player-controller

Max-health-points

end-of-file

naming-conventions-methodology

https://unity.com/
https://en.wikipedia.org/wiki/Camel_case

12.of.58.| unity .com© 2022 Unity Technologies

Fields and variables

Consider these rules for your variables and fields:

.— Use.nouns.for.variable.names: Variable names must be descriptive, clear,
and unambiguous because they represent a thing or state . So use a noun
when naming them except when the variable is of the type bool (see
below) .

.— Prefix.Booleans.with.a.verb: These variables indicate a true or false value .
Often they are the answer to a question, such as – is the player running?
Is the game over? Prefix them with a verb to make their meaning more
apparent . Often this is paired with a description or condition, e .g .,
isDead, isWalking, hasDamageMultiplier, etc .

.— Use.meaningful.names ..Don’t.abbreviate.(unless.it’s.math): Your variable
names will reveal their intent . Choose names that are easy to pronounce
and search for .

 — Single letter variables are fine for loops and math expressions, but
otherwise, don’t abbreviate . Clarity is more important than any time saved
from omitting a few vowels .

 — When doing quick prototyping, you can use short “junk” names and then
refactor to meaningful names later .

The problem with kebab case is that many programming languages use the
dash as a minus sign . Some languages interpret numbers separated by dashes
as calendar dates .

Hungarian.notation

The variable or function name often indicates its intention or type . For example:
int iCounter

string strPlayerName

Hungarian notation is an older convention and is not common in Unity
development .

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/fields

13.of.58.| unity .com© 2022 Unity Technologies

.— Use.pascal.case.for.public.fields ..Use.camel.case.for.private.variables:..
For an alternative to public fields, use Properties with a public getter (see
Formatting below) .

.— Avoid.too.many.prefixes.or.special.encoding:.You can prefix private
member variables with an underscore (_) to differentiate them from local
variables .

Alternatively, use the this keyword to distinguish between member and
local variables in context and skip the prefix . Public fields and properties
generally don’t have prefixes .

Some style guides use prefixes for private member variables (m_),
constants (k_), or static variables (s_), so the name can reveal more about
the variable at a glance .

Many developers eschew these and rely on the editor instead . However,
not all IDEs support highlighting and color coding, and some tools can’t
show rich context at all . Consider this when deciding how (or if) you will
apply prefixes together as a team .

.— Specify.(or.omit).access.level.modifiers.consistently: If you leave off the
access modifier, the compiler will assume the access level to be private .
This works well, but be consistent in how you omit the default access
modifier . Remember that you’ll need to use protected if you want this in a
subclass later .

Examples.to.avoid Use.instead Notes

int d int
elapsedTimeInDays

Avoid single letter
abbreviations unless a
counter or expression .

int hp,
string tName,
int mvmtSpeed

int healthPoints,
string teamName,
int movementSpeed

Variable names reveal
intent . Make names
searchable and
pronounceable .

int
getMovemementSpeed

int movementSpeed Use nouns . Reserve verbs
for methods unless it’s a
bool (below) .

bool dead bool isDead
bool isPlayerDead

Booleans ask a question
that can be answered true
or false .

https://unity.com/

14.of.58.| unity .com© 2022 Unity Technologies

Example.code.snippets

The code snippets in this guide are non-functional and abbreviated . They’re
presented here to show style and formatting .

You can also reference this example C# style sheet for Unity developers,
based on a modified version of Microsoft’s Framework Design Guidelines . This
represents just one example of how you can set up your team’s style guide .

Note the specific style rules found in these code examples:

 — The default private access modifier is not omitted .

 — Public member variables use pascal case .

 — Private member variables are camel case and use underscores (_) as a
prefix .

 — Local variables and parameters use camel case with no prefix .

 — Public and private member variables are grouped together .

Review each rule in the example style guide and customize it to your team’s
preferences . The specifics of an individual rule are less important than having
everyone agree to follow it consistently . When in doubt, rely on your team’s own
guide to settle any style disagreements .

<
// EXAMPLE: public and private variables

public float DamageMultiplier = 1.5f;
public float MaxHealth;
public bool IsInvincible;

private bool _isDead;
private float _currentHealth;

// parameters
public void InflictDamage(float damage, bool isSpecialDamage)
{
 // local variable
 int totalDamage = damage;

 // local variable versus public member variable
 if (isSpecialDamage)
 {
 totalDamage *= DamageMultiplier;
 }

 // local variable versus private member variable
 if (totalDamage > _currentHealth)
 {
 /// ...
 }
}

https://unity.com/
https://github.com/thomasjacobsen-unity/Unity-Code-Style-Guide
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

15.of.58.| unity .com© 2022 Unity Technologies

 — Use.one.variable.declaration.per.line: It’s less compact, but enhances
readability .

 — Avoid.redundant.names: If your class is called Player, you don’t need
to create member variables called PlayerScore or PlayerTarget . Trim
them down to Score or Target .

 — Avoid.jokes.or.puns: While they might elicit a chuckle now, the
infiniteMonkeys or dudeWheresMyChar variables won’t hold up after a
few dozen reads .

 — Use the var keyword for implicitly typed local variables if it helps
readability and the type is obvious: Specify when to use var in your
style guide . For example, many developers avoid var when it obscures the
variable’s type or with primitive types outside a loop .

Generally, use var when it makes the code easier to read (e .g ., with long
type names) and the type is not ambiguous .

Enums

Enums are special value types defined by a set of named constants . By default,
the constants are integers, counting up from 0 .

Use pascal case for enum names and values . You can place public enums
outside of a class to make them global . Use a singular noun for the enum name .

Note: Bitwise enums marked with the System .FlagsAttribute attribute are the
exception to this rule . You typically pluralize these as they represent more than
one type .

// EXAMPLE: good use of var
var powerUps = new List<PowerUps>();
var dictionary = new Dictionary<string, List<GameObject>>();

// AVOID: potential ambiguity
var powerUps = PowerUpManager.GetPowerUps();

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/api/system.flagsattribute?view=net-5.0

16.of.58.| unity .com© 2022 Unity Technologies

Classes and interfaces

Follow these standard rules when naming your classes and interfaces:

.— Use.pascal.case.nouns.for.class.names ..

.— If.you.have.a.Monobehaviour.in.a.file,.the.source.file.name.must.
match: You may have other internal classes in the file, but only one
Monobehaviour should exist per file .

.— Prefix.interface.names.with.a.capital.I: Follow this with an adjective that
describes the functionality .

// EXAMPLE: enums use singular nouns
public enum WeaponType
{
 Knife,
 Gun,
 RocketLauncher,
 BFG
}

public enum FireMode
{
 None = 0,
 Single = 5,
 Burst = 7,
 Auto = 8,
}

// EXAMPLE: but a bitwise enum is plural

[Flags]
public enum AttackModes
{
 // Decimal // Binary
 None = 0, // 000000
 Melee = 1, // 000001
 Ranged = 2, // 000010
 Special = 4, // 000100

 MeleeAndSpecial = Melee | Special // 000101
}

<

https://unity.com/

17.of.58.| unity .com© 2022 Unity Technologies

Methods

In C#, every executed instruction is performed in the context of a method .

.
Note: “function” and “method” are often used interchangeably in Unity
development . However, because you can’t write a function without incorporating
it into a class in C#, “method” is the accepted term .

Methods perform actions, so apply these rules to name them accordingly:

.— Start.the.name.with.a.verb: Add context if necessary . e .g .,
GetDirection, FindTarget, etc .

.— Use.camel.case.for.parameters: Format parameters passed into the
method like local variables .

.— Methods.returning.bool.should.ask.questions:.Much like Boolean
variables themselves, prefix methods with a verb if they return a true-false
condition This phrases them in the form of a question, e .g ., IsGameOver,
HasStartedTurn .

// EXAMPLE: Class formatting
public class ExampleClass : MonoBehaviour
{

 public int PublicField;
 public static int MyStaticField;

 private int _packagePrivate;
 private int _myPrivate;

 private static int _myPrivate;

 protected int _myProtected;

 public void DoSomething()
 {

 }
}

// EXAMPLE: Interfaces
public interface IKillable
{
 void Kill();
}

public interface IDamageable<T>
{
 void Damage(T damageTaken);
}

<

https://unity.com/

18.of.58.| unity .com© 2022 Unity Technologies

Events and event handlers

Events in C# implement the Observer pattern . This software design pattern
defines a relationship in which one object, the subject (or publisher), can notify
a list of dependent objects called observers (or subscribers) . Thus, the subject
can broadcast state changes to its observers without tightly coupling the
objects involved .

Several naming schemes exist for events and their related methods in the
subject and observers . Try these practices:

.— Name.the.event.with.a.verb.phrase:.Choose a name that communicates
the state change accurately . Use the present or past participle to indicate
events “before” or “after .” For example, specify “OpeningDoor” for an event
before opening a door or “DoorOpened” for an event afterward .

.— Use.the.System .Action.delegate.for.events: In most cases, the Action<T>
delegate can handle the events needed for gameplay . You may pass
anywhere from 0 to 16 input parameters of different types with a return
type of void . Using the predefined delegate saves code .

Note:.You can also use the EventHandler or EventHandler<TEventArgs>
delegates . Agree as a team on how everyone will implement events .

// EXAMPLE: Methods start with a verb
public void SetInitialPosition(float x, float y, float z)
{
 transform.position = new Vector3(x, y, z);
}

// EXAMPLE: Methods ask a question when they return bool
public bool IsNewPosition(Vector3 currentPosition)
{
 return (transform.position == newPosition);
}

// EXAMPLE: Events

// using System.Action delegate

public event Action OpeningDoor; // event before
public event Action DoorOpened; // event after

public event Action<int> PointsScored;
public event Action<CustomEventArgs> ThingHappened;

<

<

https://unity.com/
https://en.wikipedia.org/wiki/Observer_pattern
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.eventhandler?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.eventhandler-1?view=net-5.0

19.of.58.| unity .com© 2022 Unity Technologies

.— Prefix.the.event.raising.method.(in.the.subject).with.“On”: The subject
that invokes the event typically does so from a method prefixed with “On,”
e .g . “OnOpeningDoor” or “OnDoorOpened .”

.— Prefix.the.event.handling.method.(in.the.observer).with.the.subject’s.
name.and.underscore.(_): If the subject is named “GameEvents,” your
observers can have a method called “GameEvents_OpeningDoor” or
“GameEvents_DoorOpened .”

Note that this is called the “event handling method”, not to be confused
with the EventHandler delegate .

Decide a consistent naming scheme for your team and implement those
rules in your style guide .

.— Create.custom.EventArgs.only.as.necessary: If you need to pass custom
data to your Event, create a new type of EventArgs, either inherited from
System .EventArgs or from a custom struct .

// raises the Event if you have subscribers
public void OnDoorOpened()
{
 DoorOpened?.Invoke();
}

public void OnPointsScored(int points)
{
 PointsScored?.Invoke(points);
}

// define an EventArgs if needed

// EXAMPLE: read-only, custom struct used to pass an ID and Color
public struct CustomEventArgs
{
 public int ObjectID { get; }
 public Color Color { get; }

 public CustomEventArgs(int objectId, Color color)
 {
 this.ObjectID = objectId;
 this.Color = color;
 }
}

<

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/api/system.eventargs?view=net-5.0

20.of.58.| unity .com© 2022 Unity Technologies

Namespaces

Use a namespaces to ensure that your classes, interfaces, enums, and so
on won’t conflict with existing ones from other namespaces or the global
namespace . Namespaces can also prevent conflicts with third-party assets from
the Asset Store .

When applying namespaces:

 — Use pascal case without special symbols or underscores .

 — Add a using directive at the top of the file to avoid repeated typing of the
namespace prefix .

 — Create sub-namespaces as well . Use the dot(.) operator to delimit
the name levels, allowing you to organize your scripts into hierarchical
categories . For example, you can create MyApplication .GameFlow,
MyApplication .AI, MyApplication .UI, and so on to hold different logical
components of your game .

In code, these classes are referred to as Enemy.Controller1 and Enemy.
Controller2, respectively . Add a using line to save typing out the prefix:

When the compiler finds the class names Controller1 and Controller2, it
understands you mean Enemy.Controller1 and Enemy.Controller2 .

If the script needs to refer to classes with the same name from different
namespaces, use the prefix to differentiate them . For instance, if you have a
Controller1 and Controller2 class in the Player namespace, you can write
out Player.Controller1 and Player.Controller2 to avoid any conflicts .
Otherwise, the compiler will report an error .

namespace Enemy
{
 public class Controller1 : MonoBehaviour
 {
 ...
 }

 public class Controller2 : MonoBehaviour
 {
 ...
 }
}

using Enemy;

<

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/namespaces

F O R M A T T I N G3

I F YO U WA N T YO U R CO D E TO
B E E A SY TO W R I T E , M A K E I T
E A SY TO R E A D.”

“

– Robert C . Martin, author of Clean Code and Agile Software Development

22.of.58.| unity .com© 2022 Unity Technologies

Along with naming, formatting helps reduce guesswork and improves code
clarity . By following a standardized style guide, code reviews become less about
how the code looks and more about what it does .

When constructing a style guide, personalize how your team will format your
code . Consider each of the following code formatting suggestions when setting
up your Unity dev style guide . Omit, expand, or modify these example rules to fit
your team’s needs .

In all cases, consider how your team will implement each formatting rule and
then have everyone apply it uniformly . Refer back to your team’s style to resolve
any discrepancies . The less you think about formatting, the more you can work
on something else .

Let’s take a look at formatting guidelines .

Properties

A property provides a flexible mechanism to read, write, or compute class
values . Properties behave as if they were public member variables, but in fact
they’re special methods called accessors . Each property has a get and set
method to access a private field, called a backing field .

In this way, the property encapsulates the data, hiding it from unwanted
changes by the user or external objects . The getter and setter each have their
own access modifier, allowing your property to be read-write, read-only, or
write-only .

You can also use the accessors to validate or convert the data (e .g ., verify that
the data fits your preferred format or change a value to a particular unit) .

The syntax for properties can vary, so your style guide should define how to
format them . Use these tips to keep properties consistent in your code:

.— Use.expression-bodied.properties.for.single.line.read-only.properties.
(=>): This returns the private backing field .

// EXAMPLE: expression bodied properties
public class PlayerHealth
{
 // the private backing field
 private int maxHealth;

 // read-only, returns backing field
 public int MaxHealth => maxHealth;

 // equivalent to:
 // public int MaxHealth { get; private set; }
}

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-properties
https://docs.microsoft.com/en-us/ef/core/modeling/backing-field?tabs=data-annotations
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)#Information_hiding

23.of.58.| unity .com© 2022 Unity Technologies

.— Everything.else.uses.the.older.{ get; set; }.syntax: If you just want
to expose a public property without specifying a backing field, use the
Auto-Implemented Property .

Apply the expression-bodied syntax for the set and get accessors .

Remember to make the setter private if you don’t want to give write
access . Align the closing with the opening brace for multi-line code
blocks .

Serialization

Script serialization is the automatic process of transforming data structures
or object states into a format that Unity can store and reconstruct later . For
performance reasons, Unity handles serialization differently than in other
programming environments .

Serialized fields appear in the Inspector, but you cannot serialize static,
constant, or read-only fields . They must be either public or tagged with the
[SerializeField] attribute . Unity only serializes certain field types, so refer
to the documentation page for the complete set of serialization rules .

Observe a few basic guidelines when working with serialized fields:

.— Use.the.[SerializeField].attribute: The SerializeField attribute can
work with private or protected variables to make them appear in the
Inspector . This encapsulates the data better than marking the variable
public and prevents an external object from overwriting its values .

// EXAMPLE: expression bodied properties
public class PlayerHealth
{
 // backing field
 private int _maxHealth;

 // explicitly implementing getter and setter
 public int MaxHealth
 {
 get => _maxHealth;
 set => _maxHealth = value;
 }

 // write-only (not using backing field)
 public int Health { private get; set; }

 // write-only, without an explicit setter
 public SetMaxHealth(int newMaxValue) => _maxHealth = newMaxValue;

}

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.unity3d.com/Manual/script-Serialization.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

24.of.58.| unity .com© 2022 Unity Technologies

.— Use.the.Range.attribute.to.set.minimum.and.maximum.values: The
[Range(min, max)] attribute is handy if you want to limit what the user
can assign to a numeric field . It also conveniently represents the field as a
slider in the Inspector .

.— Group.data.in.serializable.classes.or.structs.to.clean.up.the.Inspector:
Define a public class or struct and mark it with the [Serializable]
attribute . Define public variables for each type you want to expose in the
Inspector .

Reference this serializable class from another class . The resulting variables
appear within collapsible units in the Inspector .

// EXAMPLE: a serializable class for PlayerStats

using System;
using UnityEngine;

public class Player : MonoBehaviour
{
 [Serializable]
 public struct PlayerStats
 {
 public int MovementSpeed;
 public int HitPoints;
 public bool HasHealthPotion;
 }

// EXAMPLE: The private field is visible in the Inspector

 [SerializeField]
 private PlayerStats _stats;
}

A serializable class or struct can help organize the Inspector .

<

https://unity.com/

25.of.58.| unity .com© 2022 Unity Technologies

Brace or indentation style

There are two common indentation styles in C#:

 — The Allman style places the opening curly braces on a new line, also
known as the BSD style (from BSD Unix) .

 — The K&R style, or “one true brace style,” keeps the opening brace on the
same line as the previous header .

There are variations on these indentation styles as well . The examples in this
guide use the Allman style from the Microsoft Framework Design Guidelines .
Regardless of which one you choose as a team, make sure everyone follows the
same indentation and brace style .

Try these tips:

.— Decide.on.a.uniform.indentation: This is typically four or two spaces . Get
everyone on your team to agree on a setting in your Editor preferences
without igniting a tabs versus spaces flame war . Note that Visual Studio
provides the option to convert tabs to spaces .

In Visual Studio (Windows), navigate to Tools.>.Options.>.Text.Editor.>..
C#.>.Tabs .

// EXAMPLE: Allman or BSD style puts opening brace on a new line.

void DisplayMouseCursor(bool showMouse)
{
 if (!showMouse)
 {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
 else
 {
 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
 }
}

// EXAMPLE: K&R style puts opening brace on the previous line.

void DisplayMouseCursor(bool showMouse){
 if (!showMouse) {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
 else {
 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
 }
}

<

https://unity.com/
https://en.wikipedia.org/wiki/Indentation_style#Allman_style
https://en.wikipedia.org/wiki/Indentation_style#K&R_style
https://en.wikipedia.org/wiki/Indentation_style
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/
https://thenewstack.io/spaces-vs-tabs-a-20-year-debate-and-now-this-what-the-hell-is-wrong-with-go/

26.of.58.| unity .com© 2022 Unity Technologies

On Visual Studio for Mac, navigate to Preferences.>.Source.Code.>.C#.Source.
Code . Select the Text Style to adjust the settings .

.— Where.possible,.don’t.omit.braces,.even.for.single-line.statements: This
increases consistency, keeping your code easier to read and maintain . In
this example, the braces clearly separate the action, DoSomething, from
the loop .

If later you need to add a Debug line or to run DoSomethingElse, the
braces will already be in place . Keeping the clause on a separate line
allows you to add a breakpoint easily .

Tabs settings in Visual Studio

Convert tabs to spaces to make indentation uniform .

https://unity.com/

27.of.58.| unity .com© 2022 Unity Technologies

.— Don’t.remove.braces.from.nested.multi-line.statements: Removing
braces in this case won’t throw an error, but can be confusing . Apply
braces for clarity, even if they are optional .

.— Standardize.your.switch.statements: Formatting can vary, so document
your team preference in your style guide . Here is one example where you
indent the case statements .

// EXAMPLE: keep braces for clarity...

for (int i = 0; i < 100; i++) { DoSomething(i); }

// … and/or keep the clause on a separate line.
for (int i = 0; i < 100; i++)
{
 DoSomething(i);
}

// AVOID: omitting braces

for (int i = 0; i < 100; i++) DoSomething(i);

// EXAMPLE: keep braces for clarity

for (int i = 0; i < 10; i++)
{
 for (int j = 0; j < 10; j++)
 {
 ExampleAction();
 }
}
// AVOID: removing braces from nested multi-line statements

for (int i = 0; i < 10; i++)
 for (int j = 0; j < 10; j++)
 ExampleAction();

// EXAMPLE: indent cases from the switch statement
switch (someExpression)
{
 case 0:
 DoSomething();
 break;
 case 1:
 DoSomethingElse();
 break;
 case 2:
 int n = 1;
 DoAnotherThing(n);
 break;
}

<

<

<

https://unity.com/

28.of.58.| unity .com© 2022 Unity Technologies

What is EditorConfig?

Do you have multiple developers working on the same project with different
editors and IDEs? Consider using an EditorConfig file .

The EditorConfig file can help you define a coding style that works across your
entire team . Many IDEs, like Visual Studio and Rider, come bundled with native
support and do not require a separate plugin .

EditorConfig files are easily readable and work with version control systems . You
can see an example file here . The code styling from EditorConfig travels with
your code and can enforce coding styles even outside of Visual Studio .

EditorConfig settings take precedence over the global Visual Studio text editor
settings . Your personal editor preferences still apply whenever you’re working in
a codebase without a .editorconfig file, or when the .editorconfig file doesn’t
override a particular setting .

See the GitHub repo for some real-world samples .

Horizontal spacing

Something as simple as spacing can enhance your code’s appearance on-
screen . Your personal formatting preferences can vary, but try the following
suggestions to improve readability:

.— Add.spaces.to.decrease.code.density: The extra whitespace can give a
sense of visual separation between parts of a line .

.— Use.a.single.space.after.a.comma.between.function.arguments .

// EXAMPLE: add spaces to make lines easier to read
for (int i = 0; i < 100; i++) { DoSomething(i); }

// AVOID: no spaces
for(inti=0;i<100;i++){DoSomething(i);}

// EXAMPLE: single space after comma between arguments
CollectItem(myObject, 0, 1);

// AVOID:
CollectItem(myObject,0,1);

<

<

https://unity.com/
https://docs.microsoft.com/en-us/visualstudio/ide/create-portable-custom-editor-options?view=vs-2019
https://editorconfig.org
https://editorconfig.org/#example-file
https://github.com/editorconfig/editorconfig/wiki/Projects-Using-EditorConfig

29.of.58.| unity .com© 2022 Unity Technologies

.— Don’t.add.a.space.after.the.parenthesis.and.function.arguments .

.— Don’t.use.spaces.between.a.function.name.and.parenthesis .

.— Avoid.spaces.inside.brackets .

.— Use.a.single.space.before.flow.control.conditions: Add a space between
the flow comparison operator and the parentheses .

.— Use.a.single.space.before.and.after.comparison.operators .

// EXAMPLE: no space after the parenthesis and function arguments
DropPowerUp(myPrefab, 0, 1);

//AVOID:
DropPowerUp(myPrefab, 0, 1);

// EXAMPLE: omit spaces between a function name and parenthesis.
DoSomething()

// AVOID
DoSomething ()

// EXAMPLE: omit spaces inside brackets
x = dataArray[index];

// AVOID
x = dataArray[index];

// EXAMPLE: space before condition; separate parentheses with a
space.
while (x == y)

// AVOID
while(x==y)

// EXAMPLE: space before condition; separate parentheses
with a space.
if (x == y)

// AVOID
if (x==y)

<

<

<

<

<

https://unity.com/

30.of.58.| unity .com© 2022 Unity Technologies

.— Keep.lines.short ..Consider.horizontal.whitespace: Decide on a standard
line width (80–120 characters) . Break a long line into smaller statements
rather than letting it overflow .

.— Maintain.indentation/hierarchy: Indent your code to increase legibility .

.— Don’t.use.column.alignment.unless.needed.for.readability: This type of
spacing aligns the variables but can make it difficult to pair the type with
the name .

Column alignment, however, can be useful for bitwise expressions or
structs with a lot of data . Just be aware that it may create more work for
you to maintain the column alignment as you add more items . Some auto-
formatters might also change which part of the column gets aligned .

Vertical spacing

You can use the vertical spacing to your advantage as well . Keep related
parts of the script together and use blank lines to your advantage . Try these
suggestions to organize your code from top to bottom:

.— Group.dependent.and/or.similar.methods.together: Code needs to be
logical and coherent . Keep methods that do the same thing next to one
another, so someone reading your logic doesn’t have to jump around the
file .

.— Use.the.vertical.whitespace.to.your.advantage.to.separate.distinct.parts.
of.your.class: For example, you can add two blank lines between:

 — Variable declarations and methods

 — Classes and Interfaces

 — if-then-else blocks (if it helps readability)

Keep this to a minimum and note on your style guide where applicable .

// EXAMPLE: One space between type and name

 public float Speed = 12f;
 public float Gravity = -10f;
 public float JumpHeight = 2f;

 public Transform GroundCheck;
 public float GroundDistance = 0.4f;
 public LayerMask GroundMask;

// AVOID: column alignment

 public float Speed = 12f;
 public float Gravity = -10f;
 public float JumpHeight = 2f;
 public Transform GroundCheck;
 public float GroundDistance = 0.4f;
 public LayerMask GroundMask;

<

https://unity.com/

31.of.58.| unity .com© 2022 Unity Technologies

Regions

The #region directive enables you to collapse and hide sections of code in C#
files, making large files more manageable and easier to read .

However, if you follow the general advice for Classes from this guide, your class
size should be manageable and the #region directive superfluous . Break your
code into smaller classes instead of hiding code blocks behind regions . You will
be less inclined to add a region if the source file is short .

Note: Many developers consider regions to be code smells or anti-patterns .
Decide as a team on which side of the debate you fall .

Code formatting in Visual Studio

Don’t despair if these formatting rules seem overwhelming . Modern IDEs make
it efficient to set up and enforce them . You can create a template of formatting
rules and then convert your project files at once .

To set up formatting rules for the script editor:

 — In Visual Studio (Windows), navigate to Tools.>.Options ..Locate.Text.
Editor.>.C#.>.Code.Style.Formatting ..

Use the settings to modify the General, Indentation, New Lines, Spacing,
and Wrapping options .

Code style formatting options

https://unity.com/
https://softwareengineering.stackexchange.com/questions/53086/are-regions-an-antipattern-or-code-smell

32.of.58.| unity .com© 2022 Unity Technologies

 — In Visual Studio for Mac, select Visual.Studio.>.Preferences,.then.
navigate.to.Source.Code.>.Code.Formatting.>.C#.source.code ...

Select the Policy at the top . Then set your spacing and indentation in the
Text Style tab . In the C# Format tab, adjust the Indentation, New Lines,
Spacing, and Wrapping settings .

If at any time you want to force your script file to conform to the style guide:

 — In Visual Studio (Windows), go to Edit.>.Advanced.>.Format.Document.
(Ctrl.+.K,.Ctrl.+.D hotkey chord) . If you want only to format white spaces
and tab alignment, you can also use Run Code Cleanup (Ctrl.+.K.,.Ctrl.+.E)
at the bottom of the editor .

 — In Visual Studio for Mac, go to Edit.>.Format.Document.(Ctrl.+.I hotkey)

On Windows, you can also share your editor settings from Tools.>.Import.and.
Export.Settings . Export a file with the style guide’s C# code formatting and then
have every team member import that file .

The Preview window shows off your style guide choices .

https://unity.com/

33.of.58.| unity .com© 2022 Unity Technologies

Visual Studio makes it easy to follow the style guide . Formatting then becomes
as simple as using a hotkey .

Note: You can configure an EditorConfig file (see above) instead of importing
and exporting Visual Studio settings . Doing this allows you to share formatting
more easily across different IDEs, and it has the added benefit of working with
version control . See the .NET code style rule options for more information .

Though this isn’t specific to clean code, be sure to check out 10 ways to speed
up your programming workflow in Unity with Visual Studio . Clean code is much
easier to format and refactor if you apply these productivity tips .

Exporting the C# code formatting to share

https://unity.com/
https://editorconfig.org
https://docs.microsoft.com/en-us/dotnet/fundamentals/code-analysis/code-style-rule-options
https://blog.unity.com/technology/10-ways-to-speed-up-your-programming-workflows-in-unity-with-visual-studio-2019?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://blog.unity.com/technology/10-ways-to-speed-up-your-programming-workflows-in-unity-with-visual-studio-2019?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

C L A S S E S4

N O O N E I N T H E B R I E F H I STO RY O F
CO M P U T I N G H A S E V E R W R I T T E N A
P I E C E O F P E R F E C T S O F T WA R E . I T ’ S
U N L I K E LY T H AT YO U ’ L L B E T H E F I R ST.”

“

– Andy Hunt, author of The Pragmatic Programmer

35.of.58.| unity .com© 2022 Unity Technologies

According to Robert C . Martin’s Clean Code, the first rule of classes is that they
should be small . The second rule is they should be even smaller than that .

Limiting the size of each class makes it more focused and cohesive . It’s easy to
keep adding on top of an existing class until it overextends with functionality .
Instead make a conscious effort to keep the classes short . Big, bloated classes
become difficult to read and troubleshoot .

The newspaper metaphor

Imagine the source code of a class as a news article . You start reading from the
top, where the headline and byline catch your eye . The lead-in paragraph gives
you a rough summary, then you glean more details as you continue downward .

Journalists call this the inverted pyramid . The broad strokes of most
newsworthy items appear at the beginning . You only get the story’s nuances as
you read to the end .

Your class should also follow this basic pattern . Organize top-down and think of
your functions as forming a hierarchy . Some methods serve a higher-level and
lay the groundwork for the big picture . Put these first, then, place lower-level
functions with implementation details later .

For example, you might make a method called ThrowBall that references other
methods, SetInitialVelocity and CalculateTrajectory . Keep ThrowBall
first, since that describes the main action . Then, add the supporting methods
below it .

Though each news article is short, a newspaper or news website will have many
such collected stories . When taken together, the articles comprise a unified,
functional whole . Think of your Unity project in the same way . It has numerous
classes that must come together to form a larger, yet coherent, application .

Class organization

Each class will need some standardization . Group class members into sections
to organize them:

 — Fields

 — Properties

 — Events / Delegates

 — Monobehaviour Methods (Awake, Start, OnEnable, OnDisable, OnDestroy,
etc .)

 — Public Methods

 — Private Methods

Recall the recommended class naming rules in Unity: The source file name must
match the name of the Monobehaviour in the file . You might have other internal
classes in the file, but only one Monobehaviour should exist per file .

https://unity.com/
https://en.wikipedia.org/wiki/Inverted_pyramid_(journalism)

36.of.58.| unity .com© 2022 Unity Technologies

Single-responsibility principle

Remember the goal is to keep each class short . In software design, the single-
responsibility principle guides you toward simplicity .

The idea is that each module, class, or function is responsible for one thing .
Suppose you want to build a game of Pong . You might start with classes for a
paddle, a ball, and a wall .

For example, a Paddle class might need to:

 — Store basic data about how fast it can move

 — Check keyboard input

 — Move the paddle in response

 — Play a sound when colliding with a ball

Because the game design is simple, you can incorporate all of these things into
a basic Paddle class . In fact, it’s entirely possible to create one Monobehaviour
that does everything you need .

Fancy a game of Pong?

One Monobehaviour doing everything

https://unity.com/
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle

37.of.58.| unity .com© 2022 Unity Technologies

However, keeping everything as part of one class, even a small one, complicates
the design by mixing responsibilities . The data intertwines with the input, while
the class needs to apply logic to both . Contrary to the KISS principle, you’ve
taken a few simple things and entangled them .

Instead, break your Paddle class into smaller classes, each with a single
responsibility . Separate data into its own PaddleData class or use a
ScriptableObject . Then refactor everything else into a PaddleInput class,
a PaddleMovement class, and a PaddleAudio class .

A PaddleLogic class can process the input from the PaddleInput . Applying
the speed information from the PaddleData, it can shift the paddle using the
PaddleMovement . Finally, the PaddleLogic can notify the PaddleAudio to play a
sound when the ball collides with the paddle .

Each class does one thing in this redesign and fits into small, digestible pieces .
You don’t need to scroll through several screens to follow the code .

You’ll still require a Paddle script but its sole job is to tie these other classes
together . The bulk of the functionality is split into the other classes .

Note that clean code is not always the most compact code . Even when you use
shorter classes, the total number of lines may increase during refactoring . However,
each individual class becomes easier to read . When the time comes to debug or
add new features, this simplified structure helps keep everything in its place .

Refactoring example

For a more in-depth look at refactoring a simple project, see How to architect
code as your project scales . This article demonstrates how to break down larger
Monobehaviours into smaller pieces using the single-responsibility principle .

You can also watch Mikael Kalms’s original presentation, “From Pong to
15-person project,” from Unite Berlin .

Refactor a Paddle class into single responsibilities

https://unity.com/
https://docs.unity3d.com/Manual/class-ScriptableObject.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://unity.com/how-to/how-architect-code-your-project-scales?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://unity.com/how-to/how-architect-code-your-project-scales?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://www.youtube.com/watch?v=1le4vScG3gk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://www.youtube.com/watch?v=1le4vScG3gk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

M E T H O D S5

YO U K N OW YO U A R E WO R K I N G O N
C L E A N CO D E W H E N E AC H RO U T I N E
YO U R E A D T U R N S O U T TO B E P R E T T Y
M U C H W H AT YO U E X P E C T E D . ”

“

– Ward Cunningham, inventor of Wiki and cofounder of eXtreme Programming

39.of.58.| unity .com© 2022 Unity Technologies

Like classes, methods should be small with a single responsibility . Each method
should describe one action or answer one question . It shouldn’t do both .

A good name for a method reflects what it does . For example,
GetDistanceToTarget is a name that clarifies its intended purpose .

Try the following suggestions when you create methods for your custom
classes:

.— Use.fewer.arguments: Arguments can increase the complexity of your
method . Reduce their number to make your methods easier to read and test .

.— Avoid.excessive.overloading: You can generate an endless permutation of
method overloads . Select the few that reflect how you will call the method
and implement those . If you do overload a method, prevent confusion by
making sure each method signature has a distinct number of arguments .

.— Avoid.side.effects: A method only needs to do what its name advertises .
Avoid modifying anything outside of its scope . Pass in arguments by value
instead of by reference when possible . If sending back results via the out
or ref keyword, make sure that’s the one thing you intend the method to
accomplish .

Though side effects are useful for certain tasks, they can lead to
unintended consequences . Write a method without side effects to cut
down on unexpected behavior .

.— Instead.of.passing.in.a.flag,.make.another.method:.Don’t set up your
method to work in two different modes based on a flag . Make two
methods with distinct names . For example, don’t make a GetAngle
method that returns degrees or radians based on a flag setting . Instead
make methods for GetAngleInDegrees and GetAngleInRadians.

While the Boolean flag as an argument seems innocuous, it can lead to tangled
implementation or broken single-responsibility .

Extension methods

Extension methods offer a way to add additional functionality to classes that
might otherwise be sealed and can be a clean way to extend the UnityEngine API .

To create an extension method, make a static method and use the this keyword
before the first argument, which will be the type you want to extend .

For example, suppose you want to make a method called ResetTransformation
to remove any scaling, rotation, or translation from a GameObject .

https://unity.com/
https://martinfowler.com/bliki/FlagArgument.html
https://martinfowler.com/bliki/FlagArgument.html
https://learn.unity.com/tutorial/extension-methods?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

40.of.58.| unity .com© 2022 Unity Technologies

You can create a static method passing in a Transform for the first argument
with the this keyword:

Then, when you want to use it, invoke the ResetTransformation method . The
ResetOnStart class calls it on the current Transform during Start .

For organization purposes, define your extension methods in a static class .
For example, you create a class called TransformExtensions for methods that
extend Transforms, Vector3Extensions for extending Vector3s, and so on .

Extension methods can build many useful utilities without the need to create
more Monobehaviours . See Unity Learn: Extension Methods to add them to your
gamedev bag of tricks .

// EXAMPLE: Define an extension method
public static class TransformExtensions
{
 public static void ResetTransformation(this Transform transform)
 {
 transform.position = Vector3.zero;
 transform.localRotation = Quaternion.identity;
 transform.localScale = Vector3.one;
 }
}

// EXAMPLE: Calling the extension method

public class ResetOnStart : MonoBehaviour
{
 void Start()
 {
 transform.ResetTransformation();
 }
}

<

<

https://unity.com/
https://learn.unity.com/tutorial/extension-methods?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

41.of.58.| unity .com© 2022 Unity Technologies

The DRY principle: Don’t repeat yourself

In The Pragmatic Programmer, Andy Hunt and Dave Thomas formulated the
DRY principle, or, “don’t repeat yourself .” This oft-spoken mantra in software
engineering advises programmers to avoid duplicate or repetitious logic .

In doing so, you can ease bug fixing and maintenance costs . If you follow the
single-responsibility principle, you shouldn’t need to change an unrelated piece
of code whenever you modify a class or a method . Quashing a logical bug in a
DRY program stops it everywhere .

The opposite of DRY is WET (“we enjoy typing” or “write everything twice”) .
Programming is WET when there are unnecessary repetitions in the code .

Imagine there are two ParticleSystems (explosionA and explosionB) and two
AudioClips (soundA and soundB) . Each ParticleSystem needs to play with its
respective sound, which you can achieve with simple methods like this .

Here each method takes a Vector3 position to move the ParticleSystem into
place for playback . First, stop the particles (in case they are already playing)
and play the simulation . The AudioSource’s static PlayClipAtPoint method then
creates a sound effect at the same location .

One method is a cut-and-paste version of the other with a little text
replacement . Though this works, you need to make a new method – with
duplicate logic – every time you want to create an explosion .

// EXAMPLE: WRITE EVERYTHING TWICE

 private void PlayExplosionA(Vector3 hitPosition)
 {
 explosionA.transform.position = hitPosition;
 explosionA.Stop();
 explosionA.Play();

 AudioSource.PlayClipAtPoint(soundA, hitPosition);
 }

 private void PlayExplosionB(Vector3 hitPosition)
 {
 explosionB.transform.position = hitPosition;
 explosionB.Stop();
 explosionB.Play();

 AudioSource.PlayClipAtPoint(soundB, hitPosition);
 }

<

https://unity.com/

42.of.58.| unity .com© 2022 Unity Technologies

Instead, refactor it into one PlayFXWithSound method like this:

// EXAMPLE: Refactored

 private void PlayFXWithSound(ParticleSystem particle,
AudioClip clip, Vector3 hitPosition)
 {
 particle.transform.position = hitPosition;
 particle.Stop();
 particle.Play();

 AudioSource.PlayClipAtPoint(clip, hitPosition);
 }

<

Add more ParticleSystems and AudioClips, and you can continue using this
same method to play them in concert .

Note that it’s possible to duplicate code without violating the DRY principle . It’s
more important that you don’t duplicate logic .

Here, we’ve extracted the core functionality into the PlayFXWithSound method .
If you need to adjust the logic, you only need to change it in one method rather
than in both PlayExplosionA and PlayExplosionB.

https://unity.com/

C O M M E N T S6

CO D E I S L I K E H U M O R . I F YO U
H AV E TO E X P L A I N I T, I T ’ S B A D.”

“

– Cory House, software architect and author

44.of.58.| unity .com© 2022 Unity Technologies

Well-placed comments enhance the readability of your code . Excessive or
frivolous comments can have the opposite effect . Like all things, strike a balance
when using them .

Most of your code won’t need comments if you follow KISS principles and break
your code into easy-to-digest logical parts . Well-named variables and functions
will explain themselves .

Rather than answering “what,” useful comments fill in the gaps and tell you
“why .” Did you make specific decisions that are not immediately obvious? Is
there a tricky bit of logic that needs clarification? Useful comments reveal
information not gleaned from the code itself .

Here are some dos and don’ts for comments:

.— Don’t.add.comments.to.replace.bad.code: If you need to add a comment
to explain a convoluted tangle of logic, restructure your code to be more
obvious . Then you won’t need the comment .

.— A.properly.named.class,.variable,.or.method.serves.in.place.of.a.comment:
Is the code self-explanatory? Then reduce noise and skip the comment .

.— Place.the.comment.on.a.separate.line.when.possible,.not.at.the.end.of.a.
line.of.code: In most cases, keep each one on its own line for clarity .

.— Use.the.double.slash.(//).comment.tag.in.most.situations: Keep the
comment near the code that it explains rather than using a large multi-
line at the beginning . Keeping it close helps the reader connect the
explanation with the logic .

// AVOID: noisy, redundant comments

// the target to shoot
Transform targetToShoot;

<

https://unity.com/

45.of.58.| unity .com© 2022 Unity Technologies

.— Use.a.tooltip.instead.of.a.comment.for.serialized.fields: If your fields
in the Inspector need explanation, add a tooltip attribute and skip the
separate comment . The tooltip will do double duty .

.— You.can.also.use.a.summary.XML.tag.in.front.of.public.methods.or.
functions: Visual Studio can provide IntelliSense for many common XML-
style comments .

// EXAMPLES:
// This is a common comment.
// Use them to show intent, logical flow, and approach.

// You can also use a summary XML tag.
//
/// <summary>
/// Fire the weapon
/// </summary>
public void Fire()
{
 ...
}

// EXAMPLE: Tooltip replaces comment

[Tooltip(“The amount of side-to-side friction.”)]
public float Grip;

 Tooltip in the Inspector .

<

<

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/recommended-tags#summary

46.of.58.| unity .com© 2022 Unity Technologies

.— Insert.one.space.between.the.comment.delimiter (//).and.the.
comment.text .

.— Add.legal.disclaimers: A comment is appropriate for the license or
copyright information . However, avoid inserting an entire legal brief into
your code . Link instead to an external page with the full legal information .

.— Style.your.comments:.Maintain a uniform appearance for your comments,
e .g ., begin each comment with an uppercase letter and end with a period .
Whatever your team decides, make it part of the style guide and follow it .

.— Don’t.create.formatted.blocks.of.asterisks.or.special.characters.around.
comments: This reduces readability and contributes to the general
malaise of code clutter .

.— Remove.commented.out.code: Though commenting out statements may
be normal during testing and development, don’t leave commented code
lying around . Rely on your source control . Then have the courage to delete
those two lines of code .

.— Keep.your.TODO.comments.up-to-date:.As you complete tasks, make
sure you scrub the TODO comments you’ve left as a reminder . Outdated
comments are distractions .

You can add a name and date to a TODO for more accountability and
context .

Also, be realistic . That TODO you left in the code five years ago? You’re
never going to get to it . Remember YAGNI . Delete the TODO comment until
you need to implement it .

.— Avoid.journals: The comments are not a place for your dev diary . There’s
no need to log everything you’re doing in a comment when you start a new
class . Proper use of source control makes this redundant .

.— Avoid.attributions: You don’t need to add bylines, e .g ., // added by devA
or devB, especially if you use source control .

https://unity.com/

C O M M O N
P I T F A L L S7

I F D E B U G G I N G I S T H E P RO C E S S
O F R E M OV I N G S O F T WA R E B U G S ,
T H E N P RO G R A M M I N G M U ST B E T H E
P RO C E S S O F P U T T I N G T H E M I N .”

“

— Edsger W . Dijkstra, computer science pioneer

48.of.58.| unity .com© 2022 Unity Technologies

Clean code isn’t an accident . It’s the deliberate work of individuals trying to think
and code like a team .

Not everything goes to plan, of course . Unclean code inevitably happens, no
matter how hard you might try . You’ll need to be on the hunt for it .

A code smell is a telltale sign you might have troublesome code lurking in the
project . Though the following symptoms don’t necessarily point to underlying
problems, they are worth investigating when they appear:

.— Enigmatic.naming:.Everyone loves a good mystery, except in their coding
standards . Classes, methods, and variables need straightforward, no-
nonsense names .

.— Needless.complexity:.Over-engineering happens when you try to
anticipate every possible need for a class . This can manifest itself as a
God object with long methods or large classes that try to do too much .
Break up a large class into smaller dedicated parts, each with its own
responsibility .

.— Inflexibility:.A small change should not require you to make multiple
changes elsewhere . Double-check that you aren’t breaking the single-
responsibility principle if that’s the case .
When you give something more than one responsibility, it breaks more
easily because it’s harder to anticipate everything . If you update a method
that is doing one thing, and the updated logic still works, you expect the
rest of your code to continue to work afterward .

.— Fragility: If you make a minor change and everything stops working, this
often indicates a problem .

.— Immobility:.You’ll often write code that is reusable in a different context .
If it requires many dependencies to deploy elsewhere, then decouple how
the logic works .

.— Duplicate.code: If it’s noticeable that you’ve cut and pasted code, it’s time
to refactor . Extract the core logic into its own function and call that from the
other functions . Copy-and-paste code is difficult to maintain because you
need to update the logic in multiple locations each time there is a change .

.— Excessive.commentary:.Comments can help explain code that isn’t
intuitive . However, developers can overuse them . A running commentary
for every variable or statement is unnecessary . Remember that the best
comment is a well-named method or class . If you split your logic into
smaller pieces, the shorter code snippets require less explanation .

https://unity.com/
https://en.wikipedia.org/wiki/Code_smell

C O N C L U S I O N8

P RO G R A M M I N G I S N OT A Z E RO -
S U M G A M E . T E AC H I N G S O M E T H I N G
TO A F E L LOW P RO G R A M M E R
D O E S N ’ T TA K E I T AWAY F RO M YO U .”

“

— John Carmack, cofounder of id Software

50.of.58.| unity .com© 2022 Unity Technologies

We hope you enjoyed this gentle introduction to the principles of clean coding .

The techniques presented here are less a specific set of rules than a set of habits,
and like all habits, you’ll need to discover them yourself through daily application .

As mentioned earlier in the guide, feel free to copy this C# style sheet for Unity
developers, to use as a starting point for your own guide .

Prepare your code to be scalable by breaking it into small, modular pieces . As
the marathon of development unfolds, expect to rewrite your code over and
over again . Production can be a trying process with changing requirements .
Fortunately, you won’t have to go it alone .

When you code as a group, game development becomes less of a long solo race
and more akin to a relay . You have teammates to share the workload with and
split up the entire course .

Remember to stay in your lane and pass the baton and together, you will make it
across the finish line .

If you’re looking for help on how to clean up your code, reach out to Unity’s
professional services team, Accelerate Solutions . The team is made up of Unity’s
most senior software developers . Specializing in performance optimization,
development acceleration, game planning, innovation, and much more,
Accelerate Solutions offers custom consulting and development solutions for
game studios of all sizes .

One of the services offered by Accelerate Solutions is CAP (Code, Assets and
Performance) . This two-week consulting engagement begins with a three-day
deep dive into your code and assets to uncover the root causes of performance
issues . This will come with an actionable and detailed report with best practice
recommendations . To learn more about this or other services Unity Accelerate
Solutions offers, speak to a Unity representative today .

References

This guide is a short list of best practices used in computing . For more information, refer to the
Microsoft Framework Design Guidelines, which serve as an overarching style guide for this document .

You can also learn more from the comprehensive volumes already written about clean code . Here are a
few of our favorite books to consider to further your understanding:

Clean Code: A Handbook of Agile Software Craftsmanship. Robert C . Martin, 2008 . Prentice Hall . ISBN
978-0132350884 .

The Pragmatic Programmer, 20th Anniversary Edition . David Thomas and Andrew Hunt, 2019, Addison
Wesley, ISBN 978-0135957059 .

https://unity.com/
https://github.com/thomasjacobsen-unity/Unity-Code-Style-Guide
https://unity.com/solutions/accelerate-solutions-games?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://create.unity3d.com/web-accelerate-solutions-games?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

A P P E N D I X :
S C R I P T T E M P L A T E S9

TA L K I S C H E A P.
S H OW M E T H E CO D E .”

“

— Linus Torvalds, creator of Linux and Git

52.of.58.| unity .com© 2022 Unity Technologies

Once you establish formatting rules for your style guide, configure your script
templates . These templates generate the blank starting files for scripted assets
like C# scripts, shaders, or materials .

Locate Unity’s preconfigured script templates here:

Windows:.C:\Program.Files\Unity\Editor\Data\Resources\ScriptTemplates

Mac:./Applications/Unity/Unity .app/Contents/Resources/ScriptTemplates

On macOS, reveal the Unity .app package contents to show the Resources
subdirectory .

Inside this path, you’ll see the default templates .

81-C# Script-NewBehaviourScript.cs.txt

82-Javascript-NewBehaviourScript.js.txt

83-Shader__Standard Surface Shader-NewSurfaceShader.shader.txt

84-Shader__Unlit Shader-NewUnlitShader.shader.txt

Whenever you make a new scripted asset in the Project window from the Create
menu, Unity uses one of these templates .

If you open the file named 81-C# Script-NewBehaviourScript.cs.txt with
a text editor, you will see the following:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class #SCRIPTNAME# : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {
 #NOTRIM#
 }

 // Update is called once per frame
 void Update()
 {
 #NOTRIM#
 }
}

<

https://unity.com/

53.of.58.| unity .com© 2022 Unity Technologies

Note the keywords:

.— #SCRIPTNAME#:.This is the name you’ve specified for the script .
If you don’t customize the name, it uses the default name, e .g .,
NewBehaviourScript .

.— #NOTRIM#:This guarantees whitespace, making sure one line appears
between the curly braces .

Script templates are customizable . For example, you can add a namespace or
remove the default Update method . Modifying the template can save you a few
keystrokes every time you create one of these scripted assets .

The script template filename follows this pattern:

PriorityNumber–MenuPath–DefaultName .FileExtension .txt

A dash (-) character separates the different parts of the name:

.— PriorityNumber is the order that the script appears in, in the Create menu .
Lower numbers have higher priority .

.— MenuPath allows you to customize how the file appears in the Create
menu . You can create categories with the double underscore(__) .

 — For example, “CustomScript__Misc__ScriptableObject” creates the menu
item ScriptableObject under the Create.>.CustomScript.>.Misc.menu .

.— DefaultName is the default name given to the asset if you don’t specify
one .

.— FileExtension.is the file extension appended to the asset name .

Also, note that each script template also has a .txt appended to the
FileExtension .

If you want to apply a script template to a specific Unity project, copy and paste
the entire ScriptTemplates folder directly under the project’s Assets .

The ScriptTemplates copied to the Unity project .

https://unity.com/

54.of.58.| unity .com© 2022 Unity Technologies

Next, create new script templates or modify the originals to fit your preferences .
Delete any script templates from the project if you don’t plan on changing them .

For example, you could create a blank script template for ScriptableObjects .
Make a new text file under the ScriptTemplates folder called:

80-ScriptableObject-NewScriptableObject.cs.txt

Edit the text to read:

This creates a blank ScriptableObject script, complete with the
CreateAssetMenu attribute .

Restart the Editor after you save the script template . Next time you should see
an extra option in the Create menu .

Create a new ScriptableObject script (and a corresponding ScriptableObject
asset) from the Create menu .

Be sure to back up both the customized script templates and the originals . You
will need to restore any files if Unity fails to recognize a modified template .

Once you have a set of script templates you like, copy your ScriptTemplates
folder to a new project and customize them to your specific needs . You can also
change the original script templates in the application resources but exercise
caution . That affects all projects using that version of Unity .

See this support article for more information about customizing your script templates .
Also, check the attached project for a few additional script template examples .

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[CreateAssetMenu(fileName = “#SCRIPTNAME#”, menuName = “#SCRIPT-
NAME#”)]
public class #SCRIPTNAME# : ScriptableObject
{
 #NOTRIM#
}

A custom script template adds a new menu item in the Create menu .

<

https://unity.com/
https://support.unity3d.com/hc/en-us/articles/210223733-How-to-customize-Unity-script-templates?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

A P P E N D I X :
T E S T I N G A N D
D E B U G G I N G

10

D E B U G G I N G I S L I K E B E I N G A
D E T E C T I V E I N A C R I M E M OV I E
W H E R E YO U A R E A L S O T H E
M U R D E R E R .”

“

— Filipe Fortes

56.of.58.| unity .com© 2022 Unity Technologies

Automated testing is an effective tool for improving the quality of your code
and reducing the time spent on bug fixes . Test-driven development (TDD) is a
development methodology where you create unit tests while you develop the
software . In fact, you’ll routinely write each test case before making a specific
feature function .

As you develop the software, you’ll repeatedly run it against this whole test suite
of automated processes . This is in stark contrast to writing the software first
and building the test cases later . In TDD, coding, testing, and refactoring are
interwoven .

Here’s the basic idea, presented in Kent Beck’s Test-Driven Development
by Example:

1 .. Add.a.single.unit.test: This describes one new feature you want to add to
your application; spec out what needs to be done, either from your team
or your user base .

2 .. Run.the.test: The test should fail since you haven’t implemented the new
feature into your program . Additionally, this verifies whether or not the test
itself is valid . It should not always pass by default .

3 .. Write.the.simplest.code.that.passes.the.new.test: Write just enough logic
to make it pass the new unit test . This doesn’t have to be clean code at
this point . It can use inelegant structure, hard-coded magic numbers, and
so on, as long as it passes the unit test .

4 .. Confirm.that.all.tests.pass: Run the full automated test suite . Your
previous unit tests should all pass . The new code meets your new testing
requirements and the old requirements as well .

If not, modify your new code – and only your new code – until all tests
pass .

5 .. Refactor: Go back and clean up your new code . Use your style guide and
make sure everything conforms .

Move the code, so it is logically organized . Keep similar classes and
methods together, etc . Remove duplicate code, and rename any identifiers
to minimize the need for comments . Split methods or classes that are
too long .

Run the automated testing suite after each refactor .

6 .. Repeat: Go through this process every time you add a new feature . Each
step is a small, incremental change . Make frequent commits under source
control . When debugging, you only have to examine a small amount of new
code for each unit test . This simplifies the scope of your work . If all else
fails, roll back to the previous commit and begin again .

That’s the gist of it . If you develop software using this methodology, you tend
to follow the KISS principle by necessity . Add one feature at a time, testing as
you go . Refactor continuously with each test, so cleaning your code becomes a
constant ritual .

Like most of the tenets of clean code, TDD takes extra work in the short-term
but often results in the improvement of long-term maintenance and readability .

https://unity.com/
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Unit_testing

57.of.58.| unity .com© 2022 Unity Technologies

Unity Test Framework

The Unity.Test.Framework.(UTF), formerly known as the Unity Test Runner,
provides a standard test framework for Unity developers . UTF uses NUnit, an
open-source testing library for .NET languages .

The Unity Test Framework can perform unit tests in the Editor (either using Edit.
Mode or Play.Mode) and on target platforms (e .g ., Standalone, Android, iOS) .
Install UTF via the Package Manager . The online documentation will help you get
started .

The general workflow of the Unity Test Framework is to:

.— Create.a.new.test.suite,.called.a.Test.Assembly: The Test Runner UI
simplifies this process and creates a folder in your project .

.— Create.a.test: The Test Runner UI helps you manage the C# scripts that
you will create as unit tests . Select aTest Assembly folder and navigate to
Assets.>.Create.>.Testing.>.C#.Test.Script . Edit this script and add logic
for your test .

.— Run.a.test: Use the Test Runner UI to run all of the unit tests or run a
selected one . Using JetBrains Rider, you can also run UTF directly from the
script editor .

.— Add.Play.mode.tests.in.the.Editor.or.as.standalone: The default Test
Assembly works in Edit Mode . If you want unit tests to work at runtime,
create a separate assembly in Play Mode . Configure this for your
standalone build as well (with the results of the test displayed in the
Editor) .

See the Test Framework microsite for more information about getting up and
running with UTF .

The Test Framework displays the results of a standalone build within the Editor .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://nunit.org
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/manual.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/workflow-create-test-assembly.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook
https://www.jetbrains.com/help/rider/Unity.html
https://www.jetbrains.com/help/rider/Running_and_Debugging_Unity_Tests.html
https://www.jetbrains.com/help/rider/Running_and_Debugging_Unity_Tests.html
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/workflow-run-playmode-test-standalone.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=clean-code-that-scales-ebook

unity .com

https://unity.com/

	Introduction

