
© 2025 Unity Technologies

 ⟶ E - B O O K

UI Toolkit for
advanced Unity
developers
(Unity 6 edition)

Contents

Introduction . 9

Contributors . 10

Install UI Toolkit and sample projects . 11

The official UI Toolkit samples . 12

UI Toolkit Sample – Dragon Crashers 12

QuizU . 13

Introduction to UI Toolkit .14

UI Assets . 15

UI Builder . 16

Graphic and font assets preparation . 17

Bitmap images . 17

Sprites . 18

Render Texture asset . 19

2D PSD Importer . 20

Vector images . 22

Fonts . 23

Texture packers . 23

Sprite atlas . 23

Dynamic atlas . 24

UI Builder . 26

Canvas background . 27

Viewport settings . 28

Layouts . 29

Core runtime components . 31

Responsive layouts: Flexbox . 31

Visual elements .33

Positioning visual elements .33

Size settings . 35

Flex settings . 36

Align settings . 38

Margin and Padding . 39

Background and images . 40

Variable or fixed measuring units 41

Overridden properties in UI Builder 42

UXML as templates .43

More resources .43

Styling . 44

USS selectors . 45

Converting existing inline styles to selectors 45

Creating new selectors . 47

Selectors assigned to elements 49

Editing selectors . 50

Overriding styles . 51

USS variables . 52

USS transitions animations . 53

Swapping styles on demand . 55

Themes . 56

Naming conventions . 59

Text . 62

Source font file . 62

Font asset settings . 63

Font asset variant . 65

Rich text . 65

Gradients . 66

Sprite asset and emojis . 67

Text Style Sheets . 70

Data binding . 72

UI that reflects your game data . 72

Enter runtime data binding . 74

Data binding concepts . 75

Preparing a data source . 75

Using the CreateProperty attribute 75

Data sources and paths . 76

Inheriting data sources . 78

Binding modes . 79

Example: Data binding a health bar 80

Preparing the data source . 81

Data binding in UI Builder/UXML . 82

Set up data binding in C# . 84

Unresolved data bindings workflow 86

Type converters . 88

Example: Converting a value to a color 88

HealthDataConverter setup . 88

Using the HeathBarWithConverter 90

Applying DataConverters in UI Builder 91

Best practices . 92

Example: Binding a list to a ListView 93

Setting up the list and templates 94

Completing the binding at runtime 95

Optimizing data binding . 96

Managing value types . 96

Minimizing overhead . 96

Using update triggers . 97

Versioning and change tracking 97

Localization . 98

How it works . 99

Localization setup . 100

Using the Localization API . 104

Selecting a Locale . 104

Using SetBinding . 105

Listening for Locale changes 106

Working with String Tables . 107

Importing and exporting string data 107

CSV files . 107

Google Sheets synchronization 108

Using Smart Strings . 110

Setting up a Smart String in your script 110

Understanding placeholders .111

String pre-processing . 113

GetLocalizedString . 113

Using the StringChanged event 114

Dynamic UI controls . 114

Localizing assets . 117

Setting up asset localization 117

Asset Tables versus String Tables 119

 Common localized assets in UI Toolkit 119

Localization in the Dragon Crashers sample 120

Custom controls .122

The UxmlElement attribute . 122

The UxmlAttribute attribute . 124

Example: A custom slide toggle control 126

Defining the custom control 126

Using the slide toggle . 129

Creating more custom controls . 131

Optimizing performance .132

Update mechanisms . 133

Batching elements . 134

Vertex buffers . 134

Uber shader and eight-texture limit 136

Dynamic texture atlases . 138

Masking . 140

Animations and transitions . 141

Runtime data binding . 143

Property bags and source generation 143

Change Tracking . 143

Showing and hiding elements . 145

Overdraw . 145

Memory management . 146

Profiling tools . 147

Unity 6 performance enhancements 148

Resources for advanced developers and artists 149

© 2025 Unity Technologies 7 of 147 | unity.com

Introduction

The best user interface is the one you don’t notice.

User interface (UI) is a critical part of any game. Done well, it’s invisible and carefully woven
into your application. If done poorly, however, it can frustrate users and detract from the
gameplay experience.

A solid UI is an extension of a game’s visual identity. Modern audiences crave refined, intuitive
UI that seamlessly integrate with your application. Whether it’s displaying a character’s
vital statistics or the game world’s economy, the interface is your players’ gateway to key
information.

As UIs become more sophisticated, so does the artistry behind them. UI design mainly
depends on two types of specialists:

UI artists: They master the fundamentals of design, color, shape, typography, and layout. UI
artists design for the target audience of the game world. Their eye for detail motivates them to
create "pixel perfect" UI.

UX designers: They research user behavior and the broader needs of the end user. UX
designers control how someone interacts with a digital product. They build navigation flows
with the intent of making the experience as intuitive and delightful as possible.

These roles work closely together, alongside other 2D or 3D artists and designers. It’s through
this collaboration that stronger, more effective UIs come about.

https://unity.com/releases/lts

© 2025 Unity Technologies 8 of 147 | unity.com

Introduction | Install UI Toolkit and sample projects | Introduction to UI Toolkit |

Another key role is that of the UI programmer, who will team up closely with the previous
roles. They will work with a chosen tech stack, establish a process or pipeline to ingest all of
the UI design into functional interfaces, wire gameplay code to UI, and feed data back into the
game systems from UI.

In our previous e-book, User interface design and implementation in Unity, we demonstrated
how UI artists and designers can build interfaces in Unity with its two UI systems: Unity UI,
the older GameObject-based system, and the newer UI Toolkit. We also covered how studios
design UI from scratch and import art into a game. This guide was based on Unity 2021 LTS.

In this new e-book, we focus on UI Toolkit in Unity 6 that is tailored for maximum performance
and reusability, with web-inspired workflows. UI designers with web experience will find it
intuitive, while UI programmers can gain a clear understanding of UI Toolkit’s capabilities for
game creation. This guide’s modular structure allows sections to be read in any order, making
it a useful reference for learning UI Toolkit.

Let’s begin.

Main author and contributors
The main author and creator of this guide and the two UI Toolkit samples is Wilmer Lin, a
veteran 3D and visual effects artist, developer, and educator.

Major contributions to this guide and the sample UI Toolkit Sample – Dragon Crashers were
also provided by Eduardo Oriz, a senior content marketing manager at Unity and graphic
designer.

Another key contributor to this guide and the sample QuizU is Thomas Krogh-Jacobsen, a
senior manager in content marketing management at Unity.

Other Unity contributors

Camil Bouzidi, software developer

Martin Côté, senior graphic developer

Hugo Bourret-Desmarais, senior software developer

Benoit Dupuis, senior technical product manager

Karl Jones, senior software engineer

Antoine Lassauzay, staff software developer

Martin Paradis, staff software developer

Stefania Valoroso, manager, product designer

https://unity.com/releases/lts
https://unity.com/resources/user-interface-design-and-implementation-in-unity?isGated=false

© 2025 Unity Technologies 9 of 147 | unity.com

Install UI Toolkit and
sample projects

UI Toolkit is integrated into the core Unity 6 platform, which means that you don’t need to
install a separate package to use it with version Unity 6 and later. Starting a new project from
one of the templates available will be sufficient to be able to follow the content of this guide.

UIElements is the namespace for UI Toolkit, UI Builder and their features, all of which are now included in Unity 6.

https://unity.com/releases/lts

© 2025 Unity Technologies 10 of 147 | unity.com

Introduction | Install UI Toolkit and sample projects | Introduction to UI Toolkit |

The official UI Toolkit samples
This e-book primarily uses the following samples to show and explain UI Toolkit capabilities in
Unity projects. Each sample is available to download for free from the Unity Asset Store.

UI Toolkit Sample – Dragon Crashers

This demo uses the latest UI Toolkit workflow at runtime for a full-featured interface, including
a front-end menu system, over a slice of the 2D project Dragon Crashers, a mini-RPG.

This demo is not meant for beginners . It was created for experienced Unity developers who
have the capabilities to look at the UI structure and navigate the demo to observe specific
implementations. This demo was originally released for Unity 2021 LTS and has since been
updated to Unity 6. Here are some of the topics you can learn more about in the demo:

 — Project structure and naming conventions

 — Use of themes to create UI variations and add support for both portrait and landscape
orientations

 — Complex elements like tabbed menus, inventories, messages, or custom controls

 — Use of the SafeAreaAPI to ensure content on mobile screens is displayed within the
safe area

 — Use of Localization for multiple language support

 — Data binding for simplifying the synchronization of data with UI components

 — Examples of how to implement common casual game interfaces

You can find a video walkthrough of the sample and download it from the Asset Store.

The home screen can be displayed in landscape and portrait

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721
https://www.youtube.com/watch?v=RVp3-D2nEEg
https://www.youtube.com/watch?v=XtQist-I3Xo
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178

© 2025 Unity Technologies 11 of 147 | unity.com

Introduction | Install UI Toolkit and sample projects | Introduction to UI Toolkit |

QuizU

The QuizU demo showcases an interactive quiz game built with Unity’s UI Toolkit. Aimed at
UI developers, this project highlights UI Toolkit workflows, event-driven architecture, and
reusable design patterns for building modern game user interfaces. This demo shows how to:

 — Structure UI elements efficiently using UXML files and nested visual trees.

 — Apply styling rules using USS selectors and pseudo-classes to make your interactive
elements react to user input.

 — Use the FlexBox feature for flex-based layouts for responsive UI behavior.

 — Query and modify UI elements dynamically using selectors.

 — Encapsulate event handling in reusable classes, enabling custom interactions like
dragging or multi-touch gestures.

 — Use Event Dispatch to process events in phases and how to manage propagation.

 — Use USS Transitions to add smooth animations and effects to UI elements with
properties like duration and easing.

A screen shot from the QuizU UI Toolkit demo

Originally released for Unity 2022 LTS, QuizU has been updated with new features in Unity 6.
The project now includes how-to demos on creating custom controls, setting up data binding,
and implementing localization.

You can download the project from the Asset Store.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492

© 2025 Unity Technologies 12 of 147 | unity.com

Introduction to
UI Toolkit

UI Toolkit offers significant advantages over the traditional Unity UI (also known as uGUI) and
legacy IMGUI (for Editor tools) systems. It provides a more modern, flexible, and performance-
oriented alternative that scales better for most projects. It can also support your whole
production pipeline, handling both Editor tooling and runtime games or applications.

Some of its benefits compared to the legacy UI systems include:

 — Faster iteration: Work and iterate more quickly with global style management and live
authoring capabilities.

 — Rendering performance: Gain greater control over the performance of your game using
Render Hints and dynamic texture atlases.

 — Better collaboration: Separate logic (C# code), UI structure (Unity XML, or UXML,
documents), and styling (via a Unity Style Sheet or USS) to reduce conflicts and improve
teamwork.

 — Reusability: Share and reuse styles and widgets within or across projects, as well as
between the Editor and runtime.

UI Toolkit draws inspiration from web technologies, offering an advantage to developers
familiar with web applications. For those new to markup languages like HTML/XML and

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIElements.html

© 2025 Unity Technologies 13 of 147 | unity.com

| Install UI Toolkit and sample projects | Introduction to UI Toolkit | Graphic and font assets preparation |

Cascading Style Sheets (CSS), it’s a great opportunity to explore a powerful set of industry-
standard tools.

In essence, UI Toolkit interfaces consist of UXML and USS files to create layouts and styling by the UI Toolkit systems.

UI Assets
UI Assets, the building blocks for creating UI, consist of UXML and USS files. UXML (Unity
XML) represents the content and structure of your UI, and is similar to markup languages like
HTML and XML.

USS, inspired by Cascading Style Sheets (CSS), is used to define the appearance and styles of
your UI content. Both UXML and USS are used throughout this guide.

Similarities between UI Toolkit and web technologies

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-UXML.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-USS.html

© 2025 Unity Technologies 14 of 147 | unity.com

| Install UI Toolkit and sample projects | Introduction to UI Toolkit | Graphic and font assets preparation |

UI Builder
UI Assets can either be authored as code from your IDE of choice, or visually, with the UI
Builder which is part of the UI toolkit. The UI Builder interface allows artists and designers to
edit and visualize the UI as it’s being built.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIBuilder.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIBuilder.html

© 2025 Unity Technologies 15 of 147 | unity.com

Graphic and font
assets preparation

A lot of UI design happens outside of Unity in a Digital Content Creation (DCC) application.
Depending on the style and preferences of the UI artist, designing the UI can take place in a
raster drawing application like Adobe Photoshop or in a vector-based tool. Typically, every
piece of UI graphic is exported as a lossless bitmap image with transparency, such as a PNG,
and combined into a texture atlas with other UI elements for runtime efficiency.

If you work in a vector-based DCC application, you’ll need to export vector graphics into a
raster format in order to work with UI Toolkit. For more details, refer to the Vector images
section .

Bitmap images
Unity supports most common image file types, like PNG, BMP, TIF, TGA, JPG, and PSD. When
you add files of these formats to your Assets folder, Unity will import them as Texture 2D
assets for 3D projects or as Sprites for 2D projects. You can change the type in the Texture
Type field within the Inspector once imported. UI Toolkit supports both formats for UI bitmap
graphics.

Textures don’t contain much more information besides the size and format of the image, but
sprites have some additional properties that are used by UI Toolkit.

https://unity.com/releases/lts

© 2025 Unity Technologies 16 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

Sprites
Sprites are textures prepared for 2D game development to be used by the Sprite Renderer
component. 2D sprites in Unity can be tiled, rigged and skinned for animation, have custom
geometry or include additional maps for 2D lighting. This section solely focuses on settings
that are relevant to the UI Toolkit. For a deeper understanding of 2D graphics you can find
more in the Unity 6 edition of the 2D art, animation, and lighting e-book that will soon be
available at https://unity.com/resources .

Most UI graphic assets will be rendered on screen space rather than following Unity’s world
scale (where one unit represents a cubic meter in 3D space). UI Toolkit manages the scale of
these graphics, but the PPU (Pixels Per Unit) of sprites affects the size of the sprites in the UI.
For example, if your sprite is meant to have 128 pixels of resolution per grid unit, set the PPU
to 128.

The Sprite Editor provides tools for modifying your graphics, such as cropping with the blue
handles or slicing with the green handles. These tools allow you to make the graphic tileable or
use the 9-slice technique, a common way to create scalable elements.

Sprites are 2D textures mapped onto flat, rectangular 3D meshes. By default, when imported,
they use the setting Mesh Type: Tight. This setting adjusts the mesh to closely follow the
outline of the opaque (non-transparent) pixels of the sprite. This improves performance by
reducing overdraw, which happens when the GPU draws the same pixel more than once within
a single frame, due to transparent overlapping areas. You can manually adjust and optimize
this mesh in the Sprite Editor under the Outline section.

Sprite Modes is a useful feature that you can select from the Inspector of a sprite asset. It
provides the following modes:

 — Single: This is the default mode, where the image only contains a single image element.

 — Multiple Choose this value if the texture source file has several elements in the same
image. Then define the location of the elements in the Sprite Editor so that Unity knows
how to split the image into different sub-assets. Once sliced, each graphic becomes an
individual sprite that can be used separately in the UI Toolkit.

 — Polygon: Best for images that are circular or a regular polygon, this mode helps you to
set up an outline that closely matches the image shape, resulting in a cleaner outline.

https://unity.com/releases/lts
https://unity.com/resources
https://docs.unity3d.com/6000.0/Documentation/Manual/sprite/9-slice/9-slicing.html
https://docs.unity3d.com/6000.0/Documentation/Manual/sprite/sprite-editor/automatic-slicing.html

© 2025 Unity Technologies 17 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

Render Texture asset
Render textures are snapshots of a camera view in a texture, updated every frame. They
can be created via Assets < Create < Rendering and referenced from a Camera component
in the Output menu. You can then use these textures in the UI Toolkit to display elements
such as mini-maps, character selection screens, or any other in-game visuals that need to be
integrated into the UI.

Examples of render textures in UI Toolkit Sample: Dragon Crashers include the character
preview in the level meter and the particle effects rendered over the UI buttons.

The opposite use case is also possible, where you want the UI to be displayed within a game
element. For example, imagine a 3D computer model in your application displaying a functional
interface made in UI Toolkit. You can render the UI Toolkit interface to a render texture, assign
it in the Panel Settings and Camera, and then apply it to a material of the 3D model.

The Render Texture settings and simple tests

Just be aware that render textures are expensive. Use them sparingly and be sure to profile
your project to optimize performance. For full screen interfaces without other active gameplay
elements, adding extra effects this way is unlikely to pose major performance issues.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178?srsltid=AfmBOopI1_drII69mU9Yvtc9PqO3LfvL5iG8brZ5sMOBD9_6CHfjH7I5

© 2025 Unity Technologies 18 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

2D PSD Importer
Unity imports PSD (or Adobe Photoshop files) as flattened textures unless your project has the
2D PSD Importer package installed. PSD files are generally used for storing multiple images in
layers in one single file. Most DCC tools support exporting to this format.

Creating the UI assets in Photoshop: Normally each element has its own layer, group, or is a smart object. Smart objects allow you to work on
each element in isolation and preserve the original resolution of the element, even if resized later in the main document.

PSD files simplify workflows by allowing direct import into Unity, avoiding the need for you to
export each layer as individual files and repeat the process whenever changes are needed.

After installing the 2D PSD Importer package from the Package manager, ensure the PSD files
are imported from the Inspector.

Select the PSD Importer in the Inspector to see options for handling the file.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@10.0/manual/index.html

© 2025 Unity Technologies 19 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

When working with UI assets, deselect the Use as Rig option in the Inspector under Character
Rig. That setting is only relevant for 2D character skeletal animation and is unnecessary for
UI elements. You should also find options for importing layers (e.g., discarding hidden layers,
grouping objects by layer, etc.)

Switch to the PSD Importer to give yourself more import options.

The sprites in the Project view generated from the PSD are usable as normal sprites. You can
slice them, change the outline, or modify the Pixels Per Unit (PPU) from the Sprite Editor just
as you would with regular Sprite assets.

Tip: Iterative design
Unity will automatically refresh the sprites included in the PSD file every time you save it.
This allows you to make a quick placeholder and iterate on it while viewing changes in the
Game view. This can be a great time saver and improve the quality of the work by letting
you see it in context without swapping files or needing support from a fellow developer in
the team.

https://unity.com/releases/lts

© 2025 Unity Technologies 20 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

Vector images
Although the vector format support is still in development at the time of writing, it’s available
as an option for background images in the UI Builder. However, raster images (sprites and
textures) are currently the recommended image format for UI Toolkit.

If you want to test this functionality, you will need the Vector Graphics package which is
still in preview and hidden from the Package Manager by default. Follow the steps in the
documentation to install it. This package includes a setting for defining the tessellation level
when converting vector graphics into polygons. For the Generated Asset Type setting, choose
UI Toolkit Vector Image to be able to use it in UI Toolkit.

With the Vector Graphics package you can test using SVG images for your game or UI in a limited capacity.

Currently, SVG files are tessellated into polygons when rendering, which limits the benefits
of vector images. You may notice polygonal edges when scaling up, rather than the smooth
curved edges typical of vector images. At the time of writing, anti-aliasing is not yet enabled
for UI Toolkit.

The finalized version of vector support is expected to be able to support real vector shapes
natively, eliminating the need for a separate Vector Graphics package.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.vectorgraphics@2.0/manual/index.html

© 2025 Unity Technologies 21 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

Fonts
UI Toolkit supports both Font and FontAsset:

 — Font: Standard font formats, such as TTF or OTF, are supported for backwards
compatibility. However, they are automatically converted into FontAssets in the
background.

 — FontAsset: This is the recommended format, and allows you to fine-tune aspects like
kerning or baseline without modifying the original font asset. This is useful for the highly
stylized fonts commonly found in games.

 — Font Asset also provides precise control on how atlases are created, including the
character set, resolution, and atlas population options. These settings can help
reduce the memory footprint, especially when working with Unicode fonts that
support languages with large amounts of characters.

Texture packers
Combining 2D graphics into the same texture is a common optimization technique to reduce
draw calls and improve memory usage. UI Toolkit supports two current atlasing systems.

Sprite atlas

A typical game UI atlas from the UI Toolkit Sample – Dragon Crashers

Sprite Atlas is Unity’s atlasing tool for 2D game development and sprites, but you can also use
it for UI graphics. It automatically packs assets in the same project folder, creating an atlas for
the sprites, and normal and mask maps. It also supports platform-specific variants and has an
API for advanced control. Sprite Atlas is commonly used in the Editor to pack assets but not at
runtime.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-asset.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-asset.html
https://docs.unity3d.com/6000.0/Documentation/Manual/sprite/atlas/atlas-landing.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/U2D.SpriteAtlas.html

© 2025 Unity Technologies 22 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

Dynamic atlas

Dynamic atlas generated from the Unity Editor and shown in the Texture Atlas Viewer; the atlas grows horizontally and vertically in multiples
of 2 fitting in the max allowed texture size

When UI graphics are not packed with Sprite Atlas, they are automatically packed with the
dynamic atlas feature in UI Toolkit during a pre-pass.

The referenced images within a visual element will be atlased according to the criteria
defined in the Panel Settings of the UI Document. For example, you can define the minimum
or maximum texture sizes to be packed or filter images based on other properties. You can
preview generated atlases in the Texture Atlas Viewer within the UI Toolkit Debugger.

The dynamic atlas tool works both at runtime and in the Editor, making it useful for UI
elements that are dynamically generated, like a player’s inventory.

Common good practices for your graphics include:

 — Once you start creating mockup screens, make sure to set the highest target resolution
in your drawing software to avoid having to redo work later. If you plan to support up to
4K graphics, for instance, make that your minimum working resolution.

 — Avoid scaling raster images up after they’re created. This can result in pixelation and
blurriness, thereby lowering visual quality. Instead, begin from the highest resolution
supported, then scale down when exporting from a graphics application.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-control-textures-of-the-dynamic-atlas.html

© 2025 Unity Technologies 23 of 147 | unity.com

| Introduction to UI Toolkit | Graphic and font assets preparation | UI Builder |

 — If you design with vector graphics, resizing assets later is less of an issue. But try to
work with a Reference Resolution, so that each asset has the correct relative scale - for
example, keeping the outline thickness of the element consistent.

 — If you are in the situation where the graphic assets have a lower resolution than needed,
try 2D Enhancers, and the AI-powered upscale feature within the Sprite Editor.

 — Make the most out of the 2D PSD Importer by importing PSDs directly into Unity. Any
changes to a layer will be reflected in Unity once you save the PSD file. If you have the
PSD file in Unity, it can also benefit from Version Control .

 — Automate your import process. Avoid manually changing the asset settings every time
you add a graphic asset. The Preset feature allows you to save settings applied to one
asset and automatically apply them to all assets of the same kind in a given folder.

 — If you need to automate the process even further, such as running checks on assets, or
mass-changing settings for multiple assets, you can use the Asset PostProcessor API.

https://unity.com/releases/lts
https://muse.unity.com/en-us/explore
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@10.0/manual/index.html
https://docs.unity.com/ugs/en-us/manual/devops/manual/unity-version-control
https://docs.unity3d.com/Manual/Presets.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/AssetPostprocessor.html

© 2025 Unity Technologies 24 of 147 | unity.com

UI Builder

UI Builder is accessible from the Window/UI Toolkit/UI Builder menu.

https://unity.com/releases/lts

© 2025 Unity Technologies 25 of 147 | unity.com

| Graphic and font assets preparation | UI Builder | Layouts |

UI Builder enables you to create, visualize and modify UXML and USS files in a visual interface
that’s integrated into the main Editor. Let’s look at the key features of UI Builder:

1 . StyleSheets: This is where you can manage layout and styling formatting rules (also
known as USS selectors) to share styles across UXML Documents and UI elements.

2 . Hierarchy: Similar to the Scene view, it displays the hierarchy of visual elements in your
UXML document.

3 . Library: This contains predefined or custom controls ready to be added to your hierarchy,
like buttons, labels, and sliders. From here you can also add other UXML (templates) into
your current UXML.

4 . Viewport: This shows how your interface looks; you can edit elements directly in the
Canvas using gizmos.

5 . Code Previews: This shows the code that the UI Builder is creating behind the scenes
for both the UI Document (UXML) and the StyleSheets (USS). You may have to resize the
window in order to see it properly.

6 . Inspector: Use it to change the attributes and style properties of the selected element or
USS selector.

Tip: Saving UI assets

In UI Builder, save your changes from the Viewport menu (File > Save). This saves all
open UXML and USS files.

Unlike Unity UI, the game can run in the Editor while you actively make changes in UI
Toolkit. Look for the asterisk * next to the file name in the UI Builder’s Canvas header; this
indicates unsaved changes.

Canvas background
Enabling the Canvas background can help you visualize your element styling over a color or
background image. Select the UXML file in the Hierarchy pane and then choose a Canvas
background that approximates the final UI interface to judge style changes in context.

The Canvas background provides a few different options:

 — Background Color: Represents a specific shade or hue of the game environment

 — Image: For choosing a sprite or texture as the background (useful for replicating mockup
screens or reference art)

 — Camera: Displays the current gameplay in the background, enabling you to see the UI in
context of the actual game

https://unity.com/releases/lts

© 2025 Unity Technologies 26 of 147 | unity.com

| Graphic and font assets preparation | UI Builder | Layouts |

Tip: Match Game view and themes

To approximate a runtime UI, select the currently loaded UI Document (UXML) in
the Hierarchy and check Match Game View. This sizes the Viewport to your project
Reference Resolution. Remember that modifying this parameter does not affect the UI
files themselves, only the visualization. From UI Builder you can also previsualize different
themes used in your project, a feature that’s covered later in the guide.

The Canvas of a new UXML document: Use the Color and Image options to adjust its appearance.

Viewport settings
To navigate the work area, adjust the zoom level (between 25%–500%), or choose the Fit
Canvas option which automatically adjusts the zoom according to the current screen real estate.

Use Preview to visualize the UI without accidentally editing the selected elements. When active,
the Viewport can also show styles applied for specific mouse events (e.g., hovering, focusing).

https://unity.com/releases/lts

© 2025 Unity Technologies 27 of 147 | unity.com

Layouts

The UI Builder gives you all the tools you need to design a responsive layout.

https://unity.com/releases/lts

© 2025 Unity Technologies 28 of 147 | unity.com

| UI Builder | Layouts | Styling |

This section covers the essential steps to creating layouts in UI Builder.

UI Builder is a WYSIWYG, designer-friendly tool to help create UXML and USS files efficiently
and without writing code. While some teams may prefer creating UI directly in code, UI Builder
empowers artists with creative control, enabling significant workflow improvements. When you
make changes in the UI Builder, it generates the code for you, and everything you create in UI
Builder can be implemented as code directly in UXML and USS.

The efficient set up of responsive layouts is a major benefit of using UI Toolkit and UI Builder.
Such layouts are a necessary feature for any game that is targeting multiple platforms with
different screen resolutions and ratios. This section covers the essential steps to creating
layouts in UI Builder.

Below is a UXML file with its code displayed in the UXML Preview panel in UI Builder. In UI
Builder, create the asset via File > New and then Save As .

By clicking the icon in the upper right corner of the Code Preview window you it will open it in your IDE.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIBuilder.html

© 2025 Unity Technologies 29 of 147 | unity.com

| UI Builder | Layouts | Styling |

In this example UXML code, you can see visual elements are represented as markup language
that resembles HTML, such as starting with an open and ending bracket. For example, this is
the syntax for a start button:

<engine:Button text="START" name="start-game__button" />

Core runtime components
UI Toolkit elements won’t appear in the Scene view. You can see the interface as you make it
in UI Builder, but the Game view provides a more accurate preview at the target resolution. To
render the UI in Game view, a GameObject must have a UI Document component with a Panel
Settings asset and a Visual Tree asset (UXML), as seen in this screenshot:

A UI Document Component defines what UXML will be displayed, and comes with a default
Panel Settings asset. The Sort Order field determines how this document shows up in relation
to other UI Documents using the same Panel Settings.

Add this component to a GameObject using the Add Component menu in the Inspector, or
right-click in the Hierarchy and select UI Toolkit > UI Document, which will automatically
assign the Panel Settings asset.

The Panel Settings asset defines how the UI Document component will be instantiated and
visualized at runtime. It’s possible to have multiple Panel Settings assets to enable different
styles for the UIs. If your game includes HUD or a minimap, for instance, these special UIs
could each have their own Panel Settings.

Create the asset via Assets > Create > UI Toolkit > Panel Settings Asset. It will be added
to your root project folder, which can then be applied to a UI Document component on a
GameObject.

Responsive layouts: Flexbox
UI Toolkit positions visual elements based on Yoga, an HTML/CSS layout engine that
implements a subset of Flexbox. If you’re unfamiliar with Yoga and Flexbox, this chapter will
get you up to speed on the principles behind UI Toolkit’s layout engine.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIB-structuring-ui-elements.html
https://www.google.com/url?q=https://docs.unity3d.com/6000.1/Documentation/Manual/UIE-create-ui-document-component.html&sa=D&source=editors&ust=1743518467818802&usg=AOvVaw231dEBJn8vmZcaA4cx3cN5
https://yogalayout.com/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

© 2025 Unity Technologies 30 of 147 | unity.com

| UI Builder | Layouts | Styling |

Flexbox (or Flexible Box Layout) is a method for arranging items in rows or columns.
Flexbox architecture is great for developing complex, well-organized layouts. Consider a few
of its advantages:

 — Responsive UI: Flexbox organizes everything into a network of boxes or containers. You
can nest these elements as parents and children and arrange them spatially onscreen
using simple rules. Children respond automatically to changes in their parent containers.
A responsive layout adapts to different screen resolutions and sizes, allowing you to
target multiple platforms more easily.

 — Organized complexity: Styles define simple rules that control the aesthetic values of a
visual element. One style can be applied to hundreds of elements at once, with changes
immediately reflected on the entire UI. This centers UI design around consistent
reusable styles rather than working on the appearance of individual elements.

 — Decoupled logic and design: UI layouts and styles are decoupled from the code. This
helps designers and developers work in parallel without breaking dependencies. Each
user can then focus on what they do best.

Decoupling logic and design: Programmers can connect the visual elements to the actual game logic while designers focus on defining the
styles for them.

https://unity.com/releases/lts

© 2025 Unity Technologies 31 of 147 | unity.com

| UI Builder | Layouts | Styling |

Visual elements
In UI Toolkit, the fundamental building blocks of each interface are their visual elements. A
visual element is the base class of every UI Toolkit element (buttons, images, text, etc.) Think
of them as UI Toolkit equivalents of GameObjects.

A UI Hierarchy of one or more visual elements is called a Visual Tree .

A simplified UI Hierarchy of a visual tree and how it looks on the right side

Combinations of multiple visual elements are stored in UXML files, which contains information
related to the hierarchy, as well as its styling (if not using a StyleSheet or USS) and the layout
of visual elements.

Before we dive deeper into UI Toolkit, you’ll need to understand the fundamentals of Flexbox
Layout, which can be demonstrated with basic visual elements in the UI Builder.

Positioning visual elements
When mocking up a UI, approach each screen as a separate group of visual elements. Think
about how to break the screens down into boxes that stack up horizontally or vertically and if
they need child boxes to keep organizing the information.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-VisualTree.html
https://docs.unity3d.com/Manual/UIE-UXML.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=authoring-optimizing-ui&utm_content=ui-design-ebook

© 2025 Unity Technologies 32 of 147 | unity.com

| UI Builder | Layouts | Styling |

In the below example, one large visual element could be a container, the menu bar and its
elements on the left. Separate child visual elements to represent each of the buttons.

A good practice is to have a detailed mockup or wireframe (left) and identify and block out the elements to recreate the design in UI Toolkit
(right).

UI Builder offers two position options for visual elements:

 — Relative positioning: This is the default setting for new visual elements. Child elements
follow the Flexbox rules of the parent container. For example, if the parent element’s
Direction is set to Row, child visual elements arrange themselves from left to right.
Relative positioning resizes and moves elements dynamically based on:

 — The parent element’s size or style rules: If you modify a parent element’s settings
via Padding or Align > Justify Content, its children adjust themselves according
to those changes.

 — The child element’s own size and style rules: If the child visual element has its
own minimum or maximum size settings, the layout engine tries to respect those
as well.

UI Toolkit handles any conflicts between the parent and child element (so a child element
with a minimum width that is wider than its container, for instance, results in an overflow).

Position modes available for any visual element

https://unity.com/releases/lts

© 2025 Unity Technologies 33 of 147 | unity.com

| UI Builder | Layouts | Styling |

 — Absolute positioning: Here, the position of the visual element anchors to the parent
container, similar to how Unity UI works with Canvases. Size rules or rules that affect
the children elements still apply, but the element itself will overlay on top of the parent
container ignoring flex settings like Grow, Shrink, or Margins .

Absolutely positioned elements can use the Left, Top, Right, and Bottom settings as
anchors. For example, zero values for the Right and Bottom pin a Button to the bottom-
right of the parent container.

On the left, the blue visual element has a Relative position, with the parent element using Direction: Row as the Flex setting. On the
right, the blue visual element uses Absolute position and ignores the parent element’s Flexbox rules.

You’ll probably want to use Relative positioning for elements that are permanently visible, have
complex grouping, or contain a number of elements.

Absolute positioning can be useful for temporary UIs (like pop-up windows), decorative
elements that don’t interfere with the layout composition, or elements that follow the position
of other in-game elements (like a character’s health bar).

Size settings
Remember that visual elements are simply containers. In Unity 6, their default Grow setting
is set to 1, which means they will take all the available space in the container. Otherwise they
don’t take up any space unless they are filled with other child elements that already have a
specific size, or you set them to a particular Width and Height .

https://unity.com/releases/lts

© 2025 Unity Technologies 34 of 147 | unity.com

| UI Builder | Layouts | Styling |

Size settings for a visual element

The Width and Height fields define the size of the element. The Max Width and Max Height
limit how much it can expand. Likewise, the Min Width and Min Height limit how much it can
contract. You can define the sizes in pixel units or percentages overriding the default auto.
These impact how the Flex settings (below) can resize the elements based on available space.

Flex settings
The Flex settings can affect your element’s size when using Relative positioning. It’s
recommended that you experiment with elements to understand their behavior firsthand.

Basis refers to the default Width and Height of the item before any Grow or Shrink ratio
operation occurs:

 — If Grow is set to 1, this element will take all the available vertical or horizontal space in
the parent element. If it was set to 0.5 it would take half of all the available space.

 — If Grow is set to 0, the element does not grow beyond its current Basis (or size).

 — If Shrink is set to 1, the element will shrink as much as required to fit in the parent
element’s available space.

 — If Shrink is set to 0, the element will not shrink and will overflow if necessary.

https://unity.com/releases/lts

© 2025 Unity Technologies 35 of 147 | unity.com

| UI Builder | Layouts | Styling |

Basis, Grow, and Shrink settings

The above example shows how Basis works with the Grow and Shrink options:

1 . The green element with a Basis of 80% occupies 80 percent of the available space.

2 . Setting the Grow to 1 allows the green element to expand to the entire space.

3 . With a yellow element added, the elements overflow the space. The green element
returns to occupying 80 percent of the space.

4 . A Shrink setting of 1 makes the green element shrink to fit the yellow element.

5 . Here, both elements have a Shrink value of 1. They shrink equally to fit in the available
space.

As you can see, elements that have a fixed size expressed in pixels (the blue box in 3–5) don’t
react to the Basis, Grow, or Shrink settings.

Tip: Calculating visual element size

The layout engine combines the Size and Flexbox settings to determine how large each
element appears when using Relative positioning. Calculating a visual element’s size
entails the following steps:

1 . The layout system computes the element size based on the Width and Height
properties.

2 . The layout engine checks if there is additional space available in the parent
container, or if its children are already overflowing the available space.

3 . If there is additional space available, the layout system looks for elements that
have non-zero values in the Flex/Grow setting. It distributes the additional space
according to that factor, expanding the child elements.

4 . If the child elements overflow the available space, elements that have non-zero Flex/
Shrink values will reduce in size accordingly.

5 . Any other properties that affect the resulting size of an element (Min-Width, Flex-
Basis, etc.) are then taken into consideration.

6. The layout engine applies the final, resolved size.

https://unity.com/releases/lts

© 2025 Unity Technologies 36 of 147 | unity.com

| UI Builder | Layouts | Styling |

The Direction setting defines how child elements are arranged inside the parent. Child
elements higher in the Hierarchy menu appear first. Elements at the end of the Hierarchy
appear last.

The Wrap setting tells the layout system whether elements should try to fit into one column or
row (No Wrap). Otherwise, they appear in the next row or column (Wrap or Wrap reverse).

Parent and child visual elements in UI Builder, using Relative positioning and different Direction and Wrap combinations

Align settings
The Align settings determine how child elements line up to their parent element. Set the Align
> Align Items in the parent to line up child elements to the start, center, or end. These options
affect the cross-axis (perpendicular to the row or column in the Flex > Direction).

The Stretch option also works along the cross-axis, but the Min or Max values from the size
can limit the effect (this is the default). Meanwhile, the Auto option indicates that the layout
engine can automatically choose one of the other options based on other parameters. It’s
recommended that you select one of the options for more control over the layout, and mainly
use the Auto option for special use cases.

Go to Align > Justify Content to define how the layout engine spaces child elements within
the parent. These elements can line up, adjacent to one another, or spread out using the
available space. The Flex > Grow and Flex > Shrink settings influence the resulting layout.

https://unity.com/releases/lts

© 2025 Unity Technologies 37 of 147 | unity.com

| UI Builder | Layouts | Styling |

Align and Justify settings applied to a parent element with a Direction set to Row; note that other position and sizing options can affect the
final output

The Align Self option allows the container to align itself to the center, end, or start position of
the flex layout

Margin and Padding
Use the Margin and Padding settings to define empty spaces around your visual elements and
their content. Unity uses a variation of the standard CSS box model, similar to the diagram
below.

A visual element in UI Builder with defined Size, Margin, Border, and Padding settings; elements with a fixed Width or Height can overflow the
space

https://unity.com/releases/lts

© 2025 Unity Technologies 38 of 147 | unity.com

| UI Builder | Layouts | Styling |

 — The Content Space holds your key visual elements (text, images, controls, etc.)

 — Padding defines an empty area around the Content Space, but inside the Border.

 — The Border defines a boundary between the Padding and the Margin. This can be
colored and rounded. If given a thickness, the Border expands inward.

 — Margin is similar to Padding but defines an area outside the Border. For elements
with Absolute position, the margin settings won’t have any effect but you can use the
Position settings to add outside space in relation to the anchor point.

Background and images
In UI Toolkit, any visual element can be used to display an onscreen image. Simply set the
background property to show a texture or sprite.

You can fill in a color or image to change the element’s appearance. This is helpful for
wireframing. Bright colors with contrast can show how different elements look next to one
another and respond to changes in their containers.

Use contrasting colors during wireframing.

https://unity.com/releases/lts

© 2025 Unity Technologies 39 of 147 | unity.com

| UI Builder | Layouts | Styling |

Variable or fixed measuring units
In UI Builder, you’ll encounter four parameters that define the distance and size of elements:

 — Auto: This is the default option for size and position. The layout system calculates the
elements’ values based on both the parent and child elements’ information.

 — Percentage: The unit equals a percentage of an element’s container and changes
dynamically with the parent’s Width and Height. Working with percentages can provide
scalability when dealing with multiple format sizes.

 — Pixels: This option is useful when you want your element to have a fixed size, for
example, when you want small elements to have a minimum size in pixels that will allow
them to remain readable at all times.

 — Initial: This sets the property back to its default state (Unity’s own default styling rules),
ignoring the current styling values.

Examples of the default Size settings and Sizes defined in pixels and percentages

If you want to apply a scaling rule to the entire UI at the same time, you can do so in the Panel
Settings under the Scale Mode parameters:

 — Constant Pixel Size: This scale mode keeps elements at a fixed pixel size, unaffected by
screen size. A Scale Factor can be applied to multiply element sizes.

 — Constant Physical Size: This mode maintains elements at the same physical size across
screens. The system scales the UI based on a Reference DPI, adjusting the size if the
actual screen DPI differs.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-Runtime-Panel-Settings.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-Runtime-Panel-Settings.html

© 2025 Unity Technologies 40 of 147 | unity.com

| UI Builder | Layouts | Styling |

 — Scale with Screen Size: This option resizes elements dynamically based on resolution.
Screen Match Mode determines whether scaling prioritizes width, height, or a blend of
both. The Reference Resolution sets the UI’s base size. When Screen Match Mode is set
to Match Width or Height, the Match value controls whether the UI system scales the UI
to match the screen width, the screen height, or a mix of the two.

In the Panel Settings of UI Toolkit, you can find similar scaling options to the ones found in Unity UI.

Overridden properties in UI Builder
Modified properties will be highlighted in the Inspector with a bold font and white line next to
them as shown in the screenshot below. This indicates that they are overriding default values
or values in the selector in the style sheet or USS of the selected UXML file. This behavior is
also referred to as "inline styling". If a value doesn’t need to be modified, it’s best to leave it in
its default state to make changes easier to find and manage. To reset a property to its default
value, you can use the option available in the dots (⁝) menu next to the property section.

From this menu you can restore the modified values to the default ones or the ones originally in the selector.

https://unity.com/releases/lts

© 2025 Unity Technologies 41 of 147 | unity.com

| UI Builder | Layouts | Styling |

UXML as templates
UXML files can be used similar to prefabs. For example, you could have a project with a UXML
layout that contains an item icon and count number that you need to spawn many times inside
an inventory. If you right click on any UXML you get the option to create a Template, which can
later be added to any other visual element in the Hierarchy pane or instantiated from code.
Once created you can find it in your Library and Project view.

Templates are reusable UXML and are available in the Library pane in the Project tab.

More resources
Learn more about the Flexbox layout engine with the following resources. As Flexbox and
Yoga are existing standards in web and app development, there will be a variety of resources
available online.

 — UI Toolkit at runtime: Get the breakdown

 — Yoga official documentation

 — CSS-Tricks guide to Flexbox

https://unity.com/releases/lts
https://blog.unity.com/technology/ui-toolkit-at-runtime-get-the-breakdown
https://yogalayout.com/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/

© 2025 Unity Technologies 42 of 147 | unity.com

Styling

Changing style properties directly in UI Builder

https://unity.com/releases/lts

© 2025 Unity Technologies 43 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Once you’ve mocked up some wireframe layouts with visual elements, you can begin styling
them or saving the formatting properties into reusable styles. Styling is where UI Toolkit
exhibits its full power.

Adding style to visual elements is preferably done via Unity style sheet (USS) files (Assets
> Create > UI Toolkit > StyleSheet). They are the Unity equivalent to web CSS files, and use
a similar rule-based format. They also add flexibility to the design process making it easy to
reuse and styles consistent across the project at scale.

USS files define the size, color, font, spacing, borders, or location of elements.

USS selectors
If you haven’t created a USS file yet, all the styling changes you make will be embedded
directly in the UXML asset as inline styles. While these inline styles affect the appearance of
the specific visual element they are attached to, they cannot be reused across your project.

For example, if your project has hundreds of buttons, updating the style of each individual
button would be time-consuming and inefficient. Instead, you can define a selector in a USS.
USS selectors make it possible for style sheets in UI Builder to share and apply styles across
many elements in UXML assets.

Converting existing inline styles to selectors

Inline styles are overrides.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-USS-Selectors.html
https://docs.unity3d.com/Manual/UIB-styling-ui-using-uss-selectors.html

© 2025 Unity Technologies 44 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Use the Add Style Class to List button to type and convert all the inline styles of an element
to a selector (starting with " ." in yellow). This selector now centralizes the styling properties,
allowing you to apply consistent styles to other buttons (or other elements) throughout the
project. Any updates made to the selector will automatically reflect on all associated elements,
making the process scalable and maintainable.

Extracting all Inline Style properties to a selector

To extract specific inline styles to a new selector, click on the vertical ellipsis (⁝) next to the
property, and select Extract Inlined Style to Selector / Add Class, which turns that property
into a selector.

Extracting property’s Inline Style to a selector

https://unity.com/releases/lts

© 2025 Unity Technologies 45 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Creating new selectors

Selectors query the visual tree for any elements that match a given search criteria. UI Toolkit
then applies style changes to all matching elements. You can add a new selector by clicking
on the field Add new selector… in the top left side of UI Builder:

USS selector reference when creating a new selector

USS selectors can match visual elements by:

 — Element C# type: These selectors work by Type (Button, Label, ListView, etc.) The
selector matches the available default Type names in the Library panel. They don’t
have any special characters in front of the name. Class selectors appear in white. For
example, Button will apply the style to all the elements of the type Button

 — Name or ID: These selectors can apply styling to all the elements of the same name.
Name selectors have a preceding hash "#" symbol and appear in blue. For example,
#title would apply the style to all the elements in the Hierarchy with the name title.

Note: UXML name attributes (unlike HTML IDs) don’t need to be unique because UI
Toolkit supports UXML templates and reusable components, allowing multiple elements
to share the same name and style.

 — Style class: A Style Class selector is a reusable style that can be applied to any visual
element by adding the corresponding class name to the element’s Class List property.
Style Class selectors have a preceding dot " ." character and appear in yellow. For
example, .smallFont could be used to apply a specific style to any element by adding
smallFont to its Class List.

https://unity.com/releases/lts

© 2025 Unity Technologies 46 of 147 | unity.com

| Layouts | Styling | Naming conventions |

 — Direct child: If you add a > after the matching criteria, only the direct child elements
matching the second criteria after the symbol > will be affected. For example, the
selector #title > Label, would apply the style to any Label type inside the elements
of the name #title. Any Label outside that parent or deeper in the hierarchy won’t be
affected.

 — Child at any depth: This is the same as the previous selector, but in this case the second
matching criteria will apply to any child regardless of its depth in the parent hierarchy.

Note: Avoid overly broad selectors when possible (especially those ending in * or
targeting generic Unity classes like .unity-button). Deep child selectors can
potentially slow down performance if they evaluate a large portion of the visual tree.

 — Pseudo-class: Pseudo-classes allow you to define distinct styles for visual elements
when they change state, such as when the mouse hovers over them or when they are
focused. Pseudo-classes are denoted by a colon ":" and modify existing selectors.

For example, the selector Button :focus would apply specific styles to all Button
elements when they are focused. This makes pseudo-classes useful for adding visual
feedback, such as hover effects or focus indicators. Additionally, combining pseudo-
classes with USS animations enables you to introduce smooth motion and dynamic
transitions, enhancing the user experience.

You can read about the pseudo-classes available here .

If a visual element matches multiple selectors, the selector with the highest specificity takes
precedence.

The specificity hierarchy in USS is as follows:

1 . Inline Styles: Styles applied directly to an element (e.g., in UXML or through code) take
the highest precedence and override all USS selectors.

2 . ID selectors (#id): These are the most specific USS selectors and apply to elements with
a unique name property.

3 . Class selectors (.className): These apply to elements with the corresponding class
added to their Class List .

4 . C# Type selectors (e.g., Button, Label): These apply to all elements of the specified type.

For example, if an element has both an inline style and matches a #title ID selector, the inline
style will override the ID selector. Similarly, if the element matches both a Class selector and a
Type selector, the Class selector will take precedence.

In the case of a tie, where several selectors are trying to override the same property and all
have the same level of specificity, the tie breaker will be the order in the USS style sheet,
selectors lower in the list will take precedence.

You can learn more about selector precedence in the documentation .

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-USS-Selectors-Pseudo-Classes.html
https://docs.unity3d.com/Manual/UIE-USS-Selectors.html#selector-specificity
https://docs.unity3d.com/Manual/UIE-USS-Selectors.html#determining-selector-precedence

© 2025 Unity Technologies 47 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Tip: Additional information on Hierarchy

Click the vertical ellipsis (⁝) in the Hierarchy header to further visualize the UI elements.

Filter for different selectors in the Hierarchy.

In the Hierarchy pane, additional information appears next to the element Type. The
#options-bar Name selector and .options-bar Style Class selector appear when
checked.

You might notice that some selectors begin with the .unity- prefix. These are default
styles that apply to all elements. Any defined selectors will override these values.

Selectors assigned to elements

In the Inspector, you can visualize the matching selectors of a selected element in the
Hierarchy. The selector at the bottom of the list has precedence. Unfold the details to see
which style parameters are changing.

A selected visual element shows its matching selectors in the Inspector.

https://unity.com/releases/lts

© 2025 Unity Technologies 48 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Editing selectors

When modifying a Style selector, be sure to select the Style Class in the Style Sheet panel
– not the visual element from the Hierarchy. Otherwise, you will change the inline style for a
specific element and not the Style Class itself.

Double-click the Style Class in the Inspector to ensure it’s active.

You can double-click a Style Class in the Inspector to deselect an element and select the Style
selector instead.

Just like when you were modifying parameters as inline styles directly in the UXML, you can
edit parameters in the selectors, by selecting them in the StyleSheets pane, and modifying
with overrides. The changes will also show as bold with a white line next to them. To unset a
value you can do it from the vertical ellipsis (⁝) menu next to the property.

Editing a USS selector

https://unity.com/releases/lts

© 2025 Unity Technologies 49 of 147 | unity.com

| Layouts | Styling | Naming conventions |

With numerous formatting options available, you can modify the basic appearance of elements
and fonts. UI Toolkit offers advanced styling that can reduce the need for custom-made
sprites.

UI Builder can facilitate adding outlines, rounded corners, image adjustments, and border
colors to your elements. Styling can also include bevel effects and the ability to change the
cursor image.

UI Toolkit offers several styling effects that do not require additional textures.

Overriding styles

Rules were meant to be broken. Whenever you define a style class for UI elements, there will
always be exceptions.

For example, if you have hundreds of Button elements, but each one has a different icon
you don’t need to create a new selector for each one. This would defeat the purpose
(convenience) of making styles reusable.

In lieu of this, you’d apply the same style to all of the buttons and then override the specific
parts of each one that are unique (e.g., each Button element could override the Background >
Image to use its own icon). These Overrides are the Inline style properties.

Tip: Inline styles take precedence over selectors

Inline styles always take precedence over selectors. So if you’re unsure as to why a style
is not updating when a selector is applied, it could be helpful to check the element to see
if there are any Overrides.

https://unity.com/releases/lts

© 2025 Unity Technologies 50 of 147 | unity.com

| Layouts | Styling | Naming conventions |

USS variables

You can create USS variables to save time manually setting up the same values in different
properties. When you update a USS variable, all of the USS properties that use that variable
update. In Unity 6.1 these variables can also be set up from the UI Builder Editor.

Variables in the USS selectors are available for creating and editing in UI Builder in Unity 6.1

You can create variables of the type: float,
color, string, asset reference (for background
images), dimensions (like pixels, degrees,
percentage, etc) and enums. Variables have a
selector level scope; you can’t use variables
present in other selectors, but selectors
themselves can be applied to as many
elements as needed.

Setting a variable in a property instead of introducing the value directly

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-USS-CustomProperties.html

© 2025 Unity Technologies 51 of 147 | unity.com

| Layouts | Styling | Naming conventions |

USS transitions animations
Adding transitions to your menu screens can significantly enhance visual polish and user
experience. UI Toolkit makes this relatively easy with the Transition Animations property in the
Inspector.

You can configure the Property, Duration, Easing, and Delay to set up the animation. Once
configured, the transition is automatically applied when the relevant styles change during
runtime.

Think of the transition between pseudo-classes of a Button – the :hover pseudo-class over
the .green-button Class selector. Each style has its own size and color.

To define a transition in the mouse hover state, the .green-button:hover selector has
Transition Animations, located at the bottom of the Inspector. The result is a Button that
animates with your pointer movements.

You can interpolate between styles with Transition Animations.

The Transition Animation interpolates between styles with the following options:

 — Property: This determines what to interpolate. The default setting is all, but you can
select a specific property in the drop-down list. In the above example, :hover state is
only modifying the Color and Transform properties. See this complete list of animatable
properties.

 — Duration: This is the length of the transition, expressed in either seconds or
milliseconds. For it to be visible, Duration must be set higher than 0.

 — Easing Function: An easing function determines how an animation progresses over time,
allowing you to simulate natural motion, such as acceleration, deceleration, or elasticity.
By using an easing function, the animation transitions appear smoother and more
organic compared to a basic linear interpolation, which moves at a constant speed.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-Transitions.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=authoring-optimizing-ui&utm_content=ui-design-ebook
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-USS-Properties-Reference.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=authoring-optimizing-ui&utm_content=ui-design-ebook

© 2025 Unity Technologies 52 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Use this cheat sheet to help you visualize the available functions (visualization courtesy of https://easings.net/).

 — Delay: Defined in seconds or milliseconds, this specifies how long to wait before starting
the transition.

 — Add Transition: Each property of the new state can be animated individually, with
different durations, delays, and easing effects.

Click the Add Transition button to chain another transition animation. This makes it
possible to trigger several overlapping transitions at once, making them more natural
and less mechanical.

https://unity.com/releases/lts
https://easings.net/
https://easings.net/

© 2025 Unity Technologies 53 of 147 | unity.com

| Layouts | Styling | Naming conventions |

Tip: Transition events

Callbacks for transition events can be added to the visual elements being animated. They
serve to support more advanced workflows, such as sequencing or looping.

Here are some common transition events with explanations for when they are sent:

 — TransitionRunEvent: Sent when a transition is created

 — TransitionStartEvent: Sent when a transition’s delay phase ends and the transition
begins

 — TransitionEndEvent: Sent when a transition ends

 — TransitionCancelEvent: Sent when a transition is canceled

Learn more about USS transitions in the documentation .

For visual elements, animations don’t require additional code because pseudo-classes
(:active, :inactive, :hover, etc.) can have their own selectors. Whenever a pseudo-
class triggers a style change, any defined transitions will automatically animate the change.
For example: A button can grow or shrink when hovered (:hover), clicked (:active), or elements
can fade out or become invisible based on user interaction or other events.

Pseudo-classes are predefined and you can’t make your own.

Swapping styles on demand
For any other events in your game you can also change styling in code using methods from the
UI Element APIs. For example, for changing to a different styling based on a character rarity,
you can use the RemoveFromClassList and AddToClassList methods.

if (character.rarity == RarityType.Legendary)
{
 visualElement.RemoveFromClassList("common");
 visualElement.AddToClassList("legendary");
}

You can additionally trigger the pseudo-class :active or :inactive, which is based on the
enabled state of the visual element, to have USS transitions when changing state. This way,
they can represent the before and after states.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-Transition-Events.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.TransitionRunEvent.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.TransitionStartEvent.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.TransitionEndEvent.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.TransitionCancelEvent.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-Transitions.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.VisualElement.html

© 2025 Unity Technologies 54 of 147 | unity.com

| Layouts | Styling | Naming conventions |

The menu bar buttons in UI Toolkit Sample – Dragon Crashers uses a PointerEventClick to trigger some manual transitions.

Tip: Overriding Unity default selectors

More complex visual elements, for example, a Tab view, are made of a parent element
with children that are predefined by the system. They behave in a particular way when
you add content to these elements and the styles used appear to be disabled and Unity-
made. You can override any of these default selectors by double-clicking on the selector
in use and make a copy to edit in your style sheet or USS.

Themes
If you want to make a seasonal version of the UI or offer different color styles, Theme Style
Sheets (TSS) can simplify this process. Create a TSS via Create > UI Toolkit > TSS theme file.

TSS files are Asset files that operate like regular USS files. They provide a starting point for
defining your own custom theme, made of USS selectors as well as Property and Variable
settings.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-tss.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-tss.html

© 2025 Unity Technologies 55 of 147 | unity.com

| Layouts | Styling | Naming conventions |

In this example of Halloween-themed UI elements, the Halloween TSS first inherits from the Unity Default Runtime TSS, then it adds theme-
specific style sheets for Fonts and Buttons.

Inherited themes mean that if there are style sheets with selectors missing in the new theme,
compared to the original one, then the latter’s styling will be applied. This makes customization
easier. For example, you could create a new theme that only modifies fonts, while leaving the
rest of the UI (such as colors, padding, or borders) styled according to the original theme.
This approach is useful for scenarios like implementing light/dark mode, per-character UI
customization, or creating game-specific event themes.

The TSS for the Halloween theme represented in this screenshot uses the Halloween-buttons .uss but there’s no matching selector for the
button’s in-use selector .button-accept, so it uses the one applied in the original theme.

https://unity.com/releases/lts

© 2025 Unity Technologies 56 of 147 | unity.com

| Layouts | Styling | Naming conventions |

A workflow to create new themes based on existing ones could be:

1 . Create a new TSS, and add the theme to inherit from and the new USS file to be used by
this new TSS.

2 . In UI Builder > StyleSheets, click Add Existing USS and select the one that the new
theme will use.

3 . Copy the selector that the new theme will override.

4 . Paste it in the USS that the new theme uses, then right-click and choose Set as Active
USS .

5 . Edit the selector in the new USS.

6. You can see the style used by one theme or another from the drop list in UI Builder.

Choose which theme you want to apply in the UI Builder viewport.

For runtime, reference your new theme in the Theme Style Sheet field of the Panel Settings
Inspector .

https://unity.com/releases/lts

© 2025 Unity Technologies 57 of 147 | unity.com

Naming conventions

With UI Toolkit you’ll need to query the visual elements and USS using a string identifier, so
using a defined set of standards will lead, overall, to fewer errors and more readable code.

As dev teams will refer to the same UXML and USS assets that make up your interface, it’s
important to standardize naming conventions for both visual elements and style sheets.
Naming conventions help keep your hierarchy organized in UI Builder. It will also take out the
guesswork of coding conventions and formatting conventions and help you have a consistent
codebase.

The name of visual elements is used to store references to them in the code.

There is no one-size-fits-all style guide. Pick and choose what works best for your team
and project. However, it’s generally recommended to stick as close to industry standards
as possible. For that reason, we recommend the Block Element Modifier (BEM) naming
convention for your visual elements and style sheets. BEM is widely used in the context of CSS
and modern web development, from which UI Toolkit takes its inspiration.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-VisualTree.html

© 2025 Unity Technologies 58 of 147 | unity.com

| Styling | Naming conventions | Text |

At a glance, an element’s BEM-style name can tell you what it does, where it appears, and
how it relates to other elements around it. BEM uses three main components in the following
convention:

block-name__element-name--modifier-name

Here’s an example:

navbar-menu__shop-button--small

Each name part may consist of Latin letters, digits, and dashes. Also note that each name part
is joined together with either a double underscore __ or a double dash --. Let’s look at the
three components in detail:

 — The block name (block-name) represents a high level-component, like a navbar-menu,
character stats – any distinct and meaningful UI component in your layout. In the case of
a generic button that is not specific to any particular block, that can simply be left out,
e.g., button--small.

 — The element (element-name) is a child or part of a block and therefore semantically
tied to its block. In other words elements rely on the block for their context and can’t
exist without it. So, the example of shop-button indicates that this is styled differently
from other buttons belonging to the navbar-menu block (e.g., shop-button in navbar-
menu__shop-button) .

If your new element instantiates child elements in its constructor, assign the relevant
classes to the children. For example, my-block__first-child, my-block__other-
child.

 — Finally, the modifier indicates a variation or state of a block or element. That could be
when a button is pressed, a textbox item is selected and highlighted, or in our example,
when it’s a small variant of the shop button. This makes it easy to adapt to different
scenarios without duplicating code.

Here are some more examples of BEM naming:

 — menu__button-home

 — menu__button-shop

 — navbar-menu__shop-button--small

 — navbar-menu__shop-button--large

BEM class names are self-descriptive, making it easier for developers to understand the
structure and purpose of components and therefore, helping to maintain a clear hierarchy for
managing and updating styles as projects grow. As a general rule of thumb, favor readability
over brevity. Clarity is more important than any time saved from omitting a few vowels.

https://unity.com/releases/lts

© 2025 Unity Technologies 59 of 147 | unity.com

| Styling | Naming conventions | Text |

These examples use hyphen delimiting (aka Kebab case), which is common for CSS naming.
Your team should decide early on in a project which naming scheme works best for them and
stick to it throughout development.

Read more about CSS naming conventions in this article, as well as in the UI Toolkit
documentation .

Tips: Naming conventions in UI Toolkit

Here are some guidelines for effective naming:

 — Keep names short and clear (unambiguous). Ensure that names are concise yet
descriptive enough to convey their purpose and role within the UI.

 — Use names to emphasize roles and relationships, such as inventory__slot--
equipped instead of inventory__button--equipped. Omit Type names like
Button or Label if they don’t add clarity.

 — Avoid names/modifiers that can change (e.g., use "button–quit" instead of "button–
red" when the color scheme is not yet final). Use semantic naming rather than
presentational naming, which ensures names remain relevant even if styling details
change.

 — Extend these conventions to art assets, like sprites and textures associated with the
UI Toolkit interface. Consistency in naming between code and assets helps maintain
a clear relationship and better organization throughout the project.

 — If you use the element in other projects, consider prefixing your classes to avoid
conflicts with existing user class names. Namespacing or prefixing can prevent
clashes when integrating with other projects or libraries.

 — Use AddToClassList() in the constructor to add the relevant USS classes to your
element instances. This method ensures that the appropriate styles are applied
by adding the necessary classes at the time of element instantiation, maintaining
consistency and clarity in your UI code.

Create a C# style guide

If you or your team wants to refine key coding practices
to make your project more scalable, check out our free
e-book, Create a C# style guide: Write cleaner code that
scales. Use this guide as needed to help standardize your
code style and naming conventions.

Download the e-book

https://unity.com/releases/lts
https://www.freecodecamp.org/news/css-naming-conventions-that-will-save-you-hours-of-debugging-35cea737d849/
https://docs.unity3d.com/Manual/UIE-USS-WritingStyleSheets.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=authoring-optimizing-ui&utm_content=ui-design-ebook
https://docs.unity3d.com/Manual/UIE-USS-WritingStyleSheets.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=authoring-optimizing-ui&utm_content=ui-design-ebook
https://unity.com/resources/c-sharp-style-guide-unity-6

© 2025 Unity Technologies 60 of 147 | unity.com

Text

UI Toolkit uses TextCore, a font rendering technology originally based on TextMesh
Pro (which is used by the legacy UI system, Unity UI). TextCore offers advanced styling
capabilities and can render text cleanly at various point sizes and resolutions. It takes
advantage of Signed Distance Field (SDF) font rendering, which can generate font assets
that look crisp even when transformed and magnified. You can get the details of the different
rendering modes for TextCore in the documentation .

Let’s look at the different font asset types and what they are used for.

Source font file
The most common font formats, TTF and OTF files, need to be converted into font assets
before they can be used in your Unity project. A font asset is a Unity-specific resource
that contains the data required to render a font including character glyphs, font metrics,
and rendering configurations like size, weight, and style. The imported source file shows
information on each font family and their rendering options.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/TextMeshPro/index.html
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/TextMeshPro/index.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-asset.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-asset.html

© 2025 Unity Technologies 61 of 147 | unity.com

| Naming conventions | Text | Data binding |

Many of these import options are remnants of the legacy text system in Unity UI. There are plans to remove them in future releases.
Rendering Mode, Character, and Include Font Data are used for generating the Font Asset

To generate corresponding font assets, select the source font file and then right-click on the
Assets menu and generate via Create > Text Core > Font Asset > SDF (if SDF is your preferred
rendering mode).

Different UI systems use different font assets.

Font asset settings
Once you have the source font file converted, select the font asset and you’ll find all of the
options to give you full control over the font generation. Let’s look at some key options here
(read more about font assets in the documentation):

 — Face Info: Spacing and scaling options for your font to adjust parameters that can better
suit your application if the default source font required tweaks

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-asset.html

© 2025 Unity Technologies 62 of 147 | unity.com

| Naming conventions | Text | Data binding |

 — Generation Settings: Essential configuration including the source font, the font face
to use for the font asset in case the source font includes several styles, the atlas
population mode, as well as the render modes

 — Atlas and Material: The material and texture generated; whether the atlas is static,
dynamic, or has the rendering mode as bitmap or SDF; provides control of the size of
atlas generated in the case of supporting languages with large character sets

 — Font Weights: Simulates different font weights when the source asset doesn’t have
such variations

 — Fallback Font Asset: Provides for a fallback font in cases where the current Font asset
lacks a character or glyph

 — Character and Glyph Tables: A detailed list of all the characters and glyphs included in
the font asset

 — Ligature table: For adding a glyph to be used when two characters are together
(improves readability and visual flow)

 — Glyph Adjustments: Defines overrides per character or glyph

Source fonts and atlases can increase the build size: On the left is an atlas with ASCII characters and on the right is an atlas of a complete
Unicode character set.

At the top of the Inspector, when selecting a font asset, you’ll find the Font Asset Creator
under the Update Atlas Texture button. It gives you all the control to populate and define atlas
properties.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-font-creator-properties.html

© 2025 Unity Technologies 63 of 147 | unity.com

| Naming conventions | Text | Data binding |

Tip: Padding and atlas resolution

Characters in the Font Texture need some padding between them (specified in pixels)
so they can be rendered separately. Padding also creates room for the SDF gradient.
The larger it is, the smoother the transition, which allows for high-quality rendering and
effects like thick outlines.

If you are only using ASCII characters, an atlas resolution of 512 x 512 with a padding of
5 is sufficient for most fonts. Fonts with more characters might need larger resolutions or
multiple atlases. As a general rule, aim for the padding size to be at a 1:10 ratio with the
sampling size.

Font asset variant

To make changes without employing a new font atlas, create a font asset variant via Create
> Text Core > Font Asset Variant. This variant can hold an alternate version of the font’s line
metrics.

The variant stores its own Face Info settings – think line height and subscript position – but still
refers to the original atlas. As such, it can have its own styling, distinct from the original Font
asset, without consuming extra space for textures.

Rich text
Rich text tags alter the appearance and layout of text through the use of supplemental tags
in the text field. You can use rich text tags with both visual elements in code UI Builder. The
tags enable text to be formatted at runtime, for example, to customize the appearance of a
username.

Rich text tags can change the color or alignment of text without modifying its properties or
styling. Use them to format the text in a dialogue system or visually reinforce what you want to
communicate.

Go to Extra Settings to enable the rich text feature in UI Builder. Doing so will format your text
(including tags) appropriately. For instance, text between the and closing tags will
show up as bold.

Enable rich text tags in UI Builder to make the tags modify your visual text properties.

Check out this complete list of available rich text tags and parameters.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/FontAssetsProperties.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/RichText.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-rich-text-tags.html

© 2025 Unity Technologies 64 of 147 | unity.com

| Naming conventions | Text | Data binding |

Gradients

Gradients add stylization throughout the interface; in UI Toolkit you can apply them via the
<gradient> tag. Follow these steps to create a simple gradient:

1 . Create a gradient color asset via Create > Text Core > Gradient Color . Make sure to
place this file inside Assets/Resources or any subfolder under Resources.

2 . Create a Text Settings asset to refer to from the Panel Settings. In the asset look for
Color Gradient Presets, and indicate the folder or subfolder inside Resources where the
asset is.

3 . Add the following rich text tags inside UI Builder:
<color=white><gradient="testColorGradient">Gradient Test</gradient></
color> .

4 . The color tag restores the font color to white so the gradient looks as intended, while the
referred gradient has to match the asset name created in step 1. Make sure Rich Text is
enabled.

5 . You can see the changes take effect inside UI Builder or in the Game view.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIE-color-gradient.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-text-setting-asset.html

© 2025 Unity Technologies 65 of 147 | unity.com

| Naming conventions | Text | Data binding |

Sprite asset and emojis

You can include sprites like emojis in your text via rich text tags. To use them, you’ll need to
use a Sprite asset similar to the Gradient asset.

When importing multiple sprites, pack them into a single atlas to reduce draw calls. Make
sure that the sprite atlas has a suitable resolution for your target platform. Return to the asset
preparation section for more on sprite resolutions.

A common use case for sprite assets are emojis or icons integrated into text strings.

Follow these steps to import sprites for this purpose:

1 . Import the sprite or PSD file that contains the emojis or icons

2 . Slice the image into multiple sprites; if you use a PSD file as described in the Graphic and
font assets preparation section you won’t need to do this slicing. Generate the Sprite
Asset from the file (select and then use the Create > Text Core > Sprite Asset menu).
Make sure the asset is placed under Assets/Resources or a subfolder.

3 . You can adjust the Face Info and customize the appearance/names of each "glyph" in this
new Sprite asset. Any changes here will replace the default Face Settings from the Font
asset.

Note: In this context, Update Sprite Asset syncs the Sprite asset to the latest Sprite Editor
changes.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-sprite.html

© 2025 Unity Technologies 66 of 147 | unity.com

| Naming conventions | Text | Data binding |

To use this asset with UI Toolkit, you must follow the same step as you did with gradients:

1 . Select the Panel Settings from the UI Document .

2 . Open the Text Settings asset (or create one, if there’s none).

3 . Link to the Sprite asset using the file browser in the Text Settings file. Save and enter
Play mode for the updated settings to take effect.

4 . Use the rich text tag (<sprite index=0> or <sprite name="name">) to add the sprite.
The embedded sprite will respect other text tags as well.

Add a Sprite Asset to a text field in UI Toolkit using rich text tags: Make sure that the Enable Rich Text option is checked (top).

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/RichText.html

© 2025 Unity Technologies 67 of 147 | unity.com

| Naming conventions | Text | Data binding |

Tip: Using emojis from the OS

If you are targeting a specific runtime platform, such as iOS or Android, you can make use
of the system’s built-in emoji font instead of including the source font in your project. This
can save memory and eliminate the need to package a large collection of emojis with your
application. They are also often a great fit for Global Fallbacks in Text Settings.

https://unity.com/releases/lts

© 2025 Unity Technologies 68 of 147 | unity.com

| Naming conventions | Text | Data binding |

These are the steps to use OS emojis in your project:

1 . Create a Font asset from the font that your target system uses. On iOS the font is
called Apple Emoji (used in this example), and on Android it’s called Noto Color Emoji
(currently only COLRv0 is supported). Make sure the Font Asset is of the type Color,
and then set the atlas population mode to Dynamic OS which doesn’t require you to
include the source font in your asset saving space.

2 . Ensure Clean Dynamic Data On Build is checked on the Font Asset

3 . Enable Parse Escape Sequences on UI Builder and enter the desired emojis using
the emoji keyboard from MacOS or Windows or in UTF format, for example, you
would introduce a smiley as \U0001F601. You can check the UTF of each emoji in
the Character Table of the Font Asset.

4 . The build running on MacOS displays the emojis according to the OS font.

5 . We can observe that in our test, the build size is smaller than the standalone emoji
font proving that it was not included in the project but still being used to render the
appropriate emojis.

Text Style Sheets

If your application deals with a significant amount of text, you might want to consider creating
a text style sheet to manage its formatting. This lets you create custom text styles with the
<style> rich text tag. You can do this from the Create menu via Assets > Text Core > Text
Stylesheet .

A reusable Text Style Sheet

https://unity.com/releases/lts
https://github.com/googlefonts/noto-emoji/blob/main/fonts/NotoColorEmoji.ttf
https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/StyleSheets.html

© 2025 Unity Technologies 69 of 147 | unity.com

| Naming conventions | Text | Data binding |

Consider these benefits of text style sheets:

 — A custom style can include opening and closing rich text tags, plus leading and trailing
text.

 — You can conveniently update a text style sheet, especially when compared to directly
changing rich text formatting.

 — Custom styles can reduce the amount of rich text tags. You can just use one tag,
<style= name>, that applies all the necessary styling.

 — This makes it easier to change one rich text tag in a text style sheet, and is less error
prone than manually changing multiple <style> tags.

https://unity.com/releases/lts

© 2025 Unity Technologies 70 of 147 | unity.com

Data binding

At its core, the user interface is your players’ connection to the data driving your application. It’s
their primary way of seeing, touching, and engaging with your game’s internal state and logic.

Players won’t see raw stats; instead, they’ll see a health bar. Rather than reading item lists
directly, they use a drag-and-drop inventory. This interplay between the UI and its data will
impact how you structure your project.

UI that reflects your game data
Here’s the character stats window in UI Toolkit Sample – Dragon Crashers. This user interface
shows off key attributes from an RPG-like game.

The view represents the UI itself – the part players interact with. Tabbed containers neatly
organize the character’s abilities for easy navigation.

The character stats window represents game data.

https://unity.com/releases/lts

© 2025 Unity Technologies 71 of 147 | unity.com

| Text | Data binding | Localization |

Behind the scenes, the data lives in a model, such as a ScriptableObject storing each
character’s stats.

The ScriptableObject asset contains the character’s data.

https://unity.com/releases/lts

© 2025 Unity Technologies 72 of 147 | unity.com

| Text | Data binding | Localization |

This separation of concerns between the view and the model is a core principle in UI
architecture. Decoupling the visual interface from the underlying data makes your code more
flexible, reusable, and easier to manage.

However, once separated, connecting the model to the view requires some synchronization.
Traditionally, this involves direct updates or event-driven systems, where observers update
the UI when the data changes. While effective, these sync operations can introduce repetitive,
boilerplate code.

As your project grows, these systems can become difficult to manage. Adding new elements
or dependencies often requires additional update logic or event handlers. This can clutter your
scripts, making them harder to read and maintain.

Enter runtime data binding
Runtime data binding in Unity 6 offers a streamlined solution to this problem. It links your
application’s data directly to UI elements, ensuring that changes in one are automatically
reflected in the other.

This Model-view-viewmodel (MVVM) architecture adds a layer of presentation logic between
the view and model. The viewmodel acts as a mediator, exposing data from the model
formatted for the view.

Learn more about MVVM along with more design patterns in the Unity e-book Level up your
code with design patterns and SOLID .

The MVVM architecture (Source: Wikipedia)

For instance, a health bar can automatically display a player’s health, or a score label can
update in real-time without requiring extra script logic or manual event handling. With less
sync logic to manage, your project can scale more effectively.

Let’s explore examples of UI Toolkit’s runtime data binding to see how you can use it in your
project.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://unity.com/resources/design-patterns-solid-ebook
https://unity.com/resources/design-patterns-solid-ebook

© 2025 Unity Technologies 73 of 147 | unity.com

| Text | Data binding | Localization |

Data binding concepts
Unity 6 introduces a runtime data binding system that provides a structured way to connect
UI elements with application data. To bind a property of a visual element to a data source, you
will create an instance of DataBinding .

Here are a few important concepts:

 — Data source: This is the object that holds the data for UI bindings.

 — Data source path: This property or field in the data source is what the UI element
connects to.

 — Binding mode: This controls how data flows between the source and the UI and can be
either one-way or two-way.

These parts work together to create the data bindings. Let’s explore them in more detail.

Preparing a data source
A data source is the object that holds the data for UI bindings. Any C# object can serve as
a data source, including ScriptableObjects, MonoBehaviours, or custom C# objects. Using
structs as data sources can improve performance through lightweight memory allocations and
reduced garbage collection. Data binding can be set up both through code and through the
Inspector.

This demo project uses ScriptableObjects as data sources for their convenient ability to
serialize data within the Unity Inspector.

Using the CreateProperty attribute

To expose properties for binding, UI Toolkit relies on property bags generated by the Unity
Properties module. These define which properties in your data source are accessible to UI
bindings.

To make properties bindable, use the CreateProperty attribute. This explicitly marks properties
for the binding system. Here’s a common setup pattern:

[SerializeField, DontCreateProperty]
int m_Value;

[CreateProperty]
public int Value
{
 get => m_Value;
 set => m_Value = value;
}

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.DataBinding.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.DataBinding-dataSource.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.DataBinding-dataSourcePath.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding-mode-update.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.DataBinding-dataSource.html
https://docs.unity3d.com/6000.0/Documentation/Manual/property-bags.html
https://docs.unity3d.com/6000.0/Documentation/Manual/properties.html
https://docs.unity3d.com/6000.0/Documentation/Manual/properties.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Properties.CreatePropertyAttribute.html

© 2025 Unity Technologies 74 of 147 | unity.com

| Text | Data binding | Localization |

In this example, m_Value is marked with the SerializeField attribute for serialization but
excluded from binding by the DontCreateProperty attribute.

The Value property, on the other hand, is marked with CreateProperty, making it accessible
to the binding system. This clear separation helps manage data flow between the model and
the UI.

Runtime data bindings use property bags to traverse and manipulate a type’s data
efficiently. By default, Unity generates property bags using reflection the first time a type
is accessed, which adds a small runtime overhead.

To avoid this, use the CreateProperty attribute when defining properties. This generates
binding code at compile time, eliminating the need for runtime reflection and reducing
performance overhead.

Data sources and paths

Once your data source is ready, it can be bound to the UI. A data source path specifies
the property or field within that data source that you want to connect to a UI element. For
example, if your data source has a "health" property, the path would point directly to the
property using it in UXML or via a binding setup in C#. Let’s look at how this looks in practice.

In the UI Builder: Select a Hierarchy element, go to the Inspector, and use the Add Binding
option from the options (⁝) menu.

Add a binding from the Inspector.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/property-bags.html
http://createproperty
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.DataBinding-dataSourcePath.html

© 2025 Unity Technologies 75 of 147 | unity.com

| Text | Data binding | Localization |

Then, assign your Data Source, like a PlayerDataSO ScriptableObject, and specify the
Data Source Path, such as CurrentHealth .

Set the Data Source and Data Source Path in the UI Builder.

In UXML: When you set up data binding in UI Builder, it generates the corresponding UXML.
You can also add or edit the data source path manually in a text editor. This is the code block
that creates the binding:

<Bindings>
 <ui:DataBinding property="text" data-source-path="Health"/>
</Bindings>

Using C#: Instantiate or reference a data source object in your script, such as a
ScriptableObject. Assign it to the dataSource property of the root element. Use the
dataSourcePath to specify the exact property to bind.

Here’s a snippet that shows how to set the dataSource and dataSourcePath properties in
script. We discuss this in more detail in the section below on setting up data binding in C# .

var label = new Label();
var parentData = ScriptableObject.CreateInstance<PlayerDataSO>();
playerData.Health = 100;

label.SetBinding("text", new DataBinding()
{
 dataSource = playerData,
 dataSourcePath = new PropertyPath(nameof(PlayerDataSO.Health)),
});

https://unity.com/releases/lts

© 2025 Unity Technologies 76 of 147 | unity.com

| Text | Data binding | Localization |

Note: It’s possible to create a conflict if you’re defining data bindings for the same UI element.
To avoid confusion:

 — Use UI Builder/UXML bindings for static or default data configurations that don’t need
runtime adjustments.

 — Use C# bindings for dynamic updates or cases where the data source needs to change
during gameplay.

You can also set up part of the binding in UI Builder/UXML and complete the binding at
runtime. See the section on "Unresolved data bindings workflow" below for additional context.

Inheriting data sources

Visual elements automatically inherit the data source of their parent unless explicitly assigned
a new one. For example, if the root element has a data source, all child elements use it by
default. This diagram illustrates this behavior:

A child element can override a parent data source.

When a parent element has a data source, its child elements automatically inherit it. In UI
Builder, the Data Source field for a child is pre-filled with the parent’s data source but can be
overridden as needed.

https://unity.com/releases/lts

© 2025 Unity Technologies 77 of 147 | unity.com

| Text | Data binding | Localization |

The same inheritance logic applies when working with C#, as demonstrated in the following
example:

var root = new VisualElement();
var parentData = ScriptableObject.CreateInstance<PlayerDataSO>();
parentData.Health = 100;

// Assign a data source to the root element
root.dataSource = parentData;

var child = new VisualElement();
var childData = ScriptableObject.CreateInstance<PlayerDataSO>();
childData.Health = 50;

// Override the inherited data source for the child
child.dataSource = childData;

root.Add(child);

Here, the child overrides the parent, giving it an independent data source.

Binding modes
Binding modes control the flow of data between the data source and the UI.

Binding modes in the UI Builder allows you to control the flow of data between data source and the UI.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding-mode-update.html

© 2025 Unity Technologies 78 of 147 | unity.com

| Text | Data binding | Localization |

These options appear in the UI Builder and C# API:

 — TwoWay (Default): Changes propagate both from the data source to the UI and from the
UI to the data source. Use this for interactive elements like sliders or text fields where
the user can change the data.

 — ToTarget: Data flows only from the data source to the UI. Use this for read-only UI
elements.

 — ToSource: Data flows only from the UI to the data source. This is useful for inputs where
you don’t need to display the current value initially.

 — ToTargetOnce: Data flows from the data source to the UI only once and doesn’t track
further changes in the data source.

Example: Data binding a health bar

Let’s look at a practical example to see how to create some basic data bindings in UI Toolkit.
Here’s an example from the demo scene – a simple health bar that dynamically updates based
on a player’s health.

Demo scene
You can find the following examples in the Data Binding how-to demo included in the
QuizU sample project .

To access it at runtime, navigate to Main Menu and select Demos > Data Binding, or load
the DataBindingDemo scene directly after disabling the bootloader (Quiz > Don’t Load
Bootstrap Scene on Play).

The demo scene includes two health bars, one with bindings created in UXML with UI Builder
and another with bindings created in C#.

The health bar represents player data.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492#description
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492#description

© 2025 Unity Technologies 79 of 147 | unity.com

| Text | Data binding | Localization |

Preparing the data source

The sample project includes Player information and stats that are stored in a PlayerDataSO
ScriptableObject. Relevant properties in PlayerDataSO are marked with the CreateProperty
attribute, making them available for binding.

Each health bar represents only a subset of the data in PlayerDataSO, including the player
name and health values. A snippet of the class shows some of its properties and related fields:

using System;
using Unity.Properties;
using UnityEngine;
using UnityEngine.UIElements;

[CreateAssetMenu(fileName = "PlayerDataSO", menuName = "Demos/Player_Data")]
public class PlayerDataSO : ScriptableObject
{

 [CreateProperty] public string PlayerName => m_PlayerName;
 [CreateProperty] public int CurrentHealth => Mathf.Clamp(m_CurrentHealth, 0,
m_MaximumHealth);
 [CreateProperty] public int MaximumHealth => m_MaximumHealth;

 [SerializeField] string m_PlayerName;
 [SerializeField] int m_MaximumHealth = 100;
 [SerializeField] [Range(0, k_MaxHealthRange)]
 int m_CurrentHealth = 100;

 const int k_MaxHealthRange = 200;

The UI uses specific data paths, such as PlayerName, CurrentHealth, and
MaximumHealth, to display this information visually on the screen.

The data source contains health data from the PlayerDataSO ScriptableObject.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Properties.CreatePropertyAttribute.html

© 2025 Unity Technologies 80 of 147 | unity.com

| Text | Data binding | Localization |

Data binding in UI Builder/UXML
UI Builder offers a visual, interactive way to bind UI elements to data. It’s ideal for UI artists
who prefer a design-centric workflow and developers who benefit from real-time feedback
during setup. It also serves as a helpful learning tool for anyone new to data bindings.

In the demo scene, the Player One health bar’s data bindings are set up entirely in UI Builder.
This involves:

 — Selecting the root element: Choose the root element in the hierarchy which contains the
health bar. In this example, the topmost container is the demo_container-uxml element.

 — Assigning the data source: In the Data Binding section of the Inspector, set the data
source to the ScriptableObject asset. This assigns the data source and propagates it to
all child elements.

 — Defining data source paths: Specify the data source paths to link individual UI
elements to their respective properties in the ScriptableObject (e.g., PlayerDataSO.
PlayerName).

The basic health bar

https://unity.com/releases/lts

© 2025 Unity Technologies 81 of 147 | unity.com

| Text | Data binding | Localization |

Once the data source is set on the root, it should appear as the default data source for the
child elements. Simply fill in the correct data source path. This table illustrates the data
bindings join the UI element properties with the ScriptableObject:

UI Element UI Element
Property

Bound Property Notes

health-bar__player-name text PlayerName Displays the player’s name

health-bar__current-health text CurrentHealth Shows the current health value

health-bar__max-health text MaximumHealth Displays the maximum health

health-bar__progress style.width Progress Adjusts the bar width dynamically

When the data binding is complete, the health bar updates in real-time, showing labels and a
progress bar for the player’s health.

Swapping data sources is simple – just assign a new ScriptableObject asset, and the UI
automatically reflects the new values while keeping the same bindings.

Swapping data sources updates the data bindings.

https://unity.com/releases/lts

© 2025 Unity Technologies 82 of 147 | unity.com

| Text | Data binding | Localization |

When you set up data bindings in UI Builder, they are added directly to the UXML file, creating
a <Bindings> block for each bound element.

Here is a snippet of the resulting UXML when binding the health-bar__player-name
element’s text property to the PlayerName property (some attributes are omitted for
readability):

<ui:Label text="Placeholder" name="health-bar__player-name" class="health-bar__player-name">
 <Bindings>
 <ui:DataBinding property="text" data-source-path="PlayerName" binding-mode="ToTarget"
/>
 </Bindings>
</ui:Label>

Experienced users can also create these bindings directly in UXML. Doing it in code can give
precise control and be faster to edit when working with a lot of bindings. Hand-written UXML
also offers clearer diffs for version control, making it easier to resolve merge conflicts or track
changes.

Set up data binding in C#
UI Builder is great for prototyping with static data (like pre-defined ScriptableObject assets),
but runtime data often requires dynamic handling in C#. This code example shows how Player
Two’s health bar works in the demo scene:

using UnityEngine;
using UnityEngine.UIElements;
using Unity.Properties;

public class HealthBar : MonoBehaviour
{
 [SerializeField] PlayerDataSO m_HealthData;

 public void Initialize(VisualElement root)
 {
 var m_PlayerName = root.Q<Label>("health-bar__player-name");

 root.dataSource = m_HealthData;

 m_PlayerName.SetBinding("text", new DataBinding()
 {
 dataSourcePath = new PropertyPath(nameof(PlayerDataSO.PlayerName)),
 bindingMode = BindingMode.ToTarget
 });
 }
}

https://unity.com/releases/lts

© 2025 Unity Technologies 83 of 147 | unity.com

| Text | Data binding | Localization |

The HealthBar script handles this in its Initialize method, which is called from the main
controller script in OnEnable .

 — First, we query for the health-bar__player-name element. Then, we assign the
ScriptableObject data as a source.

 — The SetBinding method then binds the text property to a new DataBinding instance
and sets the dataSourcePath and bindingMode parameters.

All four bindings in the above table are set up similarly. Use the ScriptableObject slider or
custom Editor property drawer to adjust the CurrentHealth. The demo includes play test
controls (+, -, Select) to increment, decrement, or select the ScriptableObject. The health bar
updates dynamically as the changes occur.

The HealthBar syncs to the CurrentHealth value.

https://unity.com/releases/lts

© 2025 Unity Technologies 84 of 147 | unity.com

| Text | Data binding | Localization |

Unresolved data bindings workflow
Unity 6 also supports a hybrid data binding workflow that blends UI Builder’s visual setup
with the flexibility of scripting.

Instead of hard-coding data sources in UXML, you can specify a Data Source Type and
leave the actual data source unresolved. UI Builder marks these incomplete bindings with
a hollow icon. This means that the paths and types are set but the data source is not yet
assigned.

Unresolved data binding shows a hollow icon.

At runtime, you can assign the data source with just one line of code. For example:

Here, assigning the myNewDataSource to myElement resolves the placeholder bindings
defined in UXML, allowing the UI to update automatically. This eliminates repetitive
SetBinding calls and keeps the UXML flexible.

The Dragon Crashers sample, for example, predefines data paths in UXML while setting the
actual data sources at runtime.

Clicking the next and last buttons in the UI sets the currently selected character as the data
source. Changing the data source requires no modification to the UXML.

The unresolved bindings show the correct character stats once the new data source is set.

myElement.dataSource = myNewDataSource;

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding-define-data-source.html

© 2025 Unity Technologies 85 of 147 | unity.com

| Text | Data binding | Localization |

Updating the data source in the Dragon Crashers sample

Note: If the UXML file sets a specific data source (e.g., data-source="PlayerDataSO.
asset"), the binding becomes fixed and cannot be altered at runtime. To enable runtime
changes, leave the data-source attribute empty or use a data-source-type instead.

See Binding a list to a ListView for an example of this hybrid data binding workflow.

https://unity.com/releases/lts

© 2025 Unity Technologies 86 of 147 | unity.com

| Text | Data binding | Localization |

Type converters
Type converters in Unity 6 allow you to transform raw data into more user-friendly formats
for display in your UI. They act as intermediaries between your data source and the UI,
transforming the data into a more intuitive format for the user.

For example, type converters can convert radians into degrees or raw health values into colors
for a health bar. This allows the UI to present information in a format that’s clear and easy to
understand. Type converters do this without requiring a lot of manual transformation logic.

Unity 6 supports two categories of type of converters:

 — Global converters: Apply these to any bindings that need a specific type conversion.
For example, global converters can turn any float health percentage into a color value
or convert Color objects into StyleColor types, ensuring consistent behavior
across your UI.

 — Per-binding converters: Apply these to specific data bindings for more granular control.

Example: Converting a value to a color

A health bar that changes color based on the player’s health illustrates the use of a data
binding with a type converter. By mapping the player’s current health to a color gradient (e.g.
green for high health, yellow for low health, and red for critical health), players can quickly
gauge their status during gameplay.

You can see this in action in the DataBindingDemo scene within the QuizU project.

HealthDataConverter setup

In the DataBindingDemo scene, the HealthBarWithConverter class uses some
functionality from a static HealthDataConverter to register a few DataConverters:

 — The health percentage drives a color gradient for a health bar, transitioning from green
(full health) to red (critical health).

 — A label can represent the numerical value as a percentage string (e.g., "75%").

 — Another label can map the same health percentage to a status label like "Full," "Mid," or
"Critical."

https://unity.com/releases/lts

© 2025 Unity Technologies 87 of 147 | unity.com

| Text | Data binding | Localization |

Here’s a snippet of the HealthDataConverter class:

public static class HealthDataConverter
{
 static readonly Color s_FullColor = new Color(0.2f, 1f, 0.2f);
 static readonly Color s_MidColor = Color.yellow;
 static readonly Color s_LowColor = new Color(1f, 0.3f, 0f);
 static readonly Color s_CriticalColor = Color.red;

 public static void Register()
 {
 RegisterHealthColorConverter();
 // …
 }

 static void RegisterHealthColorConverter()
 {
 var colorConverter = new ConverterGroup("HealthColor");

 colorConverter.AddConverter((ref float healthPercentage) =>
 {
 if (healthPercentage > 0.5f)
 {
 return new StyleColor(Color.Lerp(s_MidColor, s_FullColor,
(healthPercentage - 0.5f) * 2f));
 }
 else if (healthPercentage > 0.25f)
 {
 return new StyleColor(Color.Lerp(s_LowColor, s_MidColor,
(healthPercentage - 0.25f) * 4f));
 }
 else
 {
 return new StyleColor(Color.Lerp(s_CriticalColor, s_LowColor,
healthPercentage * 4f));
 }
 });

 ConverterGroups.RegisterConverterGroup(colorConverter);
 }

 // …

}

https://unity.com/releases/lts

© 2025 Unity Technologies 88 of 147 | unity.com

| Text | Data binding | Localization |

The above logic creates a HealthColor ConverterGroup, which transforms a float health
percentage (from 0 to 1) into a matching StyleColor value between red (low health) and
green (full health).

The HealthDataConverter class also includes converters for the two labels. These can
represent the HealthPercentage property of the PlayerDataSO as formatted string
values. Although you can bundle multiple converters into a single ConverterGroup, this demo
separates them into distinct ConverterGroups for readability.

Use type converters in the UI Builder.

Using the HeathBarWithConverter

Note that the HealthDataConverter class contains the actual functionality. The
HealthBarWithConverter is simply:

public class HealthBarWithConverter : HealthBar
{
#if UNITY_EDITOR
 [UnityEditor.InitializeOnLoadMethod]
 #else
 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.SubsystemRegistration)]
 #endif
 public static void RegisterConverters()
 {
 HealthDataConverter.Register();
 }
}

https://unity.com/releases/lts

© 2025 Unity Technologies 89 of 147 | unity.com

| Text | Data binding | Localization |

Note the following:

 — UnityEditor.InitializeOnLoadMethod ensures the ConverterGroup is registered
and available for the UI Builder, allowing you to see and apply it in the Editor.

 — RuntimeInitializeOnLoadMethod ensures the ConverterGroup is available during
runtime when the game is running.

The #if UNITY_EDITOR preprocessor directive ensures the appropriate method runs,
depending on whether the code executes in the Editor or during gameplay.

Applying DataConverters in UI Builder

Once registered, this DataConverter can be applied to any binding that needs this conversion.
To use it directly in the UI Builder:

1 . Open your UXML file and select the progress bar element. In the QuizU project, you can
open the RuntimeDataBinding .uxml file to see how it’s set up.

2 . Set the Data Source to your PlayerDataSO ScriptableObject.

3 . Bind the progress bar’s backgroundColor style property to the HealthPercentage data
path.

4 . Use the HealthColor ConverterGroup to transform the health percentage value into a
color background for the progress bar.

Set up the data binding for the health bar.

5 . Dragging the CurrentHealth value of the PlayerDataSO ScriptableObject now updates
the health bar color. The gradient smoothly lerps from green (full health) to yellow
(medium), orange (low), and red (critical).

https://unity.com/releases/lts

© 2025 Unity Technologies 90 of 147 | unity.com

| Text | Data binding | Localization |

This global DataConverter is now
available anywhere in your application
where you need to convert a float
value to this color gradient.

The HealthColor converter changes the progress bar color.

Best practices
When working with type converters, keep these tips in mind:

 — Minimize allocations: Keep conversion delegates lightweight, especially for frequent
operations, to avoid unnecessary performance overhead.

 — Keep it simple: Write simple, focused converters for quick transformations. Avoid
embedding complex or resource-intensive logic.

 — Integrate conversion into the data source: Handle basic conversions in the data source
itself (e.g., pre-format health percentages in a ScriptableObject property). Reserve
DataConverters for conversions specific to UI bindings.

https://unity.com/releases/lts

© 2025 Unity Technologies 91 of 147 | unity.com

| Text | Data binding | Localization |

Example: Binding a list to a ListView
Depending on your game UI, your application may need to display different collections of data
on-screen – an inventory of collected items, a quest log tracking objectives, a leaderboard
ranking players, etc.

A ListView offers a clean, scrollable interface that makes it easy to manage and present this
information. Unity 6 streamlines this process with runtime data binding, eliminating the need
for manual updates or custom scripts to refresh the UI when data changes.

In earlier versions of Unity, setting up a ListView required writing custom code to populate the
list and handle updates as data changed. With Unity 6, a ListView can bind directly to a data
source, automatically tracking and reflecting changes in the UI.

The demo scene includes a simple ListView that binds to a list of PlayerDataSO
ScriptableObjects. This lets us create an interface similar to one found in a multiplayer game
lobby or high-score leaderboard.

The TeamList binds a list with a ListView.

With runtime data binding, you can link a ListView directly to a data source, such as a
ScriptableObject. The ListView automatically tracks changes to the data, streamlining setup
and maintenance.

Data binding a ListView to a list involves setting up some unresolved bindings and then
completing the data binding at runtime.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.ui@1.0/api/UnityEngine.UIElements.ListView.html

© 2025 Unity Technologies 92 of 147 | unity.com

| Text | Data binding | Localization |

Setting up the list and templates

Follow these steps to prepare your ListView for data binding:

1 . Define a data source: Your ListView needs a list of data. In this demo, a TeamSO
ScriptableObject holds a list of PlayerDataSO objects. Each item in that list corresponds
to a row in the ListView.

2 . Create a UXML item template: In the UI Builder, design a UXML template (a
VisualTreeAsset) that defines what a single list item looks like. For example, the
team-list-item template in the demo includes a player’s name and some Texture2D
properties. Instead of directly referencing a data source, set a Data Source Type and
Data Source Path in UI Builder. This leaves the binding unresolved, ready to be completed
later at runtime.

Design a visual tree asset in UI Builder.

3 . Add the ListView to the main user interface: In another UXML file, add a ListView
element that will display the entire list of players. Assign your item template as the
ListView’s Item Template. At this point, the ListView knows how each row should look,
but it doesn’t know which specific data source to use yet.

Add the template to the ListView.

https://unity.com/releases/lts

© 2025 Unity Technologies 93 of 147 | unity.com

| Text | Data binding | Localization |

The demo scene’s ListView uses only a few basic settings (shown above). For more advanced
features, consult the official ListView documentation.

Completing the binding at runtime

At runtime, a simple TeamList script finalizes the binding by providing the actual data source.
These lines complete the previously unresolved bindings:

// Set the data source
m_ListView.dataSource = m_TeamData;

// Bind the "itemsSource" to the Players list
m_ListView.SetBinding("itemsSource", new DataBinding
{
 dataSourcePath = new PropertyPath("Players")
});

Here, m_TeamData (an instance of TeamSO) is assigned to the ListView. Calling SetBinding
once associates the Players property with the itemsSource. This allows the ListView to
populate the rows of the UI.

Because these bindings remain unresolved in the UXML until runtime, you don’t need to
individually connect each list element. UI Toolkit resolves these bindings on its own and fills in
the data for every list item.

Any changes to the list in the data source (e.g., adding, removing, or rearranging players)
immediately appear in the UI without requiring further scripting.

The UI reflects changes to the Player list.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.ui@1.0/api/UnityEngine.UIElements.ListView.html

© 2025 Unity Technologies 94 of 147 | unity.com

| Text | Data binding | Localization |

Remember that this hybrid approach to data binding can reduce a lot of repetitive boilerplate
code. By setting up placeholder data paths in UXML, you can postpone assigning the actual
data source until runtime.

If you change the data model, there’s no need to rewrite your entire binding logic. A single
update at startup can rewire the UI to the new source.

For a comprehensive look at binding a ListView to a list, see this documentation page .

Optimizing data binding
Efficient binding can help you maintain a performant UI. Redundant or excessive bindings
can overload the system, leading to unnecessary updates and reduced performance. This is
especially important if your interface is complex or resource-intensive.

By default, the runtime binding system updates UI elements every frame. This is responsive
for a small application but can become a performance bottleneck with more bindings.

This section covers methods to improve data binding efficiency for larger projects.

Managing value types

If your data source uses value types (e.g., int, float, struct), watch out for boxing costs.
Because the dataSource property operates as an object, frequent conversions from value
types can add overhead.

To reduce this, minimize unnecessary bindings or redundant updates when working with
value-type properties.

Minimizing overhead

Start by identifying bindings that update the same elements multiple times or track data
that rarely changes. Consolidate or remove these bindings to reduce unnecessary work. Use
flat, simple data structures instead of complex hierarchies when possible. This can avoid
performance bottlenecks caused by frequent data lookups.

Consider precomputing or caching values that require heavy calculations. Binding to these
precomputed values reduces the computational load on the binding system and avoids
repeated recalculations.

Make sure that your bindings are on elements that need frequent updates. For elements that
don’t need constant synchronization, remove unnecessary bindings and instead assign values
directly or update them only when triggered by events.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.ui@1.0/api/UnityEngine.UIElements.ListView.html

© 2025 Unity Technologies 95 of 147 | unity.com

| Text | Data binding | Localization |

Using update triggers

Bindings refresh based on update triggers, which determine how often the UI synchronizes
with the data source. This allows you to balance performance with responsiveness. These
options determines how often the bindings update:

 — Every frame: This updates continuously. Use this for elements that require constant
updates, like the example health bars.

 — On change detection: This updates when the data source changes, or every frame if
detection isn’t possible. For instance, use this for stats panels or inventory lists that
depend on observable data.

 — When marked as dirty: In scenarios where updates are infrequent, explicitly marking
bindings as dirty with MarkDirty avoids unnecessary refresh cycles. This update
triggers works for elements like settings menus that change only in specific contexts.

By matching update triggers to the needs of each UI element, you can balance responsiveness
with efficiency.

Versioning and change tracking

To reduce unnecessary updates, you can integrate versioning and change tracking into your
data sources.

Two interfaces can help make your data binding more efficient:

 — IDataSourceViewHashProvider: This tracks overall changes using a version hash,
triggering updates only when the data source changes. This is useful for static or semi-
static data, where updates are infrequent.

 — INotifyBindablePropertyChanged: This tracks changes at the property level, ensuring
that affected bindings are refreshed. This offers granular control.

Add these interfaces to the data source. They can be used independently or together for
greater control over updates. See this documentation page for usage and best practices.

Tip: More UI Toolkit optimization tips

In this Unite 2024 talk on UI Toolkit optimizations, you’ll learn about topics like the
chained draw-calls implementation and the implications of buffer sizes, dynamic atlasing
best practices, and dealing with limitations like custom shaders and 3D UI.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding-mode-update.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.IDataSourceViewHashProvider.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.INotifyBindablePropertyChanged.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding-define-data-source.html
https://www.youtube.com/watch?v=bECmaYIvZJg
https://www.youtube.com/watch?v=bECmaYIvZJg

© 2025 Unity Technologies 96 of 147 | unity.com

Localization

Localizing your UI can help your game connect with a global audience, making your application
feel intuitive and familiar in any language.

Unity 6 simplifies this process by directly integrating the Localization package with UI Toolkit.
This integration lets you provide region-specific content for your players, no matter where
they might be.

Key to Unity localization is the Locale class, which represents a specific language and
manages region-specific details, such as currency and number formatting.

Let’s explore a simple example of how you can set up localization in UI Toolkit. With this setup,
your app can dynamically adjust its content based on a selected Locale.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Locale.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEngine.Localization.Locale.html

© 2025 Unity Technologies 97 of 147 | unity.com

| Data binding | Localization | Custom controls |

An example of Spanish localization in UI Toolkit Sample - Dragon Crashers

How it works
Here are a few of its key features of the Localization package:

 — String Localization: The LocalizedString class lets you manage strings that
automatically update when switching Locales at runtime. With Smart Strings, you can
add placeholders, handle plurals, and adjust for other language-specific nuances.

 — Asset localization: Swap textures and other assets based on the Locale, allowing you to
create region-specific content beyond simple text.

 — Data Binding: The Localization package integrates with UI Toolkit’s runtime data binding,
linking UI elements to String and Asset Tables. Changes in data, Locale, or load state
trigger automatic updates.

 — String and Asset Table management: String and Asset Tables store key-value pairs
for translating text or other assets into Locale-specific equivalents. A centralized UI
interface provides a high-level overview of all localized text and assets in your project.

 — Locale Switching: Switch languages in real-time without restarting the application. At
runtime, select a new Locale, and the UI updates immediately to reflect the change.

Remember to take advantage of UI Toolkit’s FlexBox containers and auto-sizing elements
when adapting to changes in text length and formatting. This can make your UIs more
responsive when supporting different languages.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEngine.Localization.LocalizedString.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/SmartStrings.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/LocalizationTablesWindow.html

© 2025 Unity Technologies 98 of 147 | unity.com

| Data binding | Localization | Custom controls |

Localization setup
To start using Unity’s Localization package with UI Toolkit, follow these basic steps to set up
localized content and bind it to UI elements in UI Builder.

Install the Localization package from the Package Manager.

1 . Set Up Localization Settings: Install the Localization package from the Package Manager,
then go to Project Settings > Localization to create and configure your Localization
Settings asset, which will manage all localized assets.

Create and configure your Localization Settings in the Project Settings.

https://unity.com/releases/lts

© 2025 Unity Technologies 99 of 147 | unity.com

| Data binding | Localization | Custom controls |

Add a Locale.

3 . Create String and Asset Tables: Use String Tables to store text entries for each Locale.
Add entries for UI text elements like labels, buttons, and dropdown options.

Create String Tables and Asset Tables.

2 . Create Locales: Define the
languages and regions your
project will support using
the Locale Generator. This
creates assets for each
Locale, identified by a unique
two-letter code (e.g., "en"
for English, "fr" for French,
"es" for Spanish, etc.). Set a
default Locale to use when
the application starts.

https://unity.com/releases/lts

© 2025 Unity Technologies 100 of 147 | unity.com

| Data binding | Localization | Custom controls |

4 . In the Localization Tables window (Window > Asset Management > Localization Tables),
add key-value pairs for each text element in the UI. Each key represents a specific text
item (like a label or button), and each value is the translated text for that item in each
Locale.

5 . Store region-specific assets like images or GameObjects in Asset Tables. For instance,
you might add sprites or textures for icons representing each Locale. For each key, link
assets that are specific to each Locale to reflect regional or cultural preferences.

Key-value pairs represent each element to localize.

6 . Define a UXML interface: Use UI Builder to create a UXML file with elements such
as Buttons, DropdownFields, and Labels. In the demo scene, this UXML shows a few
elements ready to be localized. For text fields, use an entry from a String Table. For non-
text fields, such as textures, use an Asset Table.

Demo scene
You can find a sample implementation of Localization in the LocalizationDemo scene
included in the QuizU project.

To access it, navigate at runtime to the main menu and select Demos > Localization, or
load the LocalizationDemo scene directly after disabling the bootloader (Quiz > Don’t
Load Bootstrap Scene on Play).

https://unity.com/releases/lts

© 2025 Unity Technologies 101 of 147 | unity.com

| Data binding | Localization | Custom controls |

Add data bindings in the UI Builder to localized strings and assets.

7 . Bind data to UI Elements in UI Builder: This is where the power of UI Toolkit’s runtime
data binding system comes into play. In UI Builder, select the element you want to
localize. Open the Inspector panel and select Add Binding in the content field (e.g., text
for Labels or backgroundImage for images).

Choose LocalizedString or other localized asset as the binding type, and link to the
corresponding entry in your String or Asset Table. Add more entries to the tables as you
need to localize more elements.

Use the Game View Locale drop-down to preview the localization.

https://unity.com/releases/lts

© 2025 Unity Technologies 102 of 147 | unity.com

| Data binding | Localization | Custom controls |

8 . To test, use the Game View Locale drop-down to preview the UI in different languages,
ensuring elements display correctly in each Locale.

And that’s the basic setup! In this example, the text properties of the buttons and labels can
now switch to any other configured language. To localize the entire UI, make sure every piece
of text has its own entry in the String Table.

The Localization package is flexible in how you organize content. Use multiple String Tables to
break a larger project into more manageable sections or to categorize different entries. Then,
use Asset Tables to help localize your textures and other non-text assets.

After adding localization bindings in UI Builder, your UXML file incorporates the localization
directly into the UI elements. This results in a code block like this, where each localized
property is tied to a specific entry in your String or Asset Table:

<Bindings>
 <UnityEngine.Localization.LocalizedString property="text"
table="GUID:6aaa262cde38a4024bc3fc7f5ce6d50d"
entry="Id(104135776002048)" />
</Bindings>

This snippet of UXML establishes a data binding that links the UI element’s text property to an entry in the String or Asset Tables.

Every time you update the localization tables, the linked UI elements automatically reflect the
latest localized content.

Note: While UI Builder simplifies the creation of data bindings, experienced users may also
edit the UXML directly for greater control over the localized content.

Using the Localizatizon API
The Game View Locale drop-down in the Editor is helpful for testing different languages, but it
won’t be available in a build of your application. To allow users to change languages in the final
application, you’ll need to create your own UI for Locale switching.

Selecting a Locale

If you have the two-letter identifier of your Locale, you can set the active Locale in the
LocalizationSettings. Then, connect this action to your buttons using the clicked
manipulator on each button or the RegisterCallback<ClickEvent> method.

https://unity.com/releases/lts

© 2025 Unity Technologies 103 of 147 | unity.com

| Data binding | Localization | Custom controls |

The LocalizationDemo script in the sample project shows one implementation:

void SelectLocale(string localeCode)
{
 Locale locale = LocalizationSettings.AvailableLocales.GetLocale(localeCode);
 LocalizationSettings.SelectedLocale = locale;
}

void RegisterCallbacks()
{
 m_ButtonDanish.clicked += () => SelectLocale("da");
 m_ButtonEnglish.clicked += () => SelectLocale("en");
 m_ButtonSpanish.clicked += () => SelectLocale("es");
 m_ButtonFrench.clicked += () => SelectLocale("fr");
}

Each button can then change the locale to its indicated locale. Now when you press the button
named English, French, Spanish, or Danish, the text within the UI changes at runtime.

The buttons can change Locales.

Using SetBinding

Using the UI Builder to set up data bindings is interactive and easy. Sometimes, however,
you’ll need to set up binding via a script at runtime. For example, you might create UI elements
dynamically, or you might have bindings that rely on data only available during gameplay.

https://unity.com/releases/lts

© 2025 Unity Technologies 104 of 147 | unity.com

| Data binding | Localization | Custom controls |

To set up a data binding in C#, use the SetBinding method on the visual element. Here’s how
to bind the text property of a Label to a LocalizedString entry in the StringTable:

using UnityEngine;
using UnityEngine.Localization;
using UnityEngine.UIElements;

public class LocalizationDemo : MonoBehaviour
{
 // Set in Inspector
 [SerializeField] LocalizedString m_LocalizedText;

 Label m_LocalizedLabel;
 UIDocument m_UIDocument;

 void Start()
 {
 m_LocalizedLabel = m_UIDocument.rootVisualElement.Q<Label>("text__label");
 m_LocalizedLabel.SetBinding("text", m_LocalizedText);
 }
}

In this setup, m_LocalizedText is assigned in the Inspector to an entry in DemoStringTable.
This code links the text property of m_LocalizedLabel to the specified LocalizedString,
allowing it to update automatically when the Locale changes.

Listening for Locale changes

In some cases, you might need to take additional actions when the Locale changes,
beyond updating localized strings. Listen for the SelectedLocaleChanged event in the
LocalizationSettings API if you want to execute some logic every time the Locale is updated.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEngine.Localization.Settings.LocalizationSettings.SelectedLocaleChanged.html?q=SelectedLocaleChanged

© 2025 Unity Technologies 105 of 147 | unity.com

| Data binding | Localization | Custom controls |

Here’s an example:

using UnityEngine;
using UnityEngine.Localization;
using UnityEngine.Localization.Settings;

public class LocalizationExample: MonoBehaviour
{
 void OnEnable()
 {
 LocalizationSettings.SelectedLocaleChanged += OnLocaleChanged;
 }

 void OnDisable()
 {
 LocalizationSettings.SelectedLocaleChanged -= OnLocaleChanged;
 }

 void OnLocaleChanged(Locale newLocale)
 {
 // Perform actions when the Locale changes, like updating UI elements
 Debug.Log($"Locale changed to: {newLocale.Identifier.Code}");
 }
}

In this case, OnLocaleChanged is called each time the Locale changes, allowing you to update
other elements or run custom logic. Use this event handler to adjust UI properties or styles,
especially if translated text doesn’t fit well within the current layout.

Working with String Tables
Most of your localization work will involve String Tables, which handle all text-based
translations for your UI and labels.

Open the Localization Tables window (Window > Asset Management > Localization Tables)
and create or select a String Table Collection. From here, you can add new entries, define
unique keys, and input translations for each Locale.

Importing and exporting string data

CSV files
You can populate a String Table by importing data from a CSV (comma-separated-value) file,
allowing designers to set up text externally. To edit entries in plain text format, export the
existing String Table as a CSV.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/StringTables.html

© 2025 Unity Technologies 106 of 147 | unity.com

| Data binding | Localization | Custom controls |

Import or export CSV files.

After updating the file, import it back into Unity to automatically update entries based on their
keys.

Google Sheets synchronization
To connect your project to the Google Sheets service, you need to use a Sheets Service
Provider asset. This asset manages authentication and allows you to create new sheets
directly within the Editor.

To create it, navigate to Assets > Create > Localization > Google Sheets Service .

Create a Google Sheets Service and authorize.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEditor.Localization.Plugins.Google.GoogleSheetsExtension.SheetsServiceProvider.html#UnityEditor_Localization_Plugins_Google_GoogleSheetsExtension_SheetsServiceProvider
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEditor.Localization.Plugins.Google.GoogleSheetsExtension.SheetsServiceProvider.html#UnityEditor_Localization_Plugins_Google_GoogleSheetsExtension_SheetsServiceProvider

© 2025 Unity Technologies 107 of 147 | unity.com

| Data binding | Localization | Custom controls |

The Google Sheets Service has two authorization options: OAuth or API Key. Use OAuth if
you need to access private sheets for reading and writing. Use an API Key if you only need to
read from public sheets. For full read/write access, you’ll need to request authorization from
Google. For details, see the Google Sheets documentation: Authorizing Requests .

To link a String Table Collection to a Google Sheet, add a Google Sheet Extension to the
collection’s Extensions list. Select the String Table asset, then click the Add (+) button next
to Extensions in the Inspector. You can add multiple extensions to a single String Table
Collection, allowing you to assign different sheets to each Locale if needed.

To sync a String Table to a Google Sheet, connect it to a Sheets Service Provider asset. See
Sheets Service Provider for information on creating and configuring one.

Add the Google Sheets Service to the StringTable’s extensions.

Once set up, this synchronization allows designers or non-developers to make edits to your
localization entries directly in Google Sheets.

https://unity.com/releases/lts
https://developers.google.com/sheets/api/guides/authorizing
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Google-Sheets-Sheets-Service-Provider.html

© 2025 Unity Technologies 108 of 147 | unity.com

| Data binding | Localization | Custom controls |

Using Smart Strings

Smart Strings are a powerful alternative to using String.Format when generating dynamic
strings. They enable data-driven templates that support features like pluralization, conditional
formatting, lists, and other language-specific rules. These features can simplify setting up
localization.

To use Smart Strings, mark a string as smart in the Localization Tables window.

Open the Localization Tables window. Then, select Smart Format from the menu options (⁝).
Confirm that the {S} icon appears next to the entry.

Alternatively, enable Smart Strings in the Smart field within the Localized String Editor in the
Inspector.

Enable Smart Strings in either the StringTable window or Inspector.

Setting up a Smart String in your script

To manage a SmartString from a script:

 — Set Up the Localized String with Placeholders: A Smart String consists of literal text
with placeholders in {} brackets, similar to String.Format but with added flexibility. In
your String Table, create an entry with placeholders, like "Welcome, {0}!". Here, {0}
is a placeholder for runtime data.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/SmartStrings.html
https://docs.microsoft.com/en-us/dotnet/api/system.string.format
https://docs.microsoft.com/en-us/dotnet/api/system.string.format

© 2025 Unity Technologies 109 of 147 | unity.com

| Data binding | Localization | Custom controls |

// Replaces placeholder with player name (e.g.,
// "Welcome, {0}!" => "Welcome, Player One!")

m_PlaceholderLabel = root.Q<Label>("welcome__label");

m_PlaceholderMessage.Arguments = new object[] { m_PlayerName };

m_PlaceholderLabel.SetBinding("text", m_PlaceholderMessage);

 — Use a LocalizedString and Arguments: In your script, create a LocalizedString for this
entry and specify the runtime data using the Arguments property. For example, this
snippet from the SmartStringDemo shows how to replace a single placeholder:

This binds the LocalizedString to the label’s text property and inserts the player’s name at
runtime. The original entry of "Welcome, {0}!" might appear as "Welcome, Player
One!" onscreen.

Understanding placeholders

Placeholders in Smart Strings are not limited to simple {0} substitutions. They can be more
complex and are designed to handle advanced scenarios. In fact, a placeholder can consist of
multiple parts, including:

 — Selector: This determines which data to use (e.g., {player.name} selects the name
property of a player object).

 — Formatter Name: This defines the formatter to apply (e.g., plural for pluralization).

 — Formatter Options: This customizes the formatter’s behavior (e.g., specifying singular
and plural forms).

 — Format: This determines how the output is presented (e.g., converting a number to a
plural word, formatting a date or time, or selecting a phrase based on input).

A placeholder can consist of several parts.

https://unity.com/releases/lts

© 2025 Unity Technologies 110 of 147 | unity.com

| Data binding | Localization | Custom controls |

Selectors are flexible and can retrieve data dynamically at runtime. They can query properties
or fields of objects at runtime. For example, using the selector {gameObject.name} can
retrieve the name property of a GameObject, while a selector of {slider.value} retrieves
the value property of a slider.

Formatters convert the retrieved data into the final string format. Formatters allow you to
format dates, times, lists, plural forms, or even apply conditional logic.

After retrieving data, formatters transform it into the final output. Each formatter defines its
own options and format rules. The sample project includes a couple formatters:

 — Choose Formatter:

{0:choose(1|2|3):morning|afternoon|evening|anytime} selects "morning,"
"afternoon," or "evening" based on input.

 — Plural Formatter:

{0:plural:one item|{} items} adjusts text for singular or plural forms.

Modify the values in the Inspector and enter Play mode to see the resulting text.

Smart Strings are an alternative to String.Format .

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/SmartStrings.html#selector
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/SmartStrings.html#formatters

© 2025 Unity Technologies 111 of 147 | unity.com

| Data binding | Localization | Custom controls |

Smart Strings provide a number of built-in formatters that enhance localization, allowing you
to adapt text based on game state or context:

 — Choose Formatter: Allows you to apply conditional logic based on numeric input

 — Plural Formatter: Automatically applies pluralization rules based on quantity

 — Time Formatter: Displays date and time

 — Conditional Formatter: For if/else-like logic

 — List Formatter: Formats arrays or lists

 — Is Match Formatter: For conditional text display based on regex patterns

You can also use the API to create a custom formatter. For additional information about
formatters, see the Smart String documentation .

String pre-processing
In some cases, directly binding UI elements to LocalizedString may not be convenient. For
example, certain elements might need additional formatting or modification before displaying
the localized text. If that’s the case, you can pre-process the LocalizedString before it appears
in the UI.

GetLocalizedString

The GetLocalizedString method can help here; it converts the LocalizedString into a
standard string at runtime. This allows you to apply custom formatting, such as adding prefixes
or combining strings, before exposing the processed string to the UI. Here’s an example:

[SerializeField] int m_PlayerLevel = 1;

LocalizedString m_LevelMessage = new LocalizedString("My_Table", "My_Entry");

// A property that retrieves the localized string and replaces the placeholder
{0} with the player’s level

[CreateProperty] public string LevelMessage =>
m_LevelMessage.GetLocalizedString(m_PlayerLevel);

In this example, the LevelMessage property replaces the {0} placeholder in the Localized
String with the player’s current level. The [CreateProperty] attribute allows this property to
be used with runtime data binding, making it easy to bind directly to UI elements.

For simple use cases, you can define properties like the above LevelMessage to handle
formatting logic, eliminating the need for additional event handlers.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Choose-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Plural-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Time-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Conditional-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Conditional-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/List-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/IsMatch-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/Creating-a-Custom-Formatter.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/manual/Smart/SmartStrings.html
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEngine.Localization.LocalizedString.GetLocalizedString.html#UnityEngine_Localization_LocalizedString_GetLocalizedString

© 2025 Unity Technologies 112 of 147 | unity.com

| Data binding | Localization | Custom controls |

Using the StringChanged event

A LocalizedString’s StringChanged event is useful for this kind of pre-processing. It triggers
every time the LocalizedString updates (i.e. when the Locale changes), allowing you to modify
the text before rendering it.

To use it, attach a handler to the StringChanged event. Here is a code snippet that creates a
new LocalizedString from the My_Table StringTable using the My_Entry entry:

LocalizedString localizedString = new LocalizedString
 ("My_Table", "My_Entry");

localizedString.StringChanged += OnLocalizedStringChanged;

Note how the OnLocalizedStringChanged event handler handles the conversion to a
standard string automatically. Then, you can apply custom logic to modify the text before
displaying it:

void OnLocalizedStringChanged(string value)
{
 // Example: Add a prefix based on certain conditions
 string processedString = $"[Prefix] {value}";

 // Update the UI element with the processed string
 m_TextLabel.text = processedString;
}

Dynamic UI controls

Of course, pre-processing LocalizedStrings isn’t limited to basic text fields. It’s especially
useful when working with complex properties or UI structures where a Smart String alone can’t
handle the required logic or formatting.

For example, a DropdownField has a choices property consisting of a list of strings. Pre-
processing can help localize this list of options dynamically, ensuring it reflects the active
Locale.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.localization@1.5/api/UnityEngine.Localization.LocalizedString.StringChanged.html

© 2025 Unity Technologies 113 of 147 | unity.com

| Data binding | Localization | Custom controls |

Here, the PreprocessDemo script localizes the DropdownField choices, updating
them whenever the player selects a new language. Again, the logic to rebuild the list
runs in response to the StringChanged event.

Pre-process a LocalizedString using the StringChanged event.

Here’s an excerpt from the PreprocessDemo script that shows how this works:

[SerializeField] LocalizedString m_Choice1LocalizedString;
[SerializeField] LocalizedString m_Choice2LocalizedString;
[SerializeField] LocalizedString m_Choice3LocalizedString;
[SerializeField] LocalizedString m_Choice4LocalizedString;

public void Initialize(VisualElement root)
{

 m_DropdownField = root.Q<DropdownField>("dropdown__field");

 m_Choice1LocalizedString.StringChanged += UpdateDropdownChoices;
 m_Choice2LocalizedString.StringChanged += UpdateDropdownChoices;

 // … register other choices

 // Initial population
 UpdateDropdownChoices(null);
}

https://unity.com/releases/lts

© 2025 Unity Technologies 114 of 147 | unity.com

| Data binding | Localization | Custom controls |

When the StringChanged event triggers, the drop-down’s options are rebuilt, and the
current selection is preserved:

void UpdateDropdownChoices(string value)
{
 if (m_DropdownField == null)
 return;

 // Save the current selection
 int selection = m_DropdownField.index;

 // Remove previous choices
 m_DropdownField.choices.Clear();

 // Add current localized values

 m_DropdownField.choices.Add(m_Choice1LocalizedString.GetLocalizedString());

 m_DropdownField.choices.Add(m_Choice2LocalizedString.GetLocalizedString());

 // … Add other choices

 // Restore selected index and value
 m_DropdownField.index = selection;

 m_DropdownField.SetValueWithoutNotify(m_DropdownField.choices[selection]);
}

Using SetValueWithoutNotify updates the drop-down’s display without triggering a
ChangeEvent. This prevents recursive updates and preserves the user’s selection when the
drop-down options change.

In the sample project, the DropdownField dynamically updates its choices based on
LocalizedString values. Each time a new Locale is selected, the updated language propagates
to the dropdown options.

Pre-processing can then be an extra technique to help you create localized, context-aware
UIs. While Smart Strings handle many localization tasks like placeholders and pluralization,
some extra pre-processing can offer extra flexibility and formatting that Smart Strings alone
can’t handle.

https://unity.com/releases/lts

© 2025 Unity Technologies 115 of 147 | unity.com

| Data binding | Localization | Custom controls |

Localizing assets
Though strings weigh heavily in localization, you may need to localize assets in addition to
text. For example, the sample project includes icons to stand in for the differently configured
Locales.

The flag and "Hello, world" icons represent each Locale.

Setting up asset localization

Asset localization works similarly to string localization. Just as you use String Tables for
localized text, you use Asset Tables for localized assets. Both tables share a similar workflow,
including adding entries and referencing them in your scripts or UXML files.

Localized assets can be bound to UI elements either through the UI Builder or C# scripting.
For example, you can bind a visual element’s style.backgroundImage property to a localized
sprite or texture.

https://unity.com/releases/lts

© 2025 Unity Technologies 116 of 147 | unity.com

| Data binding | Localization | Custom controls |

In the sample project:

 — One element has its data binding defined in UXML via the UI Builder.

 — Another element’s binding is set up in a C# script.

Now, when selecting a Locale at runtime, the icons update along with the text labels, providing
a quick visual indicator of the active Locale.

The LocalizedTextures update with each Locale.

https://unity.com/releases/lts

© 2025 Unity Technologies 117 of 147 | unity.com

| Data binding | Localization | Custom controls |

Asset Tables versus String Tables

The process of working with Asset Tables mirrors that of String Tables. Both allow you to
define entries by Locale and retrieve them at runtime. Note these differences:

 — Event Handling: Asset Tables use an AssetChanged event to notify changes in localized
assets instead of the StringChanged event for strings.

 — Binding Methods: Both string and asset bindings work with SetBinding, but the bound
properties (e.g., text for strings vs. style.backgroundImage for textures) depend on the
asset type.

This snippet shows how the demo example retrieves the LocalizedTexture from the Asset
Table by name and then binds to the style.backgroundImage property:

m_LocalizedTexture = new LocalizedTexture()
{
 TableReference = "DemoAssetTable",
 TableEntryReference = "HelloWorld_Icon"
};

m_IconElement = root.Q<VisualElement>("icon__hello-world");
m_IconElement.SetBinding("style.backgroundImage", m_LocalizedTexture);

 Common localized assets in UI Toolkit

Localized assets come in different forms. Here are a few that you might encounter when
working with UI Toolkit:

 — Localized textures: Ideal for icons, backgrounds, and other decorative visuals, these
can be bound directly to visual element properties, such as style.backgroundImage .

 — Localized sprites: These are less common but useful for custom components or sprite-
based visuals.

 — Localized fonts: These allow for switching fonts to support specific scripts or
typographic styles required by different languages.

 — Localized objects: These are useful for referencing complex resources, such as prefabs
or data-driven assets, that need to vary based on the Locale.

By leveraging these assets with Asset Tables, you can ensure that your UI dynamically adapts
not only its text but also its visuals to align with the active Locale.

https://unity.com/releases/lts

© 2025 Unity Technologies 118 of 147 | unity.com

| Data binding | Localization | Custom controls |

Localization in the Dragon Crashers sample
The UI Toolkit Sample – Dragon Crashers demo includes several localization techniques in
action. In the Settings view, you can use the drop-down menu to select between one of the
supported languages. When a new language is chosen, the LocalizationSettings system
detects the change and updates the UI in real time.

Select a Locale from the Language drop-down menu.

Here are a few things you can check as you explore the project on your own:

 — SettingsScreen Locale selection: The Settings screen allows users to select a Locale
via a drop-down menu. This UI listens for changes in LocalizationSettings to detect
new Locale selections, updating in real-time as the drop-down changes.

 — Data binding techniques: The UI features a combination of localization techniques.
Static properties are bound directly in UI Builder and stored in the UXML.

Meanwhile, dynamically populated fields rely on runtime scripts for data binding. The
SetBinding method connects text properties to LocalizedString objects, ensuring
the UI reflects the selected Locale.

https://unity.com/releases/lts

© 2025 Unity Technologies 119 of 147 | unity.com

| Data binding | Localization | Custom controls |

 — Pre-formatted LocalizedStrings in ScriptableObjects: Some ScriptableObject assets
contain pre-formatted LocalizedString properties. For example, in the Settings
screen, the Theme and Language drop-down fields dynamically rebuild lists from
localized values, translating the available choices.

Other elements like the RadioButtonGroup and custom SlideToggle also pre-process the
LocalizedStrings by handling the StringChanged event.

Regardless of the localization technique – whether data binding through UXML or C# scripting
– the UI responds in real-time to Locale changes.

Use the techniques in this sample project as inspiration for building localized interfaces in
your own Unity projects. By combining data binding and UI Toolkit, you can create a flexible,
multilingual UI that’s ready to welcome players from around the world.

Explore UI Toolkit Sample – Dragon Crashers for more examples of localization.

https://unity.com/releases/lts

© 2025 Unity Technologies 120 of 147 | unity.com

Custom controls

UI Toolkit offers a standard set of elements for building interfaces, but you can also create
custom controls tailored to your application’s needs.

For instance, a custom health bar could change color based on health value, animating from
green to yellow and red as health decreases. It could be repurposed across characters without
extra setup – or even used to represent other stats, like mana or power. This encapsulated
control would offer a clear visual upgrade to the slider from the UI Toolkit standard library.

Custom controls let you encapsulate functionality into standalone elements, making them
reusable across different parts of your interface. Well-designed controls are abstract, self-
contained, and support code reuse, helping simplify project maintenance. When implementing
custom controls, avoid using them with elements tied to specific components that lack
standalone functionality (e.g., game menus).

The UxmlElement attribute
To create a custom control, start by defining a new C# script that inherits from the
VisualElement class – or a subclass that closely matches what you want to create. Want a
button-like control? Just inherit from the Button class.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/UIElements.VisualElement.html
https://docs.unity3d.com/ScriptReference/UIElements.Button.html

© 2025 Unity Technologies 121 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

To make your custom control available in UXML and the UI Builder, add the UxmlElement
attribute to your class. Ensure that the custom element is defined as a public partial class:

[UxmlElement]
public partial class ExampleElement: VisualElement
{

}

Your custom control will then appear
in the Library section under the
Custom Controls (C#) category in
the UI Builder. You can then drag it
into UI Builder’s Hierarchy window.

Custom controls appear in the UI Builder Library.

https://unity.com/releases/lts

© 2025 Unity Technologies 122 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

Because visual elements aren’t GameObjects, they don’t have the usual lifecycle events like
Awake, OnEnable, OnDisable, and OnDestroy. Instead, you initialize a custom control
using its constructor.

You can also delay initialization until the custom control is added to the UI. To do this,
register a callback for an AttachToPanelEvent .

To detect that your custom control has been removed from the UI, use the
DetachFromPanelEvent callback.

[UxmlElement]
public partial class ExampleElement: VisualElement
{

 // Constructor
 public ExampleElement()
 {
 // Initialization
 }
}

The UxmlAttribute attribute
Adding the UxmlAttribute attribute to a property makes it appear in the UI Builder’s Inspector
window. This allows you to set initial values interactively. UxmlAttributes can be helpful when
working with a designer, as changes in the Inspector don’t require modifying code.

Apply the UxmlAttribute attribute to each property you want to expose. You can also
customize attribute names with the name argument.

Selecting the control in the Hierarchy will display your custom attributes in the Inspector
window, allowing you to configure them directly.

Decorator attributes can modify your custom attribute fields much like working with
MonoBehaviours. Useful decorator attributes include TextArea, Tooltip, Range, Header,
Min, Multiline, Space, and Delayed. For example, using the Range attribute adds a slider for
selecting values within a range.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/UIElements.AttachToPanelEvent.html
https://docs.unity3d.com/ScriptReference/UIElements.DetachFromPanelEvent.html

© 2025 Unity Technologies 123 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

Custom attributes appear in the UI Builder’s Inspector.

Here’s a basic example of adding the UxmlElement attribute to a custom control, which
includes two exposed properties using the UxmlAttribute attribute.

[UxmlElement]
public partial class ExampleElement: VisualElement
{
 [UxmlAttribute(name:"my-text")]
 public string myStringValue { get; set; }

 [UxmlAttribute]
 public int myIntValue { get; set; }

}

In this example, MyStringValue appears as "My Text" in the Inspector using the name
parameter. Both MyStringValue and MyIntValue are editable in the Inspector whenever an
instance of ExampleElement is selected in the Hierarchy.

https://unity.com/releases/lts

© 2025 Unity Technologies 124 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

Before Unity 6, creating custom controls required implementing UxmlTraits and
UxmlFactory classes, which handled attribute registration and object instantiation for
custom elements.

Unity 6 simplifies custom element creation by introducing UxmlElement and UxmlAttribute
attributes. These directly expose custom controls and properties in UXML and the UI
Builder. This new workflow reduces the amount of boilerplate code and makes it faster to
customize UI elements.

Example: A custom slide toggle control
An example of a simple custom
control could be a slide toggle, a
switch-like element representing a
boolean value.

This might offer a more engaging
experience than a standard toggle.
Adding extra visual feedback, such as
an animated switch, changing color,
and dynamic text, can result in a
more intuitive UI.

The custom slide toggle control represents a boolean value.

Defining the custom control

In the QuizU project, you can find a simple implementation of this custom control in the
CustomControlsDemo scene. Open the SlideToggle.cs script to see how it works (snippets
shown below).

The slide toggle custom control inherits from the most suitable base class – BaseField<bool>
in this case. The UxmlElement attribute exposes the control in UXML and the UI Builder,
making it reusable.

[UxmlElement]
public partial class SlideToggle : BaseField<bool>
{
 // …

https://unity.com/releases/lts

© 2025 Unity Technologies 125 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

 [UxmlAttribute]
 public string EnabledText { get; set; } = "Enabled";

 [UxmlAttribute]
 public string DisabledText { get; set; } = "Disabled";

 [UxmlAttribute]
 public Color EnabledBackgroundColor { get; set; } = new Color(0f, 0.5f, 0.85f,1f);

 [UxmlAttribute]
 public Color DisabledBackgroundColor { get; set; } = Color.gray;

The visual structure consists of a background (m_Input) and a knob (m_Knob), with USS
classes defining the appearance.

public SlideToggle(string label) : base(label, new VisualElement())
{
 AddToClassList(ussClassName);

 m_Input = this.Q(className: BaseField<bool>.inputUssClassName);
 m_Input.AddToClassList(inputUssClassName);
 m_Input.name = "input";

 m_Knob = new();
 m_Knob.AddToClassList(inputKnobUssClassName);
 m_Knob.name = "knob";
 m_Input.Add(m_Knob);

 labelElement.name = "label";
 labelElement.text = (value) ? "enabled" : "disabled";

Event handling is implemented to respond to clicks, key presses, and navigation events. This
allows multiple ways to change its state.

https://unity.com/releases/lts

© 2025 Unity Technologies 126 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

 // …
 RegisterCallback<ClickEvent>(evt => OnClick(evt));
 RegisterCallback<KeyDownEvent>(evt => OnKeydownEvent(evt));

 // …
}

static void OnClick(ClickEvent evt)
{
 var slideToggle = evt.currentTarget as SlideToggle;
 slideToggle.ToggleValue();
 evt.StopPropagation();
}

static void OnKeydownEvent(KeyDownEvent evt)
{
 var slideToggle = evt.currentTarget as SlideToggle;

 if (slideToggle.panel?.contextType == ContextType.Player)
 return;

 if (evt.keyCode == KeyCode.KeypadEnter || evt.keyCode == KeyCode.Return || evt.keyCode ==
KeyCode.Space)
 {
 slideToggle.ToggleValue();
 evt.StopPropagation();
 }
}

The label and background color update automatically as the user toggles the switch, providing
visual feedback.

Here we use SetValueWithoutNotify to update the visual state of the toggle without
triggering a ChangeEvent. Since this method is called internally when the value changes, the
UI updates correctly without causing an infinite loop of updates.

public override void SetValueWithoutNotify(bool newValue)
{
 base.SetValueWithoutNotify(newValue);

 m_Input.EnableInClassList(inputCheckedUssClassName, newValue);

 m_Input.style.backgroundColor = newValue ? EnabledBackgroundColor :
DisabledBackgroundColor;
 labelElement.text = (value) ? EnabledText : DisabledText;
}

https://unity.com/releases/lts

© 2025 Unity Technologies 127 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

Explore the sample implementation in the CustomControlsDemo scene. Click the element
with the mouse or press the Enter or Space key to toggle its active state. In this sample, the
label and background color update dynamically as the user toggles the slide control, with a
quick animation providing visual feedback.

Use the Inspector to set string labels and background colors that correspond to the enabled
and disabled state.

Customize the slide toggle text and colors.

Using the slide toggle

Once compiled, the slide toggle is now ready to integrate into any part of your UI. Use
the custom SlideToggle class just like any other visual element. Here’s an example
implementation that uses the SlideToggle class to mute or unmute the sound:

public class MuteAudioToggle : MonoBehaviour
{
 [SerializeField] AudioSettingsSO m_AudioSettingsSO;
 [SerializeField] UIDocument m_Document;

 void OnEnable()
 {
 var root = m_Document.rootVisualElement;
 SlideToggle slideToggle = root.Q<SlideToggle>("master-audio-toggle");

https://unity.com/releases/lts

© 2025 Unity Technologies 128 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

 if (slideToggle != null)
 {
 slideToggle.value = !m_AudioSettingsSO.IsMasterMuted;

 slideToggle.RegisterValueChangedCallback(evt => m_AudioSettingsSO.IsMasterMuted =
!evt.newValue);
 }
 }
}

In this case, the SlideToggle is part of an existing UXML document. The MonoBehaviour
locates it by name within the visual tree and then uses the RegisterValueChangedCallback
method to link the toggle state to the audio settings.

Since SlideToggle is a standalone custom element, you can use it for any kind of toggle switch
in your UI. For example in the Dragon Crashers UI Toolkit sample, a similar SlideToggle enables
and disables the fps counter.

The stylized toggle from UI Toolkit Sample – Dragon Crashers

Customize the SlideToggle to fit your application’s requirements – it’s ideal for settings like
visuals, sound, or gameplay options. Build it once, then reuse it wherever a custom switch can
enhance the user experience.

For a full implementation, refer to the SlideToggle .cs script in the QuizU project.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178?srsltid=AfmBOoqA2Wc-O_SUJZitEq3RljmBSbtkpSkVqTb-DhG9G_XsLEnXagbe#reviews
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-ui-toolkit-sample-project-231178?srsltid=AfmBOoqA2Wc-O_SUJZitEq3RljmBSbtkpSkVqTb-DhG9G_XsLEnXagbe#reviews

© 2025 Unity Technologies 129 of 147 | unity.com

| Localization | Custom controls | Optimizing performance |

Creating more custom controls
If there’s a control that’s not included in the standard UI Toolkit library, you can create your
own. Here are just a few examples to get you thinking about how you can deploy custom
controls in your own games:

 — Health bars/progress bars: Game attributes like health, mana, power, etc. can vary
widely based on gameplay, making them great candidates for custom controls. Expose
UxmlAttributes like max value, current value, and status colors to add options for color
gradients.

 — Rating stars: This control functions like a segmented progress bar, representing an
integer value (e.g. stars for completing a level). Start with a visual element with several
child elements that can switch between filled and unfilled states. Expose an int with
a max value in the Inspector and allow the user to customize the sprite images with
UxmlAttributes.

 — Tab view control: A tabbed interface is a common UI for switching between different
views or sections within the same window. Implement this by creating a custom element
with a row of tabs and a content area. Each tab can be a button-like visual element, with
options to add or remove tabs dynamically.

Remember that in most cases, you can also trigger USS transitions to add visual flair with
animations. With custom controls, your users can pinch, click, scroll, and toggle through your
unique game UIs.

We can’t wait to see what you make with them.

https://unity.com/releases/lts

© 2025 Unity Technologies 130 of 147 | unity.com

Optimizing
performance

Building a sophisticated game UI often means managing a large hierarchy of onscreen
elements. With hundreds of elements in play, this can cause technical challenges. Even subtle
inefficiencies can build up into stutters or hitches at runtime – and those can negatively impact
the player experience.

The good news is that most of these challenges can be addressed through some
optimization. While Unity 6 brings significant UI Toolkit improvements for better out-of-the-
box performance, a truly efficient user interface still takes some effort on the part of the
developer.

Much of this work often comes down to eliminating unnecessary overhead and reducing draw
calls. Let’s explore some tips for optimizing UI Toolkit in Unity 6 to help you get the most out of it.

https://unity.com/releases/lts

© 2025 Unity Technologies 131 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Update mechanisms

The visual tree includes several update mechanisms.

The visual tree contains several update mechanisms that respond to changes in styles, layout,
or content at runtime. Any one of these update mechanisms can affect performance. The
following table provides a summary of when they occur, and each one’s impact on performance.

Update mechanism Description When it happens Performance impact

Style resolution Determines the final
appearance of elements by
applying USS selectors and
styles

Triggered when classes or
styles are changed, such
as adding a style class or
modifying a color

Large or deeply nested
hierarchies make this process
expensive. Minimize frequent
changes.

Layout recalculation Adjusts the size and
position of elements to
fit correctly within the UI
hierarchy

Triggered by changes to
element size, position, or
alignment, e.g., resizing a
panel or moving elements

Frequent layout updates can
be costly. Use transforms for
animations instead of altering
positions directly.

Vertex buffer
updates

Updates geometric shapes
used to render UI elements,
like rectangles or rounded
corners

Triggered when an element’s
geometry changes, such as
adding rounded corners or
modifying borders

Updating vertex buffers is
resource-intensive. Avoid
frequent geometry changes.

Rendering state
changes

Changes rendering states
like textures and blending
modes required to draw
elements

Triggered by features like
masking or unique textures,
that disrupt batching

Excessive state changes increase
CPU overhead. Optimize by
batching and limiting unique
textures or masks.

The cost of these operations, of course, depends on how often and how extensively you
modify UI elements.

https://unity.com/releases/lts

© 2025 Unity Technologies 132 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Batching elements
When rendering a user interface, every
visual element requires instructions
to be sent to the GPU. UI Toolkit
optimizes these draw calls through
batching. This groups visual elements
with identical GPU requirements
together so they can be processed
together. Batching significantly
reduces the communication overhead
with the GPU, much like draw call
batching with GameObjects.

To batch elements efficiently they
must share the same GPU state – the
same shaders, textures, mesh data,
and other GPU-specific parameters.
For example, a sequence of text
elements using the same font and
style can be batched together.
However, inserting an image between
them requires different GPU settings.
That forces a new batch.

Breaking batches reduces performance.

Every batch "break" like this introduces a small inefficiency. To maintain high performance, it’s
essential to structure your UI to minimize these breaks.

Since every batch may issue one or more draw calls to the GPU, fewer batches generally mean
reduced overhead and better performance.

In the next sections, let’s explore techniques to optimize your UI’s batch count and achieve
consistent performance.

Vertex buffers
In UI Toolkit, vertex buffers store the geometry (vertices) needed to render your UI. When a
UIDocument creates a Panel at runtime, it pre-allocates a single vertex buffer to handle the
visual elements. Think of this buffer as a "heap allocator" for visual elements, dynamically
allocating memory as elements are added to the UI.

If the UI exceeds the capacity of the vertex buffer, additional buffers are created. This can
fragment batching, increase the number of draw calls, and ultimately reduce performance.

To address this, you can adjust the Vertex Budget in the Panel Settings to configure the
initial size of the vertex buffer. The default value is 0, allowing Unity to determine the
size automatically. However, for complex UIs, manually increasing this value can improve
performance by reducing the number of draw calls.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html

© 2025 Unity Technologies 133 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Here’s an example. This UI contains a lot of elements that can’t fit within a single vertex buffer.
The Frame Debugger shows that this results in two draw calls instead of one.

This UI requires more than one draw call.

Increasing the Vertex Budget to a value
to 20,000 vertices, for instance, may
mean that the framebuffer can fit the
UI elements into a single draw call. This
makes our example UI more efficient
by changing one setting.

Increasing the Vertex Budget may reduce draw calls.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/FrameDebugger.html

© 2025 Unity Technologies 134 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Adjusting the Vertex Budget restores the one draw call.

For complex UIs, manually increasing this value may improve performance by reducing draw
calls, but be careful of over-allocating memory. Use the Frame Debugger and Unity Profiler to
find the best balance between memory usage and number of draw calls.

Uber shader and eight-texture limit
UI Toolkit consolidates all UI rendering functionality into a single versatile "uber shader."
Rather than rely on multiple shader variants, this shader uses dynamic branching to select
the appropriate rendering path at runtime. This reduces CPU overhead by minimizing shader
switches but does add some GPU cost due to the branching logic.

One feature that makes this shader powerful is its support for up to eight textures within the
same batch. This allows elements with different textures to render in the same draw call. In
the image (in the next page?) you can see a UI consisting of eight different textures:

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/6000.0/Documentation/Manual/shader-branching-introduction.html

© 2025 Unity Technologies 135 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

This example UI contains eight textures.

The "uber shader" renders as one draw call.

https://unity.com/releases/lts

© 2025 Unity Technologies 136 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

As shown in the Frame Debugger, Unity renders an example UI using one draw call for up to
eight textures. However, exceeding the eight-texture limit forces the batching system to split
into separate batches, increasing overhead.

Here’s what happens if you exceed the eight-texture limit. The one draw call is now many
more:

Too many textures break the batches.

To mitigate this limitation, UI Toolkit provides tools to optimize texture usage. For example,
consolidating textures into atlases helps keep the number of textures within the supported
limit, preserving batch efficiency and reducing draw calls.

Dynamic texture atlases
Switching between multiple textures can force UI Toolkit to break batches, increasing draw
calls and reducing performance. A common solution to this problem is texture atlasing, which
combines smaller textures into a single larger texture.

If you’re familiar with the 2D Sprite Atlas, you already know an effective way to improve
performance. By packing multiple sprites into a sprite atlas, Unity treats them as a single
texture, reducing batch breaks and draw calls. The 2D Sprite Atlas integrates seamlessly with
UI Toolkit, making it a great choice for static or pre-defined content.
However, the 2D Sprite Atlas has limitations, such as the inability to handle runtime-generated
textures. It also requires some setup and sprite layout ahead of time, which can be time-
consuming.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/sprite/atlas/atlas-landing.html

© 2025 Unity Technologies 137 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

The Dragon Crashers sample uses a 2D Sprite Atlas.

UI Toolkit’s dynamic texture atlas
effectively merges multiple images
into one texture, reducing texture
state changes. You can configure
atlas settings in Panel Settings
and visualize the atlas layout in the
Dynamic Atlas Viewer (available in the
UI Toolkit Debugger window).

Use the Dynamic Atlas Viewer in the Frame Debugger.

Note that if your UI undergoes extensive changes (such as adding and removing many
textures over time), the atlas may become fragmented. In such cases, the ResetDynamicAtlas
API can restore the atlas to its initial state.

Remember that you can use the 2D Sprite Atlas and dynamic texture atlases side-by-side
within UI Toolkit. Sprite Atlases are ideal for static, predefined content, while dynamic atlases
excel in situations where UI content is runtime-driven.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/UIElements.RuntimePanelUtils.ResetDynamicAtlas.html
https://docs.unity3d.com/ScriptReference/UIElements.RuntimePanelUtils.ResetDynamicAtlas.html

© 2025 Unity Technologies 138 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Masking
UI Toolkit uses the stencil buffer to create masks – areas that show or hide parts of UI
elements. Since the stencil buffer is part of the GPU state, changing mask settings can force
UI Toolkit to break batches.

Be aware that hierarchically layering masked elements adds complexity, as each nested depth
requires the stencil buffer to track additional states. That increases the GPU workload.

UI Toolkit supports two types of masking:

 — Rectangular-based masking: Rectangular masks use shader-based operations,
preserving batch consistency without GPU state changes. This technique doesn’t use
the stencil buffer, so you can nest rectangular masks without depth limits.

 — Rounded Corners and Complex Masks (stencil buffer): Rounded corners and other
complex shapes require stencil buffer operations, potentially breaking batches at each
masking level. This technique supports up to seven nested levels of masking.

Rectangular versus rounded corners masks

To optimize performance for masked elements:

 — Use rectangular masks when possible to avoid stencil operations.

 — Minimize the nesting depth of masks. Keeping masks flat in the hierarchy ensures fewer
stencil recalculations.

 — When possible, use a single mask over a parent element instead of multiple masks over
child elements.

 — When multiple masking layers are unavoidable, apply the Mask Container usage hint to
optimize stencil state setup. However, use this sparingly to prevent batch breaks.

Use a Mask Container usage hint.

https://unity.com/releases/lts

© 2025 Unity Technologies 139 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Finally, verify the impact of these optimizations using the Frame Debugger to ensure efficient
rendering and batching.

Animations and transitions
While UI Toolkit’s USS transitions
offer simple property animations,
changing layout properties like size
or position can trigger expensive
layout recalculations. To optimize
animations and reduce performance
overhead, you can try several
strategies.

First, prioritize transform-based
animations over layout property
changes. Instead of animating
properties like width, height, top,
or left, use translate, scale,
or rotate transforms. These
operations are processed directly
on the GPU, avoiding the need for
layout recalculations. That can
result in smoother animations.

Animate transforms instead of layout properties.

You can also enable usage hints for any visual element that needs to be animated.

The DynamicTransform hint instructs UI Toolkit to handle position and transform updates on
the GPU, bypassing expensive vertex data recalculations.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.VisualElement-usageHints.html

© 2025 Unity Technologies 140 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

For parent containers with multiple animated children, the GroupTransform hint can
significantly reduce overhead. It applies a single transform to the parent, which the GPU
efficiently propagates to all child elements, optimizing animations for large groups.

Usage hints are available for each visual element.

Also, as a general rule, avoid switching classes for style changes in large hierarchies during
animations. Class changes can trigger extensive style recalculations, especially in complex
UI structures. Instead, update styles directly using inline property changes to minimize
computational costs.

Finally, monitor animation performance using Unity’s Frame Debugger. This tool allows you to
verify that these optimizations are working as intended.

https://unity.com/releases/lts

© 2025 Unity Technologies 141 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Runtime data binding
Runtime data binding in Unity simplifies updating UI elements by ensuring they automatically
reflect changes in the underlying data. This eliminates the need for manual updates, making UI
development more efficient and maintainable.

Some techniques can optimize this process:

Property bags and source generation

A property bag is a companion object that enables efficient traversal and manipulation of a
type’s data. By default, Unity generates property bags using reflection the first time a type is
accessed. While this reflective approach is convenient, it introduces a small runtime overhead
because it happens lazily – only when the property bag has not been registered yet.

To improve performance, you can enable code generation for property bags. Tag the type
with [Unity.Properties.GeneratePropertyBag] and ensure the assembly is also tagged
for code generation. Unity will then generate and register the property bag at compile time,
eliminating the need for reflection during runtime. For more details, refer to the Property bags
documentation.

While the GeneratePropertyBag attribute optimizes an entire type, adding the CreateProperty
attribute to individual properties allows Unity to generate binding code at compile time. This
removes the need for runtime reflection to discover and connect properties, ensuring faster
and more efficient data binding.

In many cases, using the [CreateProperty] alone is enough to optimize runtime
data binding. However, if the type requires additional optimizations, like efficient
serialization or frequent traversal of all its properties, combining [CreateProperty] with
[GeneratePropertyBag] provides the best overall performance.

Change Tracking

Runtime data binding includes two interfaces that optimize how often the data bindings can
update:

 — IDataSourceViewHashProvider: This interface provides hash-based equality checks and
ensures that the bindings are updated only when the data has changed meaningfully.

 — INotifyBindablePropertyChanged: This interface triggers updates only when specific
property values change.

These interfaces are especially valuable for complex UIs, preventing unnecessary updates
when data hasn’t meaningfully changed.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/dotnet-reflection-overhead.html
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/#source-generators
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Properties.GeneratePropertyBagAttribute.html
https://docs.unity3d.com/6000.0/Documentation/Manual/property-bags.html
https://docs.unity3d.com/6000.0/Documentation/Manual/property-bags.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Properties.CreatePropertyAttribute.html
https://docs.unity3d.com/ScriptReference/UIElements.IDataSourceViewHashProvider.html
https://docs.unity3d.com/ScriptReference/UIElements.INotifyBindablePropertyChanged.html

© 2025 Unity Technologies 142 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

[CreateAssetMenu(fileName = "CarData", menuName = "Scriptable Objects/CarData"),
GeneratePropertyBag]
public class CarData : ScriptableObject, INotifyBindablePropertyChanged,
IDataSourceViewHashProvider
{
 private long _version;

 [SerializeField, DontCreateProperty] string _name;
 public event EventHandler<BindablePropertyChangedEventArgs> propertyChanged;

 [CreateProperty]
 public string Name
 {
 get => _name;
 set
 {
 _name = value;
 _version++;
 Notify();
 }
 }

 void Notify([CallerMemberName] string property = "")
 {
 propertyChanged?.Invoke(this,
 new BindablePropertyChangedEventArgs(property));
 }

 public long GetViewHashCode() => _version;
}

This ScriptableObject shows a sample that implements these optimizations:

This example class uses [GeneratePropertyBag] to generate a property bag at compile
time and [CreateProperty] to optimize runtime data binding for the Name property.

For change tracking, it implements INotifyBindablePropertyChanged. The Notify method
triggers the propertyChanged event whenever Name is updated. This signals changes to the
UI and informs any listeners.

The class also implements IDataSourceViewHashProvider. The GetViewHashCode method
returns a versioned hash that increases each time Name changes, making it easy to detect
updates.

https://unity.com/releases/lts

© 2025 Unity Technologies 143 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Showing and hiding elements
When hiding UI elements, simply changing opacity or moving them off-screen isn’t always the
best for performance. Even when hidden, these elements still participate in layout calculations,
style updates, and data binding operations, potentially impacting performance.

UI Toolkit has a few different ways to hide an element, each with its trade-offs. See this table
for a summary.

Toggle elements using different methods.

When hiding UI elements, setting the opacity to 0 or moving them off-screen keeps them
visible to the GPU and layout system, with medium to high render costs. These methods are
useful for transitions but do not reduce memory or layout overhead.

Setting an element’s visible property to false prevents rendering but keeps it as part of the
layout. This is a compromise that temporarily hides the element while using stencil memory.

For more efficient performance, setting the style.display attribute to DisplayStyle.None
stops rendering and layout updates entirely. However, this also involves a cost to recalculate
the layout when toggling the element back on.

For elements that appear infrequently, like dialog boxes or settings panels, simply remove
them from the hierarchy with RemoveFromHierarchy to reduce ongoing overhead. Just be
aware that this incurs a higher performance spike when the element is re-added since the
layout must be fully rebuilt.

Choose methods based on how frequently elements need to be toggled. Then, balance short-
term rendering needs with long-term performance.

Overdraw
UI Toolkit renders elements with transparency, which can result in significant overdraw when
elements overlap, as each pixel may be processed multiple times. This becomes especially
costly with UI Toolkit’s uber shader, which adds complexity to each layer of overlapping
elements. Stacking multiple layers of transparent or semi-transparent elements can further
impact performance.

https://unity.com/releases/lts

© 2025 Unity Technologies 144 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

Several strategies can help mitigate the performance impact of overdraw:

 — Use style.display = DisplayStyle.None to hide elements completely instead of
style.opacity = 0, which still renders them as transparent.

 — Rather than stacking multiple elements on top of each other, remove or hide any
elements that are completely obscured.

 — When working with scrollable content, implement virtualization through ListViews.
ListViews can efficiently render only the visible elements on-screen.

 — You can also set style.overflow = Overflow.Hidden to clip content to specific
areas, reducing unnecessary rendering outside visible bounds.

Memory management
USS and UXML files reference fonts, textures, and other assets directly. Loading these files
pulls all referenced assets into memory, potentially increasing memory usage. Here you can
see the assets referenced from an example USS:

A USS references assets.

When these assets are imported, they immediately consume memory – even when not in use.
This can lead to inefficient memory use if assets aren’t managed properly.

https://unity.com/releases/lts

© 2025 Unity Technologies 145 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

To optimize asset usage, consider these strategies:

 — Use Asset Bundles or Addressables: When possible, only load the UI documents and
style sheets required for a particular scene or context. This can help keep memory
consumption in check.

 — Unload assets when not needed: If a UI element or document is no longer in use,
remove it from the hierarchy using RemoveFromHierarchy. Then, unload it using
Addressables.Release or AssetBundle.Unload(true) to free up memory for other
operations.

 — Selective loading for complex UIs: Break large UXML or USS files into smaller, modular
templates (VisualTreeAssets) and load them dynamically as needed. Only loading
resources for visible elements helps keep memory usage low.

Profiling tools
Unity provides several tools to identify and resolve UI performance issues in your application.

The Unity Profiler, UI Toolkit Debugger, and Frame Debugger are essential for diagnosing
performance issues. These tools help you analyze draw calls, batches, and expensive
operations like layout recalculations, style updates, and vertex buffer changes.

For a more granular view of UI changes, use the SetPanelChangeReceiver method from the
Panel Settings. This allows you to listen for changes to your UI and track their source. While
limited to the Editor and development builds, it is useful for isolating specific UI behaviors that
might be causing slowdowns.

Here’s an example script that logs every change to the UI:

using UnityEngine;
using UnityEngine.UIElements;

public class PanelChangeReceiver : MonoBehaviour, IDebugPanelChangeReceiver
{
 [SerializeField] PanelSettings m_PanelSettings;

 void Awake()
 {
 m_PanelSettings.SetPanelChangeReceiver(this);
 }

 void OnDestroy()
 {
 m_PanelSettings.SetPanelChangeReceiver(null);
 }

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-ui-debugger.html
https://docs.unity3d.com/Manual/FrameDebugger.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/UIElements.PanelSettings.SetPanelChangeReceiver.html

© 2025 Unity Technologies 146 of 147 | unity.com

| Custom controls | Optimizing performance | Resources for advanced developers and artists

 public void OnVisualElementChange(VisualElement element, VersionChangeType changeType)
 {
 Debug.Log($"{element.name} {changeType}");
 }
}

Simply attach this to a GameObject and set the PanelSettings in the Inspector. The
OnVisualElementChange method triggers whenever a visual element undergoes a change
(e.g., layout, style, transform) and logs a console message. This can help you understand what
aspect of the UI is currently being modified.

Unity 6 performance enhancements
Unity 6 introduces a wide array of performance improvements to ensure a smooth and
responsive experience in both the Editor and runtime environments:

 — Event dispatching: Event dispatching rules have been simplified, making them easier to
understand and twice as fast.

 — Mesh generation enhancements: Key improvements include jobified geometry
generation for classic element geometry and a transition of the vector API to a native
implementation. Text generation is also now parallelized.

 — Custom Geometry API: A new public API enables developers to generate custom
geometry with the same level of performance, allowing for highly optimized UI
components.

 — Deep Hierarchy Layout Performance: Improved caching of layout computations
significantly boosts performance in deep hierarchies, providing a smoother user
experience.

 — Optimized TreeView for Large Datasets: The TreeView control, previously inefficient
with large datasets, has been enhanced with a new high-performance backend
specifically for Entities.

More performance optimization resources

Unite 2024: Getting the best performance with UI Toolkit

E-book: The ultimate guide to profiling Unity games

E-book: Optimize your game performance for mobile, XR, and the web in Unity

E-book: Optimize your game performance for consoles and PCs in Unity

https://unity.com/releases/lts
https://www.youtube.com/watch?v=bECmaYIvZJg&t=2131s
https://unity.com/resources/ultimate-guide-to-profiling-unity-games
https://unity.com/resources/mobile-xr-web-game-performance-optimization-unity-6
https://unity.com/resources/console-pc-game-performance-optimization-unity-6

© 2025 Unity Technologies 147 of 147 | unity.com

Resources for
advanced developers
and artists

You can download many more e-books for advanced Unity developers and creators from the
Unity best practices hub. Choose from over 30 guides, created by industry experts and Unity
engineers and technical artists, that provide best practices for developing efficiently with
Unity’s toolsets and systems.

You’ll also find tips, best practices, and news on the Unity Blog, UnityDiscussions, Unity Learn,
and at #unitytips .

https://unity.com/releases/lts
https://unity.com/how-to
https://unity.com/how-to
https://blogs.unity3d.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=console-pc-performance-optimization-ebook
https://forum.unity.com/
https://learn.unity.com/

unity.com

https://unity.com/releases/lts

	Introduction
	Contributors

	Install UI Toolkit and sample projects
	The official UI Toolkit samples
	UI Toolkit Sample – Dragon Crashers
	QuizU

	Introduction to UI Toolkit
	UI Assets
	UI Builder

	Graphic and font assets preparation
	Bitmap images
	Sprites
	Render Texture asset
	2D PSD Importer
	Vector images
	Fonts
	Texture packers

	Sprite atlas
	Dynamic atlas

	UI Builder
	Canvas background
	Viewport settings

	Layouts
	Core runtime components
	Responsive layouts: Flexbox
	Visual elements
	Positioning visual elements
	Size settings
	Flex settings
	Align settings
	Margin and Padding
	Background and images
	Variable or fixed measuring units
	Overridden properties in UI Builder
	UXML as templates
	More resources

	Styling
	USS selectors
	Converting existing inline styles to selectors
	Creating new selectors
	Selectors assigned to elements
	Editing selectors
	Overriding styles
	USS variables
	USS transitions animations
	Swapping styles on demand
	Themes

	Naming conventions
	Text
	Source font file
	Font asset settings

	Font asset variant
	Rich text

	Gradients
	Sprite asset and emojis
	Text Style Sheets

	Data binding
	UI that reflects your game data
	Enter runtime data binding
	Data binding concepts
	Preparing a data source

	Using the CreateProperty attribute
	Data sources and paths
	Inheriting data sources
	Binding modes

	Example: Data binding a health bar
	Preparing the data source
	Data binding in UI Builder/UXML
	Set up data binding in C#
	Unresolved data bindings workflow
	Type converters

	Example: Converting a value to a color
	HealthDataConverter setup
	Using the HeathBarWithConverter
	Applying DataConverters in UI Builder
	Best practices
	Example: Binding a list to a ListView

	Setting up the list and templates
	Completing the binding at runtime
	Optimizing data binding

	Managing value types
	Minimizing overhead
	Using update triggers
	Versioning and change tracking

	Localization
	How it works
	Localization setup
	Using the Localization API

	Selecting a Locale
	Using SetBinding
	Listening for Locale changes
	Working with String Tables

	Importing and exporting string data
	CSV files
	Google Sheets synchronization

	Using Smart Strings
	Setting up a Smart String in your script
	Understanding placeholders
	String pre-processing

	GetLocalizedString
	Using the StringChanged event
	Dynamic UI controls
	Localizing assets

	Setting up asset localization
	Asset Tables versus String Tables
	​​Common localized assets in UI Toolkit
	Localization in the Dragon Crashers sample

	Custom controls
	The UxmlElement attribute
	The UxmlAttribute attribute
	Example: A custom slide toggle control

	Defining the custom control
	Using the slide toggle
	Creating more custom controls

	Optimizing performance
	Update mechanisms
	Batching elements
	Vertex buffers
	Uber shader and eight-texture limit
	Dynamic texture atlases
	Masking
	Animations and transitions
	Runtime data binding

	Property bags and source generation
	Change Tracking
	Showing and hiding elements
	Overdraw
	Memory management
	Profiling tools
	Unity 6 performance enhancements

	Resources for advanced developers and artists

	Botón 3:
	Página 7:
	Página 9:
	Página 12:
	Página 15:
	Página 24:
	Página 27:
	Página 42:
	Página 57:
	Página 60:
	Página 70:
	Página 96:
	Página 120:
	Página 130:
	Página 147:

