
E - B O O KU N I T Y F O R D E V E L O P E R S

T H E U N I V E R S A L R E N D E R P I P E L I N E C O O K B O O K :

R E C I P E S F O R S H A D E R S
A N D V I S U A L E F F E C T S

U N I T Y 2 0 2 2 L T S E D I T I O N

Contents

Introduction. . .3

Author and contributors . 4

Getting.started.with.this.guide . . .5

Starting a new URP project . 5

Importing e-book sample scenes . 7

Stencils. . .9

Instancing. . .15

SRP Batcher . 17

GPU Instancing . 19

RenderMeshPrimitives . 21

Toon.and.Outline.shading. . 26

Toon shader . 28

Outline . 31

Ambient.Occlusion. . 36

Downsample . 38

After Opaque . 38

Source . 39

Normal Quality . 39

Intensity . 40

Radius . 40

Direct Lighting Strength . 40

Sample Count . 40

Decals . . .41

URP Decal Projection properties .43

Creating the Material .43

Adding a decal with code .44

Water. . 46

DepthFade subgraph . 47

TextureMovement subgraph . 48

Water shader . 48

Color . 50

Normal maps . 51

Swell . 51

LUT.for.color.grading. . 54

Lighting. . .61

Shaders . 61

Color Space . 63

Real-time Global Illumination and mixed lighting 65

Shadows. . 68

Main Light: Shadow Resolution . 69

Main Light: Shadow Max Distance . 70

Shadow Cascades . 71

Additional Light shadows . 73

Baked lighting . 75

Light.Probes. . 80

Reflection Probes . 83

Reflection Probe blending . 84

Box Projection . 85

Screen.Space.Refraction. . 86

Volumetrics . . 94

Conclusion. . 104

Professional training for Unity creators 104

3.of.105.| unity .com© 2023 Unity Technologies

I N T R O D U C T I O N

A dash of post-processing effects, a cup of decals, a pinch of color grading, and
some sparkling water: It’s time to cook up some high-quality lighting and visual
effects in your games using the Universal Render Pipeline (URP) .

In this cookbook, you can choose from 12 recipes for creating popular effects
using URP . Additionally, sample scenes based on these recipes are available to
download from this GitHub repo maintained by the guide’s main author, Nik
Lever .

This guide is aimed at intermediate to advanced Unity users . It assumes a
foundational knowledge of developing a project in Unity, URP, and using HLSL to
write shaders .

You’ll get all the ingredients you need to:

 — Create an x-ray-like image effect with stencils

 — Build a toon and outline shader with Shader Graph

 — Add an ambient occlusion effect with post-processing

 — Use Photoshop and a LUT image to add color grading to your scenes

 — Produce reflections and refraction, and much more .

It can be useful to reference this cookbook alongside the Introduction to the
Universal Render Pipeline for advanced Unity creators guide . There is also a
series of URP tutorials on Unity’s YouTube channel, providing both general and
more specialized tips for creating lighting and effects for your games .

We hope you have fun creating beautiful effects for your game .

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://www.youtube.com/watch?v=NFBr21V0zvU&list=PLX2vGYjWbI0QRLkvupULwSZCPkLyHs-UX

4.of.105.| unity .com© 2023 Unity Technologies

Author and contributors

Nik Lever, the main author of this e-book, has been creating real-time 3D
content since the mid-90s and using Unity since 2006 . For over 30 years, he’s
led the small development company Catalyst Pictures, and has provided courses
since 2018 with the aim of helping game developers expand their knowledge in
a rapidly evolving industry .

Unity contributors

Felipe Lira is a senior manager of graphics and the URP . With over 13 years of
experience as a software engineer in the games industry, he specializes in
graphics programming and multiplatform game development .

Ali Mohebali is a senior manager on the graphics product management team . Ali
has 18 years of experience working in the games industry, and has contributed
to hit titles such as Fruit Ninja and Jetpack Joyride, both by Halfbrick Studios .

Steven Cannavan is a senior development consultant on the Accelerate
Solutions Games team, specializing in the Scriptable Rendering Pipelines . He
has over 15 years of experience in the game development industry .

This image and the cover image for the e-book are from PRINCIPLES, a sample of what URP can achieve in the hands of experienced developers . PRINCIPLES is an adventure game
from COLOPL Creators, the technology brand of COLOPL Inc, who developed the series of Shironeko Project and Quiz RPG: The World of Mystic Wiz . Experience a deep underworld
that makes use of Unity’s latest features, including URP, for stunning graphics and immersive 3D sound . PRINCIPLES is available in the App Store and Google Play) . You can also watch
an interview with the studio here .

https://unity.com/
https://unity.com/solutions/accelerate-solutions-games?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/solutions/accelerate-solutions-games?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://apps.apple.com/jp/app/principles/id1620294510
https://play.google.com/store/apps/details?id=jp.colopl.ruins
https://www.youtube.com/watch?v=qKTX5GKKpwM

5.of.105.| unity .com© 2023 Unity Technologies

G E T T I N G S T A R T E D
W I T H T H I S G U I D E

You can follow the steps in each recipe to recreate the lighting and visual effects
by opening a new URP project . Additionally, you can access the Github page
that accompanies this guide, which provides you with downloadable sample
scenes for each recipe .

Starting a new URP project

Open a new project using URP via the Unity Hub . Click New, and verify that the
Unity version selected at the top of the window is 2022 .2 or newer . Choose a
name and location for the project, select the 3D.(URP) template, and click
Create .

Creating a new project with the URP template, which might require you to download the template for the first time

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook

6.of.105.| unity .com© 2023 Unity Technologies

This template is empty but has URP and its assets preconfigured and installed .

Go to Edit.>.Project.Settings, and open the Graphics panel . You’ll see the URP
Asset from the Scriptable.Render.Pipeline.Settings as the selected SRP . The
URP Asset controls the global rendering and Quality settings of a project and
creates the rendering pipeline instance . Meanwhile, the rendering pipeline
instance contains intermediate resources and the render pipeline
implementation .

UniversalRP-HighFidelity is the default URP Asset selected, but you can switch
to UniversalRP-Balanced or UniversalRP-Performant .

Note: The template ensures that your project is set to use a linear color
space, which is required for calculating lighting correctly .

The Graphics panel in Project Settings

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/universalrp-asset.html

7.of.105.| unity .com© 2023 Unity Technologies

The Github repository, where you can download the project by clicking the green Code button

Once the project is unzipped and downloaded, import it from the Unity Hub via
Open.>.Add.project.from.disk .

Importing e-book sample scenes

You can clone the repository from here or download the code in a zip file and
unzip it .

It’s important that you are working in the same version of the Editor as that used
for the sample project . If the Editor versions don’t match, the Hub will show a
warning message about a missing Editor version .

How to import the sample project from Unity Hub

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook

8.of.105.| unity .com© 2023 Unity Technologies

Each recipe is contained in a folder along with the steps and files referred to in this book .

It’s good practice to install the version of the Unity Editor that matches any tutorial project you’re following and/or
downloading . Thankfully, this is easy to do via the Unity HUB .

Once the correct Editor version is installed, you will be able to open the project
as normal .

You can install the missing version from the blue button at the bottom right, as
seen in this image .

https://unity.com/

9.of.105.| unity .com© 2023 Unity Technologies

URP has two assets that control the final render, the Universal Renderer Data
Asset and the URP Asset . From the former, you can add Renderer Features to be
injected into any stage of the rendering pipeline, such as:

 — Rendering shadows

 — Rendering prepasses

 — Rendering G-buffer

 — Rendering Deferred lights

 — Rendering opaques

 — Rendering Skybox

 — Rendering transparents

 — Rendering post-processing

Renderer features provide you with ample opportunity to experiment with
lighting and effects . This section will focus on Stencils, using only the bare
minimum of required code .

To work along, open the sample scene via Scenes.>.Renderer.Features.>.
SmallRoom.-.Stencil in the Editor .

S T E N C I L S

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/urp-universal-renderer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/universalrp-asset.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/urp-renderer-feature.html

10.of.105.| unity .com© 2023 Unity Technologies

In the Made with Unity game TUNIC (created by Andrew Shouldice, TUNIC Team, 22nd Century Toys LLC, and Isometricorp Games Ltd ., published by Finji), the main character’s
silhouette is drawn when props are blocking him . This effect can be achieved with Renderer Features in URP . It’s also explained in this video tutorial . Stencils in action: As the magnifying
glass moves over the desk, it can see through to reveal what is in the drawers .

Stencils in action: As the magnifying glass moves over the desk, it can see through to reveal what is in the drawers .

As the above image shows, the aim in this example is to convert the lens of the
magnifying glass so it allows you to see through the desk, like an X-ray image .
The approach uses a combination of Layer Masks, shaders, and Renderer
Features . The first step is to change the material used by the lens, in this case a
material called MaskMat with a shader called Custom/StencilMask .

https://unity.com/
https://tunicgame.com/
https://www.youtube.com/watch?v=3CpEn_mmr3o

11.of.105.| unity .com© 2023 Unity Technologies

Shader "Custom/StencilMask"
{
 Properties{}

 SubShader{

 Tags {
 "RenderType" = "Opaque"
 }

 Pass {
 ZWrite Off

 HLSLPROGRAM

 #pragma vertex vert
 #pragma fragment frag

 #include "Packages/com.unity.render-pipelines.
universal/ShaderLibrary/Core.hlsl"

 struct Attributes
 {
 float4 positionOS : POSITION;
 };

 struct Varyings
 {
 float4 positionHCS : SV_POSITION;
 };

 Varyings vert(Attributes IN)
 {
 Varyings OUT;

 OUT.positionHCS = TransformObjectToHClip(IN.
positionOS.xyz);

 return OUT;
 }

 half4 frag() : SV_Target
 {
 return (half4)0;
 }

 ENDHLSL
 }
 }
}

https://unity.com/

12.of.105.| unity .com© 2023 Unity Technologies

Notice that Custom/StencilMask has the command ZWrite Off . In most cases,
if you set ZWrite Off for an object, it will disappear as the render order of the
object is changed and is rendered before the scene . If you change its render
queue index to a higher value than Geometry, then it will reappear . For this
example, it’s been left at 2000, the Geometry value .

The only action you want the lens to perform is to write a value to the Stencil
buffer . Since you need to consider the stencil writes and not the output of the
shader to the color buffer, you can disable the color writes, ColorMask 0 . This
is a slightly optimized approach, especially if you want this to work with the
Deferred Rendering path as the scene would be rendered before the lens mask .

This example uses two custom layers, Mask and SeeThrough . The lens is in the
Mask layer, while the desk, but not its children, is in the SeeThrough layer .

This scene uses the Renderer Data object named See.Through.Settings_
Renderer, located in the same folder as the scene file, materials, and shader:
Scenes.>.Renderer.Feature.Stencils . The script attached to the Main Camera,
Auto.Load.Pipeline.Asset, ensures this is set as the Scriptable Render Pipeline
Asset in.Project.Settings.>.Graphics . Now let’s check the settings for this asset .

Pipeline Asset set for the Main Camera > Auto Load Pipeline Asset script

Select the SeeThrough.Settings_Renderer via Scenes.>.Renderer.Feature.
Stencils . The first setting changed from the default is the Opaque.Layer.Mask .
Note that this excludes Mask and SeeThrough .

Changing the Opaque Layer Mask in the See Through Settings_Renderer

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/rendering/deferred-rendering-path.html

13.of.105.| unity .com© 2023 Unity Technologies

In the Renderer Features list in the Inspector, there are two Render Objects
features named Mask and SeeThrough . If you disable the SeeThrough option,
the desk disappears . This happens because, as part of a filtered-out layer that’s
using the Opaque Layer Mask, it’s not a part of the default render – it only gets
rendered because of the Render Objects feature .

Settings for Mask (Render Objects)

The image above shows that Mask is set to use the Event
BeforeRenderingOpaques and be filtered so it only works on rendered pixels in
the Mask Layer . In the Overrides panel, the Stencil option is enabled .The value it
will save to the buffer is 1 . To make sure this write happens, the Compare.
Function is set to.Always, and Pass is set to Replace so it always replaces the
existing value . Fail and Z.Fail are set to Keep .

URP will attempt to render the Mask Layer . Since no override material is set, it
will use the materials defined by the objects in this Mask Layer, which is just the
lens with the MaskMat material and the StencilMask shader . Setting Compare
Function to Always and Pass to Replace ensures that the Stencil buffer is
wherever the lens is in vision, with the value for each pixel set to 1 .

https://unity.com/

14.of.105.| unity .com© 2023 Unity Technologies

The settings for See Through (Render Objects)

Let’s look at the second Render Objects Renderer Feature (shown above) . This
is set to use the Event AfterRenderingOpaques, meaning it will apply after the
Stencil buffer has been set . Its Layer.Mask is set to SeeThrough and Value set
to 1 . If the Value 1 is found, the pixel shouldn’t be rendered .

The Compare Function setting is set to Not.Equal, while Pass, Fail, and Z Fail are
all set to Keep . This Render Objects pass will only read from the Stencil buffer
but not write to it . So this pass will render any pixel in the layer See Through,
where the Stencil buffer does not contain the value 1 . It leaves the default
render only where the lens is . Try changing the Compare Function to Equal to
flip the result so the desk appears in the lens only .

The effect of changing the Compare Function to Equal

Renderer Features are a great way to achieve dramatic custom effects .

https://unity.com/

15.of.105.| unity .com© 2023 Unity Technologies

I N S T A N C I N G

Exchanging data between the CPU and GPU is a major bottleneck in the
rendering pipeline . If you have a model that needs to be rendered many times
using the same geometry and material, then Unity provides some great tools to
do so, which are covered in this chapter .

A field full of grass will be used to illustrate the concept of instancing . It’s far
from photorealistic but sufficient to illustrate the techniques involved . You’ll find
the example in the Scenes.>.Instancing folder .

A field of grass rendered using an SRP Batcher-compatible material

Note: Thanks go to the author of the article, “Making Grass in Unity with
GPU Instancing,” for the assets .

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/GPUInstancing.html
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://prog.world/making-grass-in-unity-with-gpu-instancing/

16.of.105.| unity .com© 2023 Unity Technologies

The popular Made with Unity game Genshin Impact, by HoYoverse, features a vast open world with lush vegetation . It runs on all the major platforms, from mobile devices to the latest
consoles . This section offers tips on how to recreate a similar grass effect in a performant way .

To start, you need a single blade of grass and just two triangles, to keep things
simple . The UV is set so the base of each grass blade has a V value of 0 and the
tip a V value of 1 . You can use this to offset the tip vertex to simulate wind .

Grass blade model and UV

https://unity.com/
https://genshin.hoyoverse.com/pc-launcher/?utm_source=EU_google_EUT2_search_20220719&mhy_trace_channel=ga_channel&new=1&gclid=CjwKCAiAwc-dBhA7EiwAxPRylGcsg_43UUG55LGlMh3WR8vYBuSHby1XJ3T78jU-_0aD5VapH8kRWhoCGMcQAvD_BwE#/GI008

17.of.105.| unity .com© 2023 Unity Technologies

The Grass Wave subgraph

Now that you have a method of deforming each blade, it’s time to turn this into a
complete shader that you can use as the material shader for each blade of
grass .

Take a look in the folder Scenes.>.Instancing.>.1.-.SRP.Batcher.>.SRP.Batcher
Shader . This is a simple shader, just the Grass Wave subgraph controlling the
Vertex > Position and a Sample Texture 2D acting as the base color input for the
fragment shader .

Now, let’s use the following code to populate a field of grass .

SRP Batcher

Take a look at the Shader Graph subgraph in the folder Scenes.>.Instancing.>.
Common.>.Grass.Wave . The aim of this is to perturb the X value of the object’s
vertex based on WindSpeed, WindShiftStrength, and WindStrength . To ensure
that all the grass blades behave slightly differently, a Noise node is used in the
subgraph Perturb Grass . The vertex Y and Z positions are passed directly to the
output, but the offset for the X value is processed using a Lerp node .

The T input, which controls the interpolation, comes from the UV’s V value . At
the base of the grass blade, this is 0, meaning the result of lerp will be the A
input to the lerp, which is the modeled position . The tip of the blade V is 1,
ensuring that the result of the lerp is the B input, the processed offset .

_startPosition = -_fieldSize / 2.0f;
_cellSize = new Vector2(_fieldSize.x / GrassDensity, _
fieldSize.y / GrassDensity);

var grassEntities = new Vector2[GrassDensity, GrassDensity];
var halfCellSize = _cellSize / 2.0f;

for (var i = 0; i < grassEntities.GetLength(0); i++) {
for (var j = 0; j < grassEntities.GetLength(1); j++) {

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Simple-Noise-Node.html?q=noise
https://docs.unity3d.com/Packages/com.unity.shadergraph@12.1/manual/Lerp-Node.html

18.of.105.| unity .com© 2023 Unity Technologies

Looking more closely at this code example you see:

 — _fieldSize is (40, 40)

 — _startPosition is (-20, -20)

 — GrassDensity is set to 250 in the Github sample

 — cellSize is (0 .16, 0 .16) .

 — Two loops are iterated through setting each element of the _
grassEntities 2D array

 — Base position for each blade is _startPosition plus the current cell;
then a small random factor is introduced

 — _abstractGrassDrawer is a base class for two versions of using the
grass-populating code

 — For the initial version, ignore GPU Instancing and see how well
SRP batcher handles the problem by opening and running the
scene Scenes.>.Instancing.>.1.-.SRP.Batcher.>.1.-.SRP

 — First, you need to populate the scene with the grass blade model
Prefab, at each position in the grassEntities 2D Array . The
code is in the file Scenes.>.Instancing.>.Scripts.>.
GameObjectGrassDrawer .cs

 grassEntities[i, j] =
 new Vector2(_cellSize.x * i + _
startPosition.x,
 _cellSize.y * j + _
startPosition.y) +
new Vector2(Random.Range(-halfCellSize.x, halfCellSize.x),
 Random.Range(-halfCellSize.y,
halfCellSize.y));
 }
}
_abstractGrassDrawer.Init(grassEntities, _fieldSize);

public override void Init(Vector2[,] grassEntities, Vector2
fieldSize) {
_grassEntities = new GameObject[grassEntities.GetLength(0),
 grassEntities.GetLength(1)];
 for (var i = 0; i < grassEntities.GetLength(0); i++) {
 for (var j = 0; j < grassEntities.GetLength(1);
j++) {
 _grassEntities[i, j] =
Instantiate(_grassPrefab,
 new Vector3(
 grassEntities[i, j].x,
 0.0f,

https://unity.com/

19.of.105.| unity .com© 2023 Unity Technologies

Here, you iterate over the grassEntities Array using Instantiate to create a
new GameObject from the assigned Prefab . It works but dramatically impacts
the frame rate for the scene . You can see from the image of the grass field on
page 15 that the frame rate is a sluggish 22 fps for 62,500 blades, running on a
2020 iMac with the following specs:

 — Retina 5K, 27-inch, 2020

 — Processor: 3 .8 GHz 8-Core Intel Core i7

 — Memory: 32 GB 2667 MHz DDR4

 — Startup Disk: Macintosh HD

 — Graphics: AMD Radeon Pro 5500 XT 8 GB

How can you optimize the scene?

Note: For a non-square terrain, you could create a draw tool saving
each blade position in a list . For example, this blog post explains how to
build a tool to streamline placing objects in the scene every time you
click in it .

GPU Instancing

One optimization technique is to enable GPU instancing . Look at Scenes.>.
Instancing.>.2.-.GPU.Instancing.>.2 -.GPU.Instancing from the Github samples
for an example of this technique .

A material setting called Enable.GPU.Instancing instructs the renderer to batch
any models that use the same material, thereby reducing the number of draw
calls . The setting is available in the Advanced Options panel .

The SRP Batcher and GPU Instancing are mutually exclusive . When using URP, if
a material is compatible with the SRP Batcher, then SRP Batcher will be used,
even if Enable GPU Instancing is selected . A shader created with Shader Graph
is compatible with SRP Batcher by default . To disable SRP Batcher compatibility,
select the Shader Graph that will create the HLSL shader, and click on View.
Generated.Shader in the Inspector .

 grassEntities[i, j].y),
 Quaternion.identity);
 }
 }
}

https://unity.com/
https://bronsonzgeb.com/index.php/2021/08/08/unity-editor-tools-the-place-objects-tool/
https://docs.unity3d.com/Manual/GPUInstancing.html

20.of.105.| unity .com© 2023 Unity Technologies

Generating an HLSL shader from Shader Graph

The shader will be created, placed in the Temp folder, and opened in Visual
Studio or your chosen code editor . Change the Shader name to:

Shader "Custom/GPU Instancing Shader"

Then search for CBUFFER, and comment out the CBUFFER macros:

// Graph Properties
//CBUFFER_START(UnityPerMaterial)
 float4 _MainTexture_TexelSize;
 half _WindShiftStrength;
 half _WindSpeed;
 half _WindStrength;
//CBUFFER_END

Save the shader in Assets .

Scripts assigned to the Ground GameObject in the GPU Instancing scene

Notice the GPU Instancing scene uses the same version of Abstract.Grass.
Drawer as the SRP Batcher scene . The only difference is the
GameObjectGrassDrawer version in GPU Instancing is assigned a different
Prefab with a material that uses the GPU Instancing shader .

GPU Instancing Shader is not compatible with SRP Batcher

https://unity.com/

21.of.105.| unity .com© 2023 Unity Technologies

If you check the GPU Instancing shader in the Inspector, you can see it’s not
compatible with SRP Batcher .

Any change to the graph that you used to generate the code will necessitate
repeating the customization steps:

1 . View Generated Shader or Regenerate

2 . Edit the Shader name

3 . Comment out the CBUFFER macros

4 . Save to Assets

However, after all this work, the testing shows only a marginal improvement over
SRP Batcher, probably due to being CPU bound . There has to be a better way .

RenderMeshPrimitives

The Unity Graphics API has a number of methods for directly rendering a mesh
by bypassing the need for a GameObject . The method used here is
RenderMeshPrimitives, a feature introduced in Unity LTS 2021 . Prior to that, you
would have needed to use DrawMeshInstancedProcedural, which is now marked
as obsolete .

With RenderMeshPrimitives, you should use a material that sources the
individual mesh position using a ComputeBuffer . You can see it in action by
viewing the scene Scenes.>.Instancing.>.3.-.RenderMeshPrimitives.>.3.-.
RenderMeshPrimitives .

The instancing scenes in the Project View

As you can see from the following image of the grass field, the improvement in
frame rate is nothing short of a remarkable – 377 fps . The scenes created with
SRP Batcher and GPU Instancing were running at around 20 fps .

The difference in this case is that the grass field is rendered using a single
draw call .

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/Graphics.html
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/Graphics.RenderMeshPrimitives.html
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/Graphics.DrawMeshInstancedProcedural.html

22.of.105.| unity .com© 2023 Unity Technologies

Frame Debugger stats for the grass field

The grass field rendered using RenderMeshPrimitives

You achieve this by making the positions of each blade a Material property . The
data to render the blades resides on the GPU, which uses its parallelism to
render the entire field at an optimal speed .

Let’s review the code to generate the positions . You’ll find it in the
UpdatePositions method in the file Scenes.>.Instancing.>.Scripts.>.
InstancedGrassDrawer .cs .

_positionsCount = _positions.Count;
_positionBuffer?.Release();
if (_positionsCount == 0) return;
_positionBuffer = new ComputeBuffer(_positionsCount, 8);
_positionBuffer.SetData(_positions);
_instanceMaterial.SetBuffer(Shader.
PropertyToID("PositionsBuffer"), _positionBuffer);

_positions holds a Vector2 List of grass positions . If _positionsBuffer
exists, then you release it . If you’re unfamiliar with a “?” following a variable, it’s a
null check, meaning it’s shorthand for:

if (positionsBuffer != null) _positionsBuffer.Release()

https://unity.com/

23.of.105.| unity .com© 2023 Unity Technologies

Getting the vertex position from a Compute Buffer

Starting at the bottom, you can see the Space parameter for Grass Mesh vertex
position is set to.World . But there’s an important code block that needs adding
whenever you use this technique: A #pragma is required by any meshes
rendered using RenderMeshPrimitive . This is done using a custom function .
Instead of sourcing the function from a file, you add a string:

#pragma instancing_options procedural:ConfigureProcedural
Out = In;

The code method now used by this shader to generate positional values will
come from a function with the name ConfigureProcedural . Other than that,
this Custom Function node simply passes its input, In, to its output, Out .

The heavy lifting is done in the Custom Function called ShaderGraphFunction,
which is found in the file InstancedPosition, in the same folder as the scene file .

You create a ComputeBuffer that takes a count parameter and the byte size of
each item . A Vector2 contains two floats . A single float is 32 bits or 4 bytes,
making two floats 8 bytes . It’s simple to populate a ComputeBuffer by using
SetData passing the _positions List . Now you can use the SetBuffer
method to copy this to the material . You’ll access this buffer in the material
using the name positionsBuffer .

Take a look at the graph in Scenes.>.Instancing.>.3.-.RenderMeshPrimitives.>.
Instanced.Grass.Shader .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Custom-Function-Node.html?q=custom%20function

24.of.105.| unity .com© 2023 Unity Technologies

#if defined(UNITY_PROCEDURAL_INSTANCING_ENABLED)
StructuredBuffer<float2> PositionsBuffer;
#endif

float2 position;

void ConfigureProcedural () {
 #if defined(UNITY_PROCEDURAL_INSTANCING_ENABLED)
 position = PositionsBuffer[unity_InstanceID];
 #endif
}

void ShaderGraphFunction_float (out float2 PositionOut) {
 PositionOut = position;
}

The position is set using the ConfigureProcedural method and passed to the
output using the ShaderGraphFunction for which the script has float and half
versions .

At this point in the graph, the individual blade location is a float2 with the first
float being the X value and the second the Z . A Split node is used to convert this
into the individual floats, and a Combine node to move the second float to the
third . The Split and Combine nodes call the individual floats RGBA not XYZW, but
by moving G to B, you’re effectively moving Y to Z . The blade and vertex
positions are now established, and you can combine these to get the actual
world position of the vertex .

With this shader ready, you now use it with a material that has the inputs
WindSpeed, WindStrength, WindShiftStrength, and MainTexture, the same as
those used by the SRP Batcher and GPU Instancing versions . The only
difference is in how the position of each vertex is calculated . Refer back to the
script InstancedGrassDrawer.cs to see how to render the grass blades . The
variables in the script are initialized in the Init method called by the Awake
method of the GrassField.cs script .

public override void Init(Vector2[,] grassEntities, Vector2
fieldSize) {

_grassEntities = grassEntities;
 _grassBounds = new Bounds(transform.position,
 new Vector3(fieldSize.x, 0.0f,
fieldSize.y));
 _positions = new List<Vector2>();
 _renderParams = new RenderParams(_instanceMaterial);
 _renderParams.worldBounds = _grassBounds;
 _renderParams.shadowCastingMode = ShadowCastingMode.Off;
}

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.1/manual/Split-Node.html?q=split
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Combine-Node.html?q=combine%20node

25.of.105.| unity .com© 2023 Unity Technologies

To use Graphics.RenderMeshPrimitives,you need a RenderParams
instance . This is created from the assigned Material, _instanceMaterial . Two
other properties are additionally assigned .

The actual rendering is done using the Update callback:

private void Update() {
 if (_positionsCount == 0) return;
 Graphics.RenderMeshPrimitives(_renderParams, _instanceMesh, 0,
_positionsCount);
}

RenderMeshPrimitives takes four parameters, a RenderParams instance, the
mesh to render, a submesh index, and a count value identifying how many
copies to render . When using the shader, each copy will have a unique unity_
InstanceID, which will have the value 0 to count -1 .

Rendering using a ComputeBuffer is a fast and fairly simple setup . By
manipulating the _positionBuffer, you could mow the grass or blow it away .
To avoid passing data between the CPU and the GPU, this is best handled with
a ComputeShader .

More.resources

 — Assets for this recipe

 — Example project using DrawMeshInstancedIndirect

 — GPU Instancing documentation

 — GPU Instancing article from CatLikeCoding

 — Using ComputeBuffers for instancing

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/ComputeBuffer.html
https://docs.unity3d.com/2022.2/Documentation/ScriptReference/ComputeShader.html
https://prog.world/making-grass-in-unity-with-gpu-instancing/
https://github.com/ColinLeung-NiloCat/UnityURP-MobileDrawMeshInstancedIndirectExample
https://docs.unity3d.com/Manual/GPUInstancing.html
https://catlikecoding.com/unity/tutorials/rendering/part-19/Rendering-19.pdf
https://www.udemy.com/course/compute-shaders/learn/lecture/22732855/?instructorPreviewMode=student_v4#overview

26.of.105.| unity .com© 2023 Unity Technologies

T O O N A N D O U T L I N E
S H A D I N G

This recipe is based on common ways of creating a toon shader and an outline
shader .

One scene, three different looks: Standard shading (left), with post-processing (center), and per-material shading (right)

Often used together, toon and outline shaders present two distinct challenges .
The toon shader takes the color that would be created using a URP-compatible
Lit shader, and ramps the output rather than allowing continuous gradients,
thereby requiring a custom lighting model . In this example, it will be created
using Shader Graph . However, Shader Graph doesn’t support custom lighting, so
there’s no node available to directly access the Main and Additional lights .
Instead, you can leverage a custom node to access these .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/universalrp-asset.html#lighting

27.of.105.| unity .com© 2023 Unity Technologies

The third-person action-shooter and Made with Unity game Rollerdrome, by Roll7, has a distinctive art direction that makes the game look like a comic book, achieved with cel shading
techniques . Don’t miss this interview with the creators .

The scene with the simple ramped toon shader

To see what the shader looks like, go to Scenes.>.Toon.Shading.>.Simple.Toon.
Shading .

https://unity.com/
https://www.roll7.co.uk/rollerdrome
https://www.youtube.com/watch?v=G1NY0LKDqJo

28.of.105.| unity .com© 2023 Unity Technologies

void MainLight_float(float3 WorldPos, out float3 Direction, out
float3 Color, out float DistanceAtten, out float ShadowAtten)
{
#ifdef SHADERGRAPH_PREVIEW
 Direction = float3(0.5, 0.5, 0);
 Color = 1;
 DistanceAtten = 1;
 ShadowAtten = 1;
#else
 float4 shadowCoord =
TransformWorldToShadowCoord(WorldPos);

 Light mainLight = GetMainLight(shadowCoord);
 Direction = mainLight.direction;
 Color = mainLight.color;
 DistanceAtten = mainLight.distanceAttenuation;

 #if !defined(_MAIN_LIGHT_SHADOWS) || defined(_RECEIVE_
SHADOWS_OFF)
 ShadowAtten = 1.0h;
 #else
 ShadowSamplingData shadowSamplingData =
GetMainLightShadowSamplingData();
 float shadowStrength = GetMainLightShadowStrength();
 ShadowAtten = SampleShadowmap(shadowCoord, TEXTURE2D_
ARGS(_MainLightShadowmapTexture,
 sampler_MainLightShadowmapTexture),
 shadowSamplingData, shadowStrength, false);
 #endif
#endif
}

Toon shader

This example only supports the Main light and a textured mesh to keep things
simple . No outlining, additional lights, global illumination, or lightmapping is
included . These features will be covered later in this chapter .

Let’s start by accessing the Main Light using a custom function, which you’ll find
in the file HLSL.>.Custom.Lighting .hlsl .

It’s good practice to add a block of code inside a #ifdef SHADERGRAPH_
PREVIEW preprocessor directive that defines the behavior while creating the
Shader Graph Asset . This specifies the values to default to in the graph preview
window .

The WorldPos is converted into a shadow coordinate using the function
TransformWorldToShadowCoord . The functions used in this code come from
the Universal Render Pipeline package and are available to custom functions in
Shader Graph . When the function GetMainLight is used with a float4, the
ShadowAttenuation property of the returned light is set . This is needed in the
graph that uses this custom function .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.1/manual/Create-Shader-Graph.html
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl

29.of.105.| unity .com© 2023 Unity Technologies

Main Light subgraph

The Custom Function node takes a Position node set to Absolute World as its
only input . The function returns Direction, Color, DistanceAtten (which remains
unused), and ShadowAtten . To allow for self shadowing, you’ll need to get the
dot product of the light direction and the World normal, and clamp this between
0 and 1 . You don’t want negative values .

Now that you have a way of accessing the Main Light, you can use it to create a
simple toon shader . Take a look at Shaders.>.Simple.Toon to see the graph
(also in image below) .

This code is used in the Main Light subgraph (see image below), which you’ll
find in the folder Shaders.>.Subgraphs . Let’s review it .

Simple Toon graph

The first node is the Main Light subgraph . The ShadowAttenuation and
SelfShadowing outputs are multiplied together . The trick is to pass this output
into a Sample.Gradient node that works with a ramped gradient, so light levels
are not smooth, but instead jump in stages based on the gradient .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Position-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Sample-Gradient-Node.html?q=sample%20gradient

30.of.105.| unity .com© 2023 Unity Technologies

Taking a smoothly changing input and processing it with a gradient is a useful
technique for a number of shading challenges . The rest of the graph combines
light color with the ramped level, then combines this with the sampled texture to
generate the color to use for the base color .

The limitation of this simple graph is that it does not take into account global
illumination and additional lights . The graph Shaders.>.Toon.Shader has all
these features and adds an outline effect . Let’s look at how to access the
additional lights before covering how to add outlines .

Once again, a custom function is required, which is in the same HLSL file as the
one for the Main Light, HLSL.>.CustomLighting .hlsl:

void AdditionalLights_float(float3 SpecColor, float Smoothness,
float3 WorldPosition, float3 WorldNormal, float3 WorldView, out
float3 Diffuse, out float3 Specular)
{
 float3 diffuseColor = 0;
 float3 specularColor = 0;

#ifndef SHADERGRAPH_PREVIEW
 Smoothness = exp2(10 * Smoothness + 1);
 WorldNormal = normalize(WorldNormal);
 WorldView = SafeNormalize(WorldView);
 int pixelLightCount = GetAdditionalLightsCount();
 for (int i = 0; i < pixelLightCount; ++i)
 {
 Light light = GetAdditionalLight(i, WorldPosition);
 half3 attenuatedLightColor = light.color * (light.
distanceAttenuation * light.shadowAttenuation);
 diffuseColor += LightingLambert(attenuatedLightColor,
light.direction, WorldNormal);
 specularColor += LightingSpecular(attenuatedLightColor,
light.direction, WorldNormal, WorldView, float4(SpecColor, 0),
Smoothness);
 }
#endif

 Diffuse = diffuseColor;
 Specular = specularColor;
}

The code requires several inputs: Specular Color, a Smoothness float, the
WorldPosition, WorldNormal, and WorldView direction . It outputs a combined
Diffuse Color and Specular Color . It does this by iterating over each additional
light and accumulating the diffuseColor using the LightingLambert function .
This is the simplest lighting model using only the light direction and the
WorldNormal . The specularColor is accumulated using the LightingSpecular
function .

https://unity.com/

31.of.105.| unity .com© 2023 Unity Technologies

Additional lights contribution to the Toon Shader Graph

The image above shows how this code is used . The Diffuse level is adjusted
using a ramp . This displays another useful trick . Converting the colorspace from
RGB to HSV and scaling the V or B component is similar to adjusting the light
level, then you convert back to RGB .

The complete Toon graph is worth a closer study because it displays many
useful techniques to use in your own custom shaders .

Outline

The simplest technique for adding outlines is to add a second pass that only
renders back-facing polygons and uses a vertex shader that moves the vertex a
small amount along the vertex normal . This shader is included in the Github
samples via Shaders.>.VertexOutline; its graph is shown here:

An outline shader using a back-facing vertex shift technique

The Normal.Vector node, with Space set to Object, is fed into a Multiply node .
This is multiplied by Thickness value for the material . The output from this is
added to the Object Position, moving the vertex position slightly out from the
object modeled location . This is the input to the Vertex.Position property . The
shader property Universal.>.Render.Face is set to Back using the panel in
Graph.Inspector.>.Graph.Settings . A shader graph allows a single pass only so
to add this to the render you need to add a second material using the
GameObject Inspector .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Multiply-Node.html?q=Multiply%20node

32.of.105.| unity .com© 2023 Unity Technologies

Adding a second material

The scene in Scenes.>.Toon.Shading.>.Simple.Toon.Shading shows the second
material being used . View the material VertexOutline in the same folder, in the
Inspector, and set Thickness to 0 .01 .

A more sophisticated technique uses edge detection, which is illustrated in the
following two variations that sample either the depth or normal textures, or both,
in a number of places to look for sharp differences indicating an edge . The
depth texture is supplied by using the Inspector for the URP Asset . Checking
this means a texture called _CameraDepthTexture is created with depth
information stored in the red channel .

Creating _CameraDepthTexture

The HLSL script used by the Toon Shader graph for edge detection also scans
the normals . How do you get the normal information? You’ll need to use a
Renderer Feature . Take a look at Renderer.Features.>.DepthNormalsFeature .
cs, and notice this is set as a Renderer Feature for Toon.Shading.Settings_
Renderer . This Renderer Feature saves the normal information to the texture
named _CameraDepthNormalsTexture .

The _CameraDepthNormalsTexture created by theDepthNormalsFeature Renderer Feature

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook/blob/main/Assets/Renderer%20Features/DepthNormalsFeature.cs
https://github.com/NikLever/Unity-URP-Cookbook/blob/main/Assets/Renderer%20Features/DepthNormalsFeature.cs

33.of.105.| unity .com© 2023 Unity Technologies

Now that you have these two textures, generating the outline requires scanning
both images at left, right, up, and down of the current UV position . You can see
the code used in the Toon Shader graph by looking at the file HLSL.>.Outline .
hlsl:

void OutlineObject_float(float2 UV, float OutlineThickness,
float DepthSensitivity, float NormalsSensitivity, out float
Out)
{
 float halfScaleFloor = floor(OutlineThickness * 0.5);
 float halfScaleCeil = ceil(OutlineThickness * 0.5);

 float2 uvSamples[4];
 float depthSamples[4];
 float3 normalSamples[4];

 uvSamples[0] = UV - float2(_CameraDepthTexture_TexelSize.x,
_CameraDepthTexture_TexelSize.y) * halfScaleFloor;
 uvSamples[1] = UV + float2(_CameraDepthTexture_TexelSize.x,
_CameraDepthTexture_TexelSize.y) * halfScaleCeil;
 uvSamples[2] = UV + float2(_CameraDepthTexture_TexelSize.x
* halfScaleCeil, -_CameraDepthTexture_TexelSize.y *
halfScaleFloor);
 uvSamples[3] = UV + float2(-_CameraDepthTexture_
TexelSize.x * halfScaleFloor, _CameraDepthTexture_TexelSize.y *
halfScaleCeil);

 for(int i = 0; i < 4 ; i++)
 {
 depthSamples[i] = SAMPLE_TEXTURE2D(_CameraDepthTexture,
sampler_CameraDepthTexture, uvSamples[i]).r;
 normalSamples[i] = DecodeNormal(SAMPLE_TEXTURE2D(_
CameraDepthNormalsTexture, sampler_CameraDepthNormalsTexture,
uvSamples[i]));
 }

 // Depth
 float depthFiniteDifference0 = depthSamples[1] -
depthSamples[0];
 float depthFiniteDifference1 = depthSamples[3] -
depthSamples[2];
 float edgeDepth = sqrt(pow(depthFiniteDifference0, 2) +
pow(depthFiniteDifference1, 2)) * 100;
 float depthThreshold = (1/DepthSensitivity) *
depthSamples[0];
 edgeDepth = edgeDepth > depthThreshold ? 1 : 0;

 // Normals
 float3 normalFiniteDifference0 = normalSamples[1] -
normalSamples[0];
 float3 normalFiniteDifference1 = normalSamples[3] -
normalSamples[2];
 float edgeNormal = sqrt(dot(normalFiniteDifference0,
normalFiniteDifference0) + dot(normalFiniteDifference1,
normalFiniteDifference1));

https://unity.com/

34.of.105.| unity .com© 2023 Unity Technologies

 edgeNormal = edgeNormal > (1/NormalsSensitivity) ? 1 : 0;

 float edge = max(edgeDepth, edgeNormal);
 Out = edge;
}

Notice how the uvSamples array is created by adding or subtracting a float2
value from the current UV position, which is one input to the function . The size
of the offset from the input UV is based on the OutlineThickness property .

You build up an array of depthSamples and normalSamples by sampling the
textures _CameraDepthTexture and _CameraDepthNormalsTexture respectively .
Then, for both the depth and normal, you get the difference0 by subtracting the
0th item in each generated samples array from the first (depthSamples[1]
- depthSamples[0]) and the difference1 by subtracting the second item from
the third . These are the differences from bottom-left to top-right and from
bottom-right to top-left .

For depthSamples, which are simple floats, you square the differences, add
them together, get the square root, then test this against a calculated
depthThreshold based on the reciprocal of the DepthSensitivity input . For
normals which are float3 values, instead of squaring each difference, you get
the dot product of each difference with itself . The dot product of a vector with
itself is the square of its magnitude which is exactly what is required .

Finally, the output of the function is the max of either edgeDepth or
edgeNormal . This function returns 0 if you show an outline at this pixel, and 1 if
not . It can be added to a graph and used to multiply the calculated color . If the
function returns 0, then the calculated color will revert to black .

Another approach to this problem is to add a post-processing effect . Take a look
at the scene in Scenes.>.Toon.Shading.>.SobelFilter.Shading . A post-
processing effect works on the rendered output . The Renderer Feature named
BlitMaterialFeature is used (located in the Renderer Features folder) . This script
processes the rendered image using a Blit function . Optionally, this can take a
material to use when copying pixels, so rather than simply copying each pixel
from source to destination, each pixel can be processed and the final color of
the pixel adjusted .

The material used in this example is SobelFilter, which uses the shader Shaders.
>.SobelFilter .shader . The main work is done using a Sobel filter:

float sobel (float2 uv)
{
float2 delta = float2(_Delta, _Delta);

float hr = 0;
float vt = 0;

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook/blob/main/Assets/Renderer%20Features/BlitMaterialFeature.cs
https://en.wikipedia.org/wiki/Sobel_operator

35.of.105.| unity .com© 2023 Unity Technologies

hr += SampleDepth(uv + float2(-1.0, -1.0) * delta) * 1.0;
hr += SampleDepth(uv + float2(1.0, -1.0) * delta) * -1.0;
hr += SampleDepth(uv + float2(-1.0, 0.0) * delta) * 2.0;
hr += SampleDepth(uv + float2(1.0, 0.0) * delta) * -2.0;
hr += SampleDepth(uv + float2(-1.0, 1.0) * delta) * 1.0;
hr += SampleDepth(uv + float2(1.0, 1.0) * delta) * -1.0;

vt += SampleDepth(uv + float2(-1.0, -1.0) * delta) * 1.0;
vt += SampleDepth(uv + float2(0.0, -1.0) * delta) * 2.0;
vt += SampleDepth(uv + float2(1.0, -1.0) * delta) * 1.0;
vt += SampleDepth(uv + float2(-1.0, 1.0) * delta) * -1.0;
vt += SampleDepth(uv + float2(0.0, 1.0) * delta) * -2.0;
vt += SampleDepth(uv + float2(1.0, 1.0) * delta) * -1.0;

return sqrt(hr * hr + vt * vt);
}

A Sobel filter is a 3x3 matrix that works to analyze each pixel of a rendered
image . It gets its name from the digital image researcher, Irwin Sobel . You scan
the image both horizontally and vertically, accumulating a value and return the
square root of the sum of the squares of both passes . The final color of each
fragment/pixel is generated using this code:

half4 frag(Varyings input) : SV_Target
{
float s = pow(1 - saturate(sobel(input.uv)), 50);
half4 col = SAMPLE_TEXTURE2D(_MainTex, sampler_MainTex, input.
uv);
return col * s
}

The output of Sobel is clamped to between 0 and 1 using the HLSL function
saturate; subtract this from 1 to invert the value, and raise this to the 50th
power . Invert the value, since the Sobel function returns a larger value at an
edge . In this case, you want 0 at an edge and 1 away from the edge . Then you
sample the rendered image _MainTex, and return the multiple of these two
values col * s .

More.resources

 — Unity Open Project Github (most of the code from this chapter is from the
Open Project)

 — Unity Open Project on YouTube

 — YouTube tutorials from Ned Makes Games

 — YouTube tutorial about using Unity’s SobelFilter .shader from AE Tuts

 — Edge detection using a Sobel filter by Alexander Ameye

https://unity.com/
https://en.wikipedia.org/wiki/Irwin_Sobel
https://github.com/UnityTechnologies/open-project-1/tree/devlogs/1-toon-shading
https://www.youtube.com/watch?v=O4N4s6BKNH0
https://www.youtube.com/watch?v=RC91uxRTId8
https://www.youtube.com/watch?v=xgZ0NpaMByU
https://alexanderameye.github.io/notes/edge-detection-outlines/

36.of.105.| unity .com© 2023 Unity Technologies

A M B I E N T
O C C L U S I O N

Ambient Occlusion

Ambient Occlusion is a post-processing technique available in versions Unity
2020 .2 and URP 10 .0 and newer . The effect darkens creases, holes,
intersections, and surfaces that are close to one another . In the real world, such
areas tend to block out or occlude ambient light, thereby appearing darker . In
the previous image, the left side is rendered without Ambient Occlusion and on
the right, rendered with it . Notice how the edges around the steps are darkened .

https://unity.com/

37.of.105.| unity .com© 2023 Unity Technologies

The racing game, Circuit Superstars by Original Fire Games, is a game made with Unity that includes some of the newer URP features, such as SSAO, to ground the cars and models in
the environment and add depth to the visuals .

Note: The SSAO effect is a Renderer Feature and works independently
from the post-processing effects in URP . This effect does not depend
on or interact with Volumes .

To see it in action, open Scenes.>.Ambient.Occlusion.>.Ambient.Occlusion .
This scene is a low polygon city environment available as a free asset on the
Unity Asset Store .

The scene uses the URP Asset named Ambient_Occlusion_URP_Settings . This
is loaded automatically when you open the scene via the
AutoLoadPipelineAsset script attached to Scene.>.Main.Camera . The URP
Asset uses the Ambient_Occlusion_URP_Settings_Renderer .

To add SSAO to your scene, view the Universal Renderer Data asset in the
Inspector, and click on Add.Renderer.Feature . In the options drop-down menu,
select Screen.Space.Ambient.Occlusion .

URP implements the real-time Screen Space Ambient Occlusion (SSAO) effect
as a Renderer Feature . The pass code it uses can be viewed here .

https://unity.com/
https://www.circuit-superstars.com/
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@15.0/manual/post-processing-ssao.html
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/Runtime/Passes/ScreenSpaceAmbientOcclusionPass.cs

38.of.105.| unity .com© 2023 Unity Technologies

Adding a SSAO Renderer Feature

Having added a SSAO Renderer Feature, you can now control the result via the
Inspector . Let’s look at the available properties .

SSAO options

Downsample

Selecting this halves the resolution of the processing in both the X and Y
directions . Since this effectively reduces the number of pixels to process by
75%, it also reduces GPU load significantly but results in an effect with fewer
details .

After Opaque

This option affects the look of the final render, but it comes with performance
implications:

 — If.disabled: SSAO has a Depth or Depth Normals prepass (see the Source
option below) . The SSAO is then calculated after them and applied in the
DrawOpaques pass when doing the lighting calculations . It gives a better-
looking Ambient Occlusion, and the user can control the Direct Lighting
Strength value for SSAO, but it has a negative impact on performance .

https://unity.com/

39.of.105.| unity .com© 2023 Unity Technologies

Note: You want to also be able to render Depth + Normals in the Render
Opaque pass so you can fully skip any prepass with that option enabled
to save performance .

 — If.enabled: SSAO requires a Depth Normals if After Opaque is selected . If
Depth is selected, then it either gets the depth from Depth prepass, if that
was made, or a CopyDepth pass done after rendering opaques . The SSAO
is then added on top of everything after the DrawOpaques pass, instead
of being part of the lighting calculations . The benefit here is that a prepass
can be skipped, which can help performance .

Source

This option selects the source of the normal vector values . The SSAO Renderer
Feature uses normal vectors for calculating how exposed each point on a
surface is to ambient lighting .

Available.choices.for.Source:

 — Depth.Normals: SSAO uses the normal texture generated by the
DepthNormals pass . This option lets Unity make use of a more accurate
normal texture .

 — Depth: SSAO reconstructs the normal vectors using the depth texture
instead . Use this option only if you want to avoid using the DepthNormals
pass block in your custom shaders . Selecting this option enables the
Normal.Quality property .

When switching between these two options, there might be a variation in
performance, which depends on the target platform and the application . In a
wide range of applications the difference in performance is small . In most cases,
Depth Normals produces a better visual look .

Normal Quality

This is active when the Source property is set to Depth .

The options in this property (Low, Medium, and High) determine the number of
samples of the depth texture that Unity takes when reconstructing the normal
vector from the depth texture . The number of samples per quality level are:

 — Low: 1

 — Medium: 5

 — High: 9

The performance impact is regarded as medium .

https://unity.com/

40.of.105.| unity .com© 2023 Unity Technologies

Two variations of Direct Lighting Strength: 0 .2 (left) and 0 .9 (right)

Sample Count

For each pixel, the SSAO Renderer Feature takes the number of samples within
the specified radius to calculate the Ambient Occlusion value . Increasing this
value makes the effect smoother and more detailed, but reduces the
performance . Doubling the Sample Count value doubles the computational load
on the GPU .

SSAO is another great example of the flexibility of URP . The number of problems
that can be addressed using Renderer Features is limited only by your
imagination .

More.resources.

 — YouTube tutorial from UGuruz

 — Ambient Occlusion documentation

 — Assets used in recipe (thanks to Marcelo Barrio)

Intensity

This controls the strength of the darkening .

Radius

This property controls how many samples of the normal texture are taken
around the current pixel . Larger values have a significant impact on
performance, so keep them as low as possible . The radius value is scaled based
on the distance from the camera to the object that is being rendered at the
target pixel .

Direct Lighting Strength

This property is dependent on the After.Opaque option being disabled since it
relies on being handled when lighting calculations are being done . It affects the
strength of Ambient Occlusion where direct light hits .

https://unity.com/
https://www.youtube.com/watch?v=pgM4pKG1aGE
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.0/manual/post-processing-ssao.html
https://assetstore.unity.com/packages/3d/environments/urban/toony-tiny-city-demo-176087?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://assetstore.unity.com/publishers/38782?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook

41.of.105.| unity .com© 2023 Unity Technologies

D E C A L S

Decals are a great way to add overlays to a surface . They are often used to add
visuals such as bullet holes or tire treads to the game environment as the player
interacts with the scene . As you can see from the steps in the following image,
the decal wraps around a mesh . You’ll find the scene file and assets for this
recipe in the folder Scenes.>.Decals .

Decals added to a simple scene

Decals are rendered in a scene using a Renderer Feature . If you look at Decals_
URP_Settings_Renderer from the recipe folder you’ll see that the Decals
Renderer Feature is added . As usual, the AutoLoadPipelineAsset.cs script
attached to the Main Camera ensures the correct pipeline asset is used when
you load the scene .

https://unity.com/

42.of.105.| unity .com© 2023 Unity Technologies

The Decal option in the Add Renderer dropdown

To add a decal to a scene when working in the Editor, right-click the Hierarchy
window, and select Create.>.Rendering.>.URP.Decal.Projector .

To add decals to your custom scene, select the Universal Renderer Data asset
currently being used by the Player for rendering, and in the Inspector, choose
Decal from the Add Renderer Feature dropdown .

Creating a URP Decal Projector

One of many use cases for decals is to project a blob shadow onto a 3D surface, like the character Milo from the game Tinykin, made with Unity by Splashteam .

https://unity.com/
https://www.tinykingame.com/

43.of.105.| unity .com© 2023 Unity Technologies

Position and orient a URP Decal Projector in the Editor as you usually would . A
Decal Projector uses orthographic projection, so the size of a decal cast on a
surface is unaffected by the distance of the projector from the surface . Initially,
a new Decal Projector will display as a white block . In addition to the axis
arrows, you’ll see a white arrow indicating the direction of projection .

A new Decal Projector

URP Decal Projection properties

 — Scale.Mode: By default, the URP Decal Projection component has Scale.
Mode set to Scale Invariant . That means the size of the decal is
determined solely by the Width and Height properties . Switching to
Inherit.from.Hierarchy will combine the GameObject’s Transform Scale
with the Width and Height properties .

 — Width.and.Height: These properties control the size of the decal .

 — Projection.Depth: Sets the depth of the projector bounding box; the
projector projects decals along the local Z axis .

 — Pivot: Sets the offset position of the center of the projector bounding box,
relative to the origin of the root GameObject .

 — Material: Sets the Material to project; the Material must use the Shader
Graph/Decal (more details about this shortly) .

 — Tiling.and.Offset: The tiling and offset values for the Decal Material along
its UV axes .

 — Opacity: Lets you specify the opacity value; a value of 0 makes the decal
fully transparent, a value of 1 makes the decal as opaque, as defined by
the Material .

 — Draw.Distance: The distance from the Camera to the decal at which this
projector stops projecting the decal and URP no longer renders it .

 — Start.Fade: Sets the distance (via a slider) from the Camera at which the
projector begins to fade out the decal; values from 0 to 1 represent a
fraction of the Draw Distance; with a value of 0 .9, Unity starts fading the
decal out at 90% of the Draw Distance and finishes fading it out at the
Draw Distance .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/decal-shader.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/decal-shader.html

44.of.105.| unity .com© 2023 Unity Technologies

 — Angle.Fade: Use the slider to set the fade out range of the decal based on
the angle between the decal’s backward direction and the vertex normal of
the receiving surface .

Creating the Material

A Decal Projector must use a Material that uses the shader Shader Graph/Decal .
This example uses the Material DecalMat found in the Scene folder . There is a
Base Map assigned but no Normal Map; this is useful if you want the
appearance of a lumpy surface for the decal .

The Material is assigned to the projector in the Inspector .

Assigning the URP Decal Projector Material

Adding a decal with code

Although you can add a URP Decal Projector to your scene while developing in
the Editor, it’s more common to add them as a result of user interaction at
runtime . You can create a Prefab to establish the Material, Width, and Height,
although you can easily update this at runtime in code . This code example
focuses on instantiation, positioning, and orientation only . The complete code to
add a decal as a result of a mouse press on a Collider can be found in the
AddDecal .cs script in the recipe folder .

void AddDecalProjector(Vector3 pos, Vector3 normal)
{
 GameObject decalProjectorObject =
Instantiate(decalProjectorPrefab);

 // Creates a new material instance for the DecalProjector
 //if you want individual Decal control over the material
 //DecalProjector decalProjectorComponent =
decalProjectorObject.GetComponent<DecalProjector>();

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook/blob/main/Assets/Scenes/Decals/AddDecal.cs

45.of.105.| unity .com© 2023 Unity Technologies

This function is called when there is a RaycastHit after a mouse-down event
over a Collider . pos is the hit .point and normal the hit .normal . The Prefab called
decalProjectorObject is instantiated . To get the position, you need to move the
pos Vector3 away from the surface without exceeding the Projection Depth .
This is achieved by moving the point along the normal . To orientate the decal,
you first create a randomized up vector . To get the necessary rotation to align
the decal to the surface and rotate a random amount around the normal, use the
parameters inverse normal and the randomized up vector .

Decals have many uses in games, and the URP Decal Projector is a great tool in
your toolbox .

 //decalProjectorComponent.material = new
Material(decalProjectorComponent.material);

 //Move away from surface
 pos += normal * 0.5f;

 Quaternion up = Quaternion.AngleAxis(Random.Range(0, 360),
Vector3.left);
 Quaternion rot = Quaternion.LookRotation(-normal,
up.eulerAngles);

 decalProjectorObject.transform.SetPositionAndRotation(pos,
rot);
}

A decal in the Scene View

More.resources

 — Decal Renderer documentation

 — YouTube tutorial by Llam Academy

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/renderer-feature-decal.html
https://www.youtube.com/watch?v=5p8cKIu3P_8

46.of.105.| unity .com© 2023 Unity Technologies

W A T E R

A still from a video showing a simple water shader in motion .

To view the final result, open the Water scene in the folder Scenes.>.Water . The
final shader uses two subgraphs, DepthFade and TextureMovement; it’s a good

This recipe is for making a simple water shader . It’s created in Shader Graph to
make the steps more accessible to artists and designers .

The shader is built in three stages:

 — Creating the water color

 — Moving tiled normal maps to add wavelets to the surface

 — Adding moving displacement to the vertex positions to create a swell
effect

https://unity.com/
https://youtu.be/qPE-nMPBylM

47.of.105.| unity .com© 2023 Unity Technologies

idea to look at them before you review the water shader . The Water scene uses
the WaterURPSettings.Asset, with the Depth.Texture and Opaque.Texture.
options enabled . Note that the Opaque Texture is only required if you add
further effects not covered in this recipe, such as refraction .

Depth Texture and Opaque Texture selected in the WaterURPSettings asset

DepthFade subgraph

Water and aquatic vegetation are two important visual elements for creating beautiful open environments in video games . This image is from the survival game Len’s island, made with
Unity by Flowstudio .

The DepthFade subgraph

https://unity.com/
https://www.lensisland.com

48.of.105.| unity .com© 2023 Unity Technologies

The shallow and deep parts of the water each require their own color . The final
color of the water will be a blend of these two colors, based on a Depth
property . Depth is the distance between the surface of the water and the
geometry below it . Since the water shader is set as transparent, opaque
geometry will already be rendered, and because Depth Texture is selected for
the URP Settings Asset, the current depth can be read .

A Scene.Depth node with Sampling set to Eye mode gives the distance from the
eye to the opaque geometry at the current pixel . The Screen.Position node,
with Raw selected as the mode of its output value, holds the information about
rendering the current pixel of water . A Split node is used since you want the W
component, which stores the distance from the eye to the current pixel of water .

Subtracting the water distance from the distance of the existing opaque
geometry gives a guide to the depth of the water, albeit a ray from the eye
position, not a ray directly down . Next, a Divide node controls where the edge
between shallow and deep appears . The output from this subgraph should be
between 0 and 1, so you’ll use a Saturate node which acts as a specialized
Clamp node by always restricting the output between 0 and 1 .

TextureMovement subgraph

TextureMovement subgraph

The water shader has a number of moving textures that are handled using the
TextureMovement subgraph . In this subgraph, a Time node is used as one input
to a Multiply node . The input Speed is divided by 100 and forms the second
input to the Multiply node . The output from the Multiply node acts as the Offset
input to a Tiling.and.Offset node . The Scale property forms the Tiling input .
Over time, this simple subgraph will update the UV used by a Sample.Texture.
2D.node given a Speed and Scale input .

Water shader

Now it’s time to create the water shader, based on a Lit Shader Graph, via URP.>.
Lit.Shader.Graph .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Scene-Depth-Node.html?q=Scene%20Depth
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Screen-Position-Node.html?q=screen%20position%20raw
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Divide-Node.html?q=Divide%20node
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Saturate-Node.html?q=Saturate%20node
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Clamp-Node.html?q=Clamp
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Time-Node.html?q=Time%20node
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Multiply-Node.html?q=Multiply
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Tiling-And-Offset-Node.html?q=tiling
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Sample-Texture-2D-Node.html?q=sample%20texture
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Sample-Texture-2D-Node.html?q=sample%20texture

49.of.105.| unity .com© 2023 Unity Technologies

Create > Shader Graph > URP > Lit Shader Graph

Next, you’ll use the Graph Inspector to set the Surface.Type .

Setting the Surface Type

Now you’ll edit the graph, starting with Color .

https://unity.com/

50.of.105.| unity .com© 2023 Unity Technologies

Color and Alpha

Color is handled by adding a DepthFade subgraph . The subgraph uses a float
Depth property for control . If the output goes directly to the Base Color input of
the Fragment shader, it results in the following image: shallow water is black and
deeper water white . The higher the value of Depth, the more the black spreads .
Black indicates 0 and white 1 .

Color

Plugging the output from DepthFade directly into Fragment.>.Base.Color

Instead of linking the DepthFade directly to the Base Color input, it goes to a
Lerp node . ShallowWaterColor is input A, replacing the black color, and
DeepWaterColor is input B, replacing the white . When setting the alpha for
these colors make sure the shallow water is more transparent . The Lerp output
goes to Fragment.>.Base.Color . For the Alpha, you’ll use a Split node, linking the
A output with Fragment.>.Alpha . This produces the result seen in the following
image .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Lerp-Node.html?q=Lerp

51.of.105.| unity .com© 2023 Unity Technologies

Dense mesh and colored water

Controlling the Fragment.>.Normal

Normal maps add moving wavelets to the surface . The first input property is
Wave.Speed, which is used as the Speed input to a TextureMovement
subgraph . Scale is hard set to 50,50, and, via a second TextureMovement node,
Speed is preprocessed by a Multiply node to be minus half the Wave Speed
property .

The actual water is a plane, but to allow for vertex displacement, the mesh has
many more vertices as the image shows .

This simple flat surface is a start but needs more work, namely, normal maps .

Normal maps

https://unity.com/

52.of.105.| unity .com© 2023 Unity Technologies

Applying different levels of smoothness to the wavelets, left to right: 0, 0 .5, and 1

The next step is to enable vertex displacement to add motion to the water .

Swell

The next step in calculating the normal is to sample the Normal texture twice
using the UV processed by the two TextureMovement subgraph nodes . We add
the two normals together to get the combined effect of the two moving
textures . The shader has a Normal.Strength float property, which could be used
as the Strength input to a Normal Strength node . But you want the wavelets to
die back nearer to the edge . To control this, use the DepthFade subgraph node
with the shader property Edge.Distance controlling the spread . This is used as
the T input to a Lerp node blending between 0 and Normal Strength . The output
of this stage of the graph goes to Fragment > Normal .

Now you have controllable wavelets whose reflective property can be tweaked
by controlling the Smoothness of the Fragment using a simple float property .
The following image shows the effect of changing the Smoothness value .

Controlling the swell using Gradient Noise

https://unity.com/

53.of.105.| unity .com© 2023 Unity Technologies

For this step, you’ll use a TextureMovement subgraph node again . Speed is set
using the shader float property Swell.Speed, and Scale is hard set to 50,50 . This
acts as the UV input to a Gradient Noise node with Scale hard set to 1 . You use a
Multiply node to control this value using the shader float property
Displacement . The purpose of these nodes is to set a Y value for vertex in
object space . Notice the Space parameter of the Position node is set to Object .
This links with a Split node and then a Combine node; Combine receives the R
and B values directly from the Split node, with R being Position X and B being
Position Z . The G value for Y comes from the Gradient Noise path . The RGB(3)
output links to the Vertex > Position .

If you view the scene in Play mode you can see the swell moving through the
water, especially at the edges .

The final result

While this recipe forms the basis of a simple water shader, you can enhance it
using Caustic Reflections, Refraction, and Foam . See the links below for
additional guidance .

More.information

 — Unity YouTube tutorial

 — Caustic reflections tutorial by Alan Zucconi

 — Stylized water tutorial by Binary Lunar

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Gradient-Noise-Node.html?q=Gradient%20noise
https://www.youtube.com/watch?v=gRq-IdShxpU
https://www.alanzucconi.com/2019/09/13/believable-caustics-reflections/
https://www.youtube.com/watch?v=1yevpCAA_rU&t=831s

54.of.105.| unity .com© 2023 Unity Technologies

L U T F O R
C O L O R G R A D I N G

Using Color Lookup to create grading effects

If you’ve yet to use the post-processing filters available with URP, you’re in for
a treat . This recipe involves using one filter, but the steps employed apply to all
them . By default, a new URP scene has post-processing disabled, so make sure
to enable it via the Camera.>.Rendering panel .

Select Post Processing in Camera > Rendering

https://unity.com/

55.of.105.| unity .com© 2023 Unity Technologies

Additionally, you’ll need to enable post-processing in the Universal Renderer
Data asset .

Selecting post-processing in the Universal Renderer Data asset

To apply the filter where the camera is located, add a Global Volume . Right-click
the Hierarchy window, and select Volume.>.Global.Volume .

The mystery adventure FPS game Return of the Obra Dinn, made with Unity by Lucas Pope, achieves a unique look and feel thanks to its lo-fi art style and unique color palette that
could be achieved following this recipe .

Creating a Global Volume

https://unity.com/
https://obradinn.com/

56.of.105.| unity .com© 2023 Unity Technologies

Select the new GameObject, and create a new Profile by clicking New .

Creating a new Profile

Now you can add an override . Press the Add.Override button, select post-
processing, then choose Color.Lookup .

Adding a Color Lookup post-processing filter

Click the All button . Now you need a LUT (Lookup Table) image texture . This is
a strip image that will be used by the filter to change the default rendered
colors . You’ll find the image file in Scenes.>.LUT.>.NeutralLUT .png, or download
it using this link .

NeutralLUT .png

A LUT image must have sRGB.(Color.Texture) disabled, which you do by
selecting the image and viewing the Inspector .

https://unity.com/
https://github.com/NikLever/Unity-URP-Cookbook/blob/main/Assets/Scenes/LUT/NeutralLUT.png

57.of.105.| unity .com© 2023 Unity Technologies

Disable sRGB (color Texture) for all LUT textures

Count the blocks in the NeutralLUT image above, and you’ll find there are 32 of
them . Alternatively, you can use 16 blocks; whether you choose 32 or 16 blocks,
ensure the settings for your URP Asset match your choice . If you choose 32,
make sure the post-processing panel has LUT.size set to 32 . Feel free to
experiment with the Grading.Mode option .

Setting the LUT size

If you assign NeutralLUT .png.as the Lookup Texture using the Color.Lookup
settings panel, you’ll see no change to the rendered image . The filter uses the
texture to set a new color . The code takes the current pixel color and uses this
to find a texel on the LUT image . With a neutral LUT image, the texel color will
be the same as the current pixel color .

The real magic occurs when you process the image you use as the Lookup
Texture using a paint program, such as Photoshop or Krita (there’s a link under
More resources, at the end of this section, to a YouTube video explaining how to
use Krita for color grading) .

Assigning the Lookup Texture

https://unity.com/

58.of.105.| unity .com© 2023 Unity Technologies

Take a screen grab of your scene, and open it in Photoshop . At the bottom of
the Layers panel, find the half black/half white circular button . Select it, and in
the panel find Gradient.Map . A new color adjustment layer is added .

Creating a color adjustment layer

To create a color adjustment layer that results in a high-contrast black-and-
white image, click the Gradient Map drop-down and select Basics, black and
white .

Selecting a black and white gradient

https://unity.com/

59.of.105.| unity .com© 2023 Unity Technologies

Changing the stops to boost the contrast

The screengrab should now look black and white .

To boost the contrast, click the gradient to open a new window . Use the stops
to adjust the contrast .

The effect of the Gradient Map

Once you have the grading of your choice, you need to apply this layer to the
NeutralLUT .png file . Open the file in Photoshop . Back in the screen grab,
right-click the adjustment layer, and select Duplicate.Layer . In the new panel,
select NeutralLUT .png as the Destination.>.Document .

Duplicating the adjustment layer

https://unity.com/

60.of.105.| unity .com© 2023 Unity Technologies

Now the texture looks like this:

B&WLUT .png

Save it, and drag it to your project’s Assets folder . Make sure to disable sRGB
(Color Texture) using the Inspector panel . The last step is to assign the new LUT
texture as the Lookup Texture for the Color Lookup filter .

Using various LUT textures

Using LUT Textures is an efficient way to create dramatic color grading, and this
approach can be useful in many games .

More.resources

 — Documentation for post-processing in URP

 — YouTube tutorial by PHLEARN

 — YouTube tutorial by GDQuest

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@14.0/manual/integration-with-post-processing.html
https://www.youtube.com/watch?v=zTuCTYbvxac
https://www.youtube.com/watch?v=Iurcp8xdpJY

61.of.105.| unity .com© 2023 Unity Technologies

L I G H T I N G

Lighting with URP is similar to using the Built-In Render Pipeline . The main
difference is where to find the settings .

This section covers related recipes for real-time lighting and shadows, including
baked and mixed lighting using the GPU Progressive Lightmapper, Light Probes,
and Reflection Probes . You’ll pick up enough instruction for a five-course meal .

Before starting, here are some pointers to keep in mind about shaders and color
space .

Shaders

When using lighting in URP, you have a choice of shaders . Generally, you
wouldn’t mix Lit, which uses a Physically Based Rendering (PBR) model, with
Simple Lit, which uses a Blinn-Phong model . The following table provides
descriptions for URP shaders .

The choice between a Lit Shader and Simple Lit Shader is largely an artistic
decision . It’s easier for artists to get a realistic render using the Lit Shader, but if
a more stylized render is desired, Simple Lit provides stellar results .

Shader Description

Complex Lit This shader has all the features of the Lit Shader . Select it
when using the Clear Coat option to give a metallic sheen to
a car, for example . The specular reflection is calculated
twice – once for the base layer, and again to simulate a
transparent thin layer on top of the base layer .

https://unity.com/
https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model

62.of.105.| unity .com© 2023 Unity Technologies

The Unity and URP-made game LEGO® Bricktales by Clockstone immerses players in the world of LEGO, where great lighting plays a huge role in creating its atmosphere and realism of
the blocks .

Lit The Lit Shader lets you render real-world surfaces, such as
stone, wood, glass, plastic, and metals, with photorealistic
quality . The light levels and reflections look lifelike and react
across various lighting conditions, from bright sunlight to a
dark cave .

This is the default choice for most materials that use lighting .
It supports baked, mixed, and real-time lighting, and works
with Forward or Deferred rendering .

It is a physically based shading (PBS) model . Due to the
complexity of the shading calculations, it’s best to avoid
using this shader on low-end mobile hardware .

Simple Lit This shader is not physically based . It uses a non-energy-
conserving Blinn-Phong shading model and gives a less
photorealistic result . Nonetheless, it can provide an excellent
visual appearance . It is more suited to use on non-physically
based projects when targeting low-end mobile devices .

Baked Lit This shader provides a performance boost for objects that
don’t need to support real-time lighting, including distant
static objects that will never be affected by dynamic objects,
real-time lights, or dynamic shadows .

https://unity.com/
https://thunderfulgames.com/games/lego-bricktales/

63.of.105.| unity .com© 2023 Unity Technologies

Comparing scenes rendered using different shaders: The top-left image uses the Lit Shader, the top-right, the Simple Lit
Shader, and the bottom image, the Baked Lit Shader .

Color Space

When setting up lighting for a URP project, you have a choice to work in linear or
gamma color space . The former is the default and strongly recommended . This
is set using Edit.>.Project.Settings….>.Player.>.Color.Space . A project created
with the URP 3D template is set to Linear by default .

Setting the Color Space

The two different color spaces relate to how the human eye responds to light .
The human eye is more sensitive to bright light, so it doesn’t respond to light
intensity linearly . Gamma space shifts the linear values to better represent what
the human eye can distinguish, however this is not mathematically accurate, so
as hardware has improved and PBR lighting models are preferred, there has
been a shift to using a linear color space .

There are situations where you need to use gamma, such as if the target
hardware is old and doesn't support sRGB formats, but in most cases it is fully
supported . There can be artistic reasons to switch to gamma, such as when the
project is set up for LDR rather than HDR and uses the Simple Lit lighting model
or Unlit . In such a case, switching to a gamma color space could be beneficial
for achieving the target art style .

LDR or HDR is set using the URP Settings asset, under the Quality section .

https://unity.com/

64.of.105.| unity .com© 2023 Unity Technologies

Setting URP to use HDR

Comparison of linear and gamma space lighting with different intensities

Further reading on gamma and linear color space and the workflows for using
gamma and linear textures can be found in the documentation .

The diorama scene

https://unity.com/
https://docs.unity3d.com/2020.3/Documentation/Manual/LinearLighting.html

65.of.105.| unity .com© 2023 Unity Technologies

Real-time Global Illumination and mixed lighting

The screenshots used for most of this recipe are from the Unity project FPS
Sample: The Inspection that you can download here . This sample was made for
Unity 2020 LTS, but the lighting principles still apply to Unity 2022 LTS .

If you open the scene.Scenes.>.Small_Indirect, you’ll see a diorama featuring a
cave, mechanical arm, and a robot .

Creating a Lighting Settings Asset

The first step to lighting a new scene for URP is to create a new Lighting
Settings Asset . Open Window.>.Rendering.>.Lighting, click the Scene tab, then
New.Lighting.Settings, and give the new asset a name . The settings that you
apply in Lighting panels are now saved to it . Switch between settings by
switching the Lighting Settings Asset .

Lights are divided into Main Light and Additional Lights in URP . The Main Light is
the most significant directional light . This is either the brightest light or the one
set via Window.>.Rendering.>.Lighting.>.Environment.>.Sun.Source .

Light from weapon on cave wall

https://unity.com/
https://github.com/UnityTechnologies/Lightmapper-FPSSample-TheInspection
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/universalrp-asset.html#lighting
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/universalrp-asset.html#lighting

66.of.105.| unity .com© 2023 Unity Technologies

Setting the Sun Source

The Main Light, named the Sun in the diorama scene, is set as light mode Mixed,
meaning it contributes to both real-time lighting and baked lighting . If you have
dynamic objects in the scene, then you need at least one real-time light
illuminating them so the shadows they cast are updated as they move . The
robot’s weapon also features a light, set as Realtime . It is most noticeable when
inside the cave . Play the scene, use the WASD keys to move the robot, and you’ll
see how it casts shadows from the props in the cave .

With URP, lighting settings are adjusted from three places:

 — Window.>.Rendering.>.Lighting: This panel allows you to set lightmapping
and environment settings, and view real-time and baked lightmaps .

 — Light.component.in.the.Inspector.view: The Light component attached to
the GameObject that acts as light . See the following table for details .

 — URP.Asset.Inspector: This is the principal place for shadow settings .
Lighting in URP relies heavily on the settings chosen in this Inspector .

This table lists the differences between the URP and Built-In Render Pipeline
Light Inspectors .

URP.Light.Inspector.
properties

Description

General

Type Spot, Directional, Point, or Area

Mode Baked, Mixed, or Realtime

Shape

Spot You can control both the inner and outer cone angles for Spot
lights .

Area This is used to control the shape of an Area light .

https://unity.com/

67.of.105.| unity .com© 2023 Unity Technologies

Emission

Light Appearance Choose between Color or Filter and Temperature . Color sets
the emitted light color . Filter and Temperature use both a color
(filter) and a temperature to switch between cool and warm
lighting .

Color Use the color picker to set the color of the emitted light .

Intensity Set the brightness of the light . The default value for a
Directional light is 0 .5 . The default value for a Point, Spot, or
Area (Rectangle or Disc) light is 1 .

Indirect Multiplier Use this value to vary the intensity of indirect light . If you set
the Indirect Multiplier to a value lower than 1, the bounced
light becomes dimmer with every bounce . A value higher than
1 makes light brighter with each bounce . This is useful, for
example, when a dark surface in shadow (such as the interior
of a cave) needs to be brighter to make detail visible .

Range Control how far from the GameObject position the light affects
the render .

Rendering

Render Mode Auto – decided at runtime by light proximity to camera
Important – always per-pixel quality Not important – always
faster per-vertex quality

Culling Mask Used to control which layers are affected by the light

Shadows

Shadow type No shadows, Soft shadows, or Hard shadows .

Baked Shadow
Radius

If Type is set to Point or Spot and Shadow Type is set to Soft
Shadows, this property adds some artificial softening to the
edges of shadows and gives them a more natural look .

Light Cookie

Cookie If a texture is set to use a light cookie and the light type is
Directional, then a new panel will allow you to control the x
and y size of the cookie, as well as its offset . A cookie for a
Point light must be a cubemap . URP supports colored cookies .

https://unity.com/

68.of.105.| unity .com© 2023 Unity Technologies

S H A D O W S

The URP Asset

Shadow settings are set using a Renderer Data object and a URP Asset when
using URP . You can use these assets to define the fidelity of your shadows .

https://unity.com/

69.of.105.| unity .com© 2023 Unity Technologies

Syberia: The World Before by Microids is another example of a game made with Unity that makes great use of lights and shadows to recreate beautiful architecture and streets in this
story-driven console and PC game .

Main Light: Shadow Resolution

The Lighting and Shadow groups in the URP Asset are key to setting up
shadows in your scene . First, set the Main.Light.Shadow to Disabled or Per.
Pixel, then go to the checkbox to enable Cast.Shadows . The last setting is the
resolution of the shadow map .

If you’ve worked with shadows in Unity before, you know that real-time shadows
require rendering a shadow map that contains the depth of objects from the
perspective of the light . The higher the resolution of this shadow map, the
greater the visual fidelity – though both more processing power and memory are
required . Factors that increase shadow processing include:

1 . The number of Shadow Casters rendered in the shadow map – number
for the Main Light depends on the Shadow Distance (far plane of shadow
frustum)

2 . Shadow Receivers that are visible (you have to encompass them all)

3 . Shadow Cascades splits

4 . Shadow filtering (Soft Shadows)

https://unity.com/
https://www.microids.com/game-syberia-the-world-before/

70.of.105.| unity .com© 2023 Unity Technologies

The highest resolution isn’t always ideal . For example, the Soft.Shadows option
has the effect of blurring the map . In the following image of a cartoon-like
haunted room, you can see that the chair in the foreground casts a shadow on
the desk drawers that appears too crisp when the resolution is greater than
1024 .

Setting the Shadow Resolution for the Main Light: The resolution is set to 256 in the top-left image, 1024 in the bottom-
left image, 2048 in the top-right image, and 4096 in the bottom right image . Middle image 1024

Main Light: Shadow Max Distance

Varying Max Distance for the Main Light Shadow: Top-left image – 10, top-right image – 30, bottom-left image – 60,
bottom-right image – 400

https://unity.com/

71.of.105.| unity .com© 2023 Unity Technologies

Another important setting for the Main Light Shadow is Max.Distance . This is
set in scene units . In the image above, the poles are 10 units apart . The Max
Distance varies from 10 to 400 units . Notice that only the first pole casts a
shadow, and this is cut short at 10 units from the Camera location . At 60 units
(bottom-left image), all shadows are in view – the shadow fidelity is adequate .
When the Max Distance is much greater than the visible assets, the shadow
map is being spread over too large an area . This means that the region in-shot
has a much lower resolution than required .

The Max Distance property needs to relate directly to what the user can see, as
well as the units used in the scene . Aim for the minimum distance that gives
acceptable shadows (see note below) . If the player only sees shadows from
dynamic objects 60 units from the Camera, then set Max Distance to 60 . When
the Lighting Mode for Mixed Lights is set to Shadowmask, the shadows of
objects beyond Shadow Distance are baked . If this was a static scene, then you
would see shadows on all objects, but only dynamic shadows would be drawn
up to the Shadow Distance .

Note: URP only supports Stable.Fit Shadow Projection, which relies on
the user to set up the Max Distance . The Built-in Render Pipeline
supports both Stable Fit and Close Fit for the Shadow Projection
property . In the latter mode, the bottom-left and -right images would
have the same quality, as Close Fit reduces the shadow distance plane
to fit the last caster . The disadvantage is that, since Close Fit changes
the shadow frustum “dynamically,” it can cause a shimmer/dancing
effect in the shadows .

Shadow Cascades

As assets disappear into the distance due to perspective, it’s convenient to
decrease Shadow Resolution, thereby devoting more of the shadow map to
shadows closer to the Camera . Shadow Cascades can help with this .

The images below show the shadow map of the scene with the chair and desk
in the haunted room, Scenes.>.Renderer.Features.Stencil.>.SmallRoom-
Stencil, that you saw in the first recipe . The cascade count is 1 in the image to
the left . The map takes up the whole area . In the image to the right, the cascade
count is 4 . Notice that the map includes four different maps, with each area
receiving a lower resolution map .

A cascade count of 1 is likely to give the best result for small scenes like this .
But if your Max Distance is a large value, then a cascade count of 2 or 3 will give
better shadows for foreground objects, as these receive a larger proportion of
the shadow map . Notice that the chair in the left image is much bigger, resulting
in a sharper shadow .

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/LightMode-Mixed-Shadowmask.html
https://docs.unity3d.com/2021.2/Documentation/Manual/shadow-cascades.html

72.of.105.| unity .com© 2023 Unity Technologies

Shadow map when cascade count is set to 1 (left image) and 4 (right image)

Adjusting the range of a Shadow Cascade

You can adjust the start and end ranges for each section of the cascade using
the draggable pointers, or by setting the units in the relevant fields (see the
image that follows) . Always adjust Max Distance to a value that is a close fit for
your scene, and choose the slider positions carefully . If you use metric as the
working unit, always choose the last cascade to be the distance of the last
Shadow Caster, at most .

https://unity.com/

73.of.105.| unity .com© 2023 Unity Technologies

Settings available for Additional Lights in URP Asset

Having sorted the shadows for the Main Light, it’s time to move on to Additional.
Lights.Mode . Enable additional lights to cast shadows by setting the Additional
Lights Mode for the URP Asset to Per.Pixel . While the mode can be set to
Disabled, Per Vertex, or Per Pixel (see image above), only the latter works with
shadows .

Check the Cast.Shadows box . Then, select the resolution of the Shadow.Atlas .
This is the map that will be used to combine all the maps for every light casting
shadows . Bear in mind that a Point light casts six shadow maps, creating a
cubemap, since it casts light in all directions . This makes a Point light the most
demanding performance-wise . The individual resolution of an additional light
shadow map is set using a combination of the three Shadow Resolution tiers,
plus the resolution chosen via the Light Inspector when selecting the light in the
Hierarchy window .

Shadows group in the Light Inspector

In the haunted room, one of the projects explored in the e-book Introduction to
the Universal Render Pipeline for advanced Unity creators, there is a Spot light
over the mirror and a Point light over the desk . There are also seven maps . To fit
these seven maps onto a 1024px square map, the size of each map needs to be
256px or smaller . If you exceed this size, the resolution of shadow maps will
shrink to fit the atlas, resulting in a warning message in the console .

Additional Light shadows

https://unity.com/
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook

74.of.105.| unity .com© 2023 Unity Technologies

Number.of.maps Atlas.tiling Atlas.size.(multiply.
shadow.tier.size.by)

1 1x1 1

2–4 2x2 2

5–16 4x4 4

Setting the Shadow Atlas size based on the number of Additional Lights shadow maps and the tier size chosen per map

Shadow Atlas for Additional Lights

The image above shows the six maps used by the Point light where the
resolution is set to medium and the tier value to 256px . The Spot light has a
resolution set to high, with a tier value of 512px .

https://unity.com/

75.of.105.| unity .com© 2023 Unity Technologies

The scene from FPS Sample: The Inspection by Unity

The scene from the FPS Sample project contains largely static geometry . To
include the geometry in lightmapping, click the Static box to the right side of
the Inspector .

This is a low-polygon version of the haunted room, lit with a Main Directional light, a Point light over the desk, and a Spot light over the mirror . All lights are real-time and casting
shadows .

Including geometry in lightmapping

Baked lighting

Let’s go through the steps using an FPS Sample project by Unity . The scene
demonstrates how to use real-time and baked lighting in URP .

https://unity.com/

76.of.105.| unity .com© 2023 Unity Technologies

Lightmapping settings

Choose the lightmapping settings via Window.>.Rendering.>.Lighting.>.Scene .
Keep the Lightmap Resolution low while adjusting the settings . Once you have
your desired settings, increase the value when generating the final lightmaps .
Choose Progressive.GPU.(Preview) to speed up the lightmap generation, if your
GPU supports it .

https://unity.com/

77.of.105.| unity .com© 2023 Unity Technologies

Filtering blurs the map to minimize noise . This can result in gaps in a shadow
where one object meets another . Use A-Trous filtering to minimize this artifact .
See the Progressive Lightmapping documentation for more details on the
settings available for lightmapping .

How filtering affects the shadow between objects

Make sure all static geometry has no overlapping UV values, or is generating
lighting UVs on import .

Generate Lightmap UVs

Set Light.Mode to Baked or Mixed . Select the light in the Hierarchy window,
and use the Inspector . Mixed Lights will illuminate dynamic objects as well as
static ones .

Set Light Mode to Baked or Mixed

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/progressive-lightmapper.html

78.of.105.| unity .com© 2023 Unity Technologies

When using Mixed Lights, set the Light.Mode to Baked.Indirect, Subtractive, or
Shadowmask via Window.>.Rendering.>.Lighting.>.Scene .

 — Baked.Indirect: Only the indirect light contribution will be baked into the
lightmaps and Light Probes (the bounces of the lights only) . Direct lighting
and shadows will be real-time . This is an expensive option and not ideal
for mobile platforms . However, it does mean that you get correct shadows
and direct light for both static and dynamic geometry .

 — Subtractive: Here, you bake the direct lighting from a Directional light set
to Mixed into the static geometry, and subtract the lighting from shadows
cast by dynamic geometry . This results in the static geometry unable to
cast a shadow on dynamic objects, unless Light Probes are used, which
can cause unpleasant visual discontinuities .

URP calculates an estimate of the contribution of the light from the
Directional Light and subtracts that from the baked Global Illumination .
The estimate is clamped by the Real-time Shadow Color setting in the
Environment section of the Lighting window, so the color subtracted is
never darker than this color . Choose the minimum color of your subtracted
value and the original baked color . This is the most suitable option for
low-end hardware .

 — Shadowmask: Though similar to Baked Indirect Mode, Shadowmask
combines both dynamic and baked shadows, rendering shadows at a
distance . It does this by using an additional Shadowmask texture and
storing additional information in the Light Probes . This provides the
highest-fidelity shadows, but is also the most expensive option in terms of
memory use and performance . Visually, it’s identical to Baked Indirect for
shots up close . The difference is apparent when looking in the far
distance, making it well-suited for open-world scenes . Due to the
processing cost, it’s recommended for mid- to high-end hardware only .

Baked Indirect Global Illumination

Adjust the Lightmap.Scale via Asset.>.Inspector.>.Lightmapping.>.Scale.In.
Lightmap so that distant objects take up less space on the lightmap . The
following image shows the texel size of the background rock lightmap with a
setting varying from 0 .05 to 0 .5 .

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/LightMode-Mixed-BakedIndirect.html
https://docs.unity3d.com/2021.2/Documentation/Manual/LightMode-Mixed-Subtractive.html
https://docs.unity3d.com/2022.2/Documentation/Manual/LightProbes.html
https://docs.unity3d.com/2021.2/Documentation/Manual/LightMode-Mixed-Shadowmask.html

79.of.105.| unity .com© 2023 Unity Technologies

Texel size by scale setting: In the top-left image, texel size is set to 0 .5; in the top-right image, 0 .2; in the bottom-left
image, 0 .1, and in the bottom-right image, 0 .05 .

Click Generate.Lighting to bake . The baking time depends on the number of
static objects, the complexity of the meshes, lights set to Mixed or Baked mode,
and the settings chosen for lightmapping, particularly the Max Lightmap Size
and the Lightmap Resolution .

Generate Lighting to bake

https://unity.com/

80.of.105.| unity .com© 2023 Unity Technologies

L I G H T P R O B E S

It’s recommended to add Light Probes to your scene when using Mixed mode
lighting . Light Probes save the light data at a particular position within an
environment when you bake the lighting by clicking Generate.Lighting via
Window.>.Rendering.>.Lighting panel . This ensures that the illumination of a
dynamic object moving through an environment reflects the lighting levels used
by the baked objects . In a dark area it will be dark, and in a lighter area it will be
brighter . Below, you can see the robot character inside and outside of the
hangar in the FPS Sample: The Inspection .

The robot inside and outside of the cave, with lighting level affected by Light Probes

To create Light Probes, right-click in the Hierarchy window, and choose Light.>.
Light.Probe.Group .

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/LightProbes.html

81.of.105.| unity .com© 2023 Unity Technologies

Slime Rancher 2 by Monomi Park is a colorful, fast-paced first-person adventure game made with Unity using a customized rendering pipeline . To achieve beautiful lighting in an action
game, you can combine different lighting techniques like Light Probes for dynamic objects and baking lights for static objects .

Creating a new GameObject for the Light Probe Group

Initially, there will be a cube of Light Probes; eight in total . To view and edit the
positioning of the Light Probes and add additional ones, select the Light.Probe.
Group in the Hierarchy window, and in the Inspector click Light.Probe.Group.>.
Edit.Light.Probes .

Add or remove Light Probes and modify their position from the Inspector

https://unity.com/
https://www.slimerancher.com/press

82.of.105.| unity .com© 2023 Unity Technologies

The Scene view will now be in an editing mode where only Light Probes can be
selected . Use the Move tool to move them around .

Moving a Light Probe

Light Probes should be positioned, first, in an area where a dynamic object
might move to, and second, where there is a significant change in lighting level .
When calculating the lighting level for an object, the engine finds a pyramid of
the nearest Light Probes and uses those to determine an interpolated value for
the illumination level .

The nearest Light Probes for the selected crate

https://unity.com/

83.of.105.| unity .com© 2023 Unity Technologies

Positioning Light Probes can be time consuming, but a code-based approach
such as this one can speed up your editing, especially for a large scene .

Further details on how a Mesh Renderer works with Light Probes and how to
adjust the configuration can be found in the documentation .

Reflection Probes

A ray-tracing tool like Maya or Blender can take the time to accurately calculate
the values for each frame pixel of a reflective surface . This process takes far too
long for a real-time renderer, which is why shortcuts are often used .

Reflections in a real-time renderer use environment maps (prerendered
cubemaps) . Unity supplies a default map using the SkyManager . Having a single
map as the source of reflections from all locations in a scene can lead to
unconvincing reflections . Take the example of the robot shown in this section . If
the metal parts of this character always reflect the sky, then it will look very
strange when inside the hangar where the sky is not visible . This is where
Reflection Probes are helpful .

A Reflection Probe is simply a prerendered cubemap placed at a key position in
the scene . You can use several Reflection Probes in a single scene . As a
dynamic object moves through the scene, it can select the nearest Reflection
Probe and use that as the basis of its reflections . You can also set up the scene
to blend between probes .

To create a Reflection Probe, right-click the Hierarchy window, and select Light.
>.Reflection.Probe .

Creating a Reflection Probe

Then position the probe and adjust its settings . Once the probe is placed
correctly and the settings are adjusted, click Bake to generate a cubemap .

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/LightProbes-Placing-Scripting.html
https://docs.unity3d.com/2021.2/Documentation/Manual/LightProbes-MeshRenderer.html
https://docs.unity3d.com/2021.2/Documentation/Manual/ReflectionProbes.html
https://docs.unity3d.com/2021.2/Documentation/Manual/class-ReflectionProbe.html

84.of.105.| unity .com© 2023 Unity Technologies

Reflection Probe settings

The following image shows the two Reflection Probes used in FPS Sample: The
Inspection, one inside the hangar and one outside .

Reflection Probe blending

Blending is a great feature of Reflection Probes . You can enable blending via the
Renderer.Asset.Settings panel .

Blending gradually fades out one probe’s cubemap, while fading in the other as
the reflective object passes from one zone to the other . This gradual transition
avoids the situation where a distinctive object suddenly “pops” into the
reflection as an object crosses the zone boundary .

Each Reflection Probe captures an image of its surroundings in a cubemap texture .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/lighting/reflection-probes.html#reflection-probe-blending

85.of.105.| unity .com© 2023 Unity Technologies

Box Projection

Normally, the reflection cubemap is assumed to be at an infinite distance from
any given object . Different angles of the cubemap will be visible as the object
turns, but it’s not possible for the object to move closer or further away from the
reflected surroundings .

While this works well for outdoor scenes, its limitations show in an indoor scene .
The interior walls of a room are clearly not an infinite distance away, and the
reflection of a wall should get larger as the object nears it .

The Box Projection option enables you to create a reflection cubemap at a finite
distance from the probe, allowing objects to show reflections of different sizes
according to their distance from the cubemap’s walls . The size of the
surrounding cubemap is determined by the probe’s zone of effect, depending on
its Box.Size property . For example, with a probe that reflects the interior of a
room, you should set the size to match the dimensions of the room .

More.resources.

 — Lighting and Lightmapping documentation

 — Introduction to lighting and rendering from Unity Learn

 — The art of lighting game environments by CGCookie

 — Real-time lighting in Unity by Brackeys

 — Harnessing light with the URP and the GPU Lightmapper from Unite Now

 — Configuring lightmaps from Unity Learn

 — Lighting Settings Asset documentation

 — Lighting Explorer documentation

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/AdvancedRefProbe.html
https://docs.unity3d.com/2021.2/Documentation/Manual/LightingInUnity.html
https://docs.unity3d.com/2021.2/Documentation/Manual/Lightmappers.html
https://learn.unity.com/tutorial/introduction-to-lighting-and-rendering?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://cgcookie.com/articles/art-of-lighting-game-environments
https://www.youtube.com/watch?v=wwm98VdzD8s
https://youtu.be/hMnetI4-dNY
https://learn.unity.com/tutorial/configuring-lightmaps?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/2021.2/Documentation/Manual/class-LightingSettings.html
https://docs.unity3d.com/2021.2/Documentation/Manual/LightingExplorer.html

86.of.105.| unity .com© 2023 Unity Technologies

S C R E E N S P A C E
R E F R A C T I O N

Screen Space refraction uses the current opaque texture created by the render
pipeline as the source texture to map pixels to the model being rendered . It can’t
show models that are not part of the opaque texture . The method is about
deforming the UV used to sample the image .

An example of Screen Space Refraction

https://unity.com/

87.of.105.| unity .com© 2023 Unity Technologies

In the indie game Arctico, by the devs Claudio and Antonio, you have to build your base camp and explore a glacier landscape . The abundant water in the game reflects the surface,
an effect that can be achieved with Screen Space Reflection . Screen Space Reflection is used to fake a reflective surface in real-time, while Screen Space Refraction is used to simulate
transparency and the bending of light as it passes through a medium .

In this recipe, you’ll learn how to use a normal map to create refraction effects
as well as tint a refraction effect . The additional tinting seen in the previous
image is achieved by lerping the calculated pixel color with a Color property .

To see the effect in action, take a look at Scenes.>.Refraction.>.Refraction .

The technique requires the opaque texture to be available to the shader . Find
the URP Settings Asset currently assigned in Edit.>.Project.Settings….>.
Graphics.>.Scriptable.Render.Pipeline.Settings . In the Inspector, make sure
Opaque.Texture is enabled . If you also enable Opaque Downsampling, you’ll get
a small performance boost . It also introduces a small blur to what you see
through the refractive object, which can improve the visual appearance .

Setting Opaque Texture and Opaque Downsampling

The first step to creating the shader is to create a new Shader Graph Asset .
Right-click in the Project window, and select Create.>.Shader.Graph.>.URP.>.Lit.
Shader.Graph .

https://unity.com/
https://www.playarctico.com/

88.of.105.| unity .com© 2023 Unity Technologies

Creating a new Lit Shader Graph

Create a Material using this shader by selecting the Shader Graph Asset and
choosing Create.>.Material . Apply this Material to the object you want to be
refractive .

Now double-click on the Shader Graph Asset to open it . Create a Scene.Color.
node, and connect this to Fragment.>.Base.Color .

Using a Scene Color node

Scene Color only works with transparent materials since it relies on opaque
objects having been rendered . In the render pipeline, transparent objects are
rendered after opaque objects . Set Graph.Inspector.>.Graph.Settings.>.
Surface.Type to Transparent .

The Scene Color node by default uses normalized screen coordinates for the UV
and so maps the opaque texture to each pixel with lighting affected by the
smoothness, resulting in the image below .

The result of using Scene Color

https://unity.com/

89.of.105.| unity .com© 2023 Unity Technologies

Since the goal is to manipulate the UV used by the Scene Color node, you need
to override the default UV behavior . Create a Screen.Position node and an Add
node . Drag the output of the Screen Position node to input A of the Add node
and set the B input as [0 .1, 0 .1, 0, 0] .

Adding nodes to control the UV

Now you’ll see the Opaque Texture offset .

Opaque Texture offset

For each rendered pixel, you want the offset to be controlled by the camera’s
view direction, the normal for the object at the current screen position, and a
scaling value . Shader Graph has a node that will calculate refraction given these
three inputs; it actually has two scaling values, but you’ll only use one .

You can add a new float property called IOR, short for Index of Refraction for
scaling . Set it as a slider, with min 1 and max 6 . For view direction, add a View.
Direction node and link it to a Normalize node to guarantee it’s of unit length .

https://unity.com/
https://en.wikipedia.org/wiki/Refractive_index
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/View-Direction-Node.html?q=view%20direction
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/View-Direction-Node.html?q=view%20direction
https://docs.unity3d.com/Packages/com.unity.shadergraph@15.0/manual/Normalize-Node.html?q=Normalize

90.of.105.| unity .com© 2023 Unity Technologies

Basic refraction graph

An IOR of 5 .44 will result in the visual effect seen in the following image .

Basic Screen Space Refraction

Add a Normal node set to World Space, and again link it to a Normalize node .
Create a Refract node, and link the normalized View Direction to the Incident
input . Link the normalized Normal to the Refract node Normal input and link the
IOR property to the IORMedium input .

At this point, the Refracted output is in World space, but to offset the Screen
space UV we need it in Tangent space . Add a Transform node setting the input
as World and the output as Tangent . For the type, choose Direction . Use this as
the A input to the Add node with Screen Position as the B input . You get the
graph you see below .

https://unity.com/

91.of.105.| unity .com© 2023 Unity Technologies

Adding a tinting stage to the graph

You should now be able to tint the output .

You can tint the result by adding a Color property . Add a Lerp node, and use an
Opacity property set to slider mode, range 0-1, as the T input . The output from
Scene Color is set as input A and Color as input B .

A tinted version

The normal affects the refraction, so a single plane will just get an offset version
of the Opaque Texture .

A tinted version

https://unity.com/

92.of.105.| unity .com© 2023 Unity Technologies

A tinted version

Now it’s time to add a normal map . You start by adding a Texture.2D property to
the shader that you name Normal.Map, and a float property as a slider, called
Normal.Strength, with a range of 0-1 . Create a Sample Texture 2D node, and set
it as Type Normal, Space Tangent . Set the Texture input to the Normal Map
property . Create a Normal.Strength node and set input as the RGBA(4) output
from the Sample Texture 2D node . Set the Strength input as the Normal
Strength property . Create an Add node with input A as the output from the
Normal Strength node and input B from the Transform World to the Tangent
node . Follow these steps, and you should end up with this graph .

Adding a normal map

Using a suitable normal map should result in the effect seen in the following
image, in this case using a single quad instead of the diamond . Refraction for a
planar mesh simply shows an offset of the Opaque Texture . Using a normal map
with a planar mesh can be a useful way to hide this artifact .

https://unity.com/

93.of.105.| unity .com© 2023 Unity Technologies

An alternative to using the Refract node is to add a Custom Function Node with
a Vector3 viewDir input, a Vector3 normal input, and an IOR input . If you use this
option, set your IOR property as a slider with the range -0 .15 to 2, not 1-6 . Set a
Vector3 as the output . The code is very simple so just use a String not a file .

Out = refract(viewDir, normal, IOR);

It gives different results and is worth experimenting with .

More.resources

 — Screen space refraction by David Lettier

 — ScreenSpace planar reflection GitHub repo by Steven Cannavan

 — Reflection probes vs Screen space reflection by Kyle W . Powers

 — Shader Graph refraction tutorial by AE Tuts

 — Crystal Shader Graph in Unity by Binary Lunar

Using a Normal Map

https://unity.com/
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://github.com/Steven-Cannavan/URP_ScreenSpacePlanarReflections
https://bootcamp.uxdesign.cc/reflection-probe-vs-screen-space-reflection-4b134c46ca16
https://www.youtube.com/watch?v=C5YfSmSLZHI
https://www.youtube.com/watch?v=Qri_fN01hMc

94.of.105.| unity .com© 2023 Unity Technologies

V O L U M E T R I C S

Volumetric cloud

This is a recipe for using ray marching to render a 3D texture . Unity supports 3D
textures, which are an array of images placed in a grid on a single texture, rather
like a Texture Atlas . The difference is that each image is the same size . Using a
3D UV value, you can source a texel from the grid of images with UV .Z defining
the row and column of the individual image to use .

https://unity.com/

95.of.105.| unity .com© 2023 Unity Technologies

The game Lost in Random by Zoink! immerses players into a fantasy kingdom with a very unique art direction where great lighting plays a huge role in creating its atmosphere .
They recreated volumetric fog in URP, as seen in this article .

Left to right: A 3D texture, its import settings, and a preview of it in the Inspector

As with the previous recipes, this shader will be built with Shader Graph . To
view the finished product, go to Scenes.>.Volumetric.Clouds, and open the
VolumetricClouds scene . Note that the scene includes a Camera, Directional
Light, and a cube . The cube uses the Material RaymarchMat .

To start the recipe, you’ll need to give the RaymarchMat material the shader
named Shader.Graphs/Raymarchv1SG, created by Nik Lever . You should now
see a sphere . If you adjust the densityScale, you can begin to see transparency
at the edges .

The image below shows a typical 3D texture, its import settings, and a preview
in the Inspector .

https://unity.com/
https://www.ea.com/en-gb/games/lost-in-random
https://agentlien.github.io/fog/

96.of.105.| unity .com© 2023 Unity Technologies

Using the Shader Graph Raymarchv1SG

You’re supposed to be rendering a cube, but instead you see a sphere: What’s
going on? The answer is ray marching . Ray marching, according to its Wikipedia
page, “is a class of rendering methods for 3D computer graphics where rays are
traversed iteratively, effectively dividing each ray into smaller ray segments,
sampling some function at each step . This function can encode volumetric data
for volume ray casting, distance fields for accelerated intersection finding of
surfaces, among other information .”

Ray marching

With this first version, a sphere is defined using a Vector4 . XYZ defines the
position of the sphere, relative to the object and W its radius . For each pixel, a
direction is calculated for a ray that comes directly from the camera
(represented by the dotted gray line in the diagram above) . Set a density value
to 0, then move along this line calculating at each blue dot inside the sphere to
add a small value to density . When the ray has traveled through the sphere,

https://unity.com/
https://en.wikipedia.org/wiki/Ray_marching
https://en.wikipedia.org/wiki/Ray_marching#:~:text=Ray%20marching%20is%20a%20class,some%20function%20at%20each%20step.
https://en.wikipedia.org/wiki/Ray_marching#:~:text=Ray%20marching%20is%20a%20class,some%20function%20at%20each%20step.

97.of.105.| unity .com© 2023 Unity Technologies

you’ll have a value for how much of the sphere is in a line directly from the
camera to the pixel you’re rendering . This density value is used as the Base
Color in the Shader Graph . Ignore the Sun and the red dots for now; these will
be considered later when it’s time to add lighting, in the fourth version of this
shader .

This graph uses a Custom Function Node based on the file via Scripts.>.HLSL.>.
Raymarch .hlsl . For this first version, you’ll use the function raymarchv1 . The
variable density is initialized to 0 . Then you enter a for loop for numSteps count .
The rayOrigin is moved by stepSize in the direction defined by rayDirection .

How far are you from the sphere origin? You can use the HLSL function distance
to calculate the length of a vector from the sphere origin to the current value for
rayOrigin . If this is less than the sphere radius (Sphere .w), then add 0 .1 to the
density value . The output value result is the accumulated density value times
densityScale .

void raymarchv1_float(float3 rayOrigin, float3 rayDirection,
float numSteps,
 float stepSize, float densityScale,
float4 Sphere,
 out float result)
{
 float density = 0;

 for(int i =0; i< numSteps; i++){
 rayOrigin += (rayDirection*stepSize);

 //Calculate density
 float sphereDist = distance(rayOrigin, Sphere.
xyz);

 if(sphereDist < Sphere.w){
 density += 0.1;
 }

 }

 result = density * densityScale;
}

For your calculations, you’ll work in Object Space . You get the rayOrigin using a
Position node and to get the rayDirection, you need a Camera node that links
the position output to a Transform node, with the input set as World and the
output Object .

You now have the pixel position and Camera Position in Object Space, which
enables you to get the ray direction using a Subtract node, with Position as

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Camera-Node.html?q=camera
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Transform-Node.html?q=transform
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/Subtract-Node.html?q=Subtract

98.of.105.| unity .com© 2023 Unity Technologies

Version 1 of the Ray march shader

Ray marching comes to life when a 3D texture is added to determine the shape .
You’ll introduce a 3D texture in version 2 . Start by setting RaymarchMat to use
Shader.Graphs.>.Raymarch2SG . The Custom Function used is raymarchv2 .

void raymarchv2_float(float3 rayOrigin, float3 rayDirection,
float numSteps,
 float stepSize, float densityScale,
UnityTexture3D volumeTex,
 UnitySamplerState volumeSampler, float3
offset,
 out float result)
{
 float density = 0;
 float transmission = 0;

 for(int i =0; i< numSteps; i++){
 rayOrigin += (rayDirection*stepSize);

 //Calculate density
 float sampledDensity = SAMPLE_TEXTURE3D(volumeTex,
volumeSampler, rayOrigin + offset).r;
 density += sampledDensity;

 }

 result = density * densityScale;
}

input A and Camera Position as input B . This rayDirection is normalized using a
Normalize Node . The other inputs to the Custom Function Node are the float
properties, numSteps, number of blue dots per ray, stepSize, the distance
between blue dots, densityScale, and the Vector4 sphere discussed earlier . The
density output goes directly to Base Color and Alpha . Note that this shader is
set to be transparent and unlit, requiring you to calculate the lighting .

https://unity.com/

99.of.105.| unity .com© 2023 Unity Technologies

You’ll notice there are three new inputs:

 — A UnityTexture3D volumeTex that comes directly from a Material property .

 — A MACRO, SAMPLE_TEXTURE3D, necessary when working with 3D
textures, that needs a SamplerState instance .

 — There is a node for SamplerState that allows you to select the
wrapping option . You’ll set that to clamp so that UV values outside
of the range 0 - 1 are clamped at 0 for values less than 0 and at 1
for values above 1 .

 — Offset, which is a value you can use to move around our 3D texture inside
the Cube .

Now, instead of checking whether you are inside a sphere, you’ll get a
sampledDensity value using the float3 sample position of rayOrigin plus offset .
You only need one channel here, the red channel, R .

The image below shows a render of version 2 . It’s beginning to look like a cloud .

Version 2 of the shader

The final version of the shader introduces lighting . Use the shader named
Shader Graphs/Raymarchv3SG for the Material RaymarchMat . This time, you’ll
use the function raymarch . The function uses six new parameters:
numLightSteps, lightStepSize, lightDir, lightAbsorb, and transmittance, and
returns a float3 vector .

https://unity.com/

100.of.105.| unity .com© 2023 Unity Technologies

void raymarch_float(float3 rayOrigin, float3 rayDirection,
float numSteps,
 float stepSize, float densityScale,
UnityTexture3D volumeTex,
 UnitySamplerState volumeSampler, float3
offset,
 float numLightSteps, float lightStepSize,
float3 lightDir,
 float lightAbsorb, float
darknessThreshold, float transmittance,
 out float3 result)
{
 float density = 0;
 float transmission = 0;
 float lightAccumulation = 0;
 float finalLight = 0;

 for(int i =0; i< numSteps; i++){
 rayOrigin += (rayDirection*stepSize);

 float3 samplePos = rayOrigin+offset;
 float sampledDensity =
 SAMPLE_TEXTURE3D(volumeTex, volumeSampler,
samplePos).r;
 density += sampledDensity*densityScale;
 //light loop
 float3 lightRayOrigin = samplePos;

 for(int j = 0; j < numLightSteps; j++){
 lightRayOrigin += -lightDir*lightStepSize;
 float lightDensity =
 SAMPLE_TEXTURE3D(volumeTex, volumeSampler,
lightRayOrigin).r;
 lightAccumulation += lightDensity;
 }

 float lightTransmission = exp(-lightAccumulation);
 float shadow = darknessThreshold +
 lightTransmission * (1.0 -
darknessThreshold);
 finalLight += density*transmittance*shadow;

To build up the final values, initialize three new variables: transmission,
lightAccumulation and finalLight . The code is the same as version 2 up to the
light loop comment . Look again at the “ray marching” illustration shown earlier:
For each step along the view direction ray, represented by the blue dots, you
get a ray towards the main light, which is yellow in the diagram . The red dots
represent the step-by-step sampling of the 3D texture . The more cloud you find,
the less light that will hit that part of the view direction ray . This process
determines how bright each pixel is .

https://unity.com/

101.of.105.| unity .com© 2023 Unity Technologies

 transmittance *= exp(-density*lightAbsorb);

 }

 transmission = exp(-density);

 result = float3(finalLight, transmission, transmittance);
}

The light loop is easy to understand, repeating the number of times that have
been specified for the numLightSteps variable . Bear in mind that this is a
nested loop, so keep the numLightSteps count as low as possible . You move
from samplePos towards the main light by using minus lightDir . Then,
lightDensity is added to lightAccumulation . Some math is required outside the
light loop:

float lightTransmission = exp(-lightAccumulation);

First, lightTransmission is set as e-lightAccumulation . The constant e, Euler’s number, is
about 2 .718 . The graph below shows the result of this function . The horizontal
axis is the value of lightAccumulation and the vertical axis exp(-
lightAccumulation) . When the accumulated light density, lightAccumulation, is 0,
exp(-lightAccumulation) equals 1 . As lightAccumulation increases exp(-
lightAccumulation) quickly drops away nearing 0 if lightAccumulation is 5 or
more .

Graph of e-x for the range 0 to 4

float shadow = darknessThreshold +
 lightTransmission * (1 .0 - darknessThreshold);

A shadow value is calculated next . Use the property called darknessThreshold .
The graph below shows the shadow value in the vertical axis, for a

https://unity.com/
https://en.wikipedia.org/wiki/E_(mathematical_constant)

102.of.105.| unity .com© 2023 Unity Technologies

The shadow value

finalLight += density*transmittance*shadow;

Density * transmittance * shadow is added to the finalLight accumulated value .
If the accumulated light density, lightAccumulation, is high, then shadow will
tend to 0 and therefore, the accumulated value for finalLight will be less .

transmittance *= exp(-density*lightAbsorb);

The initial value of transmittance is a passed-in property, but for each view
direction step, its value is multiplied by e-density*lightAbsorb . The property lightAbsorb
controls how much light gets lost in the cloud by scattering .

For version 3, the result is a float3 containing the finalLight, transmission, and
transmittance .

The graph for version 3 is shown below . Now that the output from the Custom
Function is a float3, a Split node is added . Output R goes to a Lerp node T input .
Version 3 has several new properties, including color and shadowColor, with
the former the B input and the latter the A input .

If finalLight raymarch node Out .x is 0, then the shadowColor will be passed to
the Lerp node output . If finalLight is 1, then color is passed to the output . In the
range 0-1 a linear interpolation of shadowColor and color is the output . The Lerp
node output goes directly to Fragment > Base Color .

Alpha uses the raymarch node with transmission value Out .y . This value is 0
when Alpha should be 1 and 1 when it should be 0 . A One Minus node is used to
correct the Split node B value and link this to Fragment > Alpha .

darknessThreshold of 0 .15 . If lightAccumulation is 0 then shadow equals 1,
whereas if lightAccumulation approaches 5, then shadow tends to the
darknessThreshold constant value .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@13.0/manual/One-Minus-Node.html

103.of.105.| unity .com© 2023 Unity Technologies

Final version

This gives the result you see below .

A cloud with ray marching

Houdini is a useful tool when creating the 3D texture . Alternatives to a 3D
texture include using multilayered Perlin noise, or pre-baking a tileable noise
texture using Unity . Hopefully, this recipe will be a starting point for your journey
into ray marching .

More.resources

 — Volumetric ray marching cloud shader by dmeville

 — Coding adventure: Clouds by Sebastian Lague

 — Creating Volumetric Clouds with Houdini by Camelia Slimani

 — Altos sky system, by OccaSoftware

https://unity.com/
https://en.wikipedia.org/wiki/Perlin_noise
https://www.ronja-tutorials.com/post/029-tiling-noise/
https://www.youtube.com/watch?v=0G8CVQZhMXw
https://www.youtube.com/watch?v=4QOcCGI6xOU&t=2s
https://80.lv/articles/building-volumetric-clouds-with-houdini/
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/os-altos-volumetric-clouds-procedural-skybox-and-day-night-cycle-221227?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook

104.of.105.| unity .com© 2023 Unity Technologies

C O N C L U S I O N

There are many advanced resources available for free from Unity . As mentioned
in the introduction to this guide, the e-book Introduction to the Universal Render
Pipeline for advanced Unity creators is a valuable guide for helping experienced
Unity developers and technical artists migrate their projects from the Built-in
Render Pipeline to the URP . Topics covered in the e-book include how to:

 — Set up URP for a new project, or convert an existing Built-in Render
Pipeline-based project to URP

 — Update Built-in Render Pipeline-based lights, shaders, and special effects
for URP

 — Understand the callback differences between the two rendering pipelines,
performance optimization in URP, and more

All of the advanced technical e-books and articles are available from the Unity
best practices hub . E-books can also be found on the advanced best practices
Documentation page .

Professional training for Unity creators

Unity Professional Training gives you the skills and knowledge to work more
productively and collaborate efficiently in Unity . Find an extensive training
catalog designed for professionals in any industry, at any skill level, in multiple
delivery formats .

All materials are created by experienced Instructional Designers in partnership
with our engineers and product teams . This means that you always receive the
most up-to-date training on the latest Unity tech .

Learn more about how Unity Professional Training can support you and your
team .

https://unity.com/
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://resources.unity.com/games/introduction-universal-render-pipeline-for-advanced-unity-creators?UNGATED=TRUE?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/Manual/built-in-render-pipeline.html
https://docs.unity3d.com/Manual/built-in-render-pipeline.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.8/manual/index.html
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://docs.unity3d.com/2022.2/Documentation/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook
https://unity.com/learn/professionals?utm_source=demand-gen&utm_medium=pdf&utm_campaign=render-with-quality-and-flexibility&utm_content=urp-cookbook

unity .com

https://unity.com/

