
2 D G A M E A R T ,
A N I M A T I O N ,
A N D L I G H T I N G
F O R A R T I S T S

U N I T Y F O R G A M E S E - B O O K

Contents

Introduction. . .4

Project.setup:.2D.rendering.. . . .6

The.art.for.your.game. . .10

Choose.the.perspective.. . .12

Parallel projections . 12

Resolution.of.your.assets . . 17

Level.design. . .31

White boxing with basic sprites . 32

2D.Animation. . 54

Perspective . 54

Reskinning characters . 55

Performance . 56

General 2D animation rules . 56

Creating the skeleton . 60

Sprite Geometry . 61

Weights . 62

Skins . 67

2D.Lights. . .72

Freeform . 73

Sprite . 74

Parametric . 74

Point/Spot . 75

Global . 75

Preparing sprites for 2D lighting . 80

Normal map painting techniques . 80

How to paint normal maps onto sprites 82

Painting the Mask Map . 86

Setting Fresnel light . 86

2D Tilemap . 88

2D Sprite Shape . 89

2D PSD Importer for animated characters 90

Advanced.visual.effects . . 92

Main Module properties . 95

Emission . 95

Shape . 95

Color over Lifetime . 95

Size Over Lifetime . 95

Rotation Over Lifetime . 95

Noise . 95

Renderer . 96

Randomized particles . 96

Using the Shader Graph . 97

Reflections and refractions . 105

Post-processing. . .110

Local Volumes . 112

Bloom . 114

Chromatic Aberration . 114

Color Grading . 115

Lens Distortion . 116

Vignette . 116

Film Grain . 117

Panini Projection . 117

Conclusion. . .118

4.of.119.| unity .com© 2022 Unity Technologies

Introduction
2D games evoke nostalgia for people who grew up playing them in the 1980s and
’90s . But as made-with-Unity titles such as Cuphead, Hollow Knight, Among Us,
Skul: The Hero Slayer, and the Ori series show, there is no limit to how innovative
today’s 2D games can be .

The evolution of hardware, graphics, and game development software makes it
possible to create 2D games with real-time lights, high-resolution textures, and an
almost unlimited sprite count . The flatness of 2D graphics frees artists to create
cartoonish and fantastical art that looks great on any device .

This is our biggest, most comprehensive 2D game development guide . It’s intended
for developers and artists with intermediate Unity experience who want to make a
commercial 2D game, whether they work independently or with a team .

This guide was written with input from Unity 2D experts to help up-and-coming
creators understand the key decisions they should make at the start of a project and
get the most out of the Unity 2D toolset .

Topics covered include setting up your project, round-tripping between Unity and
your digital content creation (DCC) software, sprite creation, and layer sorting
for level design, camera setup, animation, lights, and visual effects, plus many
optimization tips along the way .

Even if you are new to Unity, you’ll find plenty of useful tips and practices in the
guide . However, we suggest you start with the beginner tutorials and courses
available for free at Unity Learn . We hope you enjoy this guide and wish you the best
of luck with your game development . The future is bright for 2D creators .

Some beautiful 2D games made with Unity – clockwise from top left: Ori and the Will of the Wisps by Moon Studios, Cuphead by Studio MDHR, MegaSphere
by AK Games Hollow Knight by Team Cherry

https://unity.com/
https://youtu.be/IjJ9j_HYgGI?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=clean-code-that-scales--ebook
https://learn.unity.com/?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

5.of.119.| unity .com© 2022 Unity Technologies

Author

Jarek Majewski is a professional 2D artist and self-taught Unity developer
with extensive C# scripting skills . He has created art for iOS, Xbox Indie Live,
and Nintendo Switch™ games . His game Ultimate Action Hero, currently in
development, placed second in the 2019 Unity 2D Challenge . Jarek was the art
director for Dragon Crashers, a 2D demo project developed together with 2D
experts from Unity . The demo project uses the 2D features available in Unity
2020 LTS .

Jarek worked closely with numerous Unity experts and employees to write this
definitive guide to creating 2D games .

Unity contributors

Eduardo Oriz led the production of this guide . He is a senior content
marketing manager at Unity with many years of experience working with Unity
development teams, including the 2D tools team, and a broad understanding of
what Unity offers to game developers and studios .

Rus Scammell is the product manager on Unity’s 2D development team . Rus
has over 15 years’ experience in game and software development . He uses his
extensive knowledge of games technology to ensure that Unity 2D tools and
workflows are accessible to artists, programmers, and game designers .

Andy Touch is a senior content developer at Unity who has worked on many
projects, including Lost Crypt and Dragon Crashers . Ever since he downloaded
Unity, added 3D physics to 100 cubes and watched them bounce around, Andy
has been addicted to experimenting with game technology . Before joining Unity,
Andy taught game development to university students .

Finally, thanks to supporting contributors, including copywriters, editors, and
graphic designers, and the countless others at Unity who helped to produce,
refine, and share this guide .

Please note that the tips and workflows in this e-book are based on the
2D toolset in the Unity 2020 LTS version, however using new versions
of Unity, including Unity 2021 LTS .

*Nintendo Switch is a trademark of Nintendo .

https://unity.com/
https://blog.unity.com/community/announcing-the-unity-2d-challenge-winners?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/technology/get-to-know-dragon-crashers-our-latest-2d-sample-project?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://twitter.com/EduOriz
https://twitter.com/rustumscammell
https://twitter.com/andytouch
https://blog.unity.com/technology/download-our-new-2d-sample-project-lost-crypt?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

6.of.119.| unity .com© 2022 Unity Technologies

Project.setup:.
2D.rendering..
Unity provides three render pipelines: the Built-In Render Pipeline and two
Scriptable Render Pipelines (SRPs) . The two SRPs are the Universal Render
Pipeline (URP) and the High Definition Render Pipeline (HDRP) . URP applies to all
platforms, while HDRP is designed to be used in games targeting high-end PCs
and consoles .

URP is used in this book because it provides a graphics pipeline for 2D Lighting,
allowing you to create 2D lights and lighting effects, including Freeform, Sprite,
Spot, and Global . The URP is also compatible with the Shader Graph, post-
processing effects, and the camera stacking feature .

To use the 2D Renderer, you’ll first need to install the 2D Project template
from the Unity Hub and the URP . The 2D template comes with several project
settings that are optimized for a 2D game:

 — The images are imported as Sprites and set to Sprite mode

 — The Scene view is set to 2D

 — The default scene does not include a light

 — The camera’s default position is at 0, 0, –10

 — The camera is set to Orthographic

 — In the Lighting window settings:

 — All Global Illumination is disabled

 — Skybox material is set to none

 — Ambient Source is set to Color

https://unity.com/
https://docs.unity3d.com/Manual/render-pipelines-overview.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.7/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/Lights-2D-intro.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/LightTypes.html#freeform?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/LightTypes.html#sprite?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/LightTypes.html#spot?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/LightTypes.html#global?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.shadergraph@10.7/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/integration-with-post-processing.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/integration-with-post-processing.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/SpritePacker.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/UsingTheSceneView.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/class-Camera.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/LightingOverview.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

7.of.119.| unity .com© 2022 Unity Technologies

Choose.2D.packages.from.the.Package.Manager

If you have used Unity before, you know that many features are available as
modular packages . You can see which versions of each package are available
via Window.>.Package.Manager in the Editor . You can install, remove, disable,
or update packages for each project here as well . The packages included in
the 2D Template are 2D Animation, 2D Pixel Perfect, 2D PSD Importer, and 2D
SpriteShape .

Next, you will need to install the URP through the Package Manager .

The Unity Hub window

Install URP from the Package Manager

https://unity.com/
https://docs.unity3d.com/2021.2/Documentation/Manual/upm-ui.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.pixel-perfect@4.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@4.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@5.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@5.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

8.of.119.| unity .com© 2022 Unity Technologies

Create.a.new.URP.Asset

To use the URP, create a URP Asset and assign the asset in the Graphics settings .

Right-click in the Project window (or click in the Assets menu in the Toolbar),
and choose Assets.>.Create.>.Rendering.>.Universal.Render.Pipeline.>.
Pipeline.Asset.(Forward.Renderer) .

A Renderer Asset is created at the same time as a URP Asset, and you will
need to replace this with the 2D Renderer Asset . To replace it, right-click in the
Project window or click in the Assets menu, then choose Assets.>.Create.>.
Rendering.>.Universal.Render.Pipeline.>.2D.Renderer .

Assign.the.2D.Renderer

Click on the URP Asset, and, in the Inspector, assign the 2D Renderer Asset to
the Renderer.List ..Click on the circular button at the right end of the field to
select it from the list .

Creating a URP asset

Setting a new renderer in the Inspector view for the URP asset

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/universalrp-asset.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

9.of.119.| unity .com© 2022 Unity Technologies

Now that you have the URP and 2D Renderer Assets lined up, assign the 2D
Renderer to the Scriptable Render Pipeline Settings in the project . Open the
Project Settings window (Edit.>.Projects.Settings), go to the Graphics section,
and assign the Pipeline Asset here .

The 2D Renderer is now set up and ready to go . You can also adjust the
rendering settings by switching to the Quality category in Project settings .
Read more about rendering settings here .

Note: If you start a new project in Unity 2021 or later, the 2D template, called
2D (URP), comes with the 2D Renderer already set up, so you won’t have to
complete these steps .

Assign the Universal Render Pipeline Assets in Project Settings

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.7/manual/Setup.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.7/manual/Setup.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

10.of.119.| unity .com© 2022 Unity Technologies

The.art.for.your.game
During the art concept phase, you’ll need to make many decisions that will
impact the technical side of your project .

In game design, it’s a common practice to mock up a screenshot or series of images
to show the game’s art style, action, and UI . Mockups are a quick way to determine
if the concept is viable and get a sense of how the final game would look .

You can also explore multiple art directions with simple thumbnail mockups . These
mockups would have simplified shapes and focus more on the overall look, camera
angle, object sizes, color palette, and contrast . Using thumbnails is a great way to
present different approaches to the team for testing and iteration .

A few things to consider when making a mockup:

 — What will be the camera angle and perspective of your game?

 — What will be the size of the player character in relation to the screen size
of your target platform?

 — Does your art style fit the target platform, theme, and audience? For
example, will this style appeal to casual gamers, young players, strategy
fans, and so on?

 — How does the art style fit with the overall graphics approach?

 — If the gameplay requires fast reaction times, then it’s a good idea to
make elements such as the player character, enemies, and projectiles
visible against the background at first glance .

 — Mobile games should be brighter and have higher contrast to be visible
in the sunlight and smaller screens .

 — What are the size, position, and visibility of GUI elements?

Testing ideas by drawing simple thumbnails

https://unity.com/

11.of.119.| unity .com© 2022 Unity Technologies

Technical considerations

There are also important technical questions to consider in the mockup stage .
These include:

.— Animation:.What elements will you animate with skeletal animation? Which
ones will have frame-by-frame animation or be animated with a shader?

.— Environment:.Will you create it with Tilemap or Sprite Shapes? Or, do you
want to place platform sprites in the scene manually? You can paint your
mockup to mimic the look of these tools so that you can use the mockups
directly in your game .

.— Sorting:.Plan your sprite sorting by grouping mockup layers similarly to
how you anticipate the sorting will be done in Unity . It might take some
time, but you’ll avoid having to sort through potentially thousands of
sprites later in production .

.— Lighting:.Will your sprites be lit with lighting and shadows painted onto
them or with real-time lighting? One tip is to paint images with no lighting,
then add shadows and lights on separate layers in your image-editing
software . That way, you can always change the look of the lighting later in
production if necessary .

Take the time in this stage to create assets that are as close as possible to what
they will look like in the final game . This allows you to move from concept to
game production more quickly .

A comparison of the original concept art and the final version of Dragon Crashers . You can read about the process for creating the art for the demo in this blog post .

https://unity.com/
https://blog.unity.com/games/2d-art-creation-in-dragon-crashers

12.of.119.| unity .com© 2022 Unity Technologies

Choose.the.
perspective.
There are different perspectives, or views, available for a 2D game . The umbrella
term for perspective options is graphical projection, which refers to a method
of casting a 3D world onto a 2D plane . You can see the different perspectives
illustrated here .

Parallel.projections

With these types of projections, the lines that are parallel in the 3D world
are also parallel when projected onto a 2D surface . Additionally, they have
no vanishing points, which means objects are the same size no matter their
distance from the camera . This is useful in games because you don’t have to
scale your assets or draw them in different sizes .

Image from Wikipedia

This diagram illustrates how Orthographic projection works . Note that all the projection rays from the camera are parallel
to one another and perpendicular to the image plane .

https://unity.com/
https://en.wikipedia.org/wiki/3D_projection

13.of.119.| unity .com© 2022 Unity Technologies

In Orthographic projection, the rays are perpendicular (orthogonal) to the image
plane, while in oblique projection, rays intersect with the projection plane at an
oblique angle to produce the projected image .

There are two subcategories of Orthographic projection: primary and
axonometric .

Primary.projection

In primary projection, there is one dimension perpendicular to the view plane .
Since all the lines in this dimension are parallel, it’s not visible in the final
projection . This kind of projection is the easiest to draw because you need
to draw only two dimensions . Games will use one of two types of primary
projections, side view or top-down .

Side view is used in platformers, shooters, and Metroidvania-style games . The
X and Y axis of the 3D world are drawn on the screen with the Z axis omitted .
Game artists tend to scale down distant objects visible in the background to
provide a sense of depth .

In top-down perspective, the camera aims down, perpendicular to the ground .
There aren’t many true top-down games, and this perspective is often confused
with ¾ or isometric projections . Top-down works best for shooters, but it’s not
the most interesting view from which to view human characters .

Side view perspective in the
1991 version of Sonic The
Hedgehog™ by Sega

Top-down perspective in Alien
Breed™ by Team17, released in
1992 for the Amiga

https://unity.com/

14.of.119.| unity .com© 2022 Unity Technologies

Axonometric.projection

In axonometric projection, the 3D world is rotated around one or more axes to
show multiple sides of objects .

There are three main types of axonometric projection .

Isometric.projection: This projection is the most elegant of the three options .
The angle between any two of the three coordinate axes is at 120 degrees, and
the X and Y lines are each at a 30-degree angle from the horizontal axis .

Most of the old games referred to as isometric are in fact dimetric . Isometric
projection angles don’t look great in pixel art, which is why there aren’t many
games with true isometric projection .

Dimetric.projection:.This perspective uses projection where two angles are
identical, with the X and Y lines angled at 26 .6 degrees . Dimetric has been the
most common option because it looked better on the older hardware, where the
lines formed a clear 2:1 pixel ratio .

You can use this projection to show more or less of the top surface .

Isometric, dimetric and trimetric projection

https://unity.com/

15.of.119.| unity .com© 2022 Unity Technologies

Trimetric.projection:.With this projection, each angle is different .

Three-quarter.(¾).projection

This projection is often confused with top-down . In 3/4 projection, the camera tilts
slightly on the X axis to reveal a partial view of the front of objects and characters .

Oblique.projection

In oblique projection, rays intersect with the projection plane at an oblique angle
to produce the projected image . The most common oblique projection variant is
the cabinet projection, which is often used in beat ’em up games .

¾ projection in Bomberman World, released in
1991 by Hundson Soft

Oblique projection view in Streets of Rage: Mega Drive,
released in 1991 by Sega

Trimetric projection in Crystal Castles by Atari,
released in 1983

https://unity.com/

16.of.119.| unity .com© 2022 Unity Technologies

Perspective projection

Perspective projection uses vanishing points to replicate the way objects farther
away appear smaller . A vanishing point is a point on the plane of a perspective
drawing where the two-dimensional projections or drawings of mutually parallel
lines in three-dimensional space appear to converge .

Depending on the number of vanishing points, you can have one- , two- or
three-point perspectives . With the advent of 3D graphics, these projections are
less common in 2D games, although they still work well for adventure games or
games with static backgrounds .

How do you choose the correct perspective for your project? Does gameplay
determine the art style or vice versa? In most cases, developers choose an art
style and camera projection based on assumptions made when the idea for their
game crystallizes . It will be a decision based on many criteria, including:

 — Gameplay and genre
 — Target platform

 — Scene readability – for example choosing a higher camera angle for better
visibility of character and enemy units

 — Budget – top-down and isometric games can require more character
animations for multiple angles and more advanced coding

 — Target audience

You can also base your game on an art style . For example, imagine a game
based on ancient Egyptian hieroglyphs . In this case, the art theme will
determine some camera and gameplay rules, namely, that it must be a side-view
game with a primary perspective .

If you’re new to 2D development or on a tight budget, it’s better to choose one
of the primary projections: top-down or side-view . They’re easier to both draw
and code . With only two dimensions visible, you have less to worry about, and
it’s easier to set up sprite sorting in these views .

Remember, in the end, your projection doesn’t need to be 100% accurate and
follow all the real-world rules strictly, as is the case in 3D space . The most
important thing is that it needs to look good and enhance the gameplay .

Perspective projection, where the projection rays are coming from the center of the projection camera .

https://unity.com/

17.of.119.| unity .com© 2022 Unity Technologies

Resolution.of.
your.assets
Unity’s 2D tools have evolved from an editor built initially for 3D games . As a
result, there are some unique features . For example, 2D sprites in the Scene
aren’t bound tightly to screen resolution . Sprites in Unity are textures drawn
onto a mesh and are easily scalable . The camera in 2D games is also scalable
and can zoom in and out as you want .

Therefore, creating 2D content in Unity requires a different approach to that
of working in traditional raster graphics software such as Adobe Photoshop,
Affinity Photo by Serif, GIMP, or Krita . In these conventional apps, you have a
specific document canvas size available with a set resolution, and all layers are
bound to this resolution . There is a 1:1 ratio between the pixel size of each layer
and the document pixel size .

In Unity, however, screen and asset resolution are independent of each other,
so you need to calculate the resolution of your sprites .

You start with your target platforms because the capabilities of the hardware
determine the maximum resolution you can set .

For mobile devices, the resolution range is broad, but a safe assumption is
1920x1080, since this will allow you to target devices from low- to high-end .

For PCs, the majority of desktop gamers use full HD (1920x1080), while only
2% have 4K screens, according to a survey from Steam . For laptops specifically,
there are a lot of users who play games at lower resolutions such as 1366x768 .
You might also want to consider supporting ultra-wide screens, making sure you
test screen ratios like 21:9 to ensure the camera won’t display unwanted areas
of your level .

When drawing game assets, the pixel size is consistent, and the image looks great because it’s always constrained to the pixel
grid . However, in Unity, the sprites can have a different resolution . The camera zoom level will also affect the final look .

https://unity.com/
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

18.of.119.| unity .com© 2022 Unity Technologies

For consoles, 4K is more common because of the high adoption rate of 4K TVs .
The Nintendo Switch offers 1280x720 resolution in handheld mode and up to
1920x1080 when connected to an external screen via HDMI .

As you can see, the resolution range can be very broad . If you are looking to
support a particular device, this comprehensive article can help you find the
proper target resolution .

To target full HD or 4K, keep a couple of best practices in mind (these rules
don’t apply to pixel art):

 — Paint art in the highest resolution for your target devices
 — Stick to one resolution for all assets, and scale down later if necessary to
support lower-end devices

Don’t scale up raster art because it can result in pixelation and blurriness,
lowering visual quality . Always start from the highest resolution supported, then
scale the art’s resolution down when exporting from a graphics application .
You’ll find out more on how to do this in the section on working between DCC
tools and Unity, or you can try using Variant Sprite Atlas scaling .

One helpful trick is drawing your art at twice the size you need, then scaling
it to 50% when you export to Unity . This technique will make your sprites look
polished and crisp, and brush lines won’t look so shaky . Don’t overdo it on the
details, since the art will be scaled down . This is a good trick for hiding the small
imperfections resulting from hand-drawn art . Of course, if you want a hand-
drawn visual style for your game, then don’t try this .

One you’ve chosen the resolution, test the look of your art in the Game view to
see how it will appear on target devices .

To keep it simple, calculate sprite resolution in Orthographic view instead of
perspective . Set their scale to 1,1,1 and Z depth to 0 for easy visualization .

You can easily preview how the game looks at different ratios and resolutions in Game view .

https://unity.com/
https://en.wikipedia.org/wiki/List_of_common_resolutions

19.of.119.| unity .com© 2022 Unity Technologies

Use the Unity grid and units to maintain consistent placement and appearance
of your sprites, as well as to calculate camera zoom and object sizes .

A Unity unit is visualized by the grid in the Scene view . Assume that 1 Unity unit
is equal to 1 meter . Set your base sizes first, and keep them consistent across
your game .

Start with the size of your player character . Keep the height of the player character
between 0 .5 and 2 units . If you’re using Tilemap, set the tile size to 1 unit .

Characters and objects that are too small or large compared to other visual
elements in a game will lead to strange transform numbers and issues with
physics calculations .

Once you’ve established the sizes of your base objects in the main scene
(Player character, enemies, collectibles, level hazards), choose your zoom level
by setting the size property of the orthographic camera . After that, check the
camera size value . When you multiply this value by 2, you’ll get the camera
vertical size in Unity units .

Unity’s Grid in the Scene View

The size of the orthographic camera is expressed in units that express the vertical size of the camera from the center
to the top .

https://unity.com/
https://docs.unity3d.com/Manual/class-Tilemap.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

20.of.119.| unity .com© 2022 Unity Technologies

If the camera size equals 5, its height is equal to 10 units . For example, if you target
4K resolution, then the screen (or camera) height is 2160 pixels . With a simple
calculation, you can determine how many pixels per unit (PPU) your art needs:

2160.:.10.=.216.
Max.Vertical.Resolution.:.(Orthographic.Camera.Size.*2).=.Sprites.PPU

So every sprite in your game needs to have around 216 PPU to look good at a
native 4K resolution .

That’s a simple example . If you want your camera to zoom in and out, you’ll
need to account for that . If you set the maximum zoom percentage to size 3 in
Orthographic view, the PPU needs to be 360 (2160 : (3 *2)) .

If you’re using skeletal animation, set the resolution of sprites slightly higher
than the suggested PPU . Doing this is necessary because the meshes of the
skeleton are rotated, stretched, and warped, sometimes to extremes, which can
produce results that look bad . Aim for a lower resolution when the camera is
zoomed in .

Tip:.When you set the PPU value of your game, apply a grid in your graphics
software for reference . This is useful when using Tilemap because you will have
the tile size in pixels and can to snap to a grid .

Setting the PPU for a sprite

https://unity.com/

21.of.119.| unity .com© 2022 Unity Technologies

You don’t have to be strict with these numbers . Often, you can save memory by
using a slightly lower sprite resolution than suggested . Cut out elements that
aren’t essential, such as background sprites .

Also, test your game on devices to check how it looks . In many cases, the
benefits of using high-resolution assets aren’t apparent . Instead, you can
allocate this drawing time and device memory to other, more essential game
elements like the main characters, visual effects, or UI . On mobile devices, game
size is crucial, so check which assets can be scaled down and keep memory
limitations in mind . Read more about 2D asset resolution in this blog post .

Sprite Atlas

The Unity Sprite Atlas feature has two main advantages .

Pack.multiple.sprites.into.one.texture.to.reduce.draw.calls:.Each mesh with
different materials or textures is drawn on the screen separately . Every sprite
(which is a mesh) you put on the screen adds to the rendering time and can
reduce a game’s framerate .

Use Sprite Atlas to consolidate several Textures into a single, combined Texture .
Unity can then call this single Texture to issue a single draw call instead of
multiple ones . The packed Textures are accessed all at once, resulting in smaller
performance overhead .

Scale.down.sprites.depending.on.device.type:.In Unity, it’s efficient to scale
an entire Sprite Atlas instead of individual sprites and assign the scaled atlas to
different devices .

To build a new Sprite Atlas, right-click in the Project window (or select the
Assets menu in the toolbar), and choose Create.>.2D.>.Sprite.Atlas . Be sure
to give it a descriptive name . Then, in the Objects for Packing option, select
the sprites you want to include, or include the entire folder . The Include in Build
option should be checked by default . You now have your first Sprite Atlas .

Setting the grid in Affinity Photo to match your game’s PPU

https://unity.com/
https://blog.unity.com/technology/choosing-the-resolution-of-your-2d-art-assets?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/technology/choosing-the-resolution-of-your-2d-art-assets?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/technology/choosing-the-resolution-of-your-2d-art-assets?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/class-SpriteAtlas.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

22.of.119.| unity .com© 2022 Unity Technologies

Variant Sprite Atlas

Use a Variant Sprite Atlas to scale down sprites for specific devices . Create a
Master Sprite Atlas as above, then change its Type to Variant in the Inspector (see
the image below) .

A Variant Sprite Atlas doesn’t contain sprites itself . It relies on a Master Sprite
Atlas, which you can choose in the Master Atlas field . Scale this atlas and all its
sprites by choosing a value in the Scale Value field, between the range of 0 .1 to 1 .

A Sprite Atlas in Unity

https://unity.com/
https://docs.unity3d.com/Manual/MasterVariantAtlases.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

23.of.119.| unity .com© 2022 Unity Technologies

In a project that includes both a Master and a Variant Sprite Atlas, if both have
the option Include in Build checked, the Texture used by mutual Sprites can
come from either Sprite Atlas (refer to Scenario 3 in the Resolving different
Sprite Atlas scenarios section of Unity documentation) .

To automatically load Sprite Textures from the Variant Atlas instead of the
Master Atlas, enable Include in Build for the Variant Atlas only, and disable it
for the Master Atlas . The build then automatically loads the Variant Sprite Atlas
instead of the Master Atlas at runtime .

Drawing in vector apps

Art created in vector-based software such as Adobe Illustrator or Affinity
Designer by Serif is not constrained by resolution . This is a significant advantage
because you can change the size of your art assets at any time, without
worrying about incorrect resolution settings .

You will still need to export your vector-based art to Unity as a PNG file . It’s the
same export workflow as that for raster or pixel art .

Setting up a Variant Sprite Atlas

Vector art made in Affinity Designer – the left side of this illustration shows the vector view in the app, and the
right shows the pixel view after export .

https://unity.com/
https://docs.unity3d.com/Manual/SpriteAtlasScenarios.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/SpriteAtlasScenarios.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

24.of.119.| unity .com© 2022 Unity Technologies

Working between DCC tools and Unity

You do a great deal of work on your art before moving it into Unity . You work
hard to make all the characters, elements, props, and background art as
beautiful and true to your vision as can be – so it’s only natural that you want to
get it all into Unity as quickly as possible .

Avoid exporting each layer one-by-one as a PNG file because this will take a
long time . Instead, follow these tips for exporting your game sprites efficiently
from different graphics software .

From.Adobe.Photoshop

Export and save layers as individual files using a variety of formats, including
PSD, BMP, JPEG, PDF, Targa, and TIFF . Layers are automatically named as they
are saved – set options to control the generation of names .

To export layers as files, do the following:

1 . From the menu, select File.>.Export.>.Export.Layers.To.Files .

Getting ready to export from Adobe Photoshop

https://unity.com/

25.of.119.| unity .com© 2022 Unity Technologies

2 . Under Destination, in the Export Layers To Files dialog box, click Browse to
select a destination for the exported files . By default, the generated files are
saved in the sample folder as the source file .

3 . If you want your sprites to have a common file name prefix, enter it in the
text field–for example, tile_wood01 .png, tile_bricks01 .png, and so on .

4 . To export the layers only visible in the Layers panel, select Visible Layers Only .

5 . Choose PNG-24 as a File Type . You don’t need to include an ICC profile, so
uncheck that .

6 . Check the Transparency and Trim Layers options in the PNG options
section, and uncheck Interlaced .

7 . Click Run, and after a short wait, the sprites should export to the folder
you specified .

8 . Use these steps to export a limited amount of layers quickly . Note that all
layers are exported separately . This method does not take layer groups into
account, so if you have a character or object that consists of multiple layers,
merge them before exporting .

Let’s look at how to export sprites with multiple layers from Photoshop . It requires
more setup, but this approach allows greater control over the exported images .

To start, you’ll need the names of the layers or layer groups from which you
want to generate sprites . For example, the image below shows a sprite of a
barrel consisting of a normal map and mask map . Each sprite is in a separate
folder that has been saved as a PNG file .

The Export Layers to Files dialog box

https://unity.com/
https://helpx.adobe.com/photoshop/using/generate-assets-layers.html

26.of.119.| unity .com© 2022 Unity Technologies

Select File.>.Generate.>.Image.Assets from the menu . Photoshop will create a
folder as a PSD file and export all the layers or groups saved as PNG files . If you
haven’t saved a PSD file yet, it will create a folder on your desktop .

A benefit of this method is that if you change any layer or folder which is marked
for export, the image asset will be exported in the background automatically .

Specify the folder for every sprite by adding its name and a slash before the
layer name . In this case, to group all three barrel sprites into one folder, you
would add “barrel/” before the layer names .

To change the sprite’s size, add the specified dimensions or scale in percent
before the layer name, for example, “50% barrel/barrel .png” or “80 x 160 barrel/
barrel .png” . When specifying dimensions, Photoshop will use pixels as the
default unit .

A sprite with both a normal map and a mask map

Exporting multiple layers of the same sprite from Photoshop

https://unity.com/

27.of.119.| unity .com© 2022 Unity Technologies

Exporting.from.Affinity.Photo.or.Affinity.Designer

Both Affinity Photo and Affinity Designer provide a dedicated mode for
exporting, called Export Persona . Let’s go through the steps for using it .

Switch to Export Persona by clicking its icon in the top left of the application
toolbar, as seen in the image below .

To export a sprite, create a slice from a layer or layer group . Switch to the Layers
tab on the right, select a layer to export, and click the Create Slice button .

Switch to the Slices tab, select the slices to export, and be sure that the Export
preset is set to Single PNG for all the slices, as seen in the following image .

Export Persona in Affinity Photo

Set the Export present to Single PNG in Affinity Photo

https://unity.com/
https://www.creativebloq.com/how-to/affinity-designer-how-to-use-the-export-persona

28.of.119.| unity .com© 2022 Unity Technologies

Click Export Slice, and choose a destination folder when prompted . You can save
time by exporting the sprites directly to the Assets folder in your Unity project .

After choosing a destination folder, the Continuous option becomes available,
which allows you to export slices whenever you change a layer .

To have better control over the exported sprites, set the export options
manually for every splice by clicking the arrow icon to the left of the slice name .

Choose a subfolder for your sprite in the Path section . In this example, all of the
barrel sprites are in the “barrel” subfolder . PNG is the file format, and resolution
scaling is set at 1x, which means no scaling, so the sprites are exported at 100%
their size . You can also output multiple sizes at once by clicking the “+” button .

For multiplatform games, choose additional sizes for your sprites that can be
used when building your project for other devices . For example, choose 2x for
scaling to get “Retina” sprites .

Another “+” button on the bottom of the expanded window allows you to add
additional file formats if you want to export JPG files alongside the PNG sprites .

Setting export options for sprites

https://unity.com/

29.of.119.| unity .com© 2022 Unity Technologies

Exporting.from.Krita

Be sure to save your document, and select Tools.>.Scripts.>.Export.Layers ..In
the pop-up window, select the Initial directory . This will be where sprite files
are exported .

In Export options, check the Adjust export size option to layer content . This will
crop layers to their size, leaving no empty pixels padding . There are a couple of
optional settings:

 — Group as layer: This option will export groups rather than individual layers,
a good choice for when your sprites consist of multiple layers . Note that
the exporter will only check for the highest groups in the hierarchy, so
your sprites cannot be grouped in another group .

 — Ignore invisible layers: This is handy when you want to exclude some
sprites from exporting by turning off their visibility .

Choose PNG as Image extensions, click OK, and the sprites will be exported to
the your selected folder .

Export Options window in Affinity apps Exporting sprites from Krita

https://unity.com/

30.of.119.| unity .com© 2022 Unity Technologies

Import Photoshop PSD files into Unity

Exporting to PNG file format is the most convenient workflow for sprites, but you
can also import PSD files directly into Unity . By default, this will flatten the PSD
layers into one image .

This method is convenient to use for background art sprites . Edit and paint
layers, and, when you save the file, the changes will be instantly visible in the
Editor . Then you will have your PSD source file directly in the Unity project, and
the file can be included in source control .

Unity’s 2D PSD Importer package gives you the option of importing layers as
separate sprites . This package was designed for use with 2D animation, but you
can use it to import multiple regular sprites contained in one PSD file . You can
also make frame-by-frame animations . Find more on how to use this package in
the 2D Animation section or this blog post .

A multi-layer Photoshop file imported in Unity

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.psdimporter@4.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/technology/how-to-speed-up-2d-art-workflows-with-2d-psd-importer?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

31.of.119.| unity .com© 2022 Unity Technologies

Level.design
There are many ways to prototype levels, so choose the methods that suit your
creative style and workflow best .

Sketching out ideas on paper will probably always be popular because it’s
simple, direct, portable, and cheap . In the early days, it was also a necessity to
communicate the placement of tiles and game elements to the team .

This was the best way to design levels for many years, and it’s still very useful .
However, now you can test ideas earlier and more vigorously by sketching them
out in Unity . Let’s look at the tools available .

White boxing

White boxing, a well-known term from 3D level design, involves placing plain
white cubes to test out level design ideas quickly . The reason designers white
box is to map out ideas for game flow without any distracting details .

This method can also be applied to 2D graphics by using 2D geometric figures
or other prototyping tools .

In white boxing, the focus should be on only the things the player will interact
with, such as the ground, enemies, level hazards, and pickups . All of these
things can be made from the simplest forms, then color-coded to distinguish
between them more easily . For example, enemies and other hazards could be
colored red, pickups green, switches blue, and so on .

Start with the collision/interaction layer, which includes the ground, walls, and
platforms that the player jumps on .

Modern games like Hollow Knight use paper for level design and art concept . See the process in this
Rockpapershotgun article

https://unity.com/
https://www.rockpapershotgun.com/hollow-knight-concept-art

32.of.119.| unity .com© 2022 Unity Technologies

White.boxing.with.basic.sprites

Start with the default 2D assets available in Unity, which come in simple
geometric shapes .

Right-click in the Project window (or click on the Assets menu in the toolbar),
and choose Assets.>.Create.>.2D.>.Sprites . All of the shapes come with
predefined collision shapes, so you only need to add a Polygon Collider 2D
component to a sprite shape to make it be affected by gravity or collisions .

The selected sprites will be created in the folder that’s currently opened in the
Project window .

Use different shapes for different purposes . For example, use a capsule for your
player, circles for pickups, hexagons for enemies, and squares for the ground
or walls . Tint each category of sprite a different color with the color property
available in the Sprite Renderer .

For sprites to use 2D Physics collisions, add a corresponding Collider 2D
component that will match the object’s overall shape along with a 2D Rigidbody .
Choose the Dynamic body type for the Rigidbody to react to gravity, forces, or
collision .

For precise placement, snap the sprites to the grid by holding down Ctrl as you
move them . This will move them in 0 .25-unit increments .

All the sprites available in the Sprite Creator

https://unity.com/

33.of.119.| unity .com© 2022 Unity Technologies

2D Sprite Shape

2D Sprite Shape is a tool that allows you to create paths and tile sprites along
them . These paths work similarly to the well-known pen tool used in graphics
software . They are Bézier curves that can be edited directly in the scene and
optionally closed and filled with tiling texture .

Sprite Shape is a handy prototyping feature in Unity because it makes it efficient
to create and edit new sprite shapes .

If you choose to create your 2D project with the 2D Template, then Sprite Shape
is installed by default . Otherwise, you can install it using the Package Manager .

To make a new Sprite Shape, click on the GameObject menu, 2D.Object.>.
Sprite.Shape, and select either Open or Closed Shape .

Linear and Continuous Sprite Shape objects

Creating a Sprite Shape

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@5.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

34.of.119.| unity .com© 2022 Unity Technologies

To modify the Sprite Shape, select it, then click the Edit button in the Inspector .

Left-click on any part of the Sprite Shape to add or delete points with the delete
key . By selecting a point, you can change its mode by selecting one of the three
Tangent Mode buttons:

.— Linear: Creates no curve, with straight lines on both sides of the points

.— Continuous: Creates a curve around the point with handles that face
opposite directions

.— Broken:.Creates a curve around the point with handles that can move
independently

Modifying a Sprite Shape in the Inspector window

https://unity.com/

35.of.119.| unity .com© 2022 Unity Technologies

You can also select how the corners around the points look . The snapping tool is
another useful option that snaps the points to the grid .

Add a Polygon Collider 2D Component for physics . The default properties
should be sufficient for prototyping purposes .

By following these steps, you can create Sprite Shapes that can interact with
one another and be easily modified through their Inspectors .

Tilemaps

The Tilemap feature is great for quick prototyping . Tilemap offers a way to
create a game world using small sprites, called tiles, placed on a grid . Instead
of laying out a game world that is one big image, you can split it into brick-like
chunks that are repeated through a whole level .

Tilemaps can help save on memory and CPU power because tiles that are not
visible on the screen can be disabled . A brush tool makes it efficient to paint
them on a grid, and they can also be scripted to use some painting rules . They
come with automatic collision generation for efficient testing and editing .

Adding a Polygon Collider 2D Component

https://unity.com/
https://docs.unity3d.com/Manual/class-Tilemap.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

36.of.119.| unity .com© 2022 Unity Technologies

The 2D Tilemap Editor is installed with the 2D Project Template or from the
Package Manager .

Installing the 2D Tilemap Extras package provides reusable 2D and Tilemap
editor scripts that you can use for your own projects, and these can also serve
as a base for creating custom brushes and tiles . Get the package by enabling
Preview Packages in Project Settings (Edit.>.Project.Settings) . In the Package
Manager, turn on the Enable Preview Packages option located in the Advanced
Settings box .

A visual representation of the background and sprite tiles of a retro 8-bit game that are loaded into VRAM . The console
cleanly keeps backgrounds and sprites loaded on separate pages .

View Preview Packages in the Package Manager

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.8/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

37.of.119.| unity .com© 2022 Unity Technologies

Install samples, along with the 2D Tilemap Extras to see examples using
the scripts that come with the package . You can read more about the
Scriptable Brushes and Scriptable Tiles included in the package in the Unity
documentation .

Once both packages are installed, open the Tile Palette window via Window.>.
2D.>.Tile.Palette .

This window will hold all the tiles and tools to help you paint or edit Tilemaps .

Create a new Palette by clicking the Create New Palette button . A dropdown
window with options will appear . Give the palette a name, set its options, click
Create, and save it to a selected folder .

Tile Palette window with a palette loaded

Creating a new palette

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.8/manual/Brushes.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.8/manual/Tiles.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

38.of.119.| unity .com© 2022 Unity Technologies

Now, add tiles to the palette . Drag a sprite, texture, or Tile Asset into the Palette
window . Use one of the simple Sprite Shapes you created earlier, and place it
in the empty part of the window . Choose a file in which to create the asset . You
should now see your sprite in the grid of the palette .

Now, create a Tilemap to paint the tiles . Click the menu item Gameobject.>.
2D.Object.>.Tilemap.>.Rectangular .

Dragging a sprite into a palette creates a new tile .

Creating a Tilemap

https://unity.com/

39.of.119.| unity .com© 2022 Unity Technologies

You have created a Grid and a Tilemap within it . Rename the Tilemap to
something more descriptive . The Grid can hold multiple Tilemaps, and it’s
possible to have multiple Grids per scene, for example, with different cell sizes .
For now, leave all the default settings of the Grid component .

The Tilemap GameObject has two components: Tilemap and Tilemap Renderer .
Leave the settings as they are . If you need to, change the Sorting Layer settings
to fit your layer structure .

With your Tilemap and Tile on a palette, you are ready to start painting . Click on
the brush tool in the Palette window toolbar, and select a tile to paint .

Tilemap and Tilemap Renderer components

Tilemap with painted placeholder tiles

https://unity.com/

40.of.119.| unity .com© 2022 Unity Technologies

Next, you can create a prototype for a level . Add a Tilemap Collider 2D to the
Tilemap for physics . This will add colliders to each of the tiles based on the
collider type set in the Tile Asset .

Add a Composite Collider 2D to combine the colliders into one, resulting in
smoother collision behavior with geometry set as Outline . The tiles will behave
like a continuous terrain rather than as individual tiles . This setup also brings a
slight performance boost . However, if you plan for your game to add or remove
tiles at runtime, you might want to keep a collider on each tile .

Remember to check the Used by Composite option on the Collider 2D
component, and set the Rigidbody 2D Type to static so it doesn’t fall .

Collider 2D component on a Tilemap GameObject

https://unity.com/

41.of.119.| unity .com© 2022 Unity Technologies

Let’s look at the different Palette tools (the keyboard shortcuts are noted in brackets) .

.— Selection.(S): Click to select one tile, or drag to select tiles within a
rectangular area .

.— Move.(M): Move the selected tiles .

.— Brush.(B): Paint on an Active Tilemap (select one from the Active Tilemap
dropdown) with the selected tile and brush .

.— Fill.Selection.(U): Drag to.fill a rectangular area using a selected tile .

.— Tile.Sampler.(I): Pick a tile from a Tilemap, and set it as active to paint .

.— Eraser.(D): Delete tiles from a Tilemap .

.— Fill.(G): Fill an area with a tile (the area needs to be bordered with other tiles) .

With these tools alone, you can paint and edit tiles efficiently . Additionally, the
Tilemap Extras Asset provides useful scripts such as Rule Tile .

Rule Tile

This is a scripted tile that recognizes its surroundings and selects the
appropriate image, for example, a ground tile with grass on top and a shadow on
the bottom .

The 2D Tilemap Extras package comes with a Dungeon Rule Tile sample located
in Assets.>.Samples.>.2D.Tilemaps.Extras.>.“version.number”.>.Dungeon.Rule.
Tile.>.Tiles . Drag it onto the Tile Palette to start painting .

Rule Tile automatically recognizes where adjacent tiles are and where there
should be borders . It chooses the proper sprite for you, so you don’t have to
select different tiles to paint the borders .

Tile Palette tools

Painting Tilemaps

https://unity.com/

42.of.119.| unity .com© 2022 Unity Technologies

The Rule Tile Inspector provides a list of rules for which sprite to choose based
on the adjacent tiles . There’s a matrix and a sprite on the right side of each rule .
The sprite will be used when neighbor tiles are on all sides where the green
arrows are pointing .

Learn more about the Rule Tile feature here .

This is just one example of how to use the Rule Tile . You can also replace the
sprites that come with this sample or create a new Rule Tile that matches your
game’s needs .

You can find ready-made Tilemap templates that are available from the
community and the Asset Store . A few good ones to check out include TileMap
Auto Rule by Pandaroo, 2D PixelArt – Isometric Blocks by Devil’s Work .shop, and
both Pixel Art Platformer and Pixel Art Top Down by Cainos .

Learn more about Tilemap best practices in this video, and optimizing Tilemap
performance in this article .

The Rule Tile asset in the Inspector

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/RuleTile.html
https://pandaroo.itch.io/tilemap-auto-rule-tile-unity-template
https://pandaroo.itch.io/tilemap-auto-rule-tile-unity-template
https://assetstore.unity.com/packages/3d/environments/2d-pixelart-isometric-blocks-115039
https://assetstore.unity.com/packages/2d/environments/pixel-art-platformer-village-props-166114
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-187605#content
https://www.youtube.com/watch?v=rKlvgkDHWfQ?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://unity.com/how-to/optimize-performance-2d-games-unity-tilemap?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

43.of.119.| unity .com© 2022 Unity Technologies

Sprite Shape level design

Grid or tile-based design is well-suited to a retro 2D visual style, especially when
you’re using pixel art . It’s also great for side-scrolling horizontal platformers, top-
down RPGs, and non-organic shapes such as buildings and castles .

The grid-based design makes pathfinding and level creation more
straightforward . Pathfinding is simpler when constrained to a grid . It makes
it easier to maintain constant distances when you’re designing levels . If your
character’s jump is 3 units high, for example, you can easily plan where to put
platforms, and the player will be able to estimate if he can make the jump or not
instantly .

Individual tiles can be animated, for example by adding a waterfall, burning
torch, spinning fan, and so on . You can make slopes with Tilemaps, but they will
be straight surfaces with angles like 45 or 26 .5 degrees .

When you want a more organic, less block-based style, use 2D Sprite Shape .
With this setup, you’re not constrained to a grid or particular angle . You can
make any shape you want using curves . Terrains, hills, grassy fields, and smooth
surfaces are all suited to Sprite Shape, which lends a modern look to your
scenes compared to the crisper pixel-art style .

Turn on the snapping tool to set any angle or curve easily and place
elements precisely .

Levels and elements created with Tilemaps or Sprite Shapes are easy to edit
later . Depending on your visual style, you can use both systems in your game .

Both Tilemaps and Sprite Shapes can be modified during runtime to create
exciting new gameplay possibilities . For example, Tilemaps can be destructive,
and Sprite Shape can be morphed – the possibilities are endless . Read more
about the options in the Tilemap API and SpriteShape API docs .

On the left, Skul: The Hero Slayer, by SouthPAW Games is a Tilemap-based game, while Oddmar, by Mobge LTD on the
right, is a spline-based game .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@5.1/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/Tilemaps.Tilemap.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/U2D.SpriteShapeRenderer.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

44.of.119.| unity .com© 2022 Unity Technologies

Orthographic or Perspective Camera

For most 2D games, you’ll want to set your camera to orthographic mode . It’s
the default choice for 2D projects because lines of one dimension are parallel,
and you work only in two dimensions . The orthographic mode works for all
styles – pixel art games, puzzles, 2D isometric, top-down, platformers .

Although 2D games have no real depth, the illusion of depth can be created
using the parallax effect . The parallax effect scrolls multiple layers in the
background and foreground at different speeds when the camera moves .
The intent is to mimic human depth perception, wherein objects farther away
appear to move more slowly than those closer to us .

In 2D, this is usually done with a script that moves layers with a percentage of
camera movement speed . It requires some manual setup to adjust the speed of
each parallax layer .

If orthographic mode is suitable for all 2D game styles, why even use
perspective mode?

One reason is that this offers access to parallax effects out of the box since, as
the name suggests, a Perspective camera uses a perspective viewpoint . You
don’t need to use scripts to handle the scrolling of parallax layers . Instead, you
position elements further from the camera on the Z axis and scale them up to
account for perspective based on their relative distance from the camera .

Perspective camera setup in Tails of Iron By Oddbug Studio . Learn how they created the lighting in their game with Unity .

https://unity.com/
https://store.steampowered.com/app/1283410/Tails_of_Iron/

45.of.119.| unity .com© 2022 Unity Technologies

Parallaxed sprites don’t move with the camera every frame, so background
objects can be marked as static for batching . Adding some 3D objects into your
scene can provide more depth as well .

Orthographic mode with scripted parallax effects requires you to set up the
scrolling speeds on all layers manually . The depth effect can break if layers have
incorrect scrolling speeds, and editing a parallax level requires additional coding .

Suppose you’re making a Metroidvania-style game with scenes that include
multiple points of entry . In this case, the parallax effect can break because the
camera can start at a different position on the X axis than where you edited
parallax elements .

Once it’s set up, the Perspective camera will work for parallax effects . The only
downside is that you need to scale sprites as you move them along the Z axis .
Also, approach allows the scene to be split into smaller scenes for additive
loading, like a room system that allows for dynamic world loading .

The camera you choose doesn’t impact the art creation process, but it
does determine how the levels are set up . And, if they’re set up correctly,
orthographic and perspective parallax will look the same to the player .

To sum up, an orthographic mode is the best choice in most cases, except
when you’re using advanced scrolling and parallax . In that case, go with
perspective mode .

Orthographic mode camera in Dragon Crashers

https://unity.com/
https://blog.unity.com/technology/achieve-better-scene-workflow-with-scriptableobjects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/technology/achieve-better-scene-workflow-with-scriptableobjects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

46.of.119.| unity .com© 2022 Unity Technologies

Mixing 2D and 3D

If your project uses the Built-In Render Pipeline or the Universal Render Pipeline
(URP), it’s easy to mix 2D and 3D elements in the same Scene . 2D Rendering
uses Sorting Layers and Sorting Groups to define the order for rendering game
elements . Adding the Sorting Group component to a 3D GameObject allows you
to easily integrate 3D and 2D objects into the same game . You can have them
interact with one another by using a common physics system (either 2D or 3D
Physics, depending on the best approach for the game) and mixing 2D and 3D
lighting systems through the Camera Stacking feature in URP .

Introducing 3D assets in the background of a 2D game can add nice depth to a scene without compromising the
gameplay . Top and middle images are from the upcoming Metroidvania-style game Aeterna Noctis, by Aeternum
Game Studios S .L . . Bottom image is from Last Night by Odd Tales .

https://unity.com/
https://docs.unity3d.com/Manual/2DSorting.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-artist-expansion&utm_content=technical-artist-ebook
https://docs.unity3d.com/Manual/2DSorting.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

47.of.119.| unity .com© 2022 Unity Technologies

Camera Stacking

Camera Stacking allows you to layer camera outputs and combine them in one
final image . You can combine 2D, 3D, and UI objects with Camera Stacking .

At least two cameras are required in the scene for stacking . Choose which one
will be the Base Camera for the image you want to be rendered first, and any
additional cameras need to be set to Overlay .

The Base Camera needs to know which cameras overlay on top and in what
order . To do that, go to the Stack option, and select a camera to overlay with
the + button . Change the rendering order of Overlay Cameras as needed by
dragging them up or down in the list .

Use layers to set which objects are rendered by each of the cameras . By default,
cameras render every layer, but you can change that by selecting which layers
are rendered by the camera in the Culling Mask option on a Camera component .

Now, select the GameObjects you want the camera to render, and change
their layer to match the one set earlier . That way, objects are categorized to be
rendered by different cameras, such as a 3D background and 2D platform layers .

Setting up Camera Stacking

Selecting cameras to be rendered as overlays

Choosing layers to render in the camera’s Culling Mask option

https://unity.com/

48.of.119.| unity .com© 2022 Unity Technologies

Cinemachine for 2D

Once you’ve selected the camera type, you’ll need to set it up to follow the
gameplay . Unity’s Cinemachine system provides the functionality to do this
and much more, such as confining the camera to level bounds, setting up
camera transitions, noise, and so on . This section highlights some of the core
Cinemachine functionality for 2D games .

To get started, install Cinemachine from the Package Manager . Choose version
2 .7 .1 or later .

Cinemachine doesn’t create new Unity cameras in a scene . Instead, when a new
Cinemachine Virtual Camera or vcam is added to a scene, the CinemachineBrain
component is added to the main camera, along with a new GameObject with the
default name CM vcam .

The Cinemachine Brain monitors all active Virtual Cameras in the scene . Animate
the vcams with keyframes, blend or smoothly transition between the cameras,
or create a combination of the two to animate one camera while transitioning
to another . All of the animation will be processed by the Cinemachine Brain and
applied to the main camera – think of it as a powerful animation system that
drives your main camera .

To create a 2D virtual camera, click on Cinemachine.>.Create.2D.Camera . This
will create a Virtual Camera set up for a 2D environment . If it’s your first Virtual
Camera in the scene, it will also add a Cinemachine Brain Component to your
main camera .

Creating a Cinemachine Virtual Camera

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.8/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.8/manual/CinemachineBrainProperties.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

49.of.119.| unity .com© 2022 Unity Technologies

Cinemachine needs an object to follow, so assign a player character in the
Follow field . To ensure that you are operating on a 2D plane and that the camera
isn’t panning or tilting, check that the Look At field is empty and Body is set to
Framing Transposer . Finally, set the Lens properties for your projects . Keep in
mind that some options will be inherited from the main camera’s properties .

Expand the Body properties field to find useful options to modify how the Virtual
Camera follows its target, such as Offset, Damping, Dead, and Soft Zones .
Experiment with these options during Play Mode, and the changes will be saved
if you check the Save During Play option .

There is also an extension for the Virtual Camera, the CinemachineConfiner2D,
which, when activated, limits the camera from moving outside Level bounds,
ensuring the player will see only the parts that you want them to see . It also
ensures you don’t need to design unnecessary parts of the level .

To add CinemachineConfiner2D, select CinemachineConfiner2D from the Add
Extension dropdown menu .

Cinemachine2DConfiner requires a Collider 2D (Composite or Polygon) as
a Bounding Shape 2D . Create an empty GameObject, and add a Composite
Collider 2D and Box Collider 2D . A RigidBody 2D will be added automatically; set
its Body Type to Static . Also, check the Used by Composite option on the Box
Collider 2D . Now, drag this GameObject into the Bounding Shape 2D field of the
CinemachineConfiner2D script . Don’t forget to edit the size of the Box Collider
2D so that it’s larger than the size of the camera .

Now the camera’s frustum won’t go out the bounding box of the collider . For
more details, check the Cinemachine Confiner 2D documentation .

Adding CinemachineConfiner2D extension

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.8/manual/CinemachineConfiner2D.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

50.of.119.| unity .com© 2022 Unity Technologies

Draw order

In a 2D game, all sprites and objects have the same depth . How can you sort them
so that some appear in front of others?

Unity sorts Renderers according to a priority order that depends on their types and
usages . You can specify the render order of Renderers using their Render Queue . In
general, there are two main queues: the Opaque queue and the Transparent queue .
2D Renderers are mainly within the Transparent queue and include the Sprite
Renderer, Tilemap Renderer, and Sprite Shape Renderer types .

2D Renderers within the Transparent Queue generally follow a priority order . When
two or more objects occupy the same space, Unity goes through this list and
checks which object should be drawn on top . When there’s a tie, and both objects
have the same value, the next criteria on the list is evaluated . The priority order is:

1 . Sorting Layer and Order in Layer
2 . Specify Render Queue
3 . Distance to Camera
4 . Sorting Group
5 . Material/Shader

When all of the above values are the same for both objects and a tiebreaker is
needed, this process must choose which one to render on top . It’s not an ideal
solution, so make sure to set a distinct sorting order using Sorting Layers and
Sorting Groups .

Sorting Layers

The most important sorting criteria are Sorting Layers . All 2D Renderers have this
option, and it’s the first thing you need to set up . There is a default sorting layer which
you can edit by opening Project Settings, then specifying Tags and Layers options .

Editing the Sorting Layer

https://unity.com/
https://docs.unity3d.com/Manual/SL-SubShaderTags.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/Rendering.RenderQueue.Geometry.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/Rendering.RenderQueue.Transparent.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/class-SpriteRenderer.html
https://docs.unity3d.com/Manual/class-SpriteRenderer.html
https://docs.unity3d.com/Manual/class-TilemapRenderer.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/Experimental.U2D.SpriteShapeRenderer.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Manual/2DSorting.html

51.of.119.| unity .com© 2022 Unity Technologies

Add, delete, or change the order by dragging the handle on the left of the
Layers . Layers that are higher on the list are rendered first and will appear
further away from the camera .

Plan the Sorting Layers structure, even when designing a mockup to organize
your scene early on . Set a sprite’s sorting group as soon as you place it in the
scene . These practices will help you to avoid a situation later in your project
development when you suddenly realize you have to change sorting settings on
potentially thousands of sprites .

Avoid.creating.too.many.Sorting.Layers

2D Lights rely on Sorting Layers, so consider lighting when you set the Sorting
Layers structure . Know beforehand how you want the lights to behave in your
game and what groups will be affected by them .

For example, if you’re making an isometric game and plan to have torches that
use 2D Lights, will the torches affect their entire surroundings or only the walls?
Will characters be affected, or will they be drawn in front of the light? Will you
need a Sorting Layer just for the objects that will receive light? Keep these kinds
of questions in mind when you’re editing Sorting Layers, and learn more about
planning lighting in the 2D Lights section .

Be wary of using too many Sorting Layers, which can cause you to lose
oversight of all the details . When you need to sort renderers further, use Order
in Layer . This allows you to sort objects that are on the same layer easily .

Transparency.Sort.Mode.

You might want a fake 3D view in your game, such as an axonometric or oblique
projection for an isometric, top-down game with a bit of an angle, or a cabinet
projection in brawler games . If so, you’ll need to custom sort the renderers by
Distance to Camera (point 3 on the sorting priority list above) .

Choose a custom axis to sort objects . In the case of a top-down game or
brawler, sort objects on the Y axis, so higher characters will be rendered below
other characters, giving the illusion that they are further away . To edit this
option, find the 2D Renderer Asset created when setting up URP, and change its
Transparency Sort Mode option to Custom Axis, then set its Transparency Sort
Axis value to 0, 1, 0 .

https://unity.com/

52.of.119.| unity .com© 2022 Unity Technologies

Sorting Group

Even if you follow the previous steps and sort on the Y axis, the appearance of
your character’s parts might still display incorrectly .

It’s not a bug . This is just how sorting works . Sorting doesn’t know which parts
belong to which character if they are on the same Sorting Layer . Fortunately,
Sorting Group is the fourth criteria on the sorting priority list . Sorting Group
is a component that groups Renderers that share a common root for sorting
purposes . All Renderers within the same Sorting Group share the same Sorting
Layer, Order in Layer, and Distance to Camera .

Sorting sprites on the Y axis, the value (X:0, Y:1) 1 tells Unity to follow a downward vector (as in Vector2 .
down) for the sorting criteria . The sprites at the top will be drawn first, and the ones at the bottom later,
making them visible at the front .

Parts of the characters that are on the same Sorting Layer are mixed between two characters .

https://unity.com/
https://docs.unity3d.com/ScriptReference/Vector2.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/ScriptReference/Vector2.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

53.of.119.| unity .com© 2022 Unity Technologies

When using characters or other objects that consist of a couple of sprites, put this
script on its Parent object (highest in the hierarchy), and set Sorting Layer and Order
in Layer just like on any other 2D Renderer . You can see an example of this in this
Unite Now technical session .

You can also nest Sorting Groups . If you have weapons consisting of multiple sprites
that you want to be generated randomly, put them in Sorting Groups to make them
display correctly in characters’ hands .

Optimization tips

 — Consider using Tilemaps when your scene consists of many sprites . This
enables you to trade many Sprite Renderers (they have an overhead) for just
one Tilemap Renderer .

 — Mark your level colliders as Static for batching .

 — Put sprites that will likely be together on the scene in a Sprite Atlas .

 — Simplify sprites’ meshes by using the Custom Outline option in the Sprite Editor .

 — Cache Sprite Shape geometry by enabling Cache Geometry option (it appears
when the Edit Spline button is on) .

The Sorting Group makes the characters appear as they should .

Creating a Sorting Group in the parent GameObject to ensure that this object and its child objects get sorted as a
single element avoiding potential conflicts between its parts and other sprites in the game

https://unity.com/
https://youtu.be/DCAH1rlwAr4?t=1073?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

54.of.119.| unity .com© 2022 Unity Technologies

2D.Animation
2D animation can be the most time-consuming and challenging part of developing art
for a game . Creating stunning animated characters requires considerable animation
knowledge of timing, momentum, kinematics, and more . Polishing every frame can
take a long time, and storing and displaying these frames requires a lot of memory .
Changing the timing or any part of a character can require every frame to be redrawn .

Historically, 3D animation has been more straightforward than 2D . You make a 3D
model, rig it by adding a skeleton, set up bone weights, and animate it by setting
keyframes that the software interpolates between . You make adjustments by editing
the keyframes .

Thankfully, Unity has developed a toolset that brings greater efficiency to 2D
animation, in many ways by mimicking the straightforward ease of the 3D animation
process . The 2D Animation package allows you to import your character artwork
directly from Photoshop into Unity .

Design, import and rig

The most vital element in a game is the player’s character, so take enough time to
think through the character’s design . There are a few key aspects to consider while
planning .

Perspective

The perspective you choose will impact how the game characters look and are
animated . In most game views, characters can be drawn in profile . A slight rotation
into a ¾ view allows more facial features to be shown .

When using an isometric or ¾ top-down perspective, you can create a similar view,
but with a camera tilted a bit from the top to show facial detail . In this perspective,
the character will be drawn facing multiple directions . Depending on your desired
outcome and budget, you can choose from one of three commonly-used options:

 — 4 directions
 — 6 directions
 — 8 directions

Different ways to handle top-down character animations

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

55.of.119.| unity .com© 2022 Unity Technologies

No matter which you choose, you will have to decide whether right- or left-
facing animations will have to be flipped to face the opposite direction . In this
case, you’ll need to draw respectively:

 — 3 directions: right, up, down

 — 3 directions: right, right-up, right-down

 — 5 directions: right, right-up, up, right-down, down

If the animations are flipped, the character’s hands will flip to match . If the
character faces right and holds a sword in their right hand and a shield in their
left, when the character is flipped to be left-facing, both weapons will have
switched hands . Decide whether to accept this trade-off or spend more time
making all of the animations face in the right direction .

If you’re designing a traditional side-scrolling beat-’em-up game, you can simply
use one facing direction . Characters moving up and down will look like they’re
sidestepping .

Ultimately, it’s up to you whether or not your character looks good in the game’s
environment after testing . Your vision is more important than having a realistic
view angle and perspective .

Reskinning.characters

Another benefit to the 2D Animation package is that multiple characters can
share the same skeleton and animations . Once you have designed, rigged, and
animated one base character, you can then simply swap its skin .

Save time by planning ahead . Draw concepts of all the characters that will share
the same skeleton, then check whether the skeleton will fit all of them . Do this
by drawing a skeleton on a separate layer and overlaying it onto every character .
Bear in mind that the layer count must be the same for all characters .

Note: In Unity 2021 .1 and newer versions, a new feature called Skeleton sharing
streamlines this process .

Overlaying skeleton drawing in an image-editing application

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@6.0/manual/ex-skeleton-sharing.html

56.of.119.| unity .com© 2022 Unity Technologies

Performance

Skeletal 2D animation requires more processing power than a frame-by-frame
approach, which is essentially sprite swapping . A good performance tip is to
install Unity’s Burst and Collections packages from the Package Manager . This
will improve the runtime performance of the animated sprite’s deformation .

Next, determine the resources you’ll need for your target platforms and how
many characters will be onscreen at once .

For example, with an adventure game where there will be two or three
characters on the screen, you can be less conservative with the character
detail . You’ll have the luxury of making additional bones and layers, as well as
advanced IK – moving eyes, fingers, and more .

However, a mobile RPG or shooter with big battles and more than 10 characters
should have simpler rigs . It would be reasonable, for example, to have one bone
per limb instead of two, or to have a whole face sprite swap instead of having
moving eyes on a different layer .

When designing game art, take care to plan ahead how many layers you’ll need
and how characters will be animated because it’s almost impossible to change
these elements later in production .

General.2D.animation.rules

Here are some good rules to go by when designing a character that will be
rigged and animated later .

An example of a neutral
character pose: Legs and arms
can be any position, but they
should be unbent . Straining
bent limbs will cause pixel
stretching .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/index.html#optional-performance-boost?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

57.of.119.| unity .com© 2022 Unity Technologies

 — Draw the character in a neutral position with arms and legs straight . If
the parts of the body are drawn bent, it can cause issues when you’re
animating .

 — Make the resolution a little higher than your game’s PPU suggests . While
resolution can look good at rest, rotating and stretching images can cause
pixelation .

 — If 2D Lighting will be used extensively in your game and you want to make
the most of the normal maps, don’t paint the light and shadow onto your
sprite . Instead, paint some nondirectional shadows . This technique is
called ambient occlusion . Your sprite will look better, but avoid using any
directional light like sunlight .

 — Body part layers swapped using the Sprite Swap feature should be
grouped accordingly . For example, all layers with mouth positions should
be placed in a group called “mouth” in the image-editing app .

Now that you know what to consider during designing, start up your graphic
app of choice and start painting . Learn more about Sprite Swap by visiting the
documentation page here .

Importing a character into Unity

Once completed, your character needs to be imported into Unity . The quickest
way to import is through the 2D PSD Importer . This will import all of the character’s
layers as sprites and place them exactly as they were painted in the app .

If you’re using the 2D project template in Unity, the importer should be already
installed . If not, install it using Package Manager .

The exporting process simply requires files to be saved as PSB format . This
is a format similar to Photoshop’s PSD, but PSB allows for larger file sizes . If
you’re using Photoshop, select this format in the Save dialog box . If you’re using
another app, just export the project as a PSD file, and change the filename
extension to PSB before importing into Unity .

Importing into Unity is the same as with other assets . Save the file to the Assets
folder, or drag it into the Project window .

When an imported PSB file is selected, it will show options similar to the sprite
import settings but with additional settings for 2D animation and rigging .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/SpriteSwapIntro.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

58.of.119.| unity .com© 2022 Unity Technologies

The key options to set are:

 — Import Hidden: This option imports all layers from a PSB file, including
hidden layers .

 — Mosaic: This setting is only available if the Texture Type is set to Multiple .
It makes sprites from imported layers and puts them onto a texture atlas .
Leave this option enabled if you want to rig a character .

 — Character Rig: This option generates a character Prefab with the same
layers hierarchy and position as in the PSB file . This must be on .

 — Use Layer Grouping: This adds layer grouping from the PSB file . Turn it on
to group parts of a character, such as sprite swapped parts .

After setting the options, click Apply . This finalizes the character Prefab, which
can now be dragged into a Scene .

The Inspector for a character

https://unity.com/

59.of.119.| unity .com© 2022 Unity Technologies

Building a character

To start rigging a character, click the Sprite Editor button in the Inspector to
access the Sprite Import Settings .

Select Skinning Editor from the drop-down menu in the top-left corner of the
Sprite Editor window .

How to choose tools in Sprite Editor’s window

The Skinning Editor with options for animating a character

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/SkinningEditor.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

60.of.119.| unity .com© 2022 Unity Technologies

In this window, you can:

 — Create and edit bones

 — Create and edit Sprite Geometry

 — Edit Bone Influence on sprites

 — Create Categories and Labels for use in Skins and Sprite Swap

Creating.the.skeleton

Start by making the character’s skeleton . Choose the Create Bone button and
left-click on the main window area . The first click will create a bone center, and
the second will mark the bone tip location . This tool chains and nests bones inside
one another .

If you want to change the bone placement, press the right mouse button and left-
click where you want the new bone to be located . To control which existing bone
will be the parent of the bones to be created, select the existing bone with the left
mouse button, then create the new bone .

Use the Edit Bone button to refine bones . The Split Bone button allows you to split
bones in two . This is a good option for making limbs . If you make one leg bone
and click where the knee should be, the bone will then split into thigh and calf .

The Bone tab opened to organize parent and children bones

https://unity.com/

61.of.119.| unity .com© 2022 Unity Technologies

You can also reparent and rename bones in the bone list view . To open this view,
click the Visibility button on the right of the top bar, then select the Bone tab . To
change the bone’s parent, simply drag it in the list view . You can rename bones
by clicking on the active bone’s name . Giving bones a name will help you find
them later . To verify that the hierarchy is correct, select the Preview Pose button
and test some poses . To reset bones positions, press the Reset Pose button on
the toolbar .

Sprite.Geometry

In order to assign sprites to bones, they’ll need to have geometry created .
Start by pressing the Auto Geometry button . A small pop-up window will open,
allowing you to define how the geometry will be created .

It’s a good idea to set all sliders to 0 to keep the geometry as simple as possible .
Enable the Weights option to bind bones to the sprites automatically . Clicking
the Generate For All Visible button will create and set bone weights for all
sprites . To do this for an individual sprite, simply double-click on the sprite . This
is useful for tweaking the geometry of certain sprites .

Autogenerating sprites’ geometry

https://unity.com/

62.of.119.| unity .com© 2022 Unity Technologies

To go beyond this generated geometry and have full control on a number
of vertices and how the geometry bends, the mesh will need to be edited
manually . Use the following tools:

 — Create Vertex: Create new vertices (or points), or move or delete those
points

 — Create Edge: Creates edges, either between two existing points or by
creating a new point using the left mouse button; the right mouse button
deselects the currently selected point and lets you make an edge between
other vertices

 — Edit Geometry: Move vertices

 — Split Edge: Splits an edge by creating a vertex in the middle

Use as few vertices as possible . Fewer vertices will help you save on
performance, since each vertex position needs to be calculated based on the
bones’ rotation . Fewer vertices also make for better-looking mesh bending since
it’s easier to set weights for fewer points . Additionally, each target platform will
have an ideal game vertex count, so it’s always a good idea to optimize geometry .

Weights

Once the geometry is nice and clean for all of your sprites, it’s time to set up
weights . Weights define bone influence on each vertex from 0 to 1, where 0
means that a bone has no influence over the vertex, and 1 means that the vertex
will move like it’s glued to the bone . Good weights on the mesh can allow for
great-looking bending . Setting weights incorrectly can break the game’s illusion
and distort your sprites .

To start setting up weights, you need to define which bones will affect a certain
sprite . Click the Bone Influence button, and select a sprite .

Setting bone influence on a sprite

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/SkinEdToolsShortcuts.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/CharacterRig.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.animation@5.0/manual/CharacterRig.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

63.of.119.| unity .com© 2022 Unity Technologies

In the small pop-up window, you can set which bones influence the selected sprite .
Set only the relevant bones that need to affect the sprite, and remove the rest .

From here, set up weight by using the Weight Brush and Weight Slider . The
Weight Brush quickly adds the influence of the selected bone to the vertices by
painting on them with the mouse . The Weight Slider is more precise, allowing
you to select one or more points, then determine the exact influence of each
bone with a slider . The brush is useful for quick weight setting, and the slider is
useful for fine-tuning the areas where bones bend, like elbows and knees .

Tip: When you’re working with elbows and knees, get the best-looking results
by aligning the inner and outer vertices to a line which runs through the middle
of the bending point where the two bones meet . This line should cross the
bones at a 45-degree angle . These vertices should be influenced only by the
upper bone . However, every character will be different, so feel free to fiddle
with the weights and customize for the best results .

To speed things along, open the Dragon Crashers project, and find the following
character Prefabs in the section for Prefabs and Prefab Variants:

 — Prefab_Character_Base

 — PV_Character_Witch (uses a different Sprite Library for auto
rebinding)

 — PV_Character_Knight

 — PV_Character_Wolfman

 — PV_Character_Skeleton

These Prefabs are great examples of shareable animations between characters
of the same structure .

How to place vertices for the best looking limb bending

https://unity.com/
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-2d-sample-project-190721?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

64.of.119.| unity .com© 2022 Unity Technologies

2D Inverse Kinematics

You probably don’t think about it every day, but the human body’s movement is
very complex . If you want to grab a glass of water off of a table, your hand must
move to the point in space that the glass occupies . You do all this without even
thinking about rotating your arm and forearm, as your brain processes these
calculations in the background .

To animate the same movement in a game, the rotation of both arm and forearm
need to be animated at the same time . It’s a challenging task to match both
rotations while making a believable hand movement . The 2D Inverse Kinematics
(2D IK) tool, which is a part of the 2D Animation package, calculates the
rotations and allows a chain of bones to move them to target positions .

To begin, you’ll first need to add an IK Manager 2D on the object at the top of
the hierarchy . This component will be responsible for managing all the IK Solvers
on the character .

Clicking the + button will add a new solver . The solver will calculate bones’
rotation to match the target transform . There are three solvers available:

 — Limb: This is the standard solver used for legs and arms, which can solve
up to two bones and the Effector .

 — Chain (CCD) – Cyclic Coordinate Descent: This solver gradually becomes
more accurate the more times the algorithm is run and is suitable for a
longer chain of bones .

 — Chain (FABRIK) – Forward And Backward Reaching Inverse Kinematics:
Like Chain (CCD), this solution becomes more accurate the more times its
algorithm is run . It adapts quickly if the bones are manipulated in real-time
to different positions .

In humanoid characters, the Limb Solver is the best choice because it is fastest
and optimized for two-bone limbs . Start by adding Limb Solver to IK Manager
2D’s list, which will create a new GameObject that will include the Limb Solver
2D component . Rename this GameObject to something descriptive like “Leg R
LimbSolver2D” or “Arm L LimbSolver2D .”

IK Manager 2D component

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.ik@3.0/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.ik@3.0/manual/index.html#ik-solversa-idiksolversa?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

65.of.119.| unity .com© 2022 Unity Technologies

In order to work, the solver needs two GameObject Transforms: the Effector and
Target . The Effector is placed inside the last bone in a chain, for example, the tip
bone of a finger, and from there, it will try to reach the Target’s position .

First, create the Effector . When creating an IK for a leg, there are two bones:
the thigh and calf (or shin) . Place the Effector as a child of the calf bone by
selecting it and creating a new Empty GameObject . Rename the GameObject as
Leg Effector, and move the Effector to the tip of the bone .

Add the newly created Effector to the Effector field on the Limb Solver 2D, and
press the Create Target button . A target GameObject will be created inside of
the Limb Solver object .

Now, when the Target object moves the leg will follow .

Repeat the whole process of adding IKs with the other limbs . IKs can also be
added on non-limb bones, for example, on the head and neck, which allows the
character to look around at things .

Once you’ve mastered this, there are more advanced use cases . For example,
you can set up IKs to make your character aim a gun or to create a procedural
walking animation .

Limb Solver 2D component

2D IK in action: When you move the Target GameObject, thigh and calf rotations will be calculated automatically to
match the Target’s position .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.ik@3.0/manual/index.html#creating-an-effector-and-its-targeta-idtargeta?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.2d.ik@3.0/manual/index.html#creating-an-effector-and-its-targeta-idtargeta?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

66.of.119.| unity .com© 2022 Unity Technologies

Sprite Swap and Skins

Not everything can be animated by rotating a bone . Sometimes you need
another facial expression or hand pose . In this case, you can exchange one
sprite with another by using Sprite Swap .

Start using Sprite Swap by assigning a category and label to each of the
character’s sprites . The fastest way to assign to sprites is from the Skinning
Editor . Press the Visibility button, then go to the Sprite tab, where you will find
a list of all sprites . If you’ve put the layers for swap into separate groups before
exporting to PSB, they should be grouped now . This is important because
grouped sprites will be added to the Sprite Resolver to allow Sprite Swapping .

Select all the sprites and groups in the list, and right-click on them . Next, select
the following two options in order: Convert Layer to Category and Convert
Group to Category . These options will assign an appropriate Category and Label
to each sprite automatically .

Sprites that are meant to be swapped will be in one category based on group
name . Click the Apply button on top . A Sprite Library asset will be created inside
the character Prefab, containing all the categories and labels created so far .
Remember this asset, as it will be needed later .

If you take a look at the sprites which were in the groups, you’ll see there’s now
one sprite per category, with the Sprite Resolver component added .

Assigning Category and Label to each sprite in Skinning Editor (sprites with the same category can be used and swapped in
Sprite Resolver)

https://unity.com/

67.of.119.| unity .com© 2022 Unity Technologies

Sprites that were meant to be swapped have been added to the Sprite Resolver,
and you can now implement sprite swap by clicking on them .

Use Sprite Swap to animate facial expressions, eyes and mouths, make lip-
synced animations, change hand gestures, and more . Sprite Swap also allows
character equipment like hats and armor to be swapped .

Skins

Sprite Library assets let you create skins for your character . A skin changes the
look of the character while retaining its animations, which is a great timesaver,
indeed . One base character can have all the scripts, and any change will be also
applied to other characters .

Here is the workflow for setting up skin support on characters:

1 . Finish a base character: Rig it, set up IKs and Sprite Library . Make a Prefab
from the character . You can animate the character at any point .

2 . Go to the Skinning Editor of the base character, and click the Copy button
on the toolbar . This will copy bones and meshes with weights .

3 . Create a Prefab Variant of this character – this will be the new character
with a new look .

4 . Import the PSB of the new character, and open its Skinning Editor .

5 . Paste in the skeleton copied from step 2 by clicking the Paste button on
the toolbar . Make sure Bones and Mesh options are selected in the pop-up
window, and click the Paste button to confirm .

6 . Fix the geometry so it fits the new sprites . Double check the weights .

7 . Press the Visibility button, and go to the Sprite tab . Select all the sprites and
groups in the list, right click on them and select two options: Convert Layer
to Category and Convert Group to Category . Hit the Apply button on top .

8 . Go to the Prefab variant created in step 3 . Go to the Sprite Library
component and swap the Sprite Library asset for a new character .

9 . To create new characters, follow steps 2 through 8 .

Sprite Resolver component

https://unity.com/

68.of.119.| unity .com© 2022 Unity Technologies

By following this workflow, you’ll have one base character Prefab . Other
characters will be Variants of this Prefab, so they will have the same
components as the base Prefab . If changes are made to the base character, for
example, adding or changing IKs or Sorting Groups, other characters will inherit
those changes .

Animation basics

Animations are very important if you want to create convincing characters .

Creating great animation requires you to learn animation principles and the
tools to apply them . Learning basic animation principles is often neglected, but
your game will benefit greatly if you spend a little time polishing your character
movement .

To create your first animation, open an Animation window by going to Window.>.
Animation.>.Animation .

Choosing Sprite Library Asset in Sprite Library component

The Animation window

https://unity.com/

69.of.119.| unity .com© 2022 Unity Technologies

Select your character . Clicking the Create button will create the first Animation
Clip, and you can start by giving the clip a name . An Animation Clip is like a
linear recording of how an object’s position, rotation, scale, and other properties
change over time . It also creates an Animator Controller, which takes charge of
all animation clips and keeps track of which clip should be playing and when the
animations should change or blend together .

Start animating by clicking the red Record button . Now, all the changes made to
the character will be recorded to an animation clip .

On the right side of the Animation View is the timeline for the current clip .
The keyframes for each animated property appear in this timeline . The white
vertical head line shows the current frame – be sure it’s on the frame 0 . Pose
your character however you like . One or more keyframes will be created on the
timeline, and on the left the names of current animated properties will show .

Now, move the head line a few frames forward and change the character pose .
A new keyframe (or keyframes) will pop up .

When you press the Play button, you’ll see your character moving . You’ve now
created your first animation .

When the Record button is pressed, every change will create a keyframe on the Animation Timeline .

Adding another keyframe along the Timeline creates an animation that will interpolate the keyframes .

https://unity.com/

70.of.119.| unity .com© 2022 Unity Technologies

Animating.Sprite.Swap.–.facial.expressions

Animating Sprite Swap works similarly, but it requires one additional step when
setting keyframes .

Set the new keyframes by choosing a sprite in the Sprite Resolver component .
By default, the values between keyframes are interpolated, meaning that if you
want to change from the first sprite in the list to the last one in a later frame, all
the sprites in between would be shown . Sprite Resolver uses integer numbers
to define the index of each sprite, so the interpolation in this case is not desired .
To avoid that, select all the keyframes containing Sprite Resolver values, right
click and select Both Tangents – Constant . Now the animation timeline will
“hold” the values after keyframes, instead of interpolating them, and the Sprite
Swap animation should play correctly .

How to animate Sprite Resolver by disabling keyframe interpolation

Setting Constant Tangents on Sprite Resolver keyframes so the values are not interpolated

https://unity.com/

71.of.119.| unity .com© 2022 Unity Technologies

Optimization tips

 — Install Burst Package to improve 2D Animation performance .

 — When making a skeleton, avoid using more bones and sprites than you
need .

 — Simplify skeleton meshes by using as few vertices as possible .

 — Turn on Culling in the animators . This option will be turned off when the
animated character is offscreen to save performance .

 — Avoid using skeletal animations for objects or characters that are small or
come in large numbers, such as background birds, flies, or small animals .
Instead, use different techniques like frame-by-frame animation or shaders .

https://unity.com/

72.of.119.| unity .com© 2022 Unity Technologies

2D.Lights
Unity’s advanced 2D dynamic lighting system, in conjunction with normal maps
and mask maps, makes your characters pop with gorgeous silhouette lightning
and clearly shaded details .

Lit environments are more immersive and believable because of the subtle
interactions between characters, objects, and the lighting system .

2D Lights can be an integral part of the gameplay . For example, you can use
them to create a player’s flashlight as it illuminates just part of a pitch-black
corridor, or to show a surveillance camera’s cone of vision that the player needs
to avoid .

Dynamic lighting can dramatically change a level’s mood, bring out the details of
a cave’s torchlit wall, act as light beams coming through a window to illuminate
sparkling dust motes, or simply be animated to simulate the day and night cycle .

Let’s look at the variety of 2D Lights you can create and how to customize them .

Image from Tails of Iron by Oddbug Studio

An image from Ultimate Action Hero, a game in development by Jarek Majewski .

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/Lights-2D-intro.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://store.steampowered.com/app/1283410/Tails_of_Iron/

73.of.119.| unity .com© 2022 Unity Technologies

Types and use cases

To add a new 2D Light, go to GameObject.>.Light.>.2D, and select a light type .

There are five types of 2D Lights shapes .

Freeform

This kind of light has a polygonal shape that can be edited in a similar way
to Sprite Shape . This is a good tool for efficiently lighting a large part of the
environment (such as a lava pool), simulating light shapes (such as god rays
coming through a ceiling hole), or conforming to the shape of a window where
the light is projected .

Adding a 2D Light to the scene

Editing the Freeform 2D Light

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/LightTypes.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

74.of.119.| unity .com© 2022 Unity Technologies

Sprite

This shape allows the use of any sprite as a light’s texture . This comes in handy
if you want a particular shape that is impossible to achieve with other light
types . Some good examples of possible textures are lens flares, glares, light
cookies, light shape projections like disco ball lights, or baby lamps projecting
stars against the wall .

Parametric

These lights can be shaped like an n-sided polygon . This is a specific type of
light that can be used in inorganic or stylized environments . In future Unity
versions, these light types will be default shapes inside the Freeform light
options .

Sprite Light in action

Parametric Lights with 3, 5, and 8 sides

https://unity.com/

75.of.119.| unity .com© 2022 Unity Technologies

Point/Spot

The shape of this light can be a circle or a circle sector . This option is good
for spotlights or to light a specific point with torch fires, candles, car lights,
flashlights, volumetric light, and so on .

Global

A Global Light doesn’t have a shape and instead lights all objects on the targeted
sorting layers . Only one Global Light can be used per Blend Style (the method of
interaction between light and the sprites), and per sorting layer . Use it first to add
a base environment light .

Point light with full and partial arcs

Option for Global Light

https://unity.com/

76.of.119.| unity .com© 2022 Unity Technologies

How to use 2D Lights

2D Lights work with the Sprite Renderer, the Sprite Shape Renderer, and the
Tilemap Renderer . To fit the workflow, they use Sorting Layers . Each light can
affect one or more sorting layers . Select which layers will be affected in the
Target Sorting Layers dropdown list .

To.control the rendering order of lights that are on the same Sorting Layer, use
the Light Order option .

The Blend Style option allows you to select the blend style used by this Light .
Different blend styles can be customized in the 2D Renderer Asset . Read more
about common properties used by the different Light types here.

The Alpha Blend on Overlap option blends overlapping lights instead of
multiplying their intensity . This option can change 2D light into shadows . Simply
set the light’s intensity below 1, and choose a light blue color . You can also
attach it to a character to cast a subtle shadow .

Selecting which Sorting Layers should be affected by 2D Light

Setting up 2D Lights in Tails of Iron by Oddbug Studio

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/LightBlendStyles.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/2DLightProperties.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://store.steampowered.com/app/1283410/Tails_of_Iron/

77.of.119.| unity .com© 2022 Unity Technologies

Secondary Texture (sprite maps)

Normal maps and mask maps are optional when using 2D Lights, but they can
take your game’s visuals to a whole new level if you have the budget, time,
and art resources for it . Characters and the environment will have even more
details that react to light, making their shapes look more defined and three-
dimensional .

Using Alpha Blend on Overlap to change 2D light into shadow

2D Lights overlap modes

Adding Secondary Textures to sprites

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/SecondaryTextures.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

78.of.119.| unity .com© 2022 Unity Technologies

Every sprite asset can have optional Secondary Textures assigned . These
textures can be used by Materials . Change the Secondary Textures by going
into Sprite.Editor.>.Secondary.Textures . By default, you can assign two types
of textures: normal map and mask map . Normal map contains the angle of every
pixel on the object, and mask map can be used for rim lighting and more . You can
add your own textures and reference them by name in Shader Graph shaders .

There are some good reasons to assign textures on an asset level instead of in
the material .

One benefit is that Sprite Renderers and other renderers that use sprites can
share a material, even when the sprites and secondary textures are different .
This means they can be batched to render more efficiently .

You’ll need to add normal maps and mask maps to a material when you have
a sprite shader . Every sprite would need its own material with a sprite, normal
map, and mask map . That would quickly escalate to hundreds of materials in
the project . However, when setting the additional textures for every sprite,
you can use just one Sprite Material . One material also means one draw call
instead of hundreds .

Adding Secondary Textures to sprites

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@13.1/manual/ShaderGraph.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

79.of.119.| unity .com© 2022 Unity Technologies

Normal maps

A normal map done well can make or break the illusion of a sprite being 3D .
Every pixel in a normal map stores data about the angles of the main texture .
The red, green, and blue (RGB) channels store angle data for the X, Y, and Z
coordinates . Every light that uses a normal map has a direction, and pixels on a
texture with a normal map are shaded based on this direction and the direction
of the pixel . This works the way it does in real life – if a pixel is facing the light’s
direction then it will be lit, and if it’s facing away it receives no light .

Now, take a look at how RGB values affect the angles of a normal map .

Using the Frame Debugger allows you to observe every step taken to render a frame . Having many Materials that can’t be
batched takes a toll on performance .

A normal map

https://unity.com/

80.of.119.| unity .com© 2022 Unity Technologies

The above image is a normal map in which the pixels are facing the camera .
Its RGB values are 127, 127, and 255, respectively . Each color channel can have
a value from 0 to 255, so 127 is near the middle . To face the surface left (-90
degrees), the R color value needs to be set to 0 . To face the surface right, set R
to 255 . To face straight down or up, set the G channel to 0 or 255, respectively .

Preparing.sprites.for.2D.lighting

Take note of the base-color sprite . If you plan to use 2D lighting
extensively in your game and want to make the most of the normal maps, don’t
paint the light and shadow onto the sprite .

2D lighting doesn’t look good on a sprite that already has shadows painted on .
You will also end up doing double the amount of work because you’ll be painting
the lighting in the normal maps . Instead, paint some non-directional shadows,
and your sprite will look better as long as you avoid any directional light, such as
from the sun .

Normal.map.painting.techniques

One way to paint a normal map is to make drawings of your sprite that are lit
from different angles, then combine them into one texture . The sprite will be lit
with one light from the right in the R channel and one light from the top in the G
channel . In the B channel, the sprite is lit from the front, but for the sake of
simplicity, you can omit this channel when using a normal map with 2D sprites .
This is because front lighting in 2D won’t add that much to the overall shading .

However, this approach can be time-consuming, as you will need to paint your
shading at least twice for the X and Y axis .

With 2D Lights turned off, the sprite has the color information (albedo) but looks flat because it doesn’t contain light or shadow information .

https://unity.com/

81.of.119.| unity .com© 2022 Unity Technologies

Another painting approach is to use a normal map-generator app . Open a sprite in
a generator app, and you can generate a normal map with just a couple of clicks .
Generator apps do not take into account the angles of your sprite, so avoid using
them on the entire sprite . They also don’t recognize the objects . They instead
estimate shapes from the sprite colors or by adding a general filter similar to bevel
or emboss from image editing apps or a relief sculpture . They can’t recognize
the angles of the face, for example, but attempt to guess where there should be
a change in an angle . It’s a limitation, but they’re still useful for generating the
normal maps of sprite sections that are beveled, like chains, cables, or a dragon’s
tail, and also surface normals for bricks, stones, wood, and others .

Import a section into the normal map generator, tweak the values, export, and
then add the necessary parts and details yourself .

How to combine two shaded grayscale (lit from top and from right) images into a normal map

Generating crevices in normal map by using Emboss tool in Sprite Illuminator

https://unity.com/

82.of.119.| unity .com© 2022 Unity Technologies

For the last technique, Unity offers a way to generate normal maps from a
grayscale heightmap . This is a texture where black represents the minimum
surface height and white the maximum height . You need to import an image as
a normal.map and check the Create from Grayscale option . This technique is
handy for quickly generating normal maps without ever leaving the engine .

When using this method, the Bumpiness slider will appear in the Inspector . Unity
uses pixel brightness and converts the height differences to normal map angles,
and this slider controls the steepness of those angles . A low bumpiness value
means that even a sharp contrast in the heightmap will be translated into softer
angles and bumps .

How.to.paint.normal.maps.onto.sprites

To paint a normal map, start by learning which colors to use for different angles .

First, obtain a normal map palette so you can sample the colors used to
represent the surface angles . Find palettes online, or simply use the palette
of colors from the normal maps chapter image . No matter how your painting
workflow looks, you’ll only need to copy a palette to your favorite painting app
and use the color picker to select a color to paint on your normal map .

Angle colors don’t need to be 100% accurate; a few degrees won’t make a
difference . However, be sure to keep the overall shape of the sprite believable . If
you use an angle color that doesn’t make sense in-context, the whole shape will
fall apart when lit .

Painting normal maps can be tricky initially because it requires a good spatial
imagination . A great place to start is with something simple like the base planes
of the head . This simplified model of a human head has a low-poly look, and you
can check out this prepared example here .

When painting a normal map, try to imagine the basic 3D shapes that are parts
of your sprite, then visualize the angles of each individual part . If you know the
angle, you’ll know from which part of the palette sprite to sample the color .

Converting texture to normal map using Create from Grayscale option

https://unity.com/
https://images.response.unity3d.com/Web/Unity/%7B9c8dcb76-9772-4a8a-8295-ef9b30147ca8%7D_base-head-template-image.zip
https://images.response.unity3d.com/Web/Unity/%7B9c8dcb76-9772-4a8a-8295-ef9b30147ca8%7D_base-head-template-image.zip

83.of.119.| unity .com© 2022 Unity Technologies

This example is working on a flat surface, but the process is similar when you’re
painting with softer brushes . You can blend hard edges to achieve a more
natural look .

A couple of shortcuts to note: When there’s a spherical shape, you can paste the
normal sphere from your palette . When you have a cylindrical shape, you can
take a part of the sphere, paste and stretch it, or make a gradient .

Be aware that copying and pasting parts of normal maps and rotating them
breaks the shading . However, this can also be used to your advantage . For
example, when you need a concave spherical shape, just rotate the sphere 180
degrees to create a hole .

For a normal map to show on one or more sprites, you need to enable normal
map function on lights .

Choose the method of generating normal maps that works best for you . Most
likely there will be many assets made for your game, so focus on the objects
that will be most visible and simplify the other parts of the game .

How to sample an angle from a normal map palette .

Normal map support settings on 2D Light

https://unity.com/

84.of.119.| unity .com© 2022 Unity Technologies

Some tools that can help include:

 — NormalPainter

 — Krita’s Tangent Normal Brush

 — SpriteIlluminator

 — Laigter

 — Sprite Lamp

Adding rim lighting with Mask Maps

Rim lighting is an effect that’s used to highlight the contours of a character . It
simulates light coming from behind an object and the natural properties of light
scattering . This is called the Fresnel effect . In real life, more light reflects from
objects when the angle where the light hits the surface is wider .

This is how the normal map looks on a white sprite in-engine .

Illustration of the Fresnel effect

https://unity.com/
https://green-frisbee.itch.io/normalpainter
https://docs.krita.org/en/reference_manual/brushes/brush_engines/tangen_normal_brush_engine.html
https://docs.krita.org/en/reference_manual/brushes/brush_engines/tangen_normal_brush_engine.html
https://www.codeandweb.com/spriteilluminator
https://www.codeandweb.com/spriteilluminator
https://azagaya.itch.io/laigter
https://azagaya.itch.io/laigter
http://www.snakehillgames.com/spritelamp/
http://www.snakehillgames.com/spritelamp/

85.of.119.| unity .com© 2022 Unity Technologies

That’s why the water in a lake is more reflective from a distance, but we can
see our feet in the water when we look down . This is also why objects are more
reflective on their edges .

In 2D graphics, you can simulate this effect by using an additional texture called
Mask Map and a special light called Blend Style .

Blend Styles determine the way a particular light interacts with sprites in a
scene . Light Blend Styles are located in the 2D Renderer asset .

Under Light Bend Styles are four options for different blending styles . Leave
the first option untouched because it’s the default one, and instead work on the
second option .

Give it a name like “Rim Light” or “Fresnel” or whatever works for you . Set
the Mask Texture channel to R – lights will use the red color of our Mask Map
texture . Lastly, set the Blend Mode to Additive . This will make lights be added
on top of existing lighting, increasing the brightness .

Setting Light Blend Styles options in 2D Renderer Data asset

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.7/manual/LightBlendStyles.html

86.of.119.| unity .com© 2022 Unity Technologies

Painting.the.Mask.Map

Fresnel light uses the red channel of the Mask Map, but for the sake of
simplicity, let’s paint in black and white . The parts that will reflect light will be
white, and the unreflective parts will be black . The Fresnel effect impacts the
edges of objects, so copy the base sprite, paint it black, then highlight the
edges white . It should start to resemble an object that has a bright light shining
behind it . To speed things up, add an Inner Glow effect on the object, and
paint some details on top . Unfortunately, there’s no app that can speed up this
process, so you’ll need to rely on your painting skills here .

Setting.Fresnel.light

To make the light affect the Mask Map, change its Blend Style to the one
created earlier .

Mask Map for a base plane
head sprite

Changing light’s Blend Style to Rim Light

https://unity.com/

87.of.119.| unity .com© 2022 Unity Technologies

Editing shapes in the Shadow Caster 2D component

Fresnel lights work best with the Use Normal Maps option enabled and with
Distance set to a low value . This prevents highlighting the other side of the object .

Adding 2D shadows with 2D Lights

2D Lights can also cast shadows onto a scene . For a GameObject to cast a
shadow from 2D light, add a Shadow Caster 2D component to the object .

Use the Shadow Caster’s shape editor to edit its geometry so it fits the object’s
silhouette . The light also needs to have some options set to cast a shadow .

Rim lighting effect on a sprite in the Unity Editor

2D Lights options used when using shadows

https://unity.com/

88.of.119.| unity .com© 2022 Unity Technologies

Use the Shadow Intensity option to see the shadow . This setting determines the
light’s opacity on other objects that are in the shadows . When it’s set to 1, the
light will not illuminate anything in the shadow area .

You can also make the area affected by light visible by using the Volume.Opacity
option . The Shadow Volume Intensity controls the opacity of the light volume in
the shadow area .

How to use 2D Lights on different renderers

2D Lights can be used together with normal maps and mask maps on sprites,
but you can also use them on different renderers . Let’s see how .

2D.Tilemap

To use 2D Lights on Tilemaps, assign the normal map and mask map textures to
the sprites that are used as tiles by using the Sprite Editor’s Secondary Textures
module . Secondary textures will be used automatically by the 2D Lights system .

Among Us by InnerSloth . Apart from enhancing the visual side of games, shadows can also be a crucial part of the gameplay .

Tilemaps with Secondary Maps

https://unity.com/

89.of.119.| unity .com© 2022 Unity Technologies

2D.Sprite.Shape

The Sprite Shape Renderer uses two different materials per object: one for Fill
and one for Edge . The Edge Material uses Secondary Maps from the Sprite
asset . For the Fill area, use the texture with wrap mode set to Repeat for tiling
instead of the sprite . You’ll need to create a new Fill material with Material
Property Block enabled for setting secondary textures .

2D Lights with normal mapping and mask maps on 2D Tilemap

Example of Sprite Shape GameObjects using normal maps

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.2d.spriteshape@5.1/manual/index.html

90.of.119.| unity .com© 2022 Unity Technologies

2D.PSD.Importer.for.animated.characters

Setting Secondary Textures in the 2D PSD Importer works similarly, with one
minor difference regarding normal maps .

The fastest way to make a normal map and mask map for a 2D PSD imported
character is by working from a base character .PSB file .

1 . Complete these steps to add a normal map to an animated character:

2 . Duplicate the base character .PSB file . Rename the duplicated file by adding
a suffix to its name, for example: _normal

3 . Open this file in your preferred image editor, and paint a normal map onto
each layer . Save the file .

4 . When a PSB with a normal map is imported into Unity, you’ll need to set
the Texture Type to Sprite and go into Advanced settings to uncheck
sRGB(Color Texture) option . A normal map doesn’t contain color sRGB data,
only angle values .

5 . Assign this PSB file as a Secondary Texture of your base character .

To make a mask map, repeat the process, give the duplicated file another suffix,
and just skip step 3 .

Example of Sprite Shape GameObjects using normal maps

https://unity.com/

91.of.119.| unity .com© 2022 Unity Technologies

Optimization tips

 — Avoid using too many lights in a Scene .

 — Use as few Sorting layers and Light Blend Styles as possible .

 — Set a lower value for the Render Texture Scale in Light Blend Styles of 2D
Renderer assets .

 — When using normal maps, set normal lighting Quality of lights to Fast
instead of Accurate .

 — Use 2D Shadows on only a few lights .

Adding a normal map to an animated character

https://unity.com/

92.of.119.| unity .com© 2022 Unity Technologies

Advanced.
visual.effects
Visual effects (VFX) are the cherry on top of any great-looking game, and
they’re vital to the gamers’ experience as they play . VFX communicate game
events such as environmental hazards and healing zones, and they visually
reward the player for well-executed actions, like an action scene culminating in
a big, fiery explosion .

Unity provides lots of options to add VFX to your game . You can add frame-
by-frame animations made in other software, animate particles, or add
animated shaders .

Frame-by-frame animations

Frame-by-frame (or flipbook) animation lets you add effects quickly in Unity .
Simply import frames as sprites, then animate the Sprite Property over time in
the Animation.window ..You can also select and drag all the frame sprites into
the Scene, which will then animate them automatically .

While importing frames is fast, drawing each frame to be animated is not, and
this process can require much more time and skill than you have available . To
save time, you can instead export VFX as frames from other apps .

Another shortcut you can use is to select all of the animation frame assets
from the Project view, and drag them to the Hierarchy view or Scene . A new
GameObject will then be created with an animation that uses the sequence
made of the previously selected images .

The flipbook animation technique is very performant, so use it when you want
to have many instances of the effect onscreen . Remember that many frames in
high resolution will require more memory .

https://unity.com/

https://resources.unity.com/games/game-designer-playbook?ungated=true

https://resources.unity.com/games/game-designer-playbook?ungated=true
https://create.unity3d.com/game-designer-playbook?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

93.of.119.| unity .com© 2022 Unity Technologies

Frame-by-frame animation can also be used in Particle Systems, where it is
referred to as Texture Sheet Animation .

Flipbook animations can also be used in the Shader Graph by animating the UV
position of texture over time, which creates the illusion of moving frames .

Frame-by-frame animation of a flame

Setting up frame-by-frame animation in Particle System

Flipbook animation in Shader Graph

https://unity.com/
https://docs.unity3d.com/Manual/ParticleSystems.html

94.of.119.| unity .com© 2022 Unity Technologies

Particles

The Particle System allows you to display and animate many smaller images or
meshes in order to achieve a single visual effect . Particle properties like size,
velocity, color, and rotation can be animated over time using certain predefined
rules and randomization . This allows you to create dynamic effects like fire,
explosions, smoke, magic spells, and so on .

You create a new Particle System by selecting the menu option GameObject.>.
Effects.>.Particle.System .

Particle System properties

https://unity.com/

95.of.119.| unity .com© 2022 Unity Technologies

Main.Module.properties

 The Particle System has many modules, but let’s cover a few of the essentials .

The first module contains basic particle properties:

 — Duration: How long the system will run

 — Looping: Whether the whole system will loop forever

 — Speed: The initial speed of the particles

 — Start Size: The initial size of the particles

 — Color: The initial color of the particles

 — Gravity: Gravity force applied to the particles

Emission

Emission controls the rate and timing of emitted particles, while Rate controls
how many particles are emitted per unit of time . You can also create bursts of
particles, specifying how many to spawn and when .

Shape

This module defines the volume or surface from which particles can be emitted,
and the direction that they will travel . The Shape property defines the shape of
the emission volume .

Color.over.Lifetime

You can control the particles’ color and opacity over its lifetime by evaluating the
gradient . On the left of the gradient is the starting color, and on the right is the
color particles will have when they die .

Size.Over.Lifetime

This setting defines the size of a particle along the horizontal axis of a curve .

Rotation.Over.Lifetime

Rotation over Lifetime gives particles a rotation speed .

Noise

This module will add randomness to the particle movement . It’s a very quick way
to add interesting and complex-looking effects like magic spells, sci-fi energy,
exhaust fire, dust motes, and more .

https://unity.com/

96.of.119.| unity .com© 2022 Unity Technologies

Renderer

The Renderer module, as seen above, allows you to change how particles will
look . There are many settings, but the most important to change is the Material
setting, where you can add a new material with a texture .

Randomized.particles

Most of the particle properties can be randomized to achieve an unpredictable
and natural look .

The dropdown menu to the right of the particle property allows you to choose
from different randomization options .

Particle Systems can also be nested within one another . Nesting causes systems
to play simultaneously, which allows you to achieve some very complex effects .
For example, to create an explosion, you could combine one system for smoke,
one for small sparks, and one for flying debris .

The Particle System is a very powerful tool that allows you to create almost any
VFX for your game . You can even make your effects glow using HDR unlit shader
and Bloom post-processing . Test out every property, for even the simplest
particles will make your game feel polished .

To speed up your game creation process significantly, check the Asset Store for
premade particle VFX .

The Renderer module

Random particle property

https://unity.com/
https://assetstore.unity.com/vfx/particles?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

97.of.119.| unity .com© 2022 Unity Technologies

Shader Graph

Another way to make VFX is using shaders . Shaders are a set of instructions
for the graphics processor, and they can, for example, calculate pixel colors or
vertex positions .

Shader Graph enables you to build shaders visually . Instead of writing code, you
create and connect nodes in a graph framework . Shader Graph gives instant
feedback that reflects your changes, and it’s simple enough for users who are
new to shader creation .

With the Shader Graph you can:

 — Warp and animate UVs

 — Procedurally alter surface appearance

 — Ad image filters similar to image editing apps

 — Change an object’s surface based on information like world location,
normals, distance from the camera, and more

 — Tweak shader visuals in a Scene’s context by exposing properties to
Material Inspector

Using.the.Shader.Graph

To start using the Shader Graph for 2D, go to the Project window, right-click,
and select Create.>.Shader.>.Universal.Render.Pipeline.>.Sprite.Lit.Shader.
Graph (or Sprite.Unlit.Shader.Graph) .

Use Sprite Lit Shader when you want your sprite to be affected by lights, which
will be the case for almost all characters and objects . Use Sprite Unlit for unlit
or emissive surfaces such as fire, light sources, electricity, spells, holograms, or
special characters like ghosts .

To start creating a shader, name the file first . This will create your initial shader .
Then, double-click the file to enter Edit mode .

The Shader Graph window

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.shadergraph@10.7/manual/index.html

98.of.119.| unity .com© 2022 Unity Technologies

This opens the Shader Graph window . Within the central part, called the
Workspace, is the Master Stack . This is the final output of the Shader Graph,
which is responsible for the shader’s ultimate look . There should only be one
Master Stack per shader .

The Master Stack contains two Contexts, which correspond to vertex and
fragment (or pixel) functions .

On the left hand, you’ll see a Blackboard . This contains properties that will be
visible in the Inspector and Keywords .

At the top right is a Graph Inspector, which has two tabs: Node settings, which
allows you to change a selected Node’s settings, and Graph Settings, which
changes the entire graph’s settings . From the Inspector, you can switch the
Precision mode; this is a good idea to set it to half.on low-end devices . You can
also swap the shader Material between lit and unlit .

The Main Preview at the bottom is where you can view the final shader .

The nodes in Shader Graph are the building blocks that hold inputs, effects, and
interactions . A graph proceeds from left to right, so nodes will have input slots
on the left, and outputs on the right .

To add a new node, right-click anywhere on the workspace, and choose Create.
Node from the context menu . You’ll be presented with a list of all nodes grouped
by type . Select Input.>.Texture.>.Sample.Texture.2D .

An example of a Texture 2D node

https://unity.com/

99.of.119.| unity .com© 2022 Unity Technologies

Connect the RGBA(4) slot of the Sample Texture 2D node to the Base Color(3) in
the Master Stack’s input slot . Connect the A(1) slot to Alpha(1) . Now, the Master
Stack’s Fragment Context will use the color and alpha of the texture you provide
to the Sample Texture 2D node .

To reference this texture from outside the shader, you need a property .

Click the Plus button located on the Blackboard, and select Texture 2D . Select
the newly created property, and options will appear in the Graph Inspector . You
can change the property’s name, but more important is the Reference option –
change this to _MainTex .

For the texture, use the sprite, which is set in every Sprite Renderer . Sprite
Renderer will check for _MainTex.property in the current Material’s shader and
will set its sprite texture as the texture in the shader . Finally, drag this property
from the Blackboard to the workspace, and connect it to the Texture(T2).input
slot on the Sample Texture 2D node . Hit the Save Asset button on the toolbar,
and the shader will be compiled .

You can use the Shader Graph just like any other shader in Unity . Right-click in
the Project window, choose Create.>.Material,.and select your shader from the
list . All of its properties will be available to customize .

You can test your shader by applying the created material to a sprite . Of course,
this is the simplest shader with just a texture . Feel free to experiment and try out
the rest of the nodes . Or maybe you can try to add a normal map and Mask Map
(Sprite Mask) to this shader? Hints: Sample Texture 2D Type.needs to be set to
Normal to correctly display normal map, and you can check reference names of
Normal Map and Mask Map textures in the Secondary Textures window in the
Sprite Editor . Good luck!

Exposed properties will show in the Inspector view where you can modify the parameters that will be used in the Graph .

https://unity.com/

100.of.119.| unity .com© 2022 Unity Technologies

Vertex displacement

The Vertex displacement shader affects the positions of vertices in a geometry of
the mesh . You can displace vertices in many ways, and the simplest way is to apply
a moving noise . This shader is good for waving objects: foliage, hanging vines and
ropes, flags, and so on . You can find an example of this Shader Graph file in the
Dragon Crashers project, with the file name ShaderGraph_Sprite_Lit_Waving.

Secondary Textures for the barrel sprite . You can check their names and add your own textures that can be referenced in
Shader Graph by name .

Main part of Waving shader

https://unity.com/

101.of.119.| unity .com© 2022 Unity Technologies

To achieve the wave animation, Gradient Noise is used as a wave mask . Its UV
Offset is animated by the Time.node multiplied by a Float named Speed . These
all affect the position.of vertices in the.Vertex Context .

The sprite that will be affected by the Waving shader needs to have a sufficient
vertex count, otherwise the animation will look rough . To edit the vertices, use
Skinning Editor Geometry tools .

The Vertex context in Shader Graph modifies the vertices position and the Fragment master stack the pixel information .

Editing vertices

https://unity.com/

102.of.119.| unity .com© 2022 Unity Technologies

Flow maps

Flow maps are textures that store directional information . You can find a flow map
shader in the Dragon Crashers demo, with the name ShaderGraph_Lava . The
shader uses the flow map texture to control the direction of the main texture’s UV
coordinates . The colors red and green are used to indicate the XY direction that
pixels follow in every frame, making the pixels of the main texture “flow .”

Open the SubGraph FlowMap to learn how to achieve this effect .

Cobweb shader in action (click through to see the animation) .

Flow map texture colors explained: The red color controls pixel movement on X axis, green color determines on the Y axis . The
shader moves the pixels of the main texture in the directions that are visualized by the arrows .

https://unity.com/
https://www.google.com/url?q=https://youtu.be/gJ40FxUJnZ4&sa=D&source=docs&ust=1639508737131000&usg=AOvVaw3Vj0uwRHjGjY34apt20QUW

103.of.119.| unity .com© 2022 Unity Technologies

Threshold animations for fluid prop animation

Another shader animation technique you can try is called “animated alpha
clipping,” which creates smooth animation from a single texture . This occurs
by showing a specific range of pixels in each frame based on their alpha
values . The texture is single channel, so the effect is simple to achieve . Find
an example of it in Dragon Crashers with the name ShaderGraph_Sprite_Unlit_
ThresholdAnim .

To achieve this effect, a Smoothstep.node is used . The texture’s red channel is
connected to the In(1) slot, and Vertex Color alpha controls the evaluation of
the edge and smoothness of the Smoothstep effect . Vertex Color is controlled
by the Color property of the Sprite Renderer, so when you change the opacity
of the sprite, the texture is animated . This allows the shader to be usable,
even on particles .

The hand-painted flow map gives the stream of lava a viscous and cartoonish effect, which matches the project’s art direction .
A couple of tools you can use for flow map creation include Flow Map Generator / Visualizer and Flow map painter .

Animated alpha clipping

https://unity.com/
https://cables.gl/p/ntZfmv
https://clemensbeute.gumroad.com/#heZDT

104.of.119.| unity .com© 2022 Unity Technologies

If you use Affinity Photo, you can paint the texture for this shader black and
white, then preview the animation by using Threshold Adjustment while moving
the value slider .

This effect achieves the look of fluids or splatters, without the need for frame-
by-frame animation . You can learn more about this animation in the Surface
Tension community post .

Previewing threshold animation in Affinity Photo

Texture used for the lava effect and how it looks in-game (see how it looks animated here)

https://unity.com/
https://www.gdcvault.com/play/1020476/Surface-Tension-Liquid-Effects-in
https://www.gdcvault.com/play/1020476/Surface-Tension-Liquid-Effects-in
https://blog-api.unity.com/sites/default/files/2021-03/splatteralphafading.gif

105.of.119.| unity .com© 2022 Unity Technologies

Reflections.and.refractions

One of the most common 2D techniques deals with reflections and refractions,
like those you see on water, ice, glass, or in hot air . To achieve this effect,
another camera outputs the parts that will be reflected or refracted into a render
texture . This texture is then used in a shader, distorted and adjusted as needed,
and finally outputted onto the screen .

Adding glow around lights

To make sprites glow with blinding light, combine the HDR enhanced sprite
shader with the Bloom post-processing effect .

The setup process for water reflections, created with Lost Crypt demo shader files named ShaderGraph Water Unlit

HDR shader in Dragon Crashers (ShaderGraph_Sprite_Unlit_HDRTint)

https://unity.com/
https://assetstore.unity.com/packages/essentials/tutorial-projects/lost-crypt-2d-sample-project-158673?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

106.of.119.| unity .com© 2022 Unity Technologies

To make this blinding light effect, multiply texture by a Color node that uses
HDR Color Mode . In the Material, crank up the HDR value over 1, with the Bloom
post-processing effect enabled on the main camera .

Sprite masking

Sprite Masks are used to either hide or reveal parts of a sprite or group of
sprites . For example, you could hide part of an image to produce a portal effect
or make a collectible card with a 3D effect .

To create a Sprite Mask, go to the menu and select GameObject.>.2D.Object.
>.Sprite.Mask ..Next, choose a sprite to be used as a mask shape . Keep in mind
that the mask sprite itself will not be visible . Set the Sorting Layers on which the
mask will work .

The sprite used as the mask image can itself be animated with the animation
tool . This enables you to create some interesting effects . For example, you can
make a portal appear, then grow bigger or change shape .

Mask Sprites need to have their Mask Interaction set in the Sprite Renderer in
order to be affected by a Sprite Mask . In the URP’s 2D Renderer, the Depth/
Stencil Buffer must be enabled .

Portal Effect created with Sprite Mask and the Particle System

Depth/Stencil Buffer option used for masking

https://unity.com/

107.of.119.| unity .com© 2022 Unity Technologies

Comparison of tools

2D.skeletal.animation.vs.frame-by-frame.animation

Frame.by.frame 2D.skeletal

Pros Cons Pros Cons

• Artistic look

• Can animate
everything (easy
rotation of character)

• Little runtime cost

• Costly to make (time,
skill)

• Difficult to edit later

• Consumes large
amounts of memory

• The animation will
always be limited
to the frames per
second that it was
created forthey
need to be manually
authored if changes
to the speed or frame
rate of the animation
are required

• Easy to set up and
animate

• Easy to edit later

• Small texture size

• Can support multiple
characters or skins
per skeleton

• Can be edited at
runtime to add
clothes, weapons,
animating IK, and
so on

• Animation will
always be smooth –
interpolation

• animations can be
blended to create
smooth transitions

• Some runtime cost

• Animations like
rotating around Y
axis are more difficult

• Doesn’t work well
with pixel art

Use.when.you:

• Want a great aesthetic or specific style

• Focus on pixel art animation

• Want simple animation of just a few frames

Use.when.you:

• Don’t have strong animation skills

• Want to make animation quickly

• Want multiple skins or characters

• Want a better runtime control

• Want to save texture space

Both techniques can be mixed . The movement of limbs can be driven by bones, but facial
expressions can be driven by sprite swaps .

https://unity.com/

108.of.119.| unity .com© 2022 Unity Technologies

Shaders.animation.vs.animation.clips.for.VFX.vs.Particle.System

Shaders Animation.clips Particle.System

Pros Cons Pros Cons Pros Cons

• Achieves
effects not
possible
with other
techniques

• Procedural
effects

• Fast
creation
time

• Small
texture size

• Runtime
calculation
are hard

• Looks great

• Artistic
control on
animation
and its
frames

• Texture size

• Takes
more time
to create
individual
frames

• Hard to
customize
later

• Easy to
make and
edit later

• Can
randomize
to define a
unique look

• Complex
effects

• Require
a lot of
particles
which can
be taxing to
CPU

Use.when.you:

• Want simple animation of just
a few frames Good for effects
that otherwise would take a lot
of space/memory when done
frame by frame

• Great when you need
customization

• Great for applying effects on
materials

Use.when.you:

• Good for natural- or cartoon-
looking animations (insects,
birds, smoke effects, etc .)

• Very low runtime cost

Use.when.you:

• Good for effects with a bit of
randomization like fire, fluids,
and magic spells

https://unity.com/

109.of.119.| unity .com© 2022 Unity Technologies

Tilemaps.vs.Sprite.vs.Sprite.Shape

 Optimization tips

 — Try to maintain a low frame count/texture size when using frame-by-frame
animation .

 — With Object Pooling, you can avoid instantiating and destroying VFX
assets . Simply activate and deactivate GameObjects .

 — In the Shader Graph, use half precision whenever possible .

Tilemaps Sprites Sprite.Shape

Pros Cons Pros Cons Pros Cons

• Fast
creation
process for
painting,
tiles, and
rule tiles

• Precise

• Good for
optimizing
games

• Difficult to
to make
organic
shapes
when
constrained
to a grid

• Great for
placing
objects
manually

• Hard to
paint
multiple
sprites

• Not
optimized
when used
in large
numbers

• Easy editing
of both
polygonal
and organic
shapes

• Doesn’t allow
for pixel-
perfect

• placement
easily

• Textures can
be repetitive

Use.when.you:..

• Good for precise placement of
level elements

• Grid is good for pathfinding

• Very versatile

Use.when.you:.

• Good for additional elements, as
a supplement to Tilemaps and
Sprite Shape

Use.when.you:.

• Great for organic-looking shapes

• Fast level editing

https://unity.com/
https://learn.unity.com/tutorial/introduction-to-object-pooling
https://www.youtube.com/watch?v=rKlvgkDHWfQ
https://www.youtube.com/watch?v=rKlvgkDHWfQ

110.of.119.| unity .com© 2022 Unity Technologies

Post-processing
Overview

Post-processing enhances the look of your game by adding effects on the final
image frame . These effects can simulate a physical video camera look or be
completely stylized . The URP includes post-processing capabilities, so there’s no
need to install a separate package, and configuring the effects is straight-forward .

To begin, select the main camera, and select the Post Processing option .

Post-processing uses the Volume system so to add a new post-processing
Volume, select GameObject.>.Volume.>.Global.Volume .

On the left is an image of a camera output without post-processing . On the right is the same image with post-processing added . The
effects have been exaggerated to show the difference . Apply post-processing effects cautiously, especially in mobile games .

Defining a Volume Profile

Enabling Post Processing in the main camera

https://unity.com/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.7/manual/integration-with-post-processing.html?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.7/manual/Volumes.html?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

111.of.119.| unity .com© 2022 Unity Technologies

Now, create a Volume Profile by clicking the New button . Volume Profile will
store your post-processing effects and can be easily shared between Volumes
and Scenes .

To start adding post-processing effects, click the Add Override button, then
select a desired effect from the list .

Let’s choose Bloom to start with .

Selecting the Bloom post-processing effect

Defining Bloom effect properties

https://unity.com/

112.of.119.| unity .com© 2022 Unity Technologies

To adjust the effect’s property, select the adjacent checkbox .

A quick reminder: Ensure that the Global Volume’s GameObject layer matches
the layer selected in the Mask.option on the main camera .

If everything is working correctly, the Bloom effect should be visible in the Game view .

Global Volume was used, so the effects should always be visible when the
Volume object is active in the Scene .

Local.Volumes

You can add post-processing effects to an entire level, but it’s also possible to
configure effects for parts of a level, such as when the player enters a building .

To do that, another Volume Object must be created with a different post-
processing Profile attached .

Volume’s Mode needs to be set as Local, then add the 3D Box Collider to the

Make sure the Post Processing check box in the camera is enabled and that the Layer of the Volume’s GameObject is
selected in the Volumes Mask drop list of the camera

https://unity.com/

113.of.119.| unity .com© 2022 Unity Technologies

Volume Object . Post-processing will be applied when the camera enters the Box
Collider’s bounds, so make sure its along the Z axis is large enough to contain
the camera object . By default, the collider will be too small, so double check the
size by in Scene view .

Increasing the Blend Distance value will prevent the effects turning on abruptly
when the camera enters the Volume zone .

Adding a 3D Box Collider to a Volume Object

https://unity.com/

114.of.119.| unity .com© 2022 Unity Technologies

Overview of effects for 2D graphics

Post-processing in URP has many built-in effects, and almost every effect can
be used in a 2D game . Here’s a quick overview of the effects .

Bloom

Chromatic.Aberration

The Bloom effect creates a glow around the brightest areas of the image, giving the impression that parts are brighter
to simulate how a lens captures light . To further enhance the look, try adding a Lens Dirt texture, which will simulate the
imperfections on a camera lense . For best performance, disable High Quality Filtering, especially on mobile .

This effect creates color distortion on the edges of an image . This simulates lenses that split colors further away from the center .

https://unity.com/

115.of.119.| unity .com© 2022 Unity Technologies

Color.Grading

This is a group of effects rather than a single one . The purpose of color grading
is to alter the colors of an image to stylize or change the mood of a scene .
Color grading can simulate the time of day or temperature of an environment
by adjusting its color temperature . These effects have the potential to give a
game a very distinct look .

The URP uses the following effects to control Color Grading .

Channel Mixer: Modifies the influence of each input color channel
on the final image

Color Lookup: Performant way of color grading by using a single
texture

Split Toning: Tints different areas of the image based on
luminance values, adding hints of different colors to shadows,
midtones, and highlights

Color Adjustments: Tweaks the overall tone, brightness, and
contrast of the final rendered image

Lift Gamma Gain: Performs three-way color grading

Tonemapping: Allows remapping the HDR values of an image to a
new range of values

Color Curves: Allows precise color and luminance adjustments to
an image

Shadows Midtones Highlights: Separately controls the shadows,
midtones, and highlights of an image

White Balance: Balances color temperature and can also cool or
warm the tone of an image

https://unity.com/

116.of.119.| unity .com© 2022 Unity Technologies

Lens.Distortion.
.

Vignette

Vignette darkens the image towards the edges, which is another real-life lens property that draws attention to the center
of an image .

This will create a barrel distortion effect commonly seen in real-world wide-angle lenses . This curves the straight lines
on an image inwards, and it will be more pronounced closer to edges . This effect can be used to replicate an old CRT TV
curvature or add a fisheye lens effect .

https://unity.com/

117.of.119.| unity .com© 2022 Unity Technologies

Film.Grain

Panini.Projection

Optimization tips

 — Use as few post-processing effects as possible .

 — Use less intensive effects, such as Bloom, Chromatic Aberration, Color
Grading, Lens Distortion, or Vignette, wherever possible .

 — Film Grain and Panini Projection are more costly .

 — Disable High Quality Filtering on Bloom

Film Grain applies subtle noise over the image, producing an effect similar to a film negative’s emulsion structure and
resulting visible grain in analog movies .

Designed to help render perspective views with a very large field of view, Panini Projection can also be used in 2D to
stylize the image with a cylindrical distortion .

https://unity.com/

118.of.119.| unity .com© 2022 Unity Technologies

Conclusion
You’ve come a long way by getting to the end of this guide . I hope the steps
and knowledge presented here will help you start on your journey to creating
beautiful 2D games in Unity .

Over the years, we’ve encountered many people who struggle with game
development, those who seem to think there is always one more step to learn
or tutorial to watch before they can really start . But the best way to learn is by
doing . So start now .

Once you take that first step, yes, there’s a good chance you’ll hit a few
roadblocks . But then you might have to dive into a tutorial or technical article or
get some good tips from a fellow developer, and you’ll be back on your way again .

Game development requires you to both do and learn . It will always be a balance
between the two .

It’s not possible to explore every area of 2D game development in just one
e-book . But this is a good reference to keep close at hand as you kick off your
project and deepen your knowledge of these tools . There are many additional
resources for developers and artists, including Unity Documentation, Unity
Learn, and the Unity Blog

Good luck!

– Jarek Majewski and the Unity 2D team

https://unity.com/
https://docs.unity.com/?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://learn.unity.com/?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://learn.unity.com/?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook
https://blog.unity.com/?utm_source=blog&utm_medium=pdf&utm_campaign=asset-links-gmg-choose-unity-for-2d&utm_content=2d-game-art,-animation-and-lighting-ebook

unity .com

https://unity.com/

	_ma9ad0o327vw
	_spcw6wc67xgq
	_pwcsf9eq4rc1
	_t34mvqfwg2dm
	_po72ucv4r5ac
	_ifiytra6f6l4
	_yfemy9cvl0wu
	_ad3conbm4u98
	_c1j4h7zh7ndk
	_g0qqzkru8a5t
	_o7lo2xsuj5ta
	_cnasekypg130
	_r3uvj9syt9rd
	_k8wjzh453mol
	_sftc8qmgw6s
	Introduction
	Project setup:
2D rendering
	The art for your game
	Choose the perspective
	Parallel projections

	Resolution of
your assets
	Level design
	White boxing with basic sprites

	2D Animation
	Perspective
	Reskinning characters
	Performance
	General 2D animation rules
	Creating the skeleton
	Sprite Geometry
	Weights
	Skins

	2D Lights
	Freeform
	Sprite
	Parametric
	Point/Spot
	Global
	Preparing sprites for 2D lighting
	Normal map painting techniques
	How to paint normal maps onto sprites
	Painting the Mask Map
	Setting Fresnel light
	2D Tilemap
	2D Sprite Shape
	2D PSD Importer for animated characters

	Advanced
visual effects
	Main Module properties
	Emission
	Shape
	Color over Lifetime
	Size Over Lifetime
	Rotation Over Lifetime
	Noise
	Renderer
	Randomized particles
	Using the Shader Graph
	Reflections and refractions

	Post-processing
	Local Volumes
	Bloom
	Chromatic Aberration
	Color Grading
	Lens Distortion

	Vignette
	Film Grain
	Panini Projection

	Conclusion

