QUnity® UNITY FOR DEVELOPERS — E-BOOK

CREATE MODULAR
GAME ARCHITECTURE
IN UNITY WITH
SCRIPTABLEOBIJECTS

Contents

Introduction il 3
What are ScriptableObjects?..............coiiiiiiiienn.n. 4
Serialization. 7
ScriptableObjects versus MonoBehaviours 8
ComMPariSON. . ..ttt 9
Callbacksand messages.cvviniiienennn.. 10
Files . o 1
YAML ain't markup language. 13
Creationandlifecycle K
Destroying ScriptableObjects 14
Datacontainers..............c.iiiiiiiiiiiiiiiiiiin.. 15
ScriptableObject data versus persistentdata............ 18
Reducing duplicatedata 18
Designpatterns. 19
Refactoringexample i 20
Code conventionsinthisguide 22
Custom INSpPectors v 23
Architectural benefits. 25
ScriptableObject variables......................... 27

Dual serialization i 29
Protectyourdata 31
Pattern: Extendableenums. ool 32
Enum-like categories KK]
Extending behavior 35
Pattern: Delegateobjectscoiiiiiiiiinnn.. 38
Delegatesversusevents 39

ScriptableObjects methods. 40

Modifying ScriptableObjectdata 41

Pluggable behavior. 41
Al with ScriptableObjects, 42
Example: Audiodelegates........... 42
The glorious ScriptableObject revolution. 43
Pattern:Observer...........coiiiiiiiiiiiinnnnneneensn 44
Avoiding singletons 45
ScriptableObject-based events 45
Example: Eventchannels. 48
System.Action or UnityAction 49
Debuggingeventchannels 53
Example: InputReader i 54
Static versus non-staticevents, 56
Pattern:Commandcoiiiiiiiiiiiininnnn.. 57
ScriptableObjectsor C#classes?. 61
Pattern:RuntimeSets ittt 62
BasicRuntime Set i 63
GeneriC VersioN. oot e 65
Fun facts aboutfooandbar 67
Explore the sampleproject...............ccoiiiiiinnn.. 68
CONCIUSION . ..ottt it it it ittt it 70
MOKereSOUICES . ..o ittt iii it ittt it iieneneeneneanens 72
Documentation......... i 73
Technical e-books from Unity......................... VA
FromUnite.o 73
More projectexamples i 73
Forgamedesigners, 74

Professional training for Unity creators 74

INTRODUCTION

ScriptableObjects aren’t flashy.

As Unity components go, they don't call attention to themselves. Instead, they
quietly work behind the scenes. It’s likely that you won’t notice them — that is,
until you need them.

You will often hear ScriptableObjects described as “data containers.” That label,
however, doesn’t quite do them justice. Applied correctly, ScriptableObjects can
help you speed up your Unity workflow, reduce memory usage, and simplify
your code.

This guide assembles tips and tricks from professional developers for deploying
ScriptableObjects in production. These include examples of how to apply them to
specific design patterns and how to avoid common pitfalls.

If you're an intermediate to experienced Unity developer, ScriptableObjects
can help promote clean coding practices by separating data from logic. This
makes it easier to make changes without causing unintended side effects,
improving testability and modularity.

Because you can work with them interactively in the Editor, you'll discover

that ScriptableObjects are especially useful when you're collaborating with
non-programmers, such as artists and designers. We hope that some of these
techniques can complement your existing workflow and streamline your project
setup.

Let's explore the unsung hero of game architecture, the humble ScriptableObject.

© 2023 Unity Technologies 3 of 75 | unity.com

https://unity.com/

A ScriptableObject is a Unity object that's not part of a GameObject instance.
You can use it to create a custom class with its own variables and methods, but
with less overhead than a MonoBehaviour.

A ScriptableObject does not have a Transform and exists outside of the Scene
Hierarchy. Instead, it lives at the project level as an asset, much like a material
or 3D model.

You can declare a ScriptableObject like this:

[CreateAssetMenu(fileName="MyScriptableObject")]
public class MyScriptableObject: ScriptableObject
{

public int someVariable;

Rather than deriving from MonoBehaviour, you inherit from ScriptableObject.

You can't use this directly on a GameObject. Instead, the CreateAssetMenu
attribute gives you an extra action in your menus.

Navigate to Assets > Create > MyScriptableObiject (or right-click in the Project
window), and you can instantiate a custom asset from your ScriptableObject class.

@ GameSystemCookbook - SampleScene - Windows, Mac, Linux - Unity 2021.3.7f1 Personal <DX11>
File Edit Assets GameObject Component Jobs Window Help

My Scriptable Object

e)

Folder
C# Script
s

Visual Scripting >
Shader Graph >
Shader >

Show in Explorer
Open

e Shader Variant Collection
Copy Path Altsctrivc Tosting
Playables >
Assembly Definition
Assembly Definition Reference
Import New Asset... Text >
Import Package X TextMeshPro >

Export Package...
4 i o Scene

% p Scene Template
Select Dependencies

Refresh Ctrl+R Volume Profile

Reimpert Scene Temglate Pipeline
Reimpert All Prefab
Audio Mixer

Update UXML Schema

. Rendering >
Open C# Project :
o v : Material
View in Import Activity Window
lens Flare
Properties... Lens Flare (SRP)

Render Texture
Lightmap Parameters
Lighting Settings
Custom Render Texture

© 2023 Unity Technologies 5 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/2022.2/Documentation/Manual/class-ScriptableObject.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

© 2023 Unity Technologies

Any other script can then reference this ScriptableObject asset from any scene,
using a field:

public class MyMonoBehaviour : MonoBehaviour

{
public ScriptableObject soInstance;

}

ScriptableObjects are especially useful for anything that doesn’t need to change
at runtime.

Because Unity treats ScriptableObjects as first-class objects, you can:

— Store them in variables

— Dynamically create or destroy them at runtime

— Pass them as arguments

— Return them from a method

— Include them in data structures

— Serialize/deserialize them

This last point highlights one of ScriptableObjects’s key features: the ability to

appear in the Inspector. This means that its fields are easy to read and modify in
the Editor.

Change values in a ScriptableObject at runtime, and your game application
updates immediately. Exit Play mode, and those values remain in place. This
makes them useful for game designers who need to balance game settings
without having to write code. As a plus, ScriptableObjects can often store
changes while the application is running.

This offers a few advantages over using MonoBehaviours alone. Restructuring
your project with ScriptableObjects can help you collaborate better as a team or
improve memory usage.

6 of 75 | unity.com

https://unity.com/
https://blog.unity.com/games/systems-that-create-ecosystems-emergent-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

0 Serialization

Serialization is the automatic process of transforming data structures
or object states into a format that’s easier to store and reconstruct later.
Unity’s serialization backend takes data that'’s scattered over memory
and then lays it out sequentially.

This reorganized data stream then can be stored in a database, a file,
or memory. “Deserialization” is the reverse process.

)

Serialization File

N
HEKE>

Deserialization

Database

H

Although memory layout is easy to overlook in C# development, we should be
aware of several built-in Unity features that use serialization:

— Saving and loading: If you open a .unity scene file with a text editor
and have set unity to “force text serialization,” the serializer is run
with a YAML backend.

— The Inspector window: This interface doesn't talk to the C# API to figure
out the values of whatever it’s inspecting. Instead, it asks the object to
serialize itself and displays the serialized data.

— Prefabs: Internally, a Prefab is the serialized data stream of GameObjects
and components. A Prefab instance is a list of modifications that should be
made on top of the serialized data.

— Instantiation: When you instantiate a Prefab (or a GameObject that lives
in the scene), you serialize the object, create a new object, and then
deserialize the data onto the new object.

For more information about serialization in Unity, see this blog post or watch
“How Unity’s Serialization system works.”

© 2023 Unity Technologies

7 of 75 | unity.com

https://unity.com/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/
https://en.wikipedia.org/wiki/YAML
https://docs.unity3d.com/2022.2/Documentation/Manual/Prefabs.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/technology/serialization-in-unity?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=N-HJvfVuKRw?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

SCRIPTABLEOBIJECTS
MONOBEHAVIOU

VERSUS

On the surface, ScriptableObjects are simple. The API sports only a few
methods. In this case, that's a good thing. Simplicity means less can go wrong.

Monobehaviour

ScriptableObject

Like MonoBehaviour, the ScriptableObject class derives from

UnityEngine.Object class.

Comparison

Probably the best way to understand ScriptableObjects is to compare them with
their siblings, MonoBehaviours. This chart breaks down their similarities and

differences.

MonoBehaviour ScriptableObject

MonoBehaviours and ScriptableObjects are both scripts.

MonoBehaviour and ScriptableObject classes derive from UnityEngine.Object.

MonoBehaviours receive callbacks
from Unity.

Connect your methods to the game
engine’s player loop by naming them
according to MonoBehaviour’s
event functions.

e.g., Start, Awake, Update, OnEnable,
OnDisable, OnCollisonEnter

ScriptableObjects do not receive most
callbacks from Unity.

ScriptableObjects support a limited
number of event functions, including
Awake, OnEnable, OnDestroy, and
OnDisable at runtime. The Editor
also calls OnValidate and Reset
from the Inspector.

You can create other methods on a
ScriptableObject, but the player loop does
not invoke them automatically.

© 2023 Unity Technologies

9 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/Manual/EventFunctions.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/ScriptReference/Object.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

MonoBehaviour ScriptableObject

MonoBehaviours must be attached
to GameObjects at runtime.

If you create one at runtime,
use the AddComponent API.

ScriptableObjects are not attached
to any specific GameObject.

Save ScriptableObjects into their own
asset files at the Project level. Then,
reference the ScriptableObject asset from
a Monobehaviour or other script.

When we do save them, we save
MonoBehaviours data into Scenes
and Prefabs.

Each ScriptableObject instance
can be saved into its own file at the
Project level.

In the Editor, changes to MonoBehaviour
values reset when exiting Play mode.

In the Editor, changes to
ScriptableObject values do not reset
when exiting Play mode.

In a standalone build, changes to
ScriptableObject values at runtime are
not saved.

MonoBehaviours and ScriptableObjects are both serializable and can be viewed

in the Inspector.

Callbacks and messages

ScriptableObjects have a subset of the event functions available to
MonoBehaviours. You can define custom methods for your ScriptableObjects,
but it's your responsibility to call them. Only these methods will be called

automatically in the PlayerLoop.

Event function When it executes

(runtime)

Awake

This is called as the ScriptableObject script starts, similar to
MonoBehaviour’s Awake callback.

This also executes when the game is launched or if a scene loads
with a reference to the ScriptableObject asset.

OnEnable

This is called when the ScriptableObject is loaded or instantiated,
immediately after the Awake callback.

OnEnable executes during the ScriptableObject.Createlnstance or
after successful script recompilation.

OnDisable

When the ScriptableObject goes out of scope, this is called. This
happens if you load a Scene without references to the ScriptableObject
asset or right before the ScriptableObject’s OnDestroy.

Unity also executes OnDisable before script recompilations.
When entering Play mode, OnDisable runs right before OnEnable.

© 2023 Unity Technologies

10 of 75 | unity.com

https://unity.com/

Event function
(runtime)

OnDestroy

OnValidate

Editor-only functions

When it executes

This is called when something destroys the ScriptableObject, either
deleting it in the Editor or from code.

If you've created the ScriptableObject at runtime, OnDestroy also
invokes when the application quits or if the Editor exits Play mode.

Note: This only destroys the native C++ part of the object. See
Lifecycle and Creation for more information.

OnValidate executes when the script is loaded or a value changes
in the Inspector. This can be used to ensure that your data stays
within a certain range.

Reset

Reset invokes when you hit the Reset button in the Inspector
context menu.

To destroy a ScriptableObject, remove it from the Editor or call Destroy/
Destroylmmediate at runtime.

Here’s a brief overview of a ScriptableObject’s event functions and life cycle. Compare

this with the order of execution of MonoBehaviour event functions, starting from the top.

IVELG
Initialization

OnEnable

OnDisable

OnDestroy

Files

One of their

Decommissioning

biggest differences between MonoBehaviours and ScriptableObjects

is how they save their data.

Unity serializes MonoBehaviours within either a Scene or a Prefab file.

© 2023 Unity Technologies

11 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/Manual/ExecutionOrder.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

The saved data contains:

— The MonoBehaviour itself
— The attached GameObject
— Its Transform

— Any other components and MonoBehaviours on the attached GameObject

¥ GameObject
sg Untagged Layer Default

Transform

obehaviour (Script)

MonoBehaviour

attaches to
GameObject

Add Compornent

ScriptableObject appears in project

In contrast, Unity saves ScriptableObjects into their own asset files. These files
are smaller and more compartmentalized than MonoBehaviours.

If you choose to use Mode: Force Text in the Project Settings > Asset

Serialization window, you can open a ScriptableObject asset in a text editor.
It might look something like this:

4 &11400000

iou

MySeriptabieOb;

3fc7a749f692b4af41923450f022d8428,

© 2023 Unity Technologies 12 of 75 | unity.com

https://unity.com/

o YAML ain’t markup language

Unity uses a high performance serialization library that implements a subset
of the YAML specification. This is a lightweight, easy-to-read language related
to XML and JSON.

In YAML, data is organized as a hierarchy of nested elements.
Each object has a Class ID, File ID, and object type. Note that ScriptableObjects
use “MonoBehaviour” as their object type, instead of defining their own.

ClassID File ID

y

—— Iy!114 §11400000
Object type —» 110 :

Key-value pairs

Under each object are its serialized properties, represented by key-value pairs.

For more information, read the blog post “Understanding Unity’s serialization
language, YAML."

© 2023 Unity Technologies

Creation and lifecycle

The lifecycle of a ScriptableObject is similar to that of any other asset (materials,
textures, and so on) in your project.

As in the previous example, apply the CreateAssetMenu attribute to your script
in order to add a custom menu action to the Editor. You can optionally specify
the default fileName or menu item order. This is the most common way to create
a ScriptableObject asset.

[CreateAssetMenu(fileName="MyScriptableObject"]
public class MyScriptableObject: ScriptableObject
{

public int someVar;

}

13 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-fileName.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-order.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/engine-platform/understanding-unitys-serialization-language-yaml?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/engine-platform/understanding-unitys-serialization-language-yaml?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

If you need to make a ScriptableObject instance at runtime, you can call the
static CreateInstance method:

ScriptableObject.CreateInstance<MyScriptableObjectClass>();

o Destroying ScriptableObjects

Like other Unity objects, a ScriptableObject consists of a native C++ portion,
as well as a C# managed portion. You can destroy the native C++ directly,
but the managed part remains until the asset garbage collector (GC) clears it.
The GC cleanup occurs if you change scenes or call
Resources.UnloadUnusedAssets.

Native side Managed side

C++ \ CH#

Instance of standard - Instance of your
engine object for SOs own class

Reference from
some other field

Explicitly set any references to the ScriptableObject asset to null to avoid
delaying garbage collection.

Note: It's important to do this before calling Destroy or Destroylmmediate.
Otherwise, the reference to the object may be nominally marked “null” in
the Editor, even if it isn't really null. GC cleanup only happens once there are
no more references to the ScriptableObject.

Once you have the knack of creating and destroying your own ScriptableObjects,
it's time to explore some creative ways to use them in your game application.

© 2023 Unity Technologies 14 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/ScriptReference/Resources.UnloadUnusedAssets.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

© 2023 Unity Technologies

The most common use for ScriptableObjects is as data containers for shared
data, particularly for static game configuration data that doesn’t change at
runtime.

Typical use cases of ScriptableObjects may include:

— Inventories
— Enemy, player, or item statistics

— Audio collections

At runtime, you could store this data on MonoBehaviours, but doing so can be
inefficient. As you saw in the previous comparison, MonoBehaviours carry extra
overhead since they require a GameObject — and by default a Transform - to
act as a host. That means that you need to create a lot of unused data before
storing a single value.

To see for yourself, generate a new GameObject with an otherwise empty
MonoBehaviour. Then, open the serialized object in a text editor:

GameObject
m_Obje
ect: {fileID: 0}

ID: @} m_Pr : {fileID: @}

{fileID: 7467558130563611466}
{fileID: 20606865663113952451}

GameObject
tring: Untagged
{file

m_Obje < S
m_Corr 0 e {fileID: @}
0}
: 338842853706088653) m_L 1Rotation: {x
: -1.1780801, y: -2.6573246, z: -0.01486098

calEulerAnglesHint: {x: @, y: 0, z: 0}
&2006805663113952451

rcedbject: {fileID: @}
{fileID: @}

16 of 75 | unity.com

https://unity.com/

Compare that with an empty ScriptableObject:

MonoBehaviour
m_ObjectHideFlags: ©
m_CorrespondingSource@bject
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: @}
m_GameObject: {fileID: @} m_Enabled: 1

m_EditorHideFlags: ©

m_Script: {fileID: 11500000, guid: a2d85be56c1ae45d69604547c4544ba5,
m_Name: PlayerID m_EditorClassIdentifier

{fileID: @}

The ScriptableObject slims down this memory footprint and drops the
GameObject and Transform. It also stores the data at the project level. That can
be helpful, especially if you need to access the same data from multiple scenes.

.

- 0

n.ﬂ" ab‘
Wl

(1}
ae

.
o e
SRS -
0 o Yihennsia
. "
o ° sae
[
8
emmme
o wMmasy na P —
an BERANG)
an \
vr o e »
e pom—
J— CPIE T
GORR § GORE '.-’-
ens
oh BOOI0eO! one! —— Gmn'u ¢ 00
" " 4 QoEe 2
e STBOE 0® 0¥ 8 S
ve = on Ny
e eraserganenoces ® UL L L
oD Gem W ase i : oe oo¥ 0DeRAOACE W 0 'u' ?
eas ¢ @ ¢ e 0 ® 0@ @ ogOV 8 w®
ame . g o 00 -
4 ROvos L} M
o Al [0eweceo 8 P — wae ;29 T
P08 0ocOmeenay e0e - ne] . 4
9 o eoi0on 8 p B 8
e ¢ ©a0 " [0 e, e 4
e ° ovoe vomoe ™™ eoo e PROO BOBsBO e @ J 9w o
" 000N ORGOg 06 Y ok
)O'e gee < ot
® oae] e 2 L
—_ A a— o o §
se e s ou ¢ TN () o -
® 9@ 5 98 v
N o eve e L 0 @ [
roonae ® ¢ ge® M pe Bo 1] o § ' Ae :
ane JO © W OWPBON o Aga © L] 0 [L w®
o 88 T [T ” 0o se » A
Un R e T e ﬂﬁ 20 4 520
e o] A
espve 3 oo¥ ° ,x.,‘\‘
Crgg fewaoe a0 6 up
®] B o=
¢ 9‘5 T
" = Yo wos ® @9ecoHuE ag @ od’
] L L) L1]
®
’ 5 BN o ®

The extra data from a MonoBehaviour might not impact your application’s
performance at first, but as your game grows and has more objects, it will
become noticeable.

0 ScriptableObject data versus persistent data

When ScriptableObjects are referred to as data containers, this usually refers
to data that does not need to change at runtime.

While changes to ScriptableObject data do persist within the Editor (much
like changing values on a material asset), they won't save at runtime in an
application build.

Persistent data that needs to be saved from one session and then loaded
into another is typically stored in a different file format (e.g., JSON, XML,
MessagePack, Protocol Buffers, and so on). See Dual Serialization below for
more details.

It's possible to change ScriptableObject data at runtime (e.g., ScriptableObject
variables and Runtime Sets) in the game build, but these changes are temporary.
Starting a new game session will revert the ScriptableObject data back to its
original state at build time.

Think of ScriptableObject data as “read-only” relative to persistent data, which
is “read-write” and saved in an external file.

Reducing duplicate data

Imagine you have a thousand GameObjects with custom MonoBehaviours, each
with several fields.

If each component has its own copy of those member variables, that means you
might be carrying around a lot of duplicate data.

© 2023 Unity Technologies 18 of 75 | unity.com

https://unity.com/
https://msgpack.org/index.html
https://developers.google.com/protocol-buffers

Some data does not necessarily need to change at runtime, so this is a little
inefficient. Instead, you can funnel that data into a ScriptableObject. Then, each
of the thousand objects can point to this shared data asset. Each object stores
a reference to the data rather than copying the data itself.

shared
data

In software design, this is an optimization known as the flyweight pattern.
Restructuring your code in this way avoids copying a lot of values and reduces
your memory footprint.

o Design patterns

Design patterns can help developers create more maintainable and flexible
code, which can be useful in the often-changing world of game development.

Read Level up your code with game programming patterns for more about
SOLID principles and design patterns.

A reference to the ScriptableObject (instead of a full copy of the data) is
comparatively small. As you scale up, the memory savings from not duplicating
data can become significant.

© 2023 Unity Technologies 19 of 75 | unity.com

https://unity.com/
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
http://www.gameprogrammingpatterns.com/flyweight.html

© 2023 Unity Technologies

Managed Memory

y Removing duplicate data
v saves resources

You can store large quantities of shared data in this manner. Consider
ScriptableObjects for:

— Saving and storing data during an Editor session

— Saving data as an Asset for use at runtime

Unlike MonoBehaviours, ScriptableObjects can’t be attached to a GameObject.

Instead, you save them as assets in your project. This is especially useful if you
have a Prefab that uses unchanging data in its MonoBehaviours.

Refactoring example

Consider a MonoBehaviour that controls an NPC'’s health. You might define its
class like this:

public class NPCHealthUnrefactored : MonoBehaviour

{
[Range (10, 100)]
public int maxHealth;

[Range (10, 100)]
public int healthThreshold;

public NPCAIStateEnum goodHealthAi;
public NPCAIStateEnum lowHealthAi;

public int currentHealth;

20 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

This works, but you have data that you won’t expect to change at runtime. If you
have many objects with NPCHealthUnrefactored attached, this can lead to a
lot of unnecessarily duplicated data.

" MPCUnrefactored

g Untagged * Layer Default

Transform

MPC Health Unrefactored (Script)

Enwim)

ate Enum)

Current Health

Any data that does not need to change can move it into a ScriptableObject:

[CreateAssetMenu(fileName="NPCConfig")]
public class NPCConfigSO : ScriptableObject

{
[Range(10, 100)]
public int maxHealth;

[Range(10, 100)]
public int healthThreshold;

public NPCAIStateEnum goodHealthAi;
public NPCAIStateEnum lowHealthAi;

Use the CreateAssetMenu attribute to configure the menu action. You can
optionally specify the default fileName or menu item order.

21 0f 75 | unity.com

https://unity.com/
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-fileName.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute-order.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

0 Code conventions in this guide

Many of the code samples in this guide are simplified for illustrative purposes
and easier readability (e.g., public fields).

In production, use private fields and public properties for additional
encapsulation and flexibility. Apply the SerializeField attribute to private
fields to make them appear in the Editor’s Inspector.

A naming convention can also help differentiate scripts for ScriptableObjects
from MonoBehaviours. One way to achieve this is to add a “Data” or “SO” suffix
at the end of the class name. While this isn't necessary, it can help keep your
project organized and reduce ambiguity.

It's recommended that you maintain and follow a code style guide as your
codebase grows. See Create a C# style guide for more information.

© 2023 Unity Technologies

Then the refactored NPCHealth component simplifies to this:

public class NPCHealth: MonoBehaviour

{
// Reference to our ScriptableObject
public NPCConfigSO config;
public int currentHealth;

}

22 of 75 | unity.com

https://unity.com/
https://learn.unity.com/tutorial/creating-properties?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/ScriptReference/SerializeField.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/create-code-style-guide-e-book?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

The MonoBehaviour now contains a reference to this new ScriptableObject. In
the Inspector, everything after refactoring looks similar, except the data is split.

O Inspecto

Efj v NPCHealth

v

Tag Untagged ayer Default

Transform

NPC Health (Script)

Current Health

Reference to
ScriptableObject

NPCConfig

o Custom Inspectors

When separating data into a ScriptableObject, you have data contained in two
places, the ScriptableObject asset and the MonoBehaviour referencing it.

To make your MonoBehaviours easier to navigate, consider creating a custom
editor. Below is an example for the NPCHealth.

NPCHealth

g Untagged ¥ Layer Default

Transform

NPC Health (Script)

Current Health

© 2023 Unity Technologies 23 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

This allows you to inspect the NPCConfig's variables alongside the other

properties in the MonoBehaviour. If you select the original NPCHealth Prefab,

you can easily edit values in both objects.

A custom editor requires only a few lines of code:

— Derive a new class from Editor, and store this in a folder named “Editor.”

Apply the CustomEditor attribute with the NPCHealth type.
— Reserve a temporary editor for the NPCConfig ScriptableObject.
— InOnInspectorGUI, create the editor for the NPCHealth component.

— Draw the inspectors from the base class and new custom Inspector.

using UnityEditor;

[CustomEditor(typeof(NPCHealth))]
public class NPCHealthEditor : Editor

{

private Editor editorInstance;

private void OnEnable()

{
// reset the editor instance
editorInstance = null;

}

public override void OnInspectorGUI()

{

// the inspected target component
NPCHealth npcHealth = (NPCHealth)target;

if (editorInstance == null)
editorInstance = Editor.

CreateEditor(npcHealth.config);

// show the variables from the MonoBehaviour
base.OnInspectorGUI();

// draw the ScriptableObjects inspector
editorInstance.DrawDefaultInspector();

You can expand on this example with custom property drawers and editor

attributes. This can even make for a better user experience when working with

ScriptableObjects.

24 of 75 | unity.com

https://unity.com/

Architectural benefits

With ScriptableObjects, you can cleanly separate shared data and unshared data.
Anything unique to the GameObject instance remains inside the MonoBehaviour,
while the shared data appears in the ScriptableObject. Architecture with
ScriptableObjects, however, goes beyond just saving memory.

© 2023 Unity Technologies

There are a few benefits to restructuring the code architecture:

— Designers can work more independently from software developers:

Storing data and logic on a single MonoBehaviour creates the potential
for developers and game designers to step over each other’s work.

If two people change different parts of the same Prefab or scene,

this results in a merge conflict. Resolving issues like this can be time
consuming and frustrating.

Breaking off shared data into smaller files and assets reduces these

problems. Architecting with ScriptableObjects can let designers build
gameplay without always relying on a programmer — and everyone is
happier as a result.

Just be prepared to define a clear workflow between your teams when

sharing data. Good communication and establishing some boundaries can

help prevent issues here. Some extra error checking or data validation

may be necessary as well (e.g., use a Range attribute or OnValidate to

prevent bad values).

data now happen all at once. If you need to modify a setting for your
NPCs, for example, you could adjust it in just one location, and have it
update for every affected component in every scene.

This reduces any potential errors from mass editing a large number of

individual GameObjects by hand. Offloading data into ScriptableObjects

can also help with version control and prevent merge conflicts when
teammates work on the same scene or Prefab.

— Save gameplay tweaks in Play mode: Play mode in the Editor is an

opportunity for designers to experiment with gameplay and settings.

However, any modifications made to MonoBehaviours are lost when exiting

Play mode because Unity discards the temporary copy of the scene.

Because the ScriptableObjects are assets, changes to their values update
regardless of whether Unity is in Play mode. This can be useful if you want

to make adjustments at runtime.

This can be a liability, however, if you want to revert those changes.

Just remember to rely on Unity Version Control (formerly PlasticSCM, Git,
or another version control system, so you can always restore your work if
necessary. See our Version control and project organization best practices

guide for more information.

— Improve scene loading times: When saving a scene or Prefab,

Unity serializes everything inside of them. That includes every
GameObject, every component attached to those GameObjects,

and every public field. Unity does this without checking for duplicate data.

Moving data to ScriptableObjects can reduce your scene and Prefab sizes.
Because disk 1/0 is still relatively slow, this can noticeably impact loading

and saving.

Editing shared data is faster and less error-prone: Changes to the shared

26 of 75 | unity.com

https://unity.com/
https://unity.com/products/plastic-scm?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://git-scm.com/
https://resources.unity.com/games/version-control-project-organization-best-practices-ebook?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/version-control-project-organization-best-practices-ebook?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

0 ScriptableObject variables

You can make your shared data containers even more granular with a
ScriptableObject representing just one value. For instance, you could create a
ScriptableObject class called IntVariable that holds one public field called
value:

using UnityEngine;

[CreateAssetMenu(menuName = "Variables/Int", order = 1)]
public class IntVariableSO : ScriptableObject
{

public int value;

}

Then, you could use the IntVariable in a MonoBehaviour. Structuring a
PlayerHealth class would then look like this:

public class PlayerHealth : MonoBehaviour

{
public IntVariableSO health;

}

Though we normally think of ScriptableObjects as holding unchanging
values, you can give them methods that update this data at runtime (and
reset to an initial value when exiting Play mode). In this way, you can make
ScriptableObjects that essentially function as variables — containing integers,
floats, booleans, and so on.

Your designers can then reserve data for game logic without needing a software
developer each time they want to do it. However, this requires planning to be
successful. Decide with your designers how to divide authoring gameplay data.

Set some boundaries on how to collaborate. For example, the programming
team might do the initial setup of ScriptableObjects for use with an inventory
system. Then, the design team could use those to fill in each item’s in-game
stats or behaviors.

With some extra Editor scripting, this can become a near-seamless experience.
Another possibility is making the fields in the Inspector toggle between using a
shared value from a ScriptableObject and a constant. This can allow the game

design team greater freedom to override the ScriptableObject data per instance.

© 2023 Unity Technologies

27 of 75 | unity.com

https://unity.com/

Gl & #

Unity Atoms

Vv

IntVariabile

See the “Game architecture with ScriptableObjects” presentation from Unite
Austin for how to implement this behavior in your own projects. You can also
download the open source Unity Atoms project to see a working implementation
of ScriptableObject variables.

Dual serialization

You can mix how to serialize data within Unity. This allows you to work with
ScriptableObjects in the Editor, but then store their data in another location,
such as a JSON or XML file. This allows you to take advantage of each format’s
strengths.

File formats like JSON and XML can be difficult to work with in the Editor but
are easy to modify outside of Unity with any text editor.

In contrast, ScriptableObjects work well in the Editor and can be swapped with
a quick drag-and-drop operation. However, they aren’t easy to modify outside of
Unity or share within your community of players.

Mixing serialized formats could open up new possibilities for your game, such as
level editing or modding. At build time, a script can convert the other files into
ScriptableObjects, which is faster to load than plain text.

While you'll want to keep some sensitive data safely tucked away on your

servers (e.g., virtual currency, account information), exposing part of your game
data to the community may enhance gameplay. If you open up a sandbox level

© 2023 Unity Technologies 28 of 75 | unity.com

https://unity.com/
https://www.youtube.com/watch?v=raQ3iHhE_Kk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://github.com/unity-atoms/unity-atoms

© 2023 Unity Technologies

for user experimentation, you might be surprised how players could build their
own levels to be shared online.

Imagine a ScriptableObject that defines your game level layout. It may simply
contain a number of Transforms that define placement of Prefabs, starting
configurations, and so on. Your game scripts will use this data to assemble
each level.

Imagine the walls and starting positions of a game, stored within a
ScriptableObject:

[CreateAssetMenu(fileName ="LevellLayout")]
public class Levellayout : ScriptableObject

{
public Vector3[] wallPositions = new Vector3[2];
public Vector3[] playerPositions = new Vector3[2];
public Vector3[] goalPositions = new Vector3[2];
public Vector3 ballPosition;

}

This defines how you set up the level. Your level management scripts can read
the data from the LevelLayout object, then instantiate your Prefabs in their
correct positions.

A custom script can use JsonUtility to export this same data to disk. This results
in a text file outside of the Editor that your users can modify with external tools.

29 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

To load a custom modded level, ScriptableObject.CreateInstance can
generate a ScriptableObject at runtime. Then, read the text from the JSON file
to populate the ScriptableObject. This LoadLevelFromJson example method
shows that in action:

using System.IO;

public class LevelManager : MonoBehaviour

{
public ScriptableObject levellayout;

public void LoadLevelFromJson(string jsonFile)

{
if (levellLayout == null)
{
levellayout = ScriptableObject.
CreateInstance<Levellayout>();

}

var importedFile = File.ReadAllText(jsonFile);
JsonUtility.FromJsonOverwrite(importedFile,
levellayout);

}

Your custom data replaces the contents of the ScriptableObject and allows you
to use this externally modded level like any other in your game. The application
is none the wiser.

Be sure to see this work for yourself in the sample project. If we load a modified
JSON file, this customized level overrides the default level data on the
ScriptableObject.

30 of 75 | unity.com

https://unity.com/
https://github.com/UnityTechnologies/PaddleGameSO

NG

Default settings

1
=

o—B—B

Runtime Customization JSON file
instance or mods

Note: When deserializing JSON into ScriptableObjects with JsonUtility,
you must use the FromJsonOverwrite method.

Instead of creating a new object and loading the JSON data into it, JsonUTtility
loads the JSON data into an existing object. This updates the values stored
in classes or objects without any allocations.

0 Protect your data

This simple mod example demonstrates one possible application of
ScriptableObjects. However, when exposing game data for modification,
you should exercise caution to avoid players tampering with the rest of your
application.

Here are common ways to protect anything that you don’t want modded:

— Encryption: Use encryption to protect data files from being easily read or
modified. This can make it more difficult for users to alter critical data.

— Digital signatures: You can use a fingerprint algorithm to verify that your
data files have not been tampered with.

— Server-side validation: If your game relies on data that is stored on a
server, check the data on the server before it is used in the game, and
reject any data that appears to have been manipulated.

No single approach is foolproof, and it’s generally a good idea to use a
combination of these techniques so your players don’t introduce any bugs or
vulnerabilities into your game.

© 2023 Unity Technologies

310f 75 | unity.com

https://unity.com/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/JsonUtility.FromJsonOverwrite.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

Game development can resemble déja vu because it often requires the task of
solving recurring or similar problems. Fortunately, you can tap into the collective
knowledge of software engineers who've already “been there and done that”
with design patterns.

Design patterns are general solutions that can help you build larger, scalable
applications. They can improve code readability and make your codebase
cleaner. Design patterns reduce refactoring and the time spent testing.

Think of a design pattern as template for solving common issues like:

— Storing a lot of data efficiently

— Getting objects from different game systems to speak to each other

— Swapping out behavior on the fly at runtime

ScriptableObjects can help implement some of these patterns. You've already
seen how they can function as data containers, but they can do more than

simply save values or settings. The next few sections explore how you can go
beyond using ScriptableObjects to save data.

Enum-like categories

In fact, ScriptableObjects actually don’t have to contain anything at all to be
useful. If you create an empty ScriptableObject, you'll discover that it still has
utility, even if it's only used for comparing against other ScriptableObjects.

In your game application, suppose you make a number of assets from an empty
GameItemSO ScriptableObject, like so:

Using UnityEngine;

[CreateAssetMenu(fileName="GameItem")]
public class GameItemSO : ScriptableObject

{

Scripts > ExtendableEnums

|
|
|
© 2023 Unity Technologies 33 of 75 | unity.com

https://unity.com/
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

This allows you to generate any number of assets within the project. Even
without containing any data, the ScriptableObject itself can represent a
category or item type. If you are checking for equality, this works very similarly
to an enum.

Do two variables refer to the same ScriptableObject? Then they're the same
item type. Otherwise, they’re not.

So, you could have a ScriptableObject that defines special damage effects (e.g.,
cold, heat, electrical, magic, and so on) or rock-paper-scissors designations
from your favorite zero-sum game.

{}

Scissors

https://en.wikipedia.org/wiki/Rock_paper_scissors

© 2023 Unity Technologies

If your application requires an inventory system to equip gameplay items,
ScriptableObjects can represent item types or weapon slots. The fields in the
Inspector then function as a drag-and-drop interface for setting them up.

© Inspector

““ K v Inventory
InventoryEx h/v
Tag Untagged ¥ Layer Default v

R

B Transform e = i

n

Inventory (Script)

Inventory slots
categorized by
ScriptableObject

Add Component

This artist-friendly Ul allows your designers how to modify and extend gameplay
data without extra support from a software developer. Giving the design team
the means and responsibility of maintaining gameplay data allows everyone to
focus on what they do best.

Extending behavior
Using ScriptableObjects as enums becomes more interesting when you want to
extend them and add more data. Unlike normal enums, ScriptableObjects can

have extra fields and methods.

Here’s the adapted rock-paper-scissors GameItem. The ScriptableObject asset
itself still defines the enum-like category, but this time it's no longer empty.

public class GameItem : ScriptableObject

{
public GameItem weakness;
public bool IsWinner(GameItem other)
{
return other.weakness == this;
}
}

35 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

The ScriptableObject now contains a weakness field that determines which
other item wins in a potential interaction. In addition to storing data, each
ScriptableObject also contains simple comparison logic in IsWinner.

Each gameplay item then needs a MonoBehaviour that references a specific
ScriptableObject asset. This example works as a controller script:

public class GameItemController : MonoBehaviour

{
// rock, paper, scissors
public GameItem gameIltem;

private void OnTriggerEnter(Collider other)

{
GameItemController otherController = other.
GetComponent<GameItemController>();
GameItem otherGameItem = otherController.gameIltem;

if (gameItem.IsWinner (otherGameItem))

{

Debug.Log(gameIltem.name + " beats +

otherGameItem.name) ;
}
}

It references a ScriptableObject as a field. In OnTriggerEnter, you can check
the IsWinner method to see which emerges victorious when the gameItem
comes in contact with another. This sets the stage for some Rochambeau-like
conflict.

Unlike enums, ScriptableObjects are easy to extend. There’s no need to have
a separate lookup table or to correlate with a new array of data. Simply add an
extra field and/or method to handle the logic.

36 of 75 | unity.com

https://unity.com/
https://youtu.be/JKsn-PaNo1Y?t=3019
https://youtu.be/JKsn-PaNo1Y?t=3019

Y

Scissors

Game“em

+weakness +weakness

“ o

Flaticon

Compare that with maintaining a traditional enum. If you have a long list of enum
values without explicit numbering, inserting or removing an enum can change
their order. This reordering can introduce subtle bugs or unintended behavior.

ScriptableObject-based enums have no such issues. Add more to your project
(or delete existing ones), and everything just works.

Suppose you wanted to make the item equippable in an RPG. You could append
an extra boolean field to the ScriptableObject to do that. Are certain characters
not allowed to hold certain items? Are some items magical or have special
abilities? ScriptableObject-based enums can do that.

Your gameplay data can thus evolve as you work with your designers. While

you'll need to coordinate how to set up fields initially, later the designers can fill
out the details independently.

© 2023 Unity Technologies 37 of 75 | unity.com

https://unity.com/
https://www.flaticon.com/free-icon/rock-paper-scissors_4144475

DELEGATE OBIJECTS

PATTERN

Pattern: Delegate objects

Because you can create methods on a ScriptableObject, they are useful for
containing logic or actions as much as they are for holding data. In this way, you
can use them as delegate objects.

o Delegates versus events

A delegate is a type that defines a method signature. This allows you to pass
methods as arguments to other methods. Think of it like a variable that holds a
reference to a method, instead of a value.

An event, on the other hand, is essentially a special type of delegate that allows
classes to communicate with each other in a loosely coupled way. Events are
explored in more detail in the Pattern: Observer chapter.

For general information about the differences between delegates and events,
see Distinguishing Delegates and Events in C#.

The idea is that if you need to perform specific tasks, you encapsulate the
algorithms for doing those tasks into their own objects. The original Gang of Four
refers to this general design as the strategy pattern.

Suppose you want a pathfinding object that calculates a route through a maze. The
object itself wouldn’t actually contain any pathfinding logic. Instead, it just keeps a
reference to another object that does.

If you want to solve the maze with a specific path search technique (e.g., A,
Dijkstra, etc.), implement the correct solution within this separate “strategy” object.
At runtime, you can then swap to a different algorithm by exchanging objects.

(1 | I BA R

https://learn.microsoft.com/en-us/dotnet/csharp/distinguish-delegates-events
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Strategy_pattern

© 2023 Unity Technologies

ScriptableObjects methods

In Unity, one way to implement this pattern is to have a MonoBehaviour
reference a ScriptableObject containing the necessary logic. When the
MonoBehaviour performs a task, it calls the external methods on the
ScriptableObject rather than its own.

However, there a few limitations to this:

— Methods on a ScriptableObject won’t be called automatically from the
MonoBehaviour’s player loop. You need to call them yourself.

— Like Prefabs, ScriptableObjects can’t reference scene objects directly.
If they need to perform work on a scene object, you'll need to pass that
object in as a parameter.

When calling the ScriptableObject’s methods, a MonoBehaviour can often
pass in itself as the argument or pass in any other dependencies. This
gives you the flexibility to execute logic, run coroutines, etc. even though
the ScriptableObject exists at the project level.

Monobehaviour references
ScriptableObject

@ EnemyAl

ScriptableObject contains

+MoveUnit methods and logic
+SetTarget

For example, you can define several enemy units in a game with different
movement behavior. Let's suppose some of them need to patrol, stand idle, or
flee from the player.

A single EnemyUnit MonoBehaviour can reference a EnemyAI ScriptableObject
that contains a method called MoveUnit. The EnemyUnit script itself doesn’t
contain any movement or behavior logic. It only executes the ScriptableObject’s
MoveUnit at the appropriate time.

If the method needs data from the scene, the EnemyUnit object can passin a

reference to itself as a parameter. Any other necessary dependencies in the
scene can be passed in as well.

40 of 75 | unity.com

https://unity.com/

o Modifying ScriptableObject data

At runtime, you actually can change ScriptableObject data, but be careful
whenever doing so. Multiple MonoBehaviour sharing the same ScriptableObject
can cause problems if they modify the same data.

Remember that you can create an instance of a ScriptableObject at runtime to
avoid this issue. The initial ScriptableObject then acts like a template with all
the logic and data. Each MonoBehaviour can then make its own instance of that
ScriptableObject which can be modified freely.

© 2023 Unity Technologies

Pluggable behavior

You can make this pattern more useful by defining the EnemyAI
ScriptableObject as an abstract class. This allows it to act as a template
for a variety of ScriptableObjects that are compatible with the EnemyUnit
MonoBehaviour, so the abstract ScriptableObject can stand in for more than
one algorithm.

Monobehaviour references
ScriptableObject

@‘ EnemyAl

Base ScriptableObject
+MoveUnit (abstract)
+SetTarget

Derived

. ScriptableObject . Swap at
+MoveUnit classes +MoveUnit runtime

+SetTarget (concrete) +SetTarget

Thus, you could have concrete ScriptableObject classes for behaviors like
Patrol, Idle, or Flee that derive from the base EnemyAl. Even though they all
implement the same MoveUnit method, each can produce very different results.

In the Editor, each asset is interchangeable. You can just drag and drop the
ScriptableObject of choice into the EnemyAT field. Any compatible
ScriptableObject is “pluggable” in this fashion.

41 of 75 | unity.com

https://unity.com/

The EnemyUnit or another component can behave as the “brain” that monitors
when to switch ScriptableObjects and also swap behavior at runtime. This is
one way the EnemyUnit can react to gameplay events. Simply switch EnemyAI
ScriptableObjects on each state change.

In production, a second developer or designer can implement the actual
movement or Al logic within the ScriptableObject. As additional movements or
behaviors get added to the game (e.g., DuckAndCover, Chase, etc.), the original
EnemyUnit script remains unchanged. This pattern can help keep your codebase
more extensible, in keeping with the open-closed principle from SOLID
programming. Because everything is already split into smaller objects, the
resulting project is more scalable as you add team members.

0 Al with ScriptableObjects

For a more detailed example of using ScriptableObjects to drive behavior, see
the Pluggable Al With Scriptable Objects video series. These recorded live
sessions demonstrate a finite state machine-based Al system that can be
configured using ScriptableObjects for states, actions, and transitions between
those states.

© 2023 Unity Technologies

Example: Audio delegates

The behavior contained in the ScriptableObject does not necessarily need to be
complex. It can be something as basic as playing back a customized sound.

Here's an example of a “sound delegate” ScriptableObject that can help add
variations to your AudioClips. The AudioDelegateSO0 defines an abstract class
with a Play method that takes an AudioSource as a parameter.

using UnityEngine;
using Random = UnityEngine.Random;
using System;

[Serializable]
public struct RangedFloat
{

public float minValue;
public float maxValue;

}

public abstract class AudioDelegateSO: ScriptableObject
{

public abstract void Play(AudioSource source);

}

42 of 75 | unity.com

https://unity.com/
https://www.youtube.com/watch?v=cHUXh5biQMg?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/SOLID

This concrete SimpleAudioDelegate ScriptableObject can then select a
random clip from the available choices and vary its volume and pitch during
playback. This reduces the monotony of repeating the same sound.

[CreateAssetMenu(fileName ="AudioDelegate")]
public class SimpleAudioDelegateSO : AudioDelegateSO
{

public AudioClip[] clips;

public RangedFloat volume;

public RangedFloat pitch;

public void Play(AudioSource source)

{
if (clips.Length == || source == null)
return;
source.clip = clips[Random.Range(@, clips.
Length)];

source.volume = Random.Range(volume.minValue,
volume.maxValue) ;

source.pitch = Random.Range(pitch.minValue, pitch.
maxValue) ;

source.Play();

}

Any MonoBehaviour can then use a ScriptableObject instance derived from the
AudioDelegateSO0 class. You can also make variations of the AudioDelegate for
different audio effects.

Having methods on a ScriptableObject opens up several possibilities. In addition

to performing actions, its methods can send messages to any object in the scene.

Next, let’s look at a ScriptableObject-based event system with the observer
pattern.

o The glorious ScriptableObject revolution

Richard Fine’s “Overthrowing the MonoBehaviour tyranny in a glorious
ScriptableObject revolution” presentation at Unite 2016 lay the foundation for
much of this e-book. Part of the demo (called AudioEvent in the original project)
has been modified for this example.

See the sample project for implementation details and an example
using ScriptableObjects.

© 2023 Unity Technologies

43 of 75 | unity.com

https://unity.com/
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

When developing a game, it's common to have multiple GameObjects that need
to share data or states with each other. In a small game, you can make direct
references between these objects, but this doesn’t scale. Managing these
dependencies can require significant effort and is often a source of bugs.

You'll need a better solution as your application grows in size.

Avoiding singletons

Many developers opt to use singletons — one global instance of a class that
survives scene loading. Singletons, however, introduce global states and make
unit testing difficult.

If you're working with a Prefab that references a singleton, you'll end up
importing all of its dependencies just to test an isolated function. This reduces
modaularity and debuggability.

Consider an alternate solution to help your objects communicate:
ScriptableObject-based events.

o More on singletons

The subject of singletons in Unity game development is often cause for debate.
Singletons may be a suitable solution for smaller projects or prototyping. In large
applications, the cons of using singletons often outweigh their advantages.
Many developers consider the singleton to be an anti-pattern.

Singletons are easy to learn and understand but can introduce issues when
they're used incorrectly. Most of the patterns described here will help you avoid
relying on singletons.

If you want easy access to shared data, consider a Runtime Set based on
ScriptableObjects (see below). If you need a way to send messages between
objects, try a ScriptableObject-based event channel. Restructuring your
architecture away from singletons may improve scalability and testability.

Read the e-book Level up your code with game programming patterns to learn
more about the pros and cons of singletons.

© 2023 Unity Technologies

ScriptableObject-based events

As you've already seen, ScriptableObjects aren’t just for handling data. They
can contain methods, just like any other script. These methods can serve as a
means for objects to communicate.

45 of 75 | unity.com

https://unity.com/
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

- o ;L»—c;m«.mumn

£ -
] Wopamel loeecy,, seasonClosed))
M

o
" S » —————Sesthestio,

ininuayaye, ooy -Mxx'leraJue)

» hminj; 4
e Sostionanyy munvalye),

Aemeseors,
b Oty
4 ! = Matchgyyp,

redxctarNex t6amer; tem? jp

1d, >
s omy; wsare, 10

tion),
.pI:yers.ma,, ,{

‘ .10
er, ba
c""""ﬂdﬂ‘w"
nCely,,
(Contey o001
"%
LN
tion
\ i Pre
‘\\ - - #Select,, by
- \ erop
- N TAL

In the observer design pattern, a subject broadcasts a message to one or more
loosely decoupled observers. Each observing object can react independently
of the subject but is unaware of the other observers. The subject can also be
referred to as the “publisher” or “broadcaster.” The observers are also known as
“subscribers” or “listeners.”

An event-based architecture only executes when needed, rather than running
each frame. For this reason, it's often more optimized than adding logic to a

MonoBehaviour's update methods.

© 2023 Unity Technologies 46 of 75 | unity.com

https://unity.com/
https://en.wikipedia.org/wiki/Observer_pattern

© 2023 Unity Technologies

Subscribers

Observer

Publisher

Observer

@
2

Observer

@
2

You can implement the observer pattern with MonoBehaviours or C# objects.
While this is already common practice in Unity development, a script-only
approach means your designers will rely on the programming team for every
event needed during gameplay.

An alternative is to create ScriptableObject-based events. This is a designer-
friendly way to set up the observer pattern. Here, the ScriptableObject works as
an intermediary between subject and observer, providing a graphical interface in
the Editor.

Subscribers

Observer

Publisher

Subject

Observer

@
PN

Scriptable
ObjeCt Observer

@~
2

47 of 75 | unity.com

https://unity.com/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/events/

© 2023 Unity Technologies

While at first glance it appears that you've only added a layer of overhead

to the observer pattern, this structure offers some advantages. Because
ScriptableObjects are assets, they are accessible to all objects in your Scene
Hierarchy and don’t disappear on scene loading.

This is why many developers use singletons in the first place: easy, persistent
access to certain resources. ScriptableObjects can often provide the same
benefits without introducing as many unnecessary dependencies.

In ScriptableObject-based events, any object can serve as publisher (which
broadcasts the event), and any object can serve as a subscriber (which listens
for the event). The ScriptableObject sits in the middle and helps relay the signal,
acting like a centralized intermediary between the two.

One way to think about this is as an “event channel.” Imagine the
ScriptableObject as a radio tower that has any number of objects listening for its
signals. An interested Monobehaviour can simply subscribe to the event channel
and respond when something happens.

Example: Event channels

Any ScriptableObject that includes the following can function as an event
channel:

— Adelegate (UnityAction or System.Action): This notifies subscribers and
passes the appropriate data as parameters. Use a UnityAction for a more
artist-friendly experience; otherwise, the System.Action delegate works
well here.

The event keyword limits the delegate so that it can only be invoked from
within the ScriptableObject class (or derived class where it's declared).

— An event-raising method: This public method invokes the delegate.
And that’s it.

You can set up any number of event channels to determine various aspects

of gameplay. Because they exist at the project level, ScriptableObjects can
raise events that are globally accessible. This can connect otherwise unrelated
objects in the scene.

48 of 75 | unity.com

https://unity.com/

0 System.Action or UnityAction

System.Action is a general purpose delegate type defined in the .NET
Framework’s System namespace. It can be used in your Unity projects without
needing to declare a custom delegate. Adding the event keyword makes the
delegate type read only; other objects can listen for the delegate’s registered
methods, but they can’t invoke those methods directly.

UnityAction is a delegate type that’s specifically defined within the UnityEngine.
Events namespace. You will typically use it with the UnityEvent class, which is
an alternative means of creating events in Unity. UnityEvents and UnityActions
appear in the Inspector, so they often serve as a more user- or artist-friendly
way to implement the observer pattern.

In general, you can use either System.Action or UnityAction, depending on your
specific needs. You have the option of deploying either or both in the same
project.

If you want a more general purpose delegate that is not tied to the Unity game
engine, use System.Action. If you want a delegate specifically designed for
UnityEvents, use UnityAction.

© 2023 Unity Technologies

Here, you can make a VoidEventChannelSO that raises an event without passing
any parameters. This one contains a UnityAction named OnEventRaised.

[CreateAssetMenu(menuName = "Events/Void Event Channel")]
public class VoidEventChannelSO : ScriptableObject
{

public event UnityAction OnEventRaised;

public void RaiseEvent()

{
if (OnEventRaised != null)
OnEventRaised.Invoke();

49 of 75 | unity.com

https://unity.com/
https://learn.microsoft.com/en-us/dotnet/api/system.action?view=net-7.0
https://docs.unity3d.com/ScriptReference/Events.UnityAction.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

Once you create a ScriptableObject of type VoidEventChannelS0, any
MonoBehaviour can listen for OnEventRaised. For example, we can make a
StartNewGame ScriptableObject that is of type VoidEventChannelSO0.

Another object can invoke the public RaiseEvent method to trigger the event.

EventChannels > MainMenu

StartNewGame

s Gameplay

Another MonoBehaviour can reference the event channel ScriptableObject in
the Inspector, then subscribe/unsubscribe to OnEventRaised.

This invokes StartNewGame as a response whenever the event channel calls
OnEventRaised:

public class StartGame : MonoBehaviour

{
[SerializeField] private VoidEventChannelSO

_onNewGameButton = default;

private void Start()

{

_onNewGameButton.OnEventRaised += StartNewGame;
}
private void OnDestroy()
{

_onNewGameButton.OnEventRaised -= StartNewGame;
}
private void StartNewGame()
{

// load level logic here..

}

©® 2023 Unity Technologies 50 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

For more artist- or designer-friendly listening components, you could
instead create a MonoBehaviour that doesn’t require any script setup. This
VoidEventListener doesn’t add extra functionality but has fields that are
accessible in the Inspector:

public class VoidEventlListener : MonoBehaviour

{

[SerializeField] private VoidEventChannelSO _channel =
default;

public UnityEvent OnEventRaised;

private void OnEnable()

{
if (_channel != null)

_channel.OnEventRaised += Respond;

}

private void OnDisable()

{
if (_channel != null)

_channel.OnEventRaised -= Respond;

}

private void Respond()

{
if (OnEventRaised != null)

OnEventRaised.Invoke();

Simply add the VoidEventListener to a GameObject, then drag the event
channel ScriptableObject into the _channel field in the Inspector. Create
UnityActions on the OnRaisedEvent in order to respond to the event.

~ Void Event Channel Listener (Script)

n to Event Channels

Runtime Only

Regardless of which component you choose to listen for events, the event
channels provide a means of communicating between your objects at runtime.
Did the player complete a task or score a point? Is the game over? An event can
notify any GameObject in the scene that needs that information.

510f 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

Because they are assets at the project level, ScriptableObject-based events
can then drive much of the infrastructure of your application. This is especially
useful for sending messages between the different systems that underpin the
game architecture.

Some common management systems include:

— Audio management: Many things in your game can trigger sounds. This
system can play AudioClips or adjust the AudioMixer in response to
application events.

— Scene management: This system handles loading and unloading of Unity
scenes and game levels.

— Ul'management: This is responsible for menu screens before, during, and/
or after gameplay.

— Save Data management: This handles saving and loading game data, as

well as settings to your file system.

These systems all specialize in different tasks, but they need to talk to one
another. Events can form the glue that keeps them connected.

Explore the accompanying sample project for more examples of how to
implement your own ScriptableObject-based events.

960665 Y 0.4861715
Vo

¥ToData (Game Data SO)

Note that you can send different types of data with each event, using different
event payloads. For example, the ScriptableObject-based events include
IntEventChannelSO0, a Vector2EventChannelS0, a VoidEventChannelsSO,
and so on. The event used will depend on the context.

Customize additional event types according to gameplay. For instance, a
damage event may need to pass along who inflicted the damage and how much
was done.

52 of 75 | unity.com

https://unity.com/
https://github.com/UnityTechnologies/PaddleGameSO

How you deploy these event channels is limited only by your creativity. In
addition to the core systems above, events can often help join very different in-
game systems so that they can interact:

— Cameras: These are used to control a player’s view of the game world
and can add dramatic or cinematic effects, such as shaking or cutting to a
different perspective.

— Quests: These are tasks or objectives that the player must complete in
order to progress through the game or receive a reward. Quests often
involve a variety of gameplay elements, such as fetching items, defeating
enemies, or solving puzzles.

— Health: This important aspect of many games connects the player,
enemies, and any objects or actions that can cause damage to the player.

— Achievements: Like quests, these are special rewards that players
can unlock by completing certain tasks or objectives within the game.
Achievements can span different gameplay elements, such as reaching a
certain level or accumulating a certain number of points.

These gameplay elements, in turn, will interact with other management
systems, such as audio, Ul, and save data, through the use of events. This

approach promotes modularity and independence within each component of the

architecture while still allowing for communication with other systems.

o Debugging event channels

A custom Editor or property drawer can create a "Raise Event" button in the
Inspector. This can help you manually invoke the event for debugging.

For example, here's a basic Editor script that creates a custom Inspector button
for the VoidEventChannelSO:

[CustomEditor(typeof(VoidEventChannelS0))]
public class VoidEventChannelSOEditor : Editor

{
public override void OnInspectorGUI()
{
DrawDefaultInspector();
VoidEventChannelSO eventChannel = (VoidEventChannelSO0)
target;
if (GUILayout.Button("Raise Event"))
{
eventChannel.RaiseEvent();
}
}

© 2023 Unity Technologies

53 of 75 | unity.com

https://unity.com/

This creates a button that allows you to raise the event at will, making it easier
to diagnose issues at runtime.

With a little more work, you can make buttons for event channels that carry data
as well. Reserve a field for a debug value in the event channel itself, then pass
this to the Editor script. You can find examples of how to implement this in the
SOAP or Unity Atoms projects.

As you continue using event channels for object decoupling, consider developing
debugging tools, such as keeping a record of all listeners for each event. The
event channel class can have methods to add and remove subscribed objects,
making it easier to identify which events are causing specific behaviors

during runtime.

© 2023 Unity Technologies

Example: InputReader

Objects that listen for user input need a specialized type of event channel.
Unity’s Input System uses InputActions to represent raw input data as logical
concepts (e.g., jump, walk, etc.).

Each InputAction, in turn, includes its own started, performed, and
canceled events.

54 of 75 | unity.com

https://unity.com/
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://github.com/unity-atoms/unity-atoms
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.4/manual/index.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.4/api/UnityEngine.InputSystem.InputAction.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

In order to decipher the InputAction bindings, you can create a special
InputReader ScriptableObject. Again, this acts as an intermediary between the
subject and observers. In this case, however, MonoBehaviours won't raise the
events explicitly.

Instead, the Input System takes the place of the subject or broadcaster:

Observer

Game Input
p Move Observer

(Input Action (Input Action) OnMove
Asset) (Event)

—=

Q@

Unity Input System

Scriptable
Object Observer

MonoBehaviours

Here, we set up Actions and ActionMaps in the Input System. Each InputAction
describes a separate axis of input and binds to the keyboard, gamepad, or
alternative input devices.

Rather than directly subscribing to the InputActions themselves, the paddle
controllers listen for the OnMoveP1.performed event and OnMoveP2.
performed events, respectively.

Paddle1

Changes to Input System

only affect InputReader OnMoveP1
(Event)

Game Input |
o Input
(Input Action Actions OnMovep2
Asset) (Event)

7

Unity Input System

ScriptableObject
criptableObject o\, N

(Event) Liss

-

Inputs N
MonoBehaviours

©® 2023 Unity Technologies 55 of 75 | unity.com

https://unity.com/

The resulting InputReader standardizes how your GameObjects will process
gamepad or keyboard actions. Any GameObject that needs input:

— Maintains a reference to the InputReader ScriptableObject

— Subscribes to the relevant events and connects its event-handling
methods

While this pattern may be overkill for a minimalist arcade game, we demonstrate
this on a simple project to make the structure easier to digest.

The benefits won’t be apparent until your project grows and you add many more
components. Decoupling the inputs from the GameObjects consuming them
gives added flexibility and reusability.

If you have to modify the InputActions during development, you only need to
maintain the InputReader itself. The listening objects are unaffected if the events
don’t need to change. Thus, maintaining the connection from input to observers
becomes less work — especially when you have a lot of observers.

0 Static versus non-static events

You can choose to use static events to ease the burden of locating the
ScriptableObject on the listening objects.

For example, a MonoBehaviour could subscribe to the InputReader’s static
MoveP1Event and MoveP2Event events in its OnEnable method:

InputReader.MoveP1Event += OnMoveP1;
InputReader.MoveP2Event += OnMoveP2;

When using static events, be extra diligent when managing subscriptions. Don’t
forget to unsubscribe in OnDisable:

InputReader .MoveP1Event -= OnMoveP1;
InputReader .MoveP2Event -= OnMoveP2;

Static events will always be reachable and won’t be garbage collected if they
have active subscribers. Any dangling subscribers will prevent their cleanup for
the duration of your application.

Static events, however, aren’t serializable. If you want to work interactively in the
Editor, choose non-static events and make sure you reference the appropriate
ScriptableObject in the Inspector.

© 2023 Unity Technologies

56 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

= w = - SRS ees ads B

e a——

o -

/

I

Instead of invoking a method directly, the command pattern allows you to
encapsulate one or more method calls as a “command object.”

Then, you store these command objects in a collection, like a queue or a stack,
which works as a small buffer. This gives you extra flexibility to control each
command object’s execution. Common applications include playing back a series
of actions with specific timing or making those actions undoable.

You've likely encountered this in some of your favorite game genres:

— In areal-time strategy game, the command pattern could be used to
queue up actions of units and buildings. The game would then execute
each command as resources became available.

— In aturn-based strategy game, the player could select a unit and then
store its moves or actions in a queue or other collection. At the end of the
turn, the game could execute all of the commands in the player’'s queue.

— In a puzzle game, the command pattern could allow the player to undo and
redo actions.

— In a fighting game, reading button presses or gamepad motions in a
specific command list could perform combos and special moves.

58 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

You can use ScriptableObjects to implement the command pattern.

For example, you could create a command to define a Transform’s movement.
Wrapping each action within a separate object results in extra control.

You'll define an interface ICommand an Execute method and an Undo method
(you could also use an abstract class):

public interface ICommand

{

public abstract void Execute();
public abstract void Undo();

Then, have a ScriptableObject implement the ICommand interface.
Each Command object fills out its own Execute and Undo methods with
its own implementation details.

<<interface>>
ICommand

+Execute()
+Undo()

I implements

@ MoveCommandSO

+Execute()
+Undo()

59 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

A MonoBehaviour or ScriptableObject can then define a command buffer that
will contain the command objects. This can be a collection, such as a list, stack,
array, or queue.

<<interface>>
CommandManager ICommand
depends
+CommandBuffer:
List<ICommand>

+OnExecute() +Execute()
+OnUndo() +Undo()

Higher-level object

| implements

. MoveCommandSO

+Execute()
+Undo()

Lower-level object

This simple structure lets you execute the commands in sequence. Imagine
a tutorial or cutscene that moves a GameObject through a prescribed set of
actions or animations. The command pattern is well suited for that.

Because each command is a separate object, it's easy to reorder them. Just
decide how you want to maintain the CommandBuffer:

— If creating it as a stack, you push commands to the stack when executing
them. When undoing an action, you can pop it off and keep a separate
redo stack.

— If you're using a list or array, track the current Command’s index, then

increment or decrement the index as you need to undo or redo commands.

See the MoveCommandSO and CommandManager in the sample project for one
example of undoable movement. Here, a rudimentary tutorial scene labels parts
of the game board to explain how to play.

Click the Next button to advance through the explanatory text. Likewise, click
the Back button to cycle in reverse through the instructions.

60 of 75 | unity.com

https://unity.com/
https://github.com/UnityTechnologies/PaddleGameSO

THIS SHOWS HOW TO
USE SCRIPTRBLE
OBJECTS WITH THE
COMMAND PATTERN.

HOW TO PLAY
MOVE THE PRDDLES.

P2
I s
==

Back and Next
buttons

You can find out more about the command pattern in the e-book Level up
your code with game programming patterns. Also, see this community post,
“Command pattern with ScriptableObjects,” which demonstrates this pattern
with ScriptableObjects.

o ScriptableObjects or C# classes?

When deciding on the right code architecture for your project, it's important
to consider the skills and preferences of your team, as well as your game’s
performance requirements. While some designers may prefer to use the Unity
Editor interactively, others may prefer to work entirely in C#.

Take these factors into account when creating a codebase that’s easy for
everyone on your team to work with. Of course, no design pattern is a one-size-
fits-all solution, and it’s important to carefully evaluate the pros and cons of each
before implementing it.

Remember that the “right” code architecture is just the one that works best for
your team and your project.

© 2023 Unity Technologies 610f 75 | unity.com

https://unity.com/
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://bronsonzgeb.com/index.php/2021/09/25/the-command-pattern-with-scriptable-objects/

RUNTIME SETS

PATTERN

© 2023 Unity Technologies

At runtime, you'll often need to track a list of GameObjects or components in
your scene. For example, you may need to maintain a list of enemies or NPCs.

Because a ScriptableObject instance appears at the project level, it can store
data that’s available to any object from any scene. Again, this replicates much of
the easy global access of a singleton without that pattern’s known drawbacks.

Reading data directly from a ScriptableObject is also more optimal than
searching the Scene Hierarchy with a find operation such as
Object.FindObjectOfType or GameObject.FindWithTag. Depending on
your use case and the size of your hierarchy, these are relatively expensive
methods that can be inefficient for per-frame updates.

Basic Runtime Set

Instead, consider storing data on a ScriptableObject as a “Runtime Set.” This is a
specialized data container that maintains a public collection of elements but also
provides basic methods to add and remove to the collection.

untimeSetSO
objects/components

+Add
+Remove

Retrieves collection MonoBehaviour
e _

63 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

Here'’s a basic Runtime Set that tracks a list of GameObjects:

using System.Collections.Generic;
using UnityEngine;
[CreateAssetMenu(menuName = "GameObject Runtime Set", fileName
= "GORuntimeSet")]

public class GameObjectRuntimeSetSO

{

: ScriptableObject

private List<GameObject> items = new List<GameObject>();
public List<GameObject> Items => items;

public void Add(GameObject thingToAdd)

{
if (!items.Contains(thingToAdd))

items.Add(thingToAdd) ;
}

public void Remove(GameObject thingToRemove)

{

if (items.Contains(thingToRemove))
items.Remove(thingToRemove) ;

At runtime, any MonoBehaviour can reference the public Items property to obtain
the full list. Another script or component must be responsible for managing how
the GameObjects are added or removed from this list.

Project Hierarchy

N
GameObject ’

GameObject

Add GameObject references
to RuntimeSet using events

GameObjectR .”

GameObject

+ltems List<GameObject>

Items
List<GameObject>

MonoBehaviour

64 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

Reference the Runtime Set in a MonoBehaviour. Then, in the OnEnable and
OnDisable event functions, add or remove the object from the Runtime Set’s
Items list. Alternatively, use an event channel to send a GameObject as its
payload (e.g., GameObjectEventChannel).

Generic version

You may want to use a Runtime Set with a specific type of MonoBehaviour.
For instance, this could allow you to maintain a list of enemy or pickup items
accessible to anything in your scene. In that case, you could create specific
Runtime Sets for each type (e.g., EnemyRuntimeSet, PickupRuntimeSet, etc.).

One way to streamline the creation of additional Runtime Sets is to use a generic
abstract class:

public abstract class RuntimeSetSO<T> : ScriptableObject

{
[HideInInspector]

public List<T> Items = new List<T>();

public void Add(T thing)

{
if (!Items.Contains(thing))
Items.Add(thing);
}
public void Remove(T thing)
{
if (Items.Contains(thing))
Items.Remove(thing);
}

This works similarly to the original GameObjectRuntimeSet but with added
flexibility. If you wanted to create a Runtime Set for a custom Foo component,
you would create a concrete FooRuntimeSetSO0 like so:

[CreateAssetMenu(menuName = "Foo Runtime Set", fileName =
"FooRuntimeSet")]

public class FooRuntimeSetSO : RuntimeSet<Foo>

{

}

65 of 75 | unity.com

https://unity.com/

Build as many concrete classes as needed for gameplay (e.g., enemies, NPCs,
inventory items, quests, and more can all have their own Runtime Sets). You just
need to declare a new empty class with the right type.

As an alternative to using events, each Foo component can add or remove itself
using its OnEnable or OnDisable methods. Then, if you set the FooRuntimeSet
field in the Inspector, the Foo component will appear in the Runtime Set
automatically. This is especially handy if you're using the Foo component with
Prefabs.

public class Foo : MonoBehaviour

{
public FooRuntimeSetSO RuntimeSet;
private void OnEnable()
{
RuntimeSet.Add(this);
}
private void OnDisable()
{
RuntimeSet.Remove(this);
}
}
Note

One limitation of this technique is that if you inspect the ScriptableObject at
runtime, you won't be able to see the contents of the Runtime Set list in the
Inspector. If you try to publicly expose the list in the Inspector, you'll see this:

© 2023 Unity Technologies

66 of 75 | unity.com

https://unity.com/

By default, a “Type mismatch” appears in each element field since a
ScriptableObject won't be able to serialize a scene object. The list works
normally, but the data does not display correctly. Use a public property or the
Hidelnlnspector attribute if you want to avoid confusion and prevent the list from
showing in the Inspector.

You can also fix this issue with a custom Editor script and Inspector. For a good
example of this, see SOAP (ScriptableObject Architectural Pattern) on the
Asset Store.

A‘SD / Arrow Keys to Mo

Custom Inspector

o Fun facts about foo and bar

The terms foo and bar are common placeholder names in computing.
These terms were likely chosen because they are short, easy to remember,
and sound distinctive.

While their exact origins are unclear, some people believe that the terms
originated from radar operators in World War Il. The nonsense word “foo”
also appeared as a catchphrase in a 1930’s comic strip.

In a programming context, their use is generally credited to the Tech Model
Railroad Club at MIT circa the 1960s. The MIT train room had two general-
purpose buttons by the door labeled “foo” and “bar.” MIT hackers often
repurposed these names for their ideas, hence the adoption of foo and bar
as general variable names.

Today, the use of foo and bar as dummy variable names is a widespread
convention in the programming community.

© 2023 Unity Technologies

67 of 75 | unity.com

https://unity.com/
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://en.wikipedia.org/wiki/Foobar
https://en.wikipedia.org/wiki/Smokey_Stover
https://en.wikipedia.org/wiki/Tech_Model_Railroad_Club
https://en.wikipedia.org/wiki/Tech_Model_Railroad_Club

SAMPLE PROIJECT

EXPLORE THE

© 2023 Unity Technologies

Accompanying this guide is a template project for you to work with and learn
about ScriptableObjects. Inspired by classic ball and paddle game mechanics,
this project is a great opportunity to see how ScriptableObjects can improve the
architecture of your Unity project.

By following SOLID principles and using techniques often employed in larger
projects, you can demonstrate how ScriptableObjects can help to restructure
your code.

Here, you will have the chance to see how ScriptableObjects can be applied in a
real-world example and gain a better understanding of how they can be used to
improve the efficiency and organization of your projects.

The sample includes many of the patterns explored in this guide:

— Data containers: Shared settings data is extracted as ScriptableObjects.
Then, gameplay settings or common states are stored as assets in
the project. Also, you can change the initial level layout by swapping
ScriptableObjects.

— Extendable enums: Empty ScriptableObjects function as enums to
categorize different players.

— Delegate objects: A simple audio delegate shows how you can randomize
the ball's collision sounds just by swapping ScriptableObjects. Objectives
are also ScriptableObjects that plug into the game management system
for determining win-lose conditions.

— Event channels: The observer pattern helps you set up game events for
Ul, sounds, and scoring. Different GameObjects can subscribe to different
“event channels,” similar to tuning in to a specific radio broadcast.

— Dual serialization: Some game data is stored like the level layout in
ScriptableObjects for ease of use in the Editor but with the option to
save it as JSON files. Externally modded JSON data can then rebuild a
ScriptableObject, which works with the original setup script.

Of course, the game itself is not the main focus of this sample. A paddle-and-
ball arcade game can be built with far fewer lines of code. Instead, the idea is to
demonstrate how ScriptableObjects can help you create components that are
testable and scalable while still being designer-friendly.

69 of 75 | unity.com

https://unity.com/
https://github.com/UnityTechnologies/PaddleGameSO
https://github.com/UnityTechnologies/PaddleGameSO

© 2023 Unity Technologies

ScriptableObjects can be a versatile addition to your toolset. Think of these
design patterns as just extra possibilities for organizing your Unity development.

Note that you can achieve many of the techniques in this guide using C#
classes instead of ScriptableObjects. However, the Unity Editor provides the
convenience of viewing and editing ScriptableObjects more easily. This can help
your artistic and design teams interface with your project.

Do your designers want to set up gameplay data without constant support from
the software team? If so, then maybe Scriptable Objects have a place in your
project.

Of course, not using a pattern can be just as valuable as using one. What may
seem like a natural fit for one application may not be for another. Evaluate the
advantages and disadvantages of a pattern before deploying it.

There are no hard-and-fast rules for how to structure your Unity project.
Balance the skill sets and personal preferences of your team with your
code architecture.

Then, you can focus on the important thing: making your game an engaging
experience for your players.

71 of 75 | unity.com

https://unity.com/

© 2023 Unity Technologies

Documentation

— The ScriptableObject documentation page contains all details of the
Scripting API. You can also find the manual page for additional information.

Technical e-books from Unity

These advanced best practice guides can help you discover more techniques
for Unity development:

— Level up your code with game programming patterns contains an
introduction to SOLID development and design patterns in Unity.

— Create a C# style guide covers some of the best practices when setting up

your project.

You'll find all of the latest and greatest Unity technical e-books and how-to
articles on the Unity best practices hub.

From Unite

If you're interested in learning more about ScriptableObjects, follow along with
these sessions from past Unite conferences:

— “Overthrowing the MonoBehaviour tyranny in a glorious ScriptableObject
revolution”

— “Game Architecture with ScriptableObjects”
For general information about code architecture, we also recommend:

— “From Pong to 15-person project”

More project examples

These community project examples show extensive use of ScriptableObjects in
their architecture:

— The Tanks Demo presentation from Unite, by Richard Fine, uses
ScriptableObjects to customize audio, pluggable Al, and destructible
buildings.

— Ryan Hipple, a senior full stack game engineer at Meta, has a GitHub
project that illustrates much of his Unite Austin presentation. You can also
read his corresponding blog post.

— Soap (Scriptable Object Architectural Pattern) on the Asset Store
implements many of the patterns described in this e-book and adds many
quality of life features when working with Scriptable Objects.

73 of 75 | unity.com

https://unity.com/
https://docs.unity3d.com/ScriptReference/ScriptableObject.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/Manual/class-ScriptableObject.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://docs.unity3d.com/Manual/best-practice-guides.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/level-up-your-code-with-game-programming-patterns?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/create-code-style-guide-e-book?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://unity.com/how-to?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=6vmRwLYWNRo?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=raQ3iHhE_Kk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://www.youtube.com/watch?v=1le4vScG3gk?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://github.com/richard-fine/scriptable-object-demo
https://github.com/roboryantron/Unite2017
https://github.com/roboryantron/Unite2017
http://www.roboryantron.com/2017/10/unite-2017-game-architecture-with.html
https://assetstore.unity.com/packages/tools/utilities/soap-scriptableobject-architecture-pattern-232107

© 2023 Unity Technologies

— The Unity Atoms project is an open source library that makes extensive
use of ScriptableObjects. Read this page to get started with it.

— The Reactive Menu System uses ScriptableObjects to build a UGUI system
to handle Ul state changes and menu management.

— The Unity Open Project (Chop Chop) heavily relies on ScriptableObjects
and manages gameplay with event channels.

For game designers

Christo Nobbs, a senior technical game designer who specializes in systems
game design and Unity (C#), was a contributor to The Unity game designer
playbook, as well as the main author of a short series of blog posts on designing
game systems in Unity:

— “Systems that create ecosystems: Emergent game design”

— “Unpredictably fun: The value of randomization in game design”

— “Animation curves, the ultimate design lever”

Professional training for Unity creators

Unity Professional Training offers both online and in-person training to give you
and your team additional skills and knowledge to work more productively, and
collaborate efficiently, in Unity.

Choose from an extensive training catalog designed for professionals in any
industry, at any skill level, in multiple delivery formats.

All materials are created by experienced Instructional Designers in partnership
with Unity engineers and product teams. This means that you'll always receive

the most up-to-date training on the latest Unity tech.

Learn more about Unity Professional Training here.

74 of 75 | unity.com

https://unity.com/
https://github.com/unity-atoms/unity-atoms
https://unity-atoms.github.io/unity-atoms/
https://github.com/makeplayhappy/reactive-menu-system
https://github.com/UnityTechnologies/open-project-1
https://unity.com/open-projects?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/game-designer-playbook?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://resources.unity.com/games/game-designer-playbook?ungated=true?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/games/systems-that-create-ecosystems-emergent-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/games/unpredictably-fun-the-value-of-randomization-in-game-design?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://blog.unity.com/games/animation-curves-the-ultimate-design-lever?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook
https://unity.com/learn/professionals?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=scriptable-objects-ebook

unity.com

https://unity.com/

