Oregon Teacher Toolbox

Resource Sampler

Engaging Resources to Drive

i-Ready Classroom Mathematics, Oregon Edition includes a wealth of resources to meet the needs of all learners. The Oregon Teacher Toolbox resources are accessible through the Teacher Digital Experience via i-ReadyConnect.com.

> Easily Access All Grades K-8 Resources on the Oregon Teacher Toolbox:

- Oregon Enhancement Activities (6)
- Activity Sheets (1/3)
- Assessments (Lesson Quizzes, Practice Tests, and Unit AssessmentsForms A and B)
-Cumulative Practice (1/S
- Develop Session Videos
-Digital Math Tools
-Discourse Cards 동
-Graphic Organizers (1/8
- Games (Unit Level K-8 and Grade Level K-2) (3)
- Enrichment Activities 동
-Family Letters (53)
-Fluency and Skills Practice (3)
- Implementation Support

Teacher Toolbox

Program	Subject	Grade	K	1			4	5	6		
i-Ready Classroom - OR	Math				2	3				78	
Program Implementation		Classroom Resources				Classroom Resources (Spanish)					Assessment Practice
		Whole Class Instruction								Small Group Differentiation	
		Teach					Ass			Prepare	Reteach
		Instructio Practice		Interactive Tutorials			Lesson Quizzes \& Unit Assessments			Prerequisite Lessons	Tools for Instruction

Unit 4: Length: Measurement, Addition and Subtraction, and Line Plots
Lesson 21: Measure in Feet and Meters
2.GM.B. 4

Educator Note: Constructed and Standard Rulers 2.GM.B. 5

Lesson 22: Understand Measurement with Different Units 2.GM.B. 5
 Session 1: Explore Session 2: Develop Session 3: Refine

Whole Class Instructio

Interactive

Lesson Quizzes \&
Unit Assessments

Prerequisite
Lessons

Reteach
Tools for
Instruction
(155 = Available in English and Spanish
Microsoft PowerPoint ${ }^{\circ}$ is a registered trademark of Microsoft Corporation.

Student Growth

- Interactive Tutorials ($\sqrt{5}$
- Literacy Connection

Activities (1/5

- Math Center Activities (On Level, Below Level, and Above Level) (1/5
- Student Worktext PDFs (ess
- PowerPoint ${ }^{\oplus}$ Slides (Editable) (1/5
- Prerequisite Lessons (1/5
- Professional Learning Videos
- Teacher's Guide PDFs
- Tools for Instruction (1/5
- Unit Flow \& Progression Videos (Closed Captioned in English and Spanish)

Table of Contents

This sampler includes some of the lesson- and unit-level resources available on Oregon Teacher Toolbox for Unit 2: Numbers within 100: Addition, Subtraction, Time, and Money, Lesson 6: Add Two-Digit Numbers.

Enhancement Activities
 Page 4

Lesson-Level Resources

Page 20

Unit-Level Resources

Page 34

Check out the Teacher Digital Experience Walkthrough to see more digital resources!
Explore all Grades K-8 resources in your demo account. Review the Teacher Digital Experience Walkthrough to see how.

Oregon Enhancement Activities

Oregon Enhancement Activities provide additional notes and activities to ensure all the Oregon Mathematics Standards are addressed. Following are the two types of Enhancement Activities.

EDUCATOR NOTE

Estimating Length in Yards

Dear Educator,

In this lesson students will use inches, feet, centimeters, and meters to estimate the length of objects.
According to OR 2.GM.B.6, students should also gain experience estimating lengths using yards.
One way to support students in estimating lengths with yards is to have them complete the following activity:
Hold up an object with a length of about 1 yard and say: This object measures about one yard in length. Ask: Can you find an object in the classroom that measures about 1 yard? Guide students to find an appropriate object by asking questions such as: What do yards measure? Does the length of any part of the object match the length of a yard?
When a student chooses an object, have the student measure the object (or part of the object) to confirm that it is about 1 yard in length. If the object is not about 1 yard in length, have the student choose a different object to measure. If the object is about 1 yard in length, say: This object measures about 1 yard in length.
Continue until each student has found an object that is about 1 yard in length.

Oregon Mathematics

 Standard2.GM.B. 6 Estimate lengths using units of inches, feet, yards, centimeters, and meter

EDUCATOR NOTE

Partitioning Rectangles

Dear Educator,

In this lesson students will fill rectangles with same-size squares and count to find the total number of squares.
According to OR 2.GM.A.2, students are not required to work with rectangles larger than 5 rows and 5 columns of same-size squares.
There are two ways to modify the content to fully meet this standard. For problems involving a verbal description of a rectangle with more than 5 rows or columns, revise the numbers to be no greater than 5 .

Oregon M

 Standard2.GM.A. 2 Partition a rectangle into rows and columns of same-size squares number of them.

PROVIDED EXAMPLE
Lesson 30, page 734, problem 3
Diego and his mom use 18 squares to make a pillow in the shape of a rectangle. Show what Diego's pillow could look like. Possible student work:

SUGGESTED MODIFICATION

Diego and his mom use 15 squares to make a pillow in the shape of a rectangle Show what Diego's pillow could look like Possible student work:

Educator Notes

- Describe how the content in the i-Ready Classroom Mathematics, Oregon Edition instructional program varies from the expectations of the Oregon Mathematics Standards.
- Also include an example of how the content might be modified in order to better address the Oregon Mathematics Standards.

Educator Notes are provided when:

- Oregon Mathematics Standards require different content limits or vocabulary terms OR
- A clear modification can tailor the i-Ready Classroom Mathematics, Oregon Edition instructional program to address Oregon expectations

One-Day Activities

- Step-by-step, teacher-led activities with a focus on hands-on tasks for students
- Activity sheets provided within the activity as needed to support student work

One-Day Activities are provided when:

- There is a less comprehensive Oregon Mathematics Standard that is not addressed by the i-Ready Classroom Mathematics, Oregon Edition instructional program OR
- The scope of a Oregon Mathematics Standard goes beyond the instruction provided

Investigate Number Patterns

Earlier in Grade 2, students skip-counted by fives, tens, and hundreds. In Lesson 32, students connected skip-counting by twos to the concept of even numbers. In this activity, students will explore patterns on hundred chart, starting from a given number from 10 to 90 . Students will then explore repeating patterns involving addition and subtraction in intervals of ones, twos, fives, tens, and twenty-fives.

Material

- copies of Recording Sheets (pages 7-8)
- copies of Hundred Chart (page 9)
- copies of Number Cards, 1 per pair (page 10)
- copies of Spinner, 1 per pair (page 11)
- copies of Check for Understanding (page 12)
- counters, 20 per student
- crayons (1 red, 1 blue, 1 yellow, 1 green)
- paper clip, 1 per pair
- pencil, 1 per pair

1 Identify, describe, and extend patterns made by counting by tens.
a. Display a hundred chart and provide each student with 20 counters and a Hundred Chart.
b. Say: Luke has 100 cents in dimes. How many dimes does he have? Have students coun by tens from 10 to 100 placing a counter on each number as they say it. When绪 100 guide them to describe the pattern they see and answer the problem by asking questions such as:
What do you notice about the numbers on the chart when you count by tens? (All numbers end in 0 and the first digits are the same as the numbers when you count $1,2,3,4,5,6,7,8,9,10$
Where are these numbers located on the chart? (They are all directly below the space with 10 in it.)
What does each counter on the hundred chart represent? (Each counter represents one dime.)
How many counters are on the hundred chart? (10)

- How many dimes does Luke have? (ten dimes)

Oregon Mathematics

 Standards2.NBT.A. 2 Count within 1000; skip-count by 5 's, 10 's, and 100^{\prime} s. 2.NBT.B. 6 Add up to fou two-digit numbers using strategies based on place value and properties or operations and strategies result in the same sum
\int one-day activity
(5) Check for understanding.

Provide students with Check for Understanding. Have students fill in the missing numbers in the given patterns and make their own pattern counting by tens. (68,63 ; 127,152 ; Check that students correctly make a pattern where each number is 10 more than the number before.)
Observe and monitor students' reasoning and guide or redirect them as necessary Use the table below to pinpoint where extra support may be needed.

If you observe...	the student may...	Then try...
the student continues the first pattern with 72,71,	not be able to count backward by fives without using numbers that end in a 5 o a a 0.	having the student use counters to show the pattern on a hundred chart and try again.
the student is unable to continue the second pattern,	not be able to continue a pattern without using a hundred chart.	having the student identify the amount added to each number in the pattern and add that amount to 102 to get the next number in the pattern.
the student has difficulty making a pattern counting by tens,	not understand that a pattern can start from any number.	asking the student to point to any number on the hundred chart and explain how to
find the next number in		
the pattern.		

Teacher pages and student recording sheet shown here. The full activity and additional Enhancement Activities can be accessed through the Oregon Teacher Toolbox.

Partitioning Rectangles

Dear Educator,

In this lesson students will fill rectangles with same-size squares and count to find the total number of squares.

According to OR 2.GM.A.2, students are not required to work with rectangles larger than 5 rows and 5 columns of same-size squares.

There are two ways to modify the content to fully meet this standard.
For problems involving a verbal description of a rectangle with more than 5 rows or columns, revise the numbers to be no greater than 5 .

Oregon Mathematics Standard

2.GM.A. 2 Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

PROVIDED EXAMPLE

Lesson 30, page 734, problem 3
Diego and his mom use 18 squares to make a pillow in the shape of a rectangle. Show what Diego's pillow could look like.
Possible student work:

SUGGESTED MODIFICATION

Diego and his mom use 15 squares to make a pillow in the shape of a rectangle. Show what Diego's pillow could look like.
Possible student work:

EDUCATOR NOTE

For problems involving an image of a rectangle with more than 5 rows or columns, revise the image to show no more than 5 rows or 5 columns.

PROVIDED EXAMPLE

Lesson 30, page 735, Try lt

Kelli sets up a dance floor for an Irish dance. She starts filling a rectangular grass area with wooden floor squares. How many total wooden squares does it take to fill the rectangle without going outside the edges?

SUGGESTED MODIFICATION

Kelli sets up a dance floor for an Irish dance. She starts filling a rectangular grass area with wooden floor squares. How many total wooden squares does it take to fill the rectangle without going outside the edges?

Investigate Number Patterns

Earlier in Grade 2, students skip-counted by fives, tens, and hundreds. In Lesson 32, students connected skip-counting by twos to the concept of even numbers. In this activity, students will explore patterns on a hundred chart, starting from a given number from 10 to 90. Students will then explore repeating patterns involving addition and subtraction in intervals of ones, twos, fives, tens, and twenty-fives.

Materials

- copies of Recording Sheets (pages 7-8)
- copies of Hundred Chart (page 9)
- copies of Number Cards, 1 per pair (page 10)
- copies of Spinner, 1 per pair (page 11)
- copies of Check for Understanding (page 12)
- counters, 20 per student
- crayons (1 red, 1 blue, 1 yellow, 1 green)
- paper clip, 1 per pair
- pencil, 1 per pair

Oregon Mathematics Standards

2.NBT.A. 2 Count within 1000; skip-count by 5's, 10's, and 100's.
2.NBT.B. 6 Add up to four two-digit numbers using strategies based on place value and properties of operations and describe how two different strategies result in the same sum.
(1) Identify, describe, and extend patterns made by counting by tens.
a. Display a hundred chart and provide each student with 20 counters and a Hundred Chart.
b. Say: Luke has 100 cents in dimes. How many dimes does he have? Have students count by tens from 10 to 100, placing a counter on each number as they say it. When students finish counting to 100, guide them to describe the pattern they see and answer the problem by asking questions such as:
-What do you notice about the numbers on the chart when you count by tens? (All numbers end in 0 and the first digits are the same as the numbers when you count 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

- Where are these numbers located on the chart? (They are all directly below the space with 10 in it.)
- What does each counter on the hundred chart represent? (Each counter represents one dime.)
- How many counters are on the hundred chart? (10)
- How many dimes does Luke have? (ten dimes)

ONE-DAY ACTIVITY

c. Have students clear the counters from their hundred charts. Say: Alice has 70 cents. How many more dimes does she need to have 100 cents? Have students point to the number 70 in the chart. Guide them to place counters on the hundred chart to show counting on by tens from 70 to 100 and answer the problem by asking questions such as:

- What number is below 70 on the chart? (80)
- How does the chart help you count by tens? (When II move down one space in the chart, it shows a number that is ten more.)
- How could the chart help you count by tens from 70 to 100 ? (I say the number directly below the current number in the hundred chart when I count on ten.)
- How many counters are on the hundred chart? (3)
- How many more dimes does Alice need to have 100 cents? (three dimes)
d. Say: You can also start counting by tens from any number in the chart. Have students remove all counters from the hundred chart. Say: Andre has a penny. Have students place a counter on 1 on the hundred chart. Say: Andre also has nine dimes. Have students count out nine counters. Ask: How much money does Andre have? Guide students to place nine counters on the hundred chart to show counting on by tens from 1 to 91 and answer the problem by asking questions such as:
- What number is 10 more than 1 ? (11)
- What number is 10 more than 11 ? (21)
- What number is the last counter on in the hundred chart? (91)
- How much money does Andre have? (91 cents)
e. Have students count by tens from 1 to 91 by saying each number in the first column of the hundred chart. (1, 11, 21, 31, 41, 51, 61, 71, 81, 91) Ask:
- What do you notice about these numbers? (All the numbers end in 1. The tens digit increases by 1 each time.)
- How is this pattern different from the pattern you made when counting by tens starting at 10 ? (All of the numbers end in 1 instead of 0 .)
- How is it the same? (The tens digit increases by 1 each time.)
- How can you continue the pattern without using a chart? (I can continue to increase the tens digit by 1 each time.)
- What are the next three numbers in the pattern? $(101,111,121)$
f. Repeat d-e starting with other numbers in the chart as time allows.

2 Identify, describe, and extend patterns made by counting by fives.
a. Have students clear the counters from their hundred charts. Say: Millie has 100 cents in nickels. How many nickels does she have? Have students count by fives from 5 to 100, placing a counter on each number as they say it. When students finish counting to 100, guide them to describe the pattern they see and answer the problem by asking questions such as:

- What do you notice about the numbers on the chart when you count by fives? (All numbers end in 5 or 0 .)
- Where are these numbers located on the chart? (They are all directly below the spaces with 5 and 10 in them.)
- What does each counter on the hundred chart represent? (Each counter represents one nickel.)
- How many counters are on the hundred chart? (20)
- How many nickels does Millie have? (20 nickels)
b. Provide each student with Recording Sheet 2 .
c. Say: You can also start counting by fives from any number in the chart. Have students look at the first problem on the Recording Sheet. Have students place counters on the corresponding numbers in the hundred chart. Guide students to recognize and describe the pattern by asking questions such as:
- What do you notice about the numbers? (The numbers end in 5 or 0 and make a pattern 5, 0, 5, 0.)
- Where are the numbers located on the hundred chart? (35 is under 25 and 40 is under 30 on the chart.)
- What pattern do you see in the numbers? (Each number is 5 more than the number before it.)
d. Instruct students to continue the pattern. Have them write the next two numbers in the pattern on the Recording Sheet. $(55,60)$ Ask: How does the hundred chart help you count by fives? (All numbers are directly below the first two numbers in the pattern.)
e. Have students remove all counters from the hundred chart and place a counter on 1. Ask:
- What number is 5 more than 1? (6)
- What number is 5 more than 6? (11)
- What number is 5 more than 11 ? (16)

ONE-DAY ACTIVITY

f. Guide students to count by fives from 1 to 96 by saying each number in the first and sixth columns of the hundred chart together. (1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96) Ask:

- What do you notice about these numbers? (All the numbers end in 1 or 6. The tens digit increases by 1 for every other number.)
- How is this pattern different from the pattern you made when counting by fives starting at 5 or 35 ? (All of the numbers end in 1 or 6 instead of 0 or 5.)
- How is it the same? (The tens digit increases by 1 for every other number.)
- How can you continue the pattern without using a chart? (I can continue to alternate the ones to be 1 or 6 and increase the tens digit by 1 every other time.)
- What are the next three numbers in the pattern? $(101,106,111)$
g. Say: You can also count backward by fives from any number in the chart. Instruct students to look at the second problem on the Recording Sheet. Have students remove all counters from the hundred chart that are on numbers greater than 46. Ask:
- What number is 5 less than 46 ? (41)
- What number is 5 less than 41? (36)
- What number is 5 less than 36 ? (31)
h. Guide students to count backward by fives from 46 to 1 by removing counters from the hundred chart one at a time, starting at 46, and saying each number together. $(46,41,36,31,26,21,16,11,6,1)$ Ask: What do you notice about these numbers? (All the numbers end in 6 or 1. The tens digit decreases by 1 for every other number.)
i. Have students work in pairs to complete the remaining problems on the Recording Sheet. (21, 16; 103, 108; 74, 69)
3 Identify, describe, and extend repeating patterns.
a. Project Hundred Chart to the class. Color the first 25 numbers red. Say: One quarter is worth 25 cents. The red numbers represent the value of one quarter.
b. Invite a volunteer to come to the front of the class. Have the student color the next 25 numbers in the hundred chart blue. Guide the student to color the correct numbers by asking questions such as:
- How many tens are in 25? How many more ones do you need to make 25? (2 tens; 5 ones)
- How many lines of the hundred chart should be colored? (Two full lines and one half-line.)
c. When the student is finished coloring the next 25 numbers on the chart, say: Two quarters are worth 50 cents. The blue numbers represent the value of the second quarter.

ONE-DAY ACTIVITY

d. Repeat $b-c$, having students use yellow and green for the third and fourth quarters, until the entire hundred chart is colored in.
e. Say: The chart can help you count to 100 by 25 s. Point to the corresponding numbers on the chart as students chorally count: $25,50,75,100$.
f. Provide pairs of students with a set of Number Cards, a copy of Spinner, and a paper clip. Instruct students to make a spinner with the Spinner sheet by placing a paper clip on the circle and holding a pencil vertically at the center of the circle such that the paper clip can spin around the circle when flicked.
g. Have students shuffle the cards and place them in a pile facedown. The players take turns selecting a card from the pile and spinning the spinner. The card indicates the first number in the pattern and the spinner indicates the number to count by for the pattern. The player says the next 3 numbers in the pattern. The player may count forward or backward within 100. If the pattern is correct, the player keeps the card. If the pattern is not correct, the other player keeps the card. The player with the most cards at the end of the game wins!
4) Make, identify, and extend patterns.
a. Provide each student with Recording Sheet 4.
b. Have students write the first five numbers of a number pattern on their Recording Sheet. Instruct students to write the numbers on the lines in the first row. Each number in the pattern should increase or decrease by the same amount ($1,2,5$, or 10). Remind students that they can use a hundred chart to help them write the pattern, if needed.
c. Then have students swap Recording Sheets with a partner. The partner will write the next two numbers in the pattern in the boxes on the Recording Sheet.
d. When partners have finished completing the patterns, instruct them to come back together to describe the patterns and check each other's work. Guide students to describe the patterns by asking questions such as:

- What is the first number in the pattern?
- How much more (or less) is the second number than the first number?
- Does each number in the pattern change by the same amount?
- What number comes next in the pattern? What number comes after that?
e. Repeat b-d until students have filled up their Recording Sheets.
(5) Check for understanding.

Provide students with Check for Understanding. Have students fill in the missing numbers in the given patterns and make their own pattern counting by tens. (68, 63; 127,152 ; Check that students correctly make a pattern where each number is 10 more than the number before.)

Observe and monitor students' reasoning and guide or redirect them as necessary. Use the table below to pinpoint where extra support may be needed.

If you observe...	the student may...	Then try...
the student continues the first pattern with 72,71,	not be able to count backward by fives without using numbers that end in a 5 or a 0.	having the student use counters to show the pattern on a hundred chart and try again.
the student is unable to continue the second pattern,	not be able to continue a pattern without using a hundred chart.	having the student identify the amount added to each number in the pattern and add that amount to 0102 to get the next number in the pattern.
the student has difficulty making a pattern counting by tens,	not understand that a pattern can start from any number.	asking the student to point to any number on the hundred chart and explain how to find the next number in the pattern.

Recording Sheet ${ }^{2}$

Continue each pattern.

1. $35,40,45,50$, \qquad ,
2. $46,41,36,31,26$, \qquad ,
3. $78,83,88,93,98$, \qquad ,
$4.99,94,89,84,79$, \qquad ,

Recording Sheet (4)

Make a pattern.
Have your partner write the next two numbers in the pattern.

1. \qquad , \qquad , \qquad , \qquad ,

2. \qquad , \qquad , \qquad , \qquad ,\square,

3. \qquad , \qquad , \qquad , \qquad , \qquad

4. \qquad , \qquad , \qquad , \qquad , \ldots, \square

Hundred Chart

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Number Cards

Name:

Spinner

Check for Understanding

1. Continue the pattern.

93, 88, 83, 78, 73, \qquad ,
2. Continue the pattern.
$2,27,52,77,102$, \qquad 1
3. Make a pattern where each number is 10 more than the number before.

Lesson-Level Resources

Lesson 6: Add Two-Digit Numbers

Additional Practice

$$
\text { Fluency and Skills Practice . } 21
$$

Differentiation

Reteach:Tools for Instruction . 25
Reinforce: Differentiated Math Center Activities 28
Extend: Enrichment Activity . 30

Assessment

Lesson Quiz
32

LESSON 6

Different Ways to Show Addition

Find the sums and missing addends.

1. $30+7+50+3=$ \qquad
2. $37+53=$ \qquad
3) $20+8+40+2=$ \qquad
(4) $28+42=$ \qquad
5. $60+6+10+4=$ \qquad 6. $66+14=$ \qquad
(7) $40+5+40+5=$ \qquad
$845+$ \qquad $=90$
$930+9+20+1=$ \qquad

10 \qquad $+21=60$
$1120+4+60+6=$ \qquad $1224+$ \qquad $=90$
$1340+3+30+7=$ \qquad
14 \qquad $+37=80$

15 How does the information in problem 9 help you solve problem 10?

FLUENCY AND SKILLS PRACTICE Name:

LESSON 6

More Ways to Show Addition

Add.

$$
1 \begin{aligned}
& 27+3=\frac{30}{} 27+13=40 \\
& 27+15=42 \\
& 27
\end{aligned}
$$

3 39 $39=$ \qquad
$39+31=$ \qquad
$39+34=$ \qquad
[5] $75+5=$ \qquad
$75+15=$ \qquad
$75+17=$ \qquad
(7) $62+8=$ \qquad
$62+28=$ \qquad
$62+29=$ \qquad
(9) $36+4=$ \qquad
$36+24=$ \qquad
$36+29=$ \qquad
(2) $48+2=$ \qquad
$48+32=$ \qquad
$48+35=$ \qquad
(4) $26+4=$ \qquad
$26+24=$ \qquad
$26+27=$ \qquad
(6) $53+7=$ \qquad
$53+27=$ \qquad
$53+29=$ \qquad
(8) $23+7=$ \qquad
$23+17=$ \qquad
$23+18=$ \qquad
$1041+9=$ \qquad
$41+29=$ \qquad
$41+32=$ \qquad

LESSON 6

More Ways to Show Addition continued

$1155+5=$ \qquad
$55+25=$ \qquad
$55+29=$ \qquad
$1279+1=$ \qquad $79+11=$ \qquad $79+15=$ \qquad
$1434+26=$
\qquad
$45+22=$ \qquad $27+16=$ \qquad
$1575+12=$ \qquad
$52+37=$ \qquad
$62+28=$ \qquad
$1321+29=$ \qquad
$18+14=$ \qquad
$49+22=$ \qquad

17 Explain how you solved problem 9.

18 For problem 15, which equation can you solve by making a ten? Explain your thinking.

Estimating with Addition

Estimate the sum. Use an easier number for the first addend or the second addend.

1 Estimate the sum of 31 and 29.
\qquad $+29=$ \qquad
The sum of 31 and 29 is about
\qquad .

3 Estimate the sum of 33 and 49.
$33+$ \qquad = \qquad
The sum of 33 and 49 is about
\qquad .

2 Estimate the sum of 38 and 35 .
\qquad
The sum of 38 and 35 is about
\qquad .

4 Estimate the sum of 55 and 43.
$55+$ \qquad $=$ \qquad
The sum of 55 and 43 is about
\qquad .

Estimate the sum. Use easier numbers for both addends.

5 Estimate the sum of 71 and 17.
\qquad $+$ \qquad = \qquad
The sum of 71 and 17 is about
\qquad .

6 Estimate the sum of 37 and 42.
\qquad
$+$ $=$

The sum of 37 and 42 is about
\qquad .

7 Estimate the sum of 14 and 57. What strategy did you use to solve the problem? Explain.

Tools for Instruction

Two-Digit Addition with Regrouping

Objective Use base-ten blocks to add two-digit numbers with

 regrouping.Materials Base-ten blocks (tens, ones)

There are many ways to add with regrouping that do not use the traditional addition algorithm. Working from an understanding of a ten being the same as 10 ones, students can break apart two-digit numbers into tens and ones and add them separately. Before using the standard algorithm, students should understand that it is sometimes necessary to compose a ten by regrouping 10 ones in order to add. In turn, they need to recognize when it is necessary to regroup. This understanding will help them later understand the process of decomposing a ten in order to regroup for subtraction.

Step by Step

20-30 minutes
(1) Add 21 and 35.

- Have the student model both 21 and 35 with base-ten blocks.
- Ask the student to identify the total numbers of tens (5) and the total number of ones (6).
- Say: 5 tens and 6 ones makes 56 . Write " $21+35=56$ " on the board.
(2) Demonstrate the need for regrouping.
- Add 36 and 46 . Have the student model both 36 and 46 and count to find the total number of tens and the total number of ones. (7 tens, 12 ones)
- Ask the student if 12 ones is more than 10 ones. Then demonstrate bundling 10 ones and replacing the bundle with a tens rod.
- Explain that bundling 10 ones into a ten is called "regrouping" in addition.
- Emphasize that when 12 ones are regrouped into 1 ten and 2 ones, the value is the same.

Support English Learners Explain that regrouping a number means to put together or take apart ones, tens, or hundreds. Point out that 10 ones are joined together to make a "group" of 10 . The group of 10 ones is replaced, or regrouped, for 1 tens rod.
(3) Generalize when regrouping is needed.

- Have the student use ones blocks to show $3+4,3+5,3+6,3+7,3+8$, and $3+9$.
- Ask the student to identify which sums can be regrouped as tens and ones. $(3+7,3+8,3+9)$
- Lead a discussion about when regrouping is needed. Guide the student to understand that regrouping from 10 ones to 1 ten is needed when the sum of the ones digits is greater than or equal to 10 .

Tools for Instruction

(4) Add 72 and 17.

- Write $72+17$ on the board. Ask the student to predict whether regrouping will be required and to explain their reasoning.
- Have the student model and give the sum. (89) Write the sum on the board.
- Discuss if regrouping was required, and why it was not. Help the student see that the sum of the ones was less than 10.
(5) Add 51 and 29.
- Write $51+29$ on the board. Ask the student to predict whether regrouping will be required and how they can tell.
- Have the student model and identify the sum. (80) Write the sum on the board.
- Discuss the regrouping that was required. Regrouping and having no ones left over can be a little tricky. If necessary, remind the student that 0 is a digit. In this situation, the 0 shows that no ones remain after regrouping.

Check for Understanding

Give the student the addition problems below. Ask the student to predict the need for regrouping in each problem, to explain how they can tell, and then to model and find each sum.
$62+9$ (yes, 71)
$45+45$ (yes, 90)
$56+11(n o, 67)$

For the student who struggles, use the table below to help pinpoint where extra help may be needed.

If you observe...	the student may...	Then try...
the student trying to regroup to add $56+11$,	not be paying close attention to place value.	helping the student circle the ones and add, then underline the tens and add.
the student has trouble modeling the sums,	have difficulty understanding place value.	having the student model and decompose two-digit numbers into sums according to place value: $62=60+2$.

-Mathematics Educator

CENTER ACTIVITY
LESSON 6

100 or Not!

What You Need

- 10 counters
- Digit Cards 0-9 (2 sets)

What You Do

1. Take turns. Shuffle the Digit Cards and place them facedown in a pile.
2. Take 2 cards and make a two-digit number. Take 2 more cards and make a different twodigit number.

I like to add the

 tens first when I add two-digit numbers.3. Add the 2 two-digit numbers.
4. Your partner checks your answer.
5. If the sum is less than 100 , take a counter. If the sum is 100 or greater, do not take a counter.
6. Return the cards to the bottom of the pile. Repeat.
7. The first partner to get 5 counters wins.

Check Understanding

Find $24+36$.

Go Further
Each partner makes 2 two-digit numbers and finds the sum.
Take a counter when you have a sum less than 50 .

Ways to Make 83

Your Challenge

Use the digits below to make two 2-digit numbers that have a sum of 83 . Complete the equations on the Recording Sheet to show your work.
For each equation, you can only use each digit once.

0	1	2	3	4	5	6	7	8	9

Example:

$$
60+23=83
$$

Are there any patterns you notice that might help you think of other possibilities?

Ways to Make 83

0	1	2	3	4	5	6	7	8	9

1. \qquad $+$ \qquad $=83$
2. \qquad $+$ \qquad $=83$
3. \qquad $+$ \qquad $=83$

Use the same rules to find other ways to make 83. What patterns can you use to help you?

Solve the problems.

1 Decide if each addition problem is a way to find $27+38$. Choose Yes or No for each addition problem.

	Yes	No
$20+7+30+8$	(A)	(B)
$20+70+38$	(C)	(D)
$20+30+7+8$	(G)	©
$50+10+5$	(G)	(H)

2 Li reads 64 pages of her book one day. The next day she reads 17 pages. How many pages does Li read in all?
(A) 71
(B) 74
(C) 81
(D) 84

3 What strategy would you use to find $36+27$?
Explain and then solve.
\qquad
\qquad
\qquad
\qquad

4 Estimate the sum of 17 and 28 . Show your work.
$17+28$ is about \qquad .

5 Mr. Takata has 49 red blocks and 33 blue blocks on a table. He asks his class to find the total number of blocks.

Which addition problems show a way to find $49+33$? Choose all the correct answers.
(A) $40+9+3$
(B) $40+30+9+3$
(C) $40+10+9+3$
(D) $70+2$
(E) $70+9+3$
(F) $50+32$

Unit-Level Resources

Unit 2: Numbers within 100: Addition, Subtraction, Time, and Money

Unit Game
Grade Level Game . 38
Literacy Connection. 44
Mid-Unit Assessment (Form A) . 48
Unit Assessment (Form A) . 54 Name:

UNIT 2

Subtraction Action

What you need: Subtraction Action Recording Sheet, 2 sets of Digit Cards (0-9)

Directions

- Mix the Digit Cards and place them facedown in a stack. Each player takes 4 cards.

- Players each make 2 different two-digit numbers using their 4 cards. The goal is to make two numbers that are as close in value to each other as possible.
- Both players subtract their lesser number from their greater number. The difference tells how close the two numbers are. Players write their subtraction problems on the Recording Sheet.

Subtraction Action Recording Sheet

- Players compare their differences and write the comparison on the Recording Sheet. The player with the lesser difference made two numbers that are closer together. This player wins the round.
- Put all the cards back and shuffle them. Play 4 rounds. The player with more wins after 4 rounds wins the game.

I subtracted 18
from 26 . My
difference of 8 is
less than your difference of 15 , so I

GAME UNIT 2 Subtraction Action Recording Sheet

Player A Name
1.

1.

Player B Name
1.

2.

3.

4.

4.

Trostive

© Curriculum Associates, LLC
© Curriculum Associates,
Copying permitted for classroom use.

Toy

Toy

Cards for Tor Shop

 Tuba ($\$ 0.22$) on the 3 spaces next to the cash register with the rest of the cards facedown on the "Toy Shop" cards box. Select one student to play a practice round. Place the Heads thinking sheet in front of you and the Tails thinking sheet in front of the student.
Show students the coins. What are each of these coins worth?
Go over the value of each type of coin.
Demonstrate flipping a coin. I'll go first. On my turn, I get to choose a coin from the cash register to flip. I want to flip the dime. Flip the dime.
The coin goes to the player of the side it lands on. I'm heads, you're tails. Who does this coin go to? Have students say the side and the player it goes to.
The student's turn. Now it's your turn. You get to flip a coin. Reinforce that the coin goes to the player of the side it lands on. After you flip a coin, you can decide if you want to buy a toy. Even if the coin goes to the other player, you can still buy a toy to finish your turn. Demonstrate buying toys. Keep playing until someone has at least 16 cents. Have students identify the toys on the toy cards, and point out the prices for each. The price tag tells you the price of the toy. Some prices use the dollar (\$) symbol, and others use the cents (द) symbol. To buy it, you have to pay the toy shop by putting the correct amount back in the cash register. Discuss making change with students. Consider asking if students have ever bought something with money in a store to connect the game with life experience. Use the number line on the Heads or Tails page to show the difference if needed.
Explain how to win. The goal of this game is to be the first to buy 3 toys from the toy shop. When I buy a toy, I get to place it on my shelf. Then I replace the toy I bought with a new one from the cards pile.
Play a few more turns. Talk the student through each step. Reinforce making exact change, and giving the coin to the player of the side it lands on.

[^0],
cune inve cmuss

1

Toy Shop

Standards 2.MD.C.8, 2.OA.B.2, SMP 1, SMP 4, SMP 6

and dimes.
Materials (per group of 2)

- Instructions page - 2 Thinking sheets in plastic wipe-off sleeves - Dry erase marker
and dimes.
16 Toy Shop cards
Play coins- 2 dimes,
8 nickels, 10 pennies
ELL Support
- Display coins as you review the names and values of pennies, nickels and dimes.

Avoid confusion by clarifying the meaning of

pue '子uəวs/łuəs/łuəد ‘रq/Knq :se yวns səuoudomou cents/sense/scents.
 scenario. Encourage them to use words such as: buy, price, price tag, and cents.

Accommodations

ueכ słuәpnłs ‘su!oว 6u!̣d!!f Кłןnכس!p әлеч słuәpnłs fl
toss the coin or cup their hands and shake it.
As students play
How many cents do you have?
How much more money do you need to buy something?

- Is there a different way to use your coins to pay for that toy?
© Curriculum Associates, LLC
Copying permitted for classroo
Copying permitted for classroom use.

An Amazing Rescue

by Rebekah Cohen

1 On August 5, 2010, a mine in the country of Chile caved in. Thirty-three men were trapped inside. They were deep below the earth's surface. Finding a way to rescue the workers took a long time. The men were trapped for 69 days.

The men say that working together saved them. They voted on all the important decisions. They also took turns doing different tasks. On one day, a miner might be in charge of looking for a way out. On another day, he might keep the underground area clean. They also worked together to make their food last as long as they could.

Many people asked how the men stayed so cheerful during their time underground. They took turns keeping each other's spirits up. If they hadn't worked together, the men might have lost hope. But the 33 miners from Chile supported each other to the end. On October 13, 2010, they were saved at last!

UNIT 2

Literacy Connection: Social Studies

"An Amazing Rescue": Adding and Subtracting

Two-Digit Numbers

Solve the problems. Show your work.

1 On Monday, the Mponeng Gold Miners in Gauteng, South Africa, dig 59 feet into the ground looking for gold. They dig 34 feet into the ground on Tuesday. How many feet do the miners dig into the ground in the two days?

Complete the bar model to solve the problem.

Write an equation to solve the problem.
\qquad $+$ \qquad $=$ \qquad
The miners dig \qquad feet into the ground in the two days.

LITERACY CONNECTION

UNIT 2

Literacy Connection: Social Studies continued

2 On Wednesday, the TauTona Gold Miners in South Africa dig 89 feet looking for gold. On Thursday, they dig 25 fewer feet than on Wednesday. How many feet do the miners dig on Thursday?

Write an equation to solve the problem.
\qquad
\qquad $=$ \qquad
The miners dig \qquad feet on Thursday.

"I love the rigor of the program, and I love having access to all grade levels of the [Teacher] Toolbox. It allows me to differentiate the instruction

 within each of my math groups."-Mathematics Educator

FORM A

Solve the problems.

1 The table shows the number of shirts in a store.

Form A is shown here. Digital Comprehension Checks and
 Form B are also available.

T-shirts	38
Sweatshirts	26

The manager wants to know the total number of shirts.
Which addition problems show a way to find $38+26$?
Choose all the correct answers.
(A) $30+20+8+6$
(B) $30+20+1+4$
(C) $50+8+6$
(D) $30+8+6$
(E) $40+24$
(F) $50+4$

2 What is the sum of 39 and 22? Show your work.
$39+22=$ \qquad

3 Ryan solved this subtraction problem.
73
-46
33
Is his answer correct? Explain how you can use addition to check his answer.
\qquad
\qquad
\qquad
\qquad

4 Nico has 42 coins. Paul has 16 fewer coins than Nico. How many coins does Paul have?

Decide if each equation can be used to find the number of coins Paul has. Choose Yes or No for each equation.

	Yes	No
$42+16=?$	(A)	(B)
$42-16=?$	(C)	(D)
$16+?=42$	(®)	©
$42-?=16$	(a)	(A)

5 Suki drew this model to solve a subtraction problem. Suki said she found $55-37=15$. Her teacher says her answer is not correct.

Explain Suki's error and how she can fix it.
\qquad
\qquad
\qquad
\qquad

6 Cody has 63 books. He gives 25 of them to the used bookstore. How many books does Cody have now? Find 63 - 25 . Show your work.

Solution

7 A park has 48 trees. Then more trees are planted. Now there are 76 trees in the park. How many more trees were planted?
Show your work.
\qquad more trees were planted.

8 Tom reads 25 pages of a book on Monday and 18 pages on Tuesday. How many pages does Tom read in all?
(A) 7
(B) 33
(C) 43
(D) 53

9 What strategy would you use to find $64+18$? Explain and then solve.
\qquad
\qquad
\qquad
"I highly recommend the use of
Teacher Toolbox beyond what words can even convey. Most importantly, the growth I see in students using the [Teacher] Toolbox resources is unmatched. And that's what matters!"

-Mathematics Educator

FORM A

Solve the problems.

1 A store has 38 red flags and 34 blue flags for sale.

Form A is shown here. Digital Comprehension Checks and Form B are also available.

The store sells some flags. Now there are 45 flags left at the store. How many flags did the store sell? Show your work.

The store sold \qquad flags.

2 Kristie tells her friends she eats breakfast at 7:05 in the morning. Which clock shows the time that Kristie eats breakfast?
(A)

(B)

(C)

(D)

3 Carly says the difference of 74 and 48 is 22. Her work is shown below.

Her teacher says her answer is not correct.
What should Carly do to fix her work?
\qquad
\qquad
\qquad
\qquad
\qquad

4 There are 62 tulips in a city garden. There are 29 roses in the garden. How many tulips and roses are in the garden in all? Show your work.

There are \qquad tulips and roses in the garden in all.

5 Kim has $\$ 75$ in bills. Name two ways she could have $\$ 75$. Show your work.

Kim could have \qquad
\qquad
Or, she could have \qquad
\qquad .

6 Grant calls his cousin at the time shown on the clock. What time does Grant call his cousin? Write your answer in the blank.

\qquad

UNIT 2 • UNIT ASSESSMENT

7 Look at this addition problem.

44

$$
+39
$$

Part A

Find the sum.
Show your work.

Part B

Explain the strategy you used to find the sum.
\qquad
\qquad
\qquad
\qquad
\qquad

8 Cathy has these coins in her purse. How much are the coins worth in all? Write your answer in the blank.

The coins are worth \qquad Φ.

9 The hour hand on Lee's clock is broken. The minute hand is pointing to the 5 . What time could it be?
Choose all the correct answers.
(A) $8: 05$
(B) $4: 25$

(C) $5: 00$
(D) 12:25
(E) 3:05
(F) 5:15

10 There are 53 blocks in a jar. Some of the blocks are green. The other 38 blocks are different colors. How many blocks are green?
Decide if each equation can be used to find the number of green blocks. Choose Yes or No for each equation.

	Yes	No
$53-38=$?	(A)	(B)
$?+38=53$	((D)
$53+38=$?	(E)	(F)
$53-?=38$	(a)	(A)

11 Tina adds up to find $82-33$. Finish Tina's work to find the difference. Write your answer in the blanks.
$33+$ \qquad $=40$
$40+$ \qquad $=80$
$80+$ \qquad $=82$
$82-33=$ \qquad
12 The home team scores 47 points in a basketball game.
The visiting team scores 14 fewer points than the home team. How many points does the visiting team score?
Show your work.

The visiting team scores \qquad points.

Learn more at i-ReadyClassroomMathematics.com/24.

To see how other educators are maximizing their i-Ready Classroom Mathematics experience, follow us on social media!

[^0]: it. Remind students that it's still their turn after they flip, even if the other player gets the coin. - How do you know who the coin goes to? - How do you win the game?

