

Ph D of Analytical Chemistry, Hamburg 2001 Method Development Bruker AXS Now Head of Product Management XRF Karlsruhe, Germany

Frank Portala, Product Manager XRF, Karlsruhe, Germany

Chemical Engineer (Dipl. FH)

2012 Product Management Bruker AXS

Product Management XRF

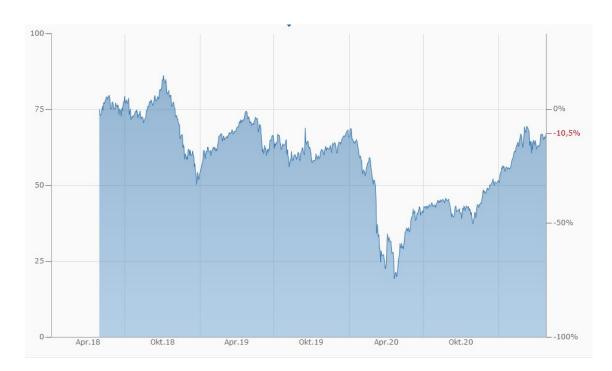
Karlsruhe, Germany

Outline

Backgrounds on Big Oil

Mid power WDXRF for flexibility

O2 Sample Preparation

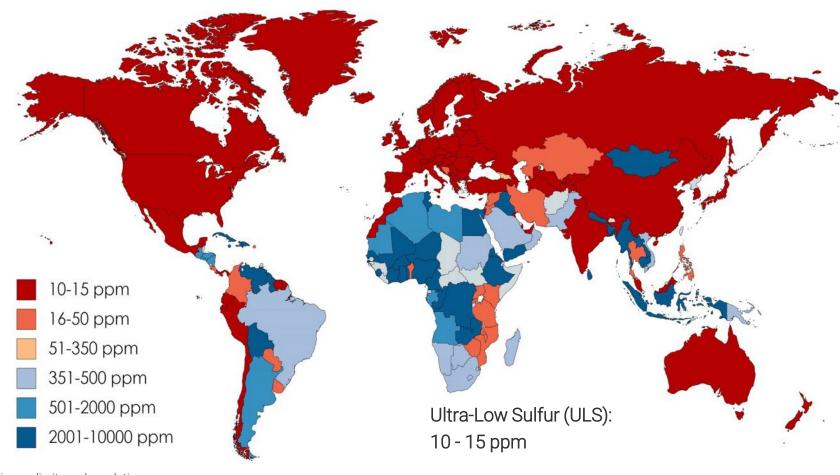

Multi-Purpose instrumentation

O3
Analytical Technology

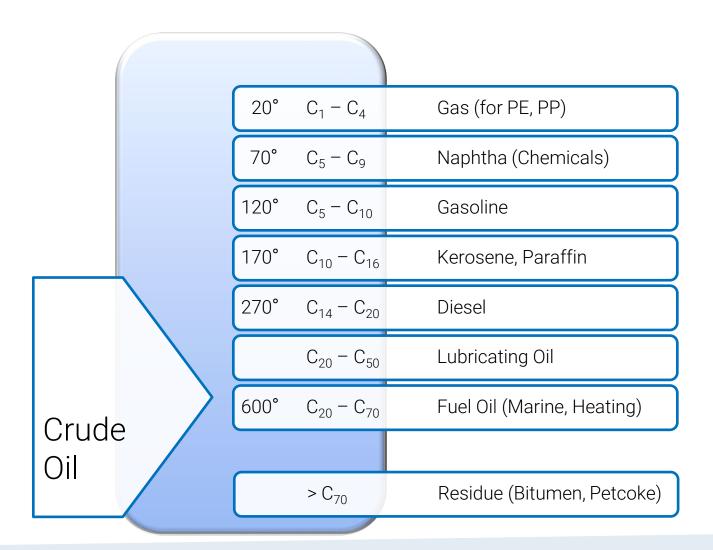
Compact specialized XRF for Refineries

Oil Price & Economy & Environment & Future

The economy has been driven over more than 100 years by the oil business
Dramatic changes are reasons for crisis, but prices are also good indicators for wealth and growth


- Oil was the motor of economic growth over the past 1oo years
 - It has fueled human development, economic growth, nations and regions
- Oil is the game changer for nations and their global role
- Extensive use of oil in combustion (energy, heating, traffic) caused
 - Environmental impact
 - One of the driver of climate change
- Reduction of hazadrous elements (S, Cl, HM) will have enormous positive impact
- Oils will stay important: For chemistry (Polymers, reagants) but maybe less in mobility

Sulfur Limits for On-Road Diesel, 2020


Euro VI Sulfur

- To prevent from extensive SO_x
 emissions
- Sulfur in automotive fuels are globally dramatically reduced from % in crude to ppm in fuels
- Future regulation for ship fuel, heating oils, etc.

Detailed information on limits and regulations: www.stratasadvisors.com.

Oil Refinery Products

Petrochemical Applications Refineries

Refineries:

- Monitoring sulfur content from crude oil feedstock and cracking products to final Ultra-Low Sulfur (ULS) levels in automotive fuels
- Monitoring important elements in refinery processes such as
 Ni, V, and Fe, Si, Cl,...

Downstream sector:

 S analysis along the downstream supply chain at tank terminals, storage tanks, depots, pipelines, petrol stations, custom control at harbors, and service and inspection labs

Sulfur and Ultra-Low Sulfur (ULS) in Petroleum Products

WDXRF norms:

■ **ASTM D2622** (3 ppm − 4.6%)

■ ISO 20884 (5 – 500 ppm)

EDXRF norms:

■ **ASTM D7220** (3 – 942 ppm)

■ ISO 13032 (8 – 50 ppm)

■ **ASTM D4294** (16 ppm – 5 %)

■ ISO 20847 (30 - 500 ppm)

■ ISO 8754 (300 ppm - 5 %)

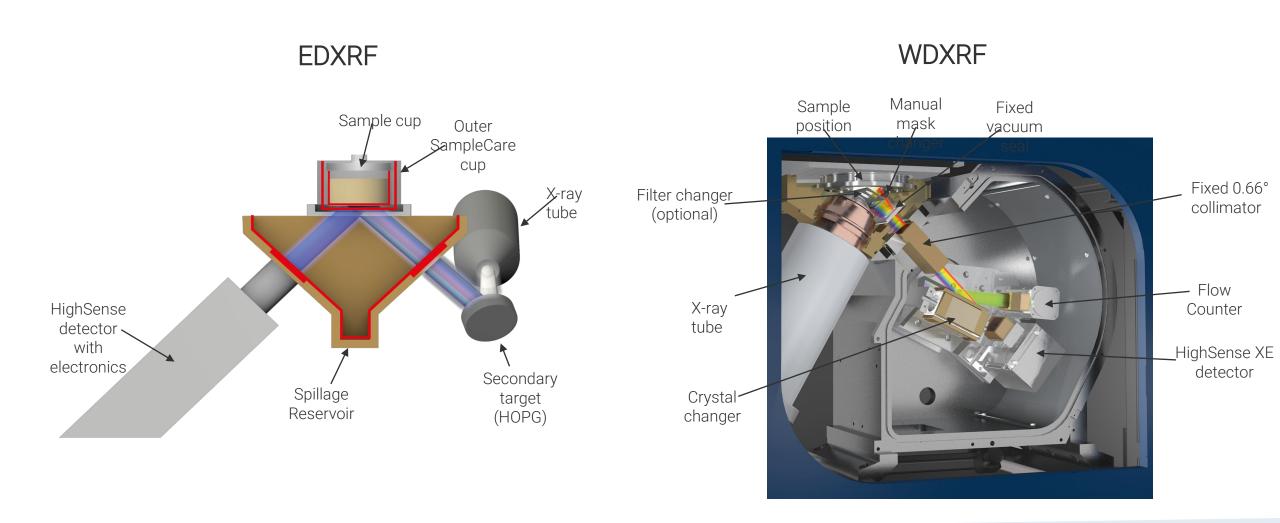
How does current Petrochemical Element Analysis often looks like?

Atomic Absorption Spectrometry (AAS)

- Sample must be prepared/diluted
- Requires daily instrument calibration
- Requires gases for flame or graphite tubes
- Usually, single element analysis

Inductively Coupled Plasma Spectrometry (ICP-OES)

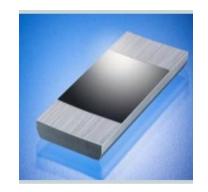
- Similar to AAS
- Requires expensive Argon gas for plasma
- Requires adjustment of plasma gas conditions
- UV/VIS Spectroscopy (UV)
- Requires reagents for UV reaction


© 2021 Bruker

Sample Preparation in XRF Easy and straight forward

- First step: Prepare the sample cup
- Second step: Fill the sample cup
- Place the cup on the balance
- Fill with approx. 7 g of sample
- Third step: Load the sample
- Place the cup in the chamber of the instrument
- Done! No dilution, no digestion!
- Low costs of ownership with standard liquid cups!

Energy-Dispersive XRF (EDXRF) vs. Wavelength-Dispersive XRF (WDXRF)

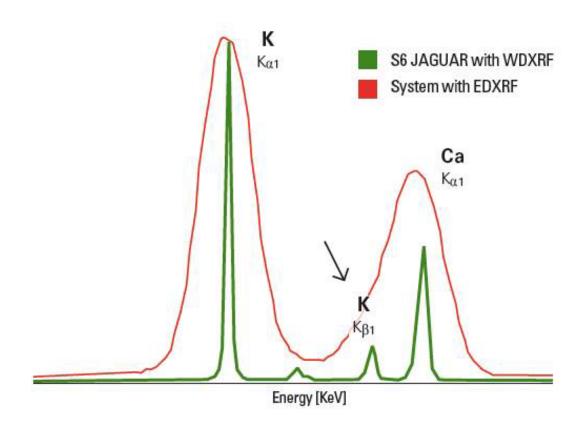

X-ray fluorescence analysis (XRF) The Comparison of Wavelength and Energy Dispersive Spectrometers

EDX

- Mechanical simplicity
- Cheaper
- Sensitivities: down to the ppm level
- Easy handling
- Smaller, "can be brought to the sample"

WDX

- High precision mechanics
- Higher capital
- Precision: <0.05%
- Higher resolution
- Sensitivities: down to the ppm level, but roughly one to two orders more sensitive
- Very fast analysis
- Highest sample throughput



© 2021 Bruker | 12

S6 JAGUAR HighSenseTM Goniometer: High Resolution

- The S6 JAGUAR with WDXRF HighSense Goniometer excels
- ED based systems in resolution and analytical precision
 - Better peak to background signal ratio
 - Higher intensity (signal in left picture is scaled)
 - Better separation of mneighboring signals

S6 JAGUAR- Benchtop WDXRF High Performance Benchtop WDXRF

Configurable from single element analyzer for S to multi-purpose unit for the periodic table

All-new technology and software:

- Long lifetime X-ray tube
- Compact goniometer with high precision gears and closely coupled X-ray beam path
- Optimized analyzer crystals for the entire element range and special applications
- HighSense detection with 2 Mcps countrate
- HighSense XE detector for medium and heavy elements
- SPECTRA.Elements analytical SW
- SMART-QUANT WD with new FP algorythms

S6 JAGUAR Benchtop WDXRF 400 W excitation

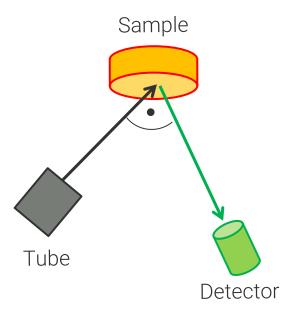
© 2021 Bruker | May 11, 2021 | 14

Multi Purpose Sequential WDXRF Spectrometer S8 TIGER for the central lab

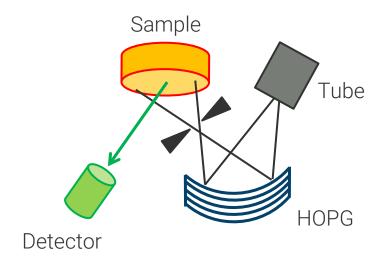
Analytical flexibility and high performance for sub-ppm traces

- 4 kW excitation20 60 kV
- 5 170 mA
- 10 beam filters
- 4 collimators
- 8 crystals
- 2 detectors

S8 TIGER WDXRF Beam path



Floorstanding WDXRF S8 TIGER With 1, 3 or 4 kW


© 2021 Bruker | 15

EDXRF Excitation Techniques Direct Excitation vs. Polarized Excitation

Direct excitation

S2 POLAR

Direct excitation:

- Leads to very high intensity
- But also to higher background intensity

Polarized excitation:

- Reduced background due to polarization
- Improved signal to background ratio (better LLD)

Petrochemical Standards (1) Ultra-Low Sulfur (ULS) Range

	ASTM D2622	ISO 20884	ASTM D7220	ASTM D5453	
Applied technique	WDXRF	WDXRF	Monochromatic EDXRF	UV	
S conc. range	3 ppm - 4.6 %	5 - 500 ppm	3 - 942 ppm	1 - 1000 ppm	
Calibration ranges	0 - 1000 ppm 0.1 - 1.0 % 1.0 - 5.0 %	0 - 60 ppm 60 - 500 ppm	0 - 50 ppm 50 - 1000 ppm	0 - 10 ppm 5 - 100 ppm 100 - 1000 ppm	
Scope	Petroleum products, diesel, gasoline, jet fuel, residual oil, lubricating base oil, crude oil, biodiesel	Automotive fuels, diesel, gasoline, biodiesel	Automotive fuels, heating and jet fuels, including biodiesel blends	Total sulfur in light hydrocarbons, spark ignition engine fuel, diesel, engine oil	
Bruker norm compliance	S6 JAGUAR, S8 TIGER	S6 JAGUAR, S8 TIGER	S2 POLAR		

Petrochemical Standards (2) Low Sulfur Range

	ISO 13032	ASTM D6334	ASTM D4294	ISO 20887	ISO 8754
Applied technique	EDXRF	WDXRF	EDXRF	EDXRF	EDXRF
S conc. range	8 - 50 ppm	15 - 940 ppm	16 ppm - 5 %	30 - 500 ppm	300 ppm - 5 %
Calibration ranges	0 - 50 ppm	0 - 100 ppm 100 - 1000 ppm	0 - 1000 ppm 0.1 - 1.0 % 1.0 - 5.0 %	0 - 500 ppm	0.03 - 0.10 %, 0.10 - 0.5 %, 0.5 - 2.0 %, 2.0 - 5 %
Scope	Automotive fuels, diesel, gasoline, biodiesel	Gasoline and gasoline-oxygenate blends	Petroleum products, diesel, gasoline, jet fuel, residual oil, lubricating base oil, crude oil, biodiesel	Sulfur content of gasolines, incl. those containing up to 2.7 % (m/m) oxygen, and diesel fuels, incl. those containing up to 5 % (V/V) fatty acid methyl ester	For petroleum products such as naphtha, unleaded motor gasolines, middle distillates, residual fuel oils, base lubricating oils and components
Bruker norm compliance	S2 POLAR	S6 JAGUAR, S8 TIGER	S2 POLAR, S2 PUMA	S2 POLAR, S2 PUMA	S2 POLAR, S2 PUMA

Petrochemical Standards (3) Additional Elements

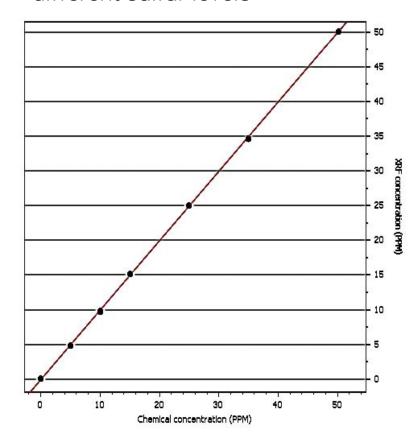
	ASTM D8252	ASTM D4929	ASTM D5059	ASTM D6376	
Applied technique	XRF	M-WDXRF, M-EDXRF, EDXRF	XRF	WDXRF	
Application	Vanadium and Nickel in Crude and Residual Oil	Organic Chloride Content in Crude Oil	Pb in Gasoline, incl. Mn with 2020 update	Determination of Trace Metals in Petroleum Coke	
Calibration ranges	1.9 - 50 ppm V 2.2 - 50 ppm Ni	0 - 100 ppm Cl	Part C: 0.0026 - 1.32 g Pb/L	50 - 500 ppm Na 50 - 500 ppm Al 20 - 500 ppm Si 0.10 - 7.0 % S 20 - 500 ppm Ca 10 - 200 ppm Ti 20 - 2000 ppm V 10 - 200 ppm Mn 20 - 1000 ppm Fe 20 - 500 ppm Ni	
Scope	Crude and residual oil	Crude oil	Gasoline	Petroleum coke	
Bruker norm compliance	S2 POLAR, S2 PUMA	S2 POLAR, S2 PUMA	S2 PUMA S6 JAGUAR	S6 JAGUAR, S8 TIGER	

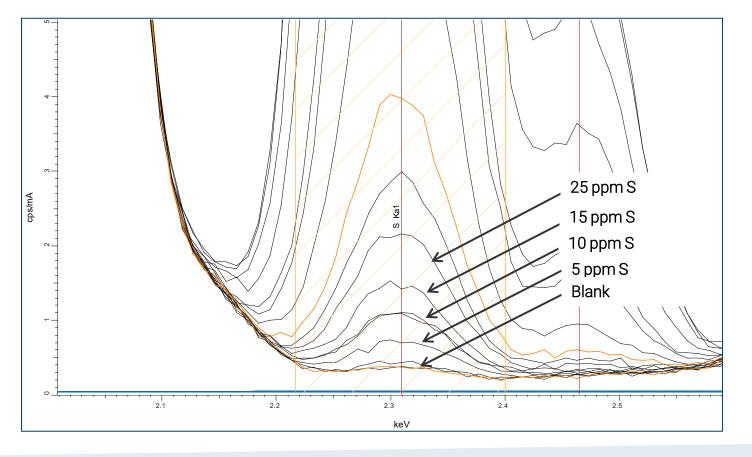
Low sulfur in automotive fuels Analysis with XRF in refineries and downstream

- Most precise and close control of low levels possible by WDXRF
- Several calibrations for each matrix with ASTM D
- Internal standards (EN ISO) for just one method for all matrices
- Polarized EDXRF for smaller labs and downstream
- Enhanced analytical performance with lower COV compared to direct EDXRF
- Better handling of various matrices, e.g. biofuels, compared to FT-IR, AAS and other methods
- Atmospheric purge vs reduced pressure to enhance analytical performance and reliability for volatile samples

© 2021 Bruker | 20

S2 POLAR High Performance Benchtop EDXRF for Petro Market

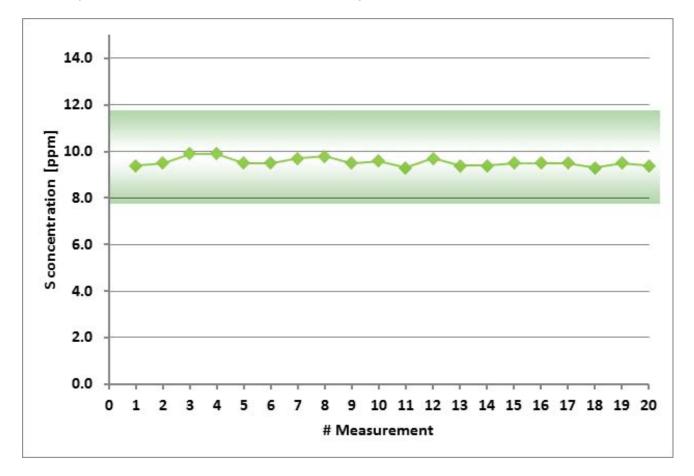

- Process control in the refinery
- Quality Control in downstream at tank farms or shipping stations
- Small size for small labs, low cost of ownership
- Quick sample preparation w/o any chemicals involved
- Ease-of-use w/ TouchControl for shift workers
- Robust technology w/ little maintenance
- One-time calibration
- Norm compliant, for various matrices



ASTM D7220 – Ultra-Low Sulfur in Gasoline S2 POLAR

 Excellent calibration curve for ultra-low sulfur in the range of 0 to 50 ppm with a clear separation of different sulfur levels

Ultra-Low Sulfur (ULS) – Repeatability S2 POLAR


- 10 ppm S gasoline sample
- Excellent repeatability for very low sulfur concentrations
- Norm-compliant with ASTM D7220
- Scope of ASTM D7220:3 to 942 ppm S in automotive fuels
- LLD: 0.7 ppm (300 s, with SampleCareTM cup)

# Measurement	S [ppm]			
1	10.1			
2	10.0			
3	10.2			
4	10.9			
5	10.4			
6	10.4			
7	10.3			
8	10.4			
9	10.1			
10	10.2			
Average	10.3			
Std.Dev.	0.24			
Rel.Std.Dev.	2.34%			

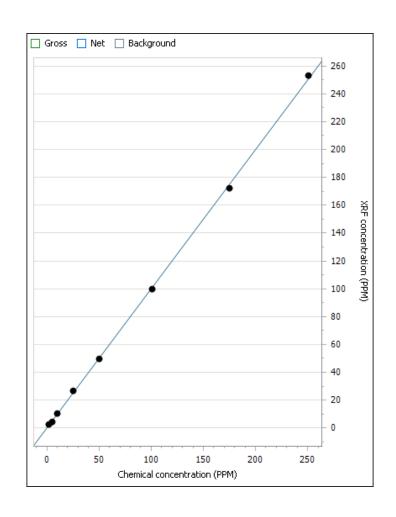
ASTM D7220 – Ultra-Low Sulfur in Gasoline S2 POLAR

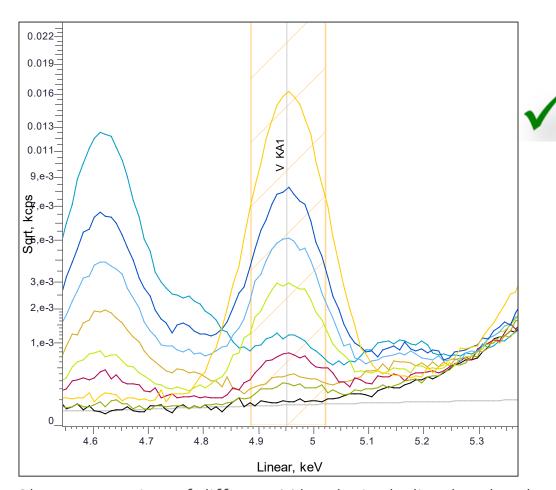
Gasoline sample (9.8 ppm S) with excellent repeatability at such low concentration level

Accepted difference between 2 measurements: ±2.0 ppm S

ISO 13032 S2 POLAR

ISO 13032-12(2018)


Petroleum products –
Determination of low concentration of sulfur in automotive fuels –
Energy-dispersive X-ray fluorescence spectrometric
method (ISO 13032:2012)



- Covers determination of low S in automotive fuels by EDXRF
- Scope: 8 ppm 50 ppm S
- Duplicates are required
- Defined repeatability (r) and reproducibility (R) limits have to be fulfilled
- Defined limit for Signal to Background ratio for 10 ppm S sample

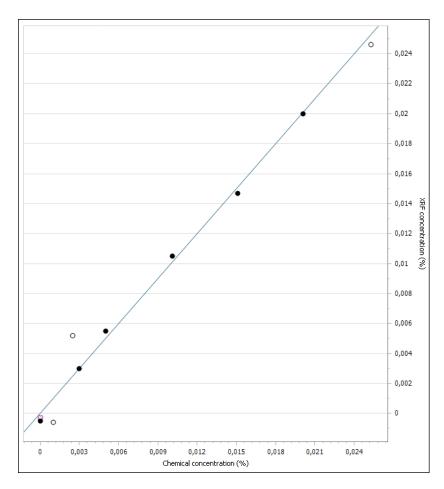
ASTM D8252 - V in Crude Oil S2 POLAR

Clear separation of different V levels, including low levels

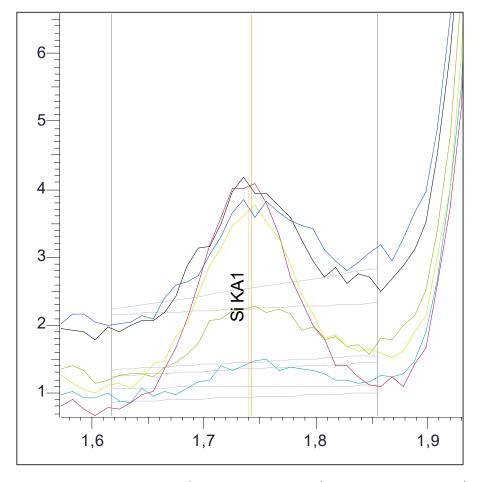
ASTM D8252 - Repeatability QC Sample S2 POLAR

	Date	V [ppm]	Ni [ppm]	Fe ppm]
Rep 01	13.11.2020 16:09	48.4	47.7	50.0
Rep 02	13.11.2020 16:22	48.7	47.3	51.0
Rep 03	13.11.2020 16:31	48.0	49.2	50.4
Rep 04	13.11.2020 16:45	48.9	47.8	49.3
Rep 17	13.11.2020 18:59	48.5	49.3	51.2
Rep 18	13.11.2020 19:08	.11.2020 19:08 49.1		51.5
Rep 19	13.11.2020 19:17	48.7	46.8	50.5
Rep 20	13.11.2020 19:26	49.4	48.9	50.6
Mean value		48.99	48.14	50.35
Abs. Std. Dev.		0.54	0.80	0.95
Rel. Std. Dev. [%]		1.10	1.67	1.89
Cert. value		50.0	50.0	50.0

Excellent repeatability for all elements

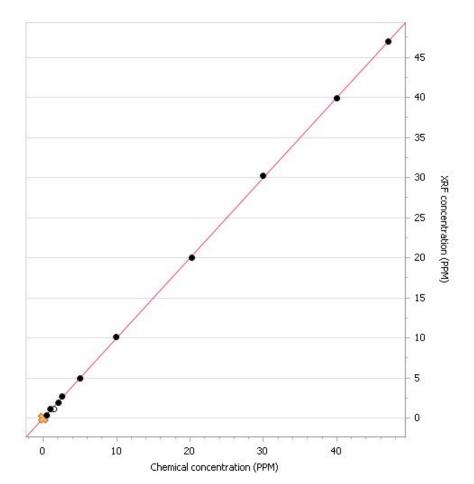


Heavy Fuel Oil Application (HFO) S2 POLAR


Std.	Ca [%]	Fe [%]	Ni [%]	P [%]	S [%]	Si [%]	V [%]	Zn [%]	CH2 [%]	Al [%]
Std 1	0.0010	0.0251	0.0050	0.0020	4.9997	0.0050	0.0075	0.0010	94.9500	0.0005
Std 2	0.0075	0.0100	0.0005	0.0005	1.9996	0.0101	0.0300	0.0002	97.9300	0.0100
Std 3	0.0100	0.0000	0.0000	0.0010	0.5063	0.0000	0.0354	0.0050	99.4400	0.0010
Std 4	0.0030	0.0051	0.0075	0.0050	3.9993	0.0253	0.0050	0.0040	95.9400	0.0025
Std 5	0.0040	0.0151	0.0101	0.0075	0.3000	0.0201	0.0000	0.0015	99.6300	0.0075
Std 6	0.0000	0.0075	0.0040	0.0101	1.0098	0.0030	0.0100	0.0075	98.9400	0.0050
Std 7	0.0050	0.0200	0.0020	0.0040	0.7254	0.0151	0.0010	0.0000	99.2100	0.0150
Std 8	0.0005	0.0010	0.0010	0.0000	0.1001	0.0010	0.0201	0.0020	99.8700	0.0000
Std 9	0.0020	0.0005	0.0150	0.0025	2.4997	0.0050	0.0005	0.0005	97.4700	0.0025
Std 10	0.0150	0.0025	0.0025	0.0015	2.9998	0.0025	0.0025	0.0010	96.9700	0.0050

Set of standards for HFO calibration, covering all key elements for refinery processes

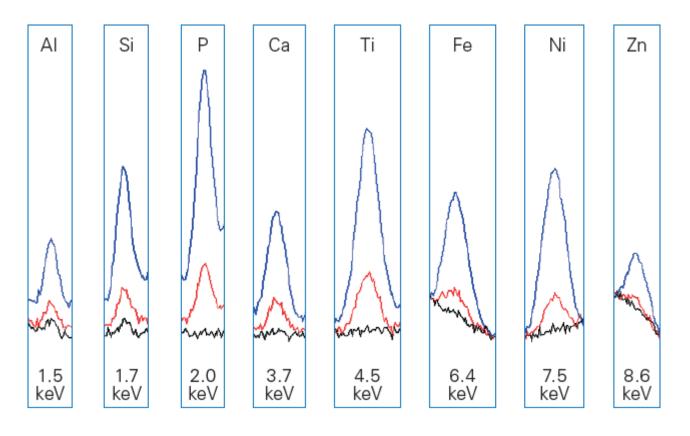
Silicon in Heavy Fuel Oil (HFO) S2 POLAR


Si calibration between 0 – 250 ppm Si

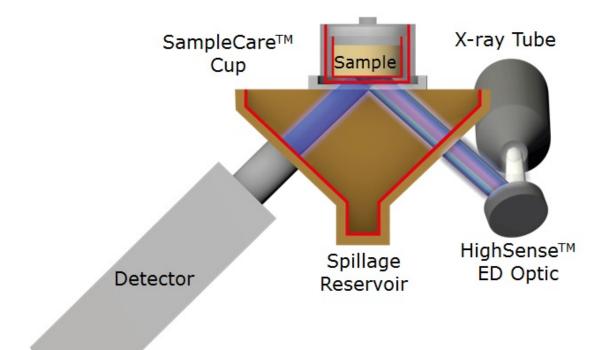
Clear separation of low Si levels (0 – 250 ppm Si)

Chlorine in Crude Oil – ASTM D4929C S2 POLAR

- Analysis of low levels of organic chlorine for corrosion monitoring and desalter control
- Concentration range: 1 to 100 ppm Cl
- Norm-compliant with ASTM D4929C



Excellent accuracy also at low CI concentrations


Multi-element Capability S2 POLAR

Selected elements of overlaid multi-element oil standards (Black: blank sample, red: 10 ppm, blue: 100 ppm)

SampleCare[™] Technology S2 POLAR

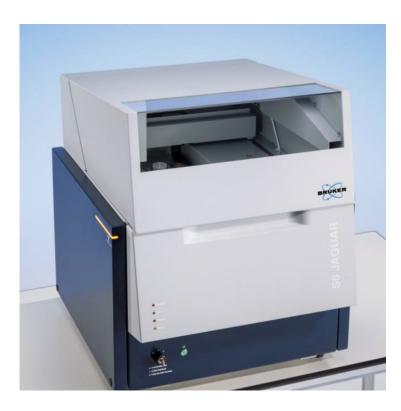
- SampleCareTM cup prevents leakages of liquid samples
- Protects important system components
- Measurement chamber with large spillage reservoir
- S2 POLAR SampleCareTM Technology guarantees highest instrument uptime
- Important for high throughput industrial labs

Small Footprint S2 POLAR

- Very small, compact footprint
- For space-saving analysis in labs
- Also important for on-site process control with limited space in refineries, tank terminals, depots
- Ready-to-analyze 'One Button' solutions, e.g.
- ASTM D7220, D4294, ISO 13032
- ASTM D8252, D4929C
- ASTM D7751, D6481

One instrument does it all for refineries:

From Ultra-Low Sulfur (ULS) in fuels to % in crudes

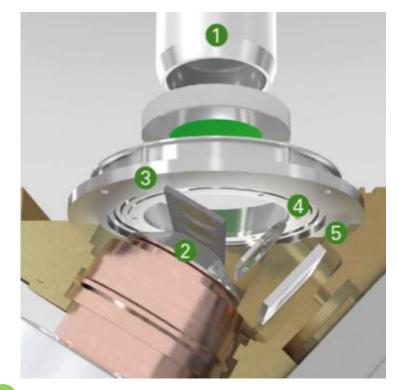

Norm-compliant to ASTM D7220, D4294, ISO 13032, 20847, 8754



ASTM D 2622 for Low Sulfur based on WDXRF

- WDXRF is defined as international standard, delivering best detection limit, robustness and precision
- But limited no of samples and/or applications doesn't justify budget for high power, floorstanding units
- Compact mid power instruments, like S6 JAGUAR can be configured from single element units to multi-purpose

Unit w/ Autochanger for higher productivity

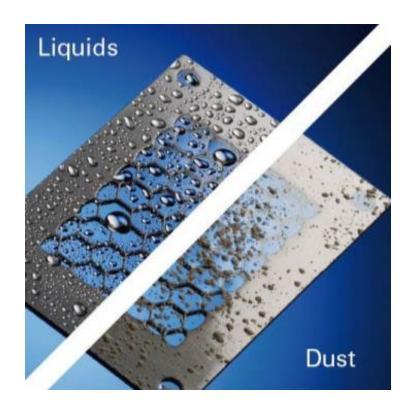


Single Loader for immediate analysis

© 2021 Bruker Company confidential | May 11, 2021 | 35

S6 JAGUAR SampleCareTM: High Instrument Uptime & Low cost of operation

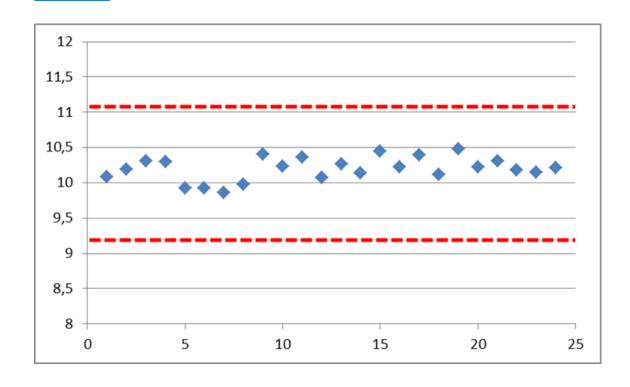
- High instrument uptime due to unique protection during loading and unloading
- Two contamination shields to protect tube window and goniometer
- Unique Vacuum Seal with high transmission window for goniometer protection
- Low helium consumption
 - Flushing of sample chamber only
 - Goniometer chamber remains in vacuum all the time



- Grabber with automatic sample detection
- 2 Tube shield

4 Mask holder

Filter changer


Vacuum seal

Unique High Transmission Vacuum Seal

© 2021 Bruker | 36

S6 JAGUAR Performance ASTM D 2622 - 10

- 25 fold repetition
- 200 s M.T. in total
 - Manual (30 (simple licensing) or 50 kV)
 - Vacuum
 - Helium flushing
 - One crystal (Ge)
 - One detector

10 ppm gasoline repro, better than enforced

S6 JAGUAR Performance ASTM D 2622 - 10

Number	c S [ppm]	Differ [ppm]	Max allowed Diff [ppm]
# 1	10.09		
# 2	10.19	0.1	0.93
# 3	10.31	0.12	0.93
# 4	10.3	-0.01	0.93
# 22	10.31	0.09	0.93
# 23	10.18	-0.13	0.93
# 24	10.15	-0.03	0.93
# 25	10.21	0.06	0.93
Mean Value [ppm]	10.20		
Std Dev]ppm]	0.16		
RSD [ppm]	1.61		

- Max allowance between two consecutive measurements
 - 0.93 ppm
- Typical
 - 0.3 ppm max

• LLD 0.73 ppm

© 2021 Bruker | May 11, 2021 | 38

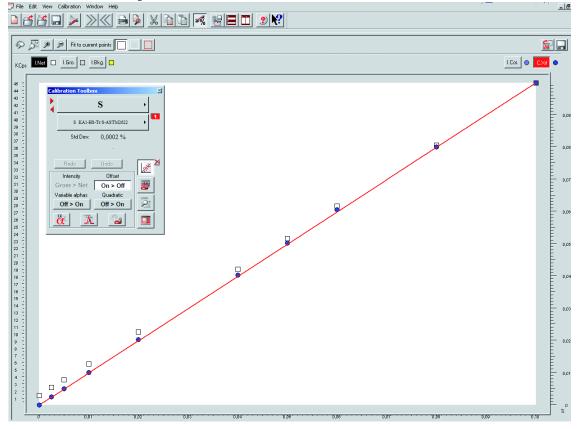
"Our S6 JAGUAR is optimally configured for doing ULS analysis in automotive fuels acc. to ASTM D 2622. The data quality is comparable to big WDXRF at lower cost of ownership. The radiation license procedure was easy due to the 30 kV option."

S6 JAGUAR

- Sold to refineries and downstream for low S with preference on WD
- Multi-Instrument deals

"The S6 JAGUAR WDXRF has become an indispensable tool in our QC lab. The quick analysis of our lubricating products acc. to ASTM D 2622 and D 6443 with low cost of operation is unique. We have recommended the instrument in our company globally"

Low sulfur in automotive fuels ASTM D 2622 with the S8 TIGER Series



- High sample load, multiple applications from fuels, oils, coke, catalysts,...
- Precise and close control of low levels possible by WDXRF
- Several calibrations for each matrix with ASTM D
- Internal standards (EN ISO) for just one method for all matrices
- Enhanced analytical performance with lower COV compared to EDXRF
- Better handling of various matrices, e.g. biofuels, compared to FT-IR, AAS and other methods
- Atmospheric purge vs reduced pressure to enhance analytical performance and reliability for volatile samples

S8 TIGER 4 kW Maximum precision and throughput

Straight calibration curve based on CRM Fit for every matrix

Best precision reduces cost for S removal in crude oil, production close to limit of 10 ppm

High power WDXRF S8 TIGER with 4 kW excitation power offers:

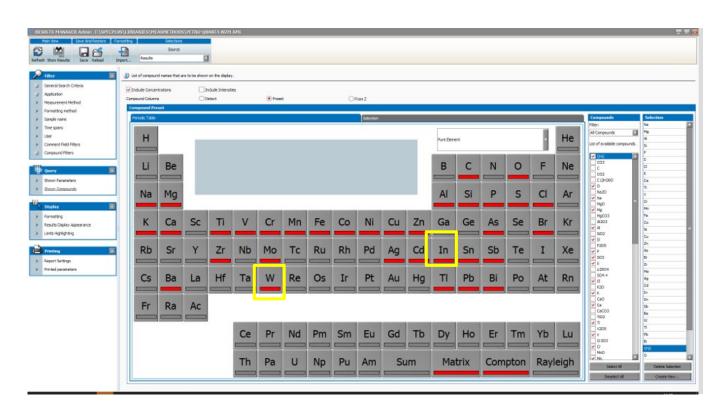
- Very low detection limits down to 0.2 ppm
- High sample throughput of more than 30 samples per hour
- Optimal precision with less than 1.5% variation at 10 ppm

 The better precision enables to reduce Sulfur to just below the limit, savings in refinery process

S8 TIGER News XRF - Solutions for Industry and Research

Ready-To-Analyze Solutions for optimal Performance

- Factory Setup
- Quick start into Routine
- Ease-of-Use
- Best Results
- Bruker Expertise built in



© 2021 Bruker | 43

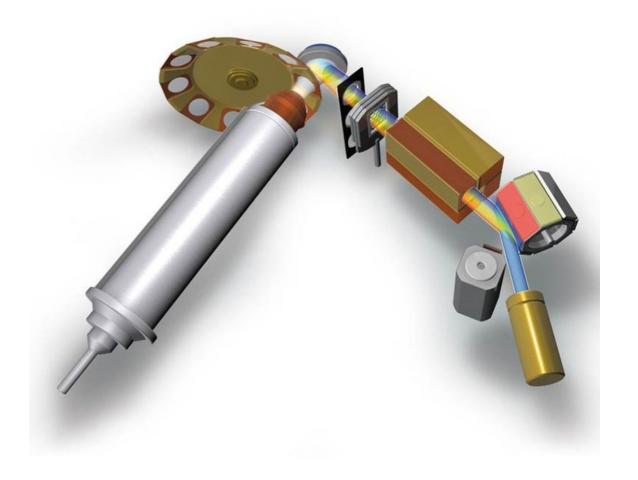
PETRO-QUANT Unique Solutions for Petrochemicals

- Universal petrochemical calibration up to 34 elements in hydrocarbon-based matrices – straight out of the box
 NEW: 2 additional elements: W and In as additives and contaminants
- Methods for best detection w/o
 DuraBerylliumTM Tube shield and w/ Tube shield for highest instrument uptime

Ready – To – Analyze Solutions for all petrochemical applications:

- in refineries, lubricant manufacturing, oil blending, engine development
- In plastics and polymer production

© 2021 Bruker | May 11, 2021 | 4


PETRO-QUANT Unique Solutions for Petrochemicals

Universal Calibration for:

- Matrix: 95% or more hydrocarbons
- Elements: natural contaminants and technical additives
- Optimized sample prep for liquids and polymers
- Concentration ranges:
 S, CI: LLD to 5% (heavy fuels and metal working fluids)
 Mg, P, S, Ca and Zn: up to several thousand PPM (additives)
 Ni, V and wear metals: max several hundred PPM (traces)

Performance

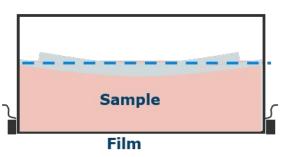
- LLD´s: a few ppm's, typically less than 1 PPM
- accuracy: a few ppm
- precision: a few ppm

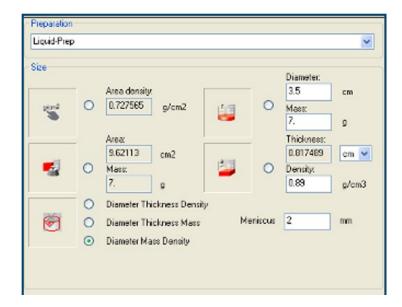
PETRO-QUANT Ultimate Analytical Performance

Universal Calibration for petrochemicals

based on SPECTRA plus:

- Variable alpha (Fundamental Parameter) model for wide concentration ranges
- Automatic selection of best lines for high concentrations (S, Cl) and severe line overlaps (As, Tl, Pb, Bi)
- Aut-O-matic: Quantification of light matrix
- Geometric Correction of Wedge Effect
- Meniscus Correction


© 2021 Bruker 46


PETRO-QUANT Ultimate Analytical Performance

Geometric Correction of Wedge Effect and Meniscus Correction

- Liquid samples often exhibit the meniscus effect, where the top surface of the liquid is concave instead of flat
- This will introduce errors in the calculation of the composition (wrong sample height)
- Meniscus Effect Correction for liquid samples:
- Insert size of the meniscus effect in the ApplicationWizard

Liquid Sample Cell

© 2021 Bruker 47

BRUKER's Strength Complete Product Range for Refineries

S8 TIGER

For high demanding central labs

S6 JAGUAR

- For petrochemical labs
- e.g. ASTM D2622 and ASTM D6443

S2 POLAR

- For petro applications, incl. Ultra-Low Sulfur
- Multi-element refinery and oil applications
- Small and compact, along distribution channel

S2 PUMA

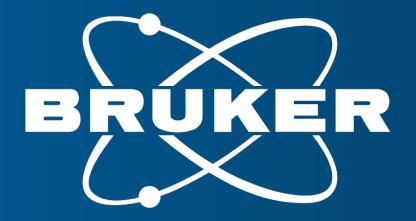
For wear metals in lubricating oils

ALPHA FT-IR

For biodiesel (FAME) analysis

S2 POLAR Fuel - Analyzer

© 2021 Bruker Innovation with Integrity | 11 May 2021 | 4


Any Questions?

Learn more about matrix influences on HC, matrix correction and how to handle these in lubricants

In our 2.6.2021 webinar – Sign Up Now!

Thank you!

Innovation with Integrity