

Energy from Waste (EfW) Heat Network Directory

Recovering energy from waste that would otherwise be destined for landfill is an essential part of the United Kingdom's waste management system. This is primarily achieved through thermal treatment where residual waste – the material left over after recycling – is combusted in specialist Energy-from-Waste (EfW) plants to generate heat, which in turn raises steam in a boiler that drives a turbine to produce electrical energy.

As of early 2025, there were 63 operational energy-from-waste plants in the UK and, between them, these facilities have the capacity to process 19.3 million tonnes of residual waste each year, while contributing to 3.6% per cent of the UK's total net electricity generation in 2024, or 10,040 GWh¹.

However, there is significant unrealised potential to extract not just electrical energy, but also heat energy from the majority of these facilities. Making the most of this heat could be critical to delivering cost-effective heat decarbonisation in the UK's urban areas.

The opportunity for heat decarbonisation

Heating buildings is the single largest source of greenhouse gas emissions in our energy system. If we are to reach net zero, it is imperative that the UK makes significant progress to decarbonise the generation of steam for industrial processes and heat for residential and commercial buildings during the 2020s and the 2030s.

However, decarbonising heat is a complex task. It is likely to require a patchwork of heat electrification, the use of zero carbon gases, such as hydrogen, and a greater role for largescale heat networks. With respect to the latter, the Department for Energy Security and Net Zero (DESNZ) anticipates that low carbon heat networks will have to meet the heating and hot water demands of 1.5m homes by 2030 and 27.5TWh in non-residential buildings - up from about 420,000 domestic consumers and a total of just under 18TWh for total UK domestic and non-domestic generation today. The Committee on Climate Change also modelled that the UK's heat supply from heat networks will have to grow from 3% to 18% by 2050.

Decarbonising at this scale will require major policy intervention from Government, alongside ambitious action from industry, and must start now.

Recovering energy from waste in the UK

Energy from Waste (EfW) plants have a clear role to play helping the United Kingdom meet these requirements. Although the UK currently has a fleet of more than 63 EfW plants, less than a quarter of them export the heat they generate, which is in stark contrast to plants in continental Europe where the vast majority export heat and electricity.

Utilising heat from UK plants would not only support heat decarbonisation but would also improve the efficiency of these plants in accordance with recent Government commitments in the Resources and Waste Strategy for England – while also maximising their contribution to achieving a sectoral target of net-zero GHG emissions by 2040.

The opportunity for the Energy from Waste sector

From a heat network perspective, EfW plants can provide large volumes of heat on a consistent basis relatively nearby to significant heating demand. Heat from EfW operations is likely to be one of the most cost-effective sources of low carbon heat for UK towns and cities and, given the high temperature of the Energy from Waste process, these plants are particularly well suited to meet the needs of all building types, even those that have not yet been subject to a full energy-efficiency retrofit.

Furthermore, EfW heat networks protect users against energy price volatility, since the energy generated is produced as a by-product of longterm waste management contracts and is not therefore subject to the global market forces affecting other fuel sources.

The purpose of this Energy from Waste heat network directory

Delivering greater heat network offtake from these facilities will require collaboration between many different parties. To facilitate this collaboration the ESA has, for the first time, published a directory of individual EfW plants and their heat offtake potential, which we hope will form a useful platform to start discussions between parties. All of the available details for each of our participating members' plants is recorded below in this document. The ESA is happy to facilitate further discussions and to support where we can.

FCC Environment – Allington

The operator will review this document every 2 years at a minimum to capture changing data over time.

ate of completion of the Directory

31/03/2025

Organisation	FCC
Facility	Allington
Address	FCC Environment
	Laverstoke Road
	20/20 Business Park
	ME16 OLE
Contact Details	

EfW Heat Network Directory: FCC - Allington

Name	Tony Stanbridge
Telephone No.	01622 697218
Email Address	Tony.Stanbridge@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Not Applicable
Corporate structure of EfW operation
Kent Enviropower Limited
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned (Date)	2008	
Remaining Concession Period	13	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	250000	MWh_th
Daily	685	MWh_th
Minimum Output		MWth
Maximum Output (Peak)		MWth
Heat Plant Annual Availability	90	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	

EfW Heat Network Directory: FCC - Allington

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	160	°C
Minimum Supply Temperature	90	°C
Supply Pressure	6	BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure	4	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Depends on the	MWe
annually	contract	
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		

EfW Heat Network Directory: FCC - Allington

Heat Carbon Factor (Calculation as defined in	kgCO2/kWh
SAP)	

Thalia – Allerton EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory 21/

21/11/2024

Organisation	Thalia Waste Management
Facility	Allerton Waste Recovery Park - EfW
Address	Allerton Waste Recovery Park
	Knaresborough
	North Yorkshire
	HG5 0SD

EfW Heat Network Directory: Thalia – Allerton EfW

Contact Details	
Name	Fiza Hussain
Telephone No.	07707866929
Email Address	fiza.hussain@Thalia.co.uk

Owner/Organisational Structure

Company Structure
Wholly Owned
Corporate structure of EfW operation
Allerton EfW operated by Thalia under contract with North Yorkshire Waste
Individuals involved and responsibilities
Jamie Hambretch - Process Engineer
Dan Smith - Operations Manager

Waste Source

When was the Plant Commissioned	2018	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	504368.40	MWh_th
Daily	1625.68	MWh_th
Minimum Output	20.32	MWth
Maximum Output (Peak)	75.1	MWth
Heat Plant Annual Availability	85	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	85	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		

EfW Heat Network Directory: Thalia – Allerton EfW

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	LTHW, Condensate, Steam	Condensate
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature	56	°C
Minimum Condensate Return Temperature	34	°C
Condensate System Operating Pressure	0.17	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	No	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		

EfW Heat Network Directory: Thalia – Allerton EfW

Electricity Carbon Factor (Calculation as	ТВС	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	ТВС	kgCO2/kWh
SAP)		

Viridor – Ardley ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Ardley ERF
Address	Middleton Stoney Road
	Ardley
	Bicester
	OX27 7AA

EfW Heat Network Directory: Viridor – Ardley ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner / Local Council
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2014	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	73,737	MWh_th
Daily	222	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	9.3	MWth
Heat Plant Annual Availability	9.1	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	8.9	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Ardley ERF

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	112	°C
Minimum Supply Temperature	105	°C
Supply Pressure	1.5	BarG
Maximum Condensate Return Temperature	ТВА	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	ТВА	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.096	kgCO2/kWh
SAP)		

Viridor – Avonmouth ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Avonmouth ERF
Address	Severn Road
	Chittening
	Somerset
	BS11 OYU

EfW Heat Network Directory: Viridor – Avonmouth ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Wholly Owned	
Corporate structure of EfW operation	
Owner	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	2020	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	135,517	MWh_th
Daily	408	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	17	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	14.8	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Avonmouth ERF

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	140	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	3.6	BarG
Maximum Condensate Return Temperature	80	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	2.63	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.085	kgCO2/kWh
SAP)		

Veolia – Battlefield ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Battlefield ERF	
Address	Vanguard Way	
	Shrewsbury	
	SY1 3TG	
Contact Details		
Name	Gary Weaver	
Telephone No.	07876 501544	
Email Address	n/a	

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned (Date)	2015	
Remaining Concession Period	16	Years
Is the Concession Renewable	Yes	

Annually	Not Applicable	MWh_th
Daily	Not Applicable	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	15	MWth
Heat Plant Annual Availability	94.7	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can		%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	Tbc	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Tbc depending	MWe
annually	on load	
Electricity Carbon Factor (Calculation as	tbc	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	tbc	kgCO2/kWh
SAP)		

Viridor – Beddington ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Beddington ERF
Address	105 Beddington Line
	Beddington
	London
	CR0 4TD

EfW Heat Network Directory: Viridor – Beddington ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure		
Wholly Owned		
Corporate structure of EfW operation		
Owner / Local Council		
Individuals involved and responsibilities		

Waste Source (Describe)

When was the Plant Commissioned	2018	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	119,574	MWh_th
Daily	360	MWh_th
Minimum Output	0.75	MWth
Maximum Output (Peak)	15.0	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	15.6	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Beddington ERF

If "No" to above is space available onsite to	Unknown	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	144	°C
Minimum Supply Temperature	141	°C
Supply Pressure	4.0	BarG
Maximum Condensate Return Temperature	120	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	3.62	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	3.27	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.092	kgCO2/kWh
SAP)		

Suez – Bolton

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

11/12/2024

Organisation	Suez
Facility	Bolton
Address	Hurstwood Court
	Raikes Lane Industrial Estate
	Bolton
	BL3 2NP
Contact Details	

EfW Heat Network Directory: Suez - Bolton

Name	Alan Sheridan
Telephone No.	(+44) 7977731138
Email Address	alan.sheridan@suez.com

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
Client Ownership with O&M Contract
Individuals involved and responsibilities
Gary Mayson (COO)
Tim Otley (National Energy Director)
Mat Kay (Energy Director North)
Simon Vanston-Rumney (Plant Manager)

Waste Source (Describe)

When was the Plant Commissioned	1999	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	324,800	MWh_th
Daily	974	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	7	MWth
Heat Plant Annual Availability	1	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	TBD	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth

EfW Heat Network Directory: Suez - Bolton

What is the backup plants fuel source	n/a	
If "No" to above is space available onsite to	n/a	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Low Pressure	
	Steam	
Maximum Supply Temperature	Tbd	°C
Minimum Supply Temperature	Tbd	°C
Supply Pressure	1	BarG
Maximum Condensate Return Temperature	Tbd	°C
Minimum Condensate Return Temperature	Tbd	°C
Condensate System Operating Pressure	Tbd	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	n/a	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Dependent on	MWe
annually	customer take	
	off	

EfW Heat Network Directory: Suez - Bolton

Electricity Carbon Factor (Calculation as	0.557 (Suez EfW	kgCO2/kWh
defined in SAP)	Average)	
Heat Carbon Factor (Calculation as defined in	0.403	kgCO2/kWh
SAP)		

Viridor – Cardiff ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Cardiff ERF
Address	Trident Park
	Glass Avenue
	Cardiff
	Glamorgan

EfW Heat Network Directory: Viridor – Cardiff ERF

	CF24 5EN
Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner / Local Authority
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2015	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	119,574	MWh_th
Daily	360	MWh_th
Minimum Output	0.80	MWth
Maximum Output (Peak)	15.0	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the	11.7	%
plant can achieve with max heat export		
Is thermal back-up plant available	Yes	Yes/No
	(by Cardiff Heat	
	Network Ltd.)	

EfW Heat Network Directory: Viridor – Cardiff ERF

If "Yes" to above how much (Peak)	7.5MW in 1st Phase (up	MWth
	to 15MW later)	
What is the backup plants fuel source	Natural Gas	
If "No" to above is space available	Not Applicable	Yes/No
onsite to build backup plant facility		
Are you already supplying heat to an	CHP Plant under	Yes/No
heat off-take customer	construction /	
	commissioning	
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	111	°C
Minimum Supply Temperature	92	°C
Supply Pressure	1.47	BarG
Maximum Condensate Return Temperature	95	°C
Minimum Condensate Return Temperature	90	°C
Condensate System Operating Pressure	0.88	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	1.37	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.046	kgCO2/kWh
SAP)		

EfW Heat Network Directory: Viridor – Cardiff ERF

Veolia – Chineham ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Chineham ERF	
Address	Whitmarsh Ln	
	Chineham	
	Basingstoke	
	RG24 8LL	
Contact Details		
Name	Shaun McCluskey	
Telephone No.		
Email Address		

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Veolia

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned (Date)	2004	
Remaining Concession Period	10	Years
Is the Concession Renewable		

Annually		MWh_th
Daily	48	MWh_th
Minimum Output		MWth
Maximum Output (Peak)	15	MWth
Heat Plant Annual Availability	92.2	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can		%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Tbc depending	MWe
annually	on load	
Electricity Carbon Factor (Calculation as	tbc	kgCO2/kWh
defined in SAP)		ļ
Heat Carbon Factor (Calculation as defined in	tbc	kgCO2/kWh
SAP)		

Suez – Cornwall ERC

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

11/12/2024

Organisation	Suez
Facility	Cornwall ERC
Address	St Dennis
	Saint Austell
	Cornwall
	PL26 8DY
Contact Details	

EfW Heat Network Directory: Suez – Cornwall ERC

Name	Allan Chapman
Telephone No.	01726 878866
Email Address	allan.chapman@suez.com

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
SPV with O&M contract in place.
Individuals involved and responsibilities
Gary Mayson (COO)
Tim Otley (National Energy Director)
Paul Leighton (Energy Director South)
Tony Burge (Plant Manager)

Waste Source (Describe)

When was the Plant Commissioned	2017	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable	Yes	Yes/No

Annually	41,620	MWh_th
Daily	139.2	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	5.8	MWth
Heat Plant Annual Availability	81.9	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	25	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth

EfW Heat Network Directory: Suez – Cornwall ERC

What is the backup plants fuel source	n/a	
If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	171	°C
Minimum Supply Temperature	171	°C
Supply Pressure	6.7	BarG
Maximum Condensate Return Temperature	110	°C
Minimum Condensate Return Temperature	46	°C
Condensate System Operating Pressure	3.8	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	35,162	MWe
annually		

EfW Heat Network Directory: Suez – Cornwall ERC

Electricity Carbon Factor (Calculation as	0.557 (Suez EfW	kgCO2/kWh
defined in SAP)	Average)	
Heat Carbon Factor (Calculation as defined in	n/a	kgCO2/kWh
SAP)		

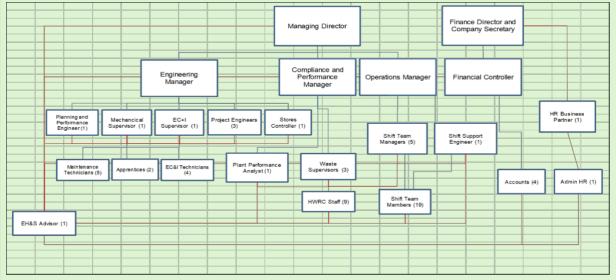
The Coventry and Solihull Waste Disposal Company Ltd – Coventry EFW

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	22/11/2024
-------------------------------------	------------

Organisation	The Coventry and Solihull Waste Disposal Company Ltd	
	(CSWDC)	
Facility	Coventry EFW	

EfW Heat Network Directory: CSWDC


Address	The Coventry and Solihull Waste Disposal Company Ltd
	(CSWDC)
	Bar Road
	Coventry
	CV3 4 AN
Contact Details	
Name	Elaine Price, Compliance and Performance Manager
Telephone No.	024 7650 7400
Email Address	info@cswdc.co.uk

Owner/Organisational Structure (Describe)

Company Structure

The Coventry & Solihull Waste Disposal Company (CSWDC) is an independent waste management company and our main business is extracting energy (heat and electrical power) from municipal and commercial solid waste.

Based to the south of the City, we have been operating in Coventry since 1975. CSWDC also operates a Household Waste Recycling Centre on behalf of Coventry City Council, where residents in the city are able to bring their household waste for recycling and disposal.

Heat from burning waste produces steam in the boilers at 17.5 bar pressure and 208°C. The steam feeds two steam turbine generators, producing 12.5MW. and 4.8MW of electricity for internal power needs and export to the National Grid

CSWDC provides heat to the Coventry District Energy Company (CDEC) – BRING who operate the scheme that provides heat via a 6.6km network of buried pipes to consumers in the city centre, delivering significant carbon savings.

More than 44MW of energy-from-waste capacity.

77MW of total plant thermal capacity

Incorporates a 600,000-litre thermal storage vessel for additional resilience Gives customers a carbon saving of approximately 89% compared with a conventional stand-alone gas-fired system

Could save up to 25,000 tonnes of carbon if the system's full capacity is utilised

BRING Contacts - bringenergy.com

Rhys Major - Commercial Manager, rhys.major@bringenergy.com,07890948490 Luca Giunta - Head of Engineering Development luca.giunta@bringenergy.com Mark Brown - Contract Manager, mark.brown@bringenergy.com, 07867142578

Corporate structure of EfW operation

We are an independent single site company.

CSWDC's Shareholders are Coventry City Council (coventry.gov.uk), Solihull Metropolitan Borough Council (solihull.gov.uk), Warwickshire County Council (warwickshire.gov.uk) and Leicestershire County Council (leicestershire.gov.uk).

Individuals involved and responsibilities

CSWDC contacts

Karl Starkey Managing Director

Chris Penson Finance Director

Elaine Price Compliance and Performance Manager

Stuart Barnet Engineering Manager

Phil Burgess Operations Manager

Ranvir Sahota Financial Controller

Waste Source (Describe)

When was the Plant Commissioned	Operating since 1975	
(Date)		
Remaining Concession Period	31/03/2041	Years
Is the Concession Renewable	No - Not Existing Plant	Yes/No

Annually	12600 used in	MWh th
	current	_
	network not	
	full capacity of	
	steam that is	
	available	
Daily	34.5 used in	MWh_th
	current	
	network not	
	full capacity of	
	steam that is	
	available	
Minimum Output	0	MWth
Maximum Output (Peak)	12	MWth
Heat Plant Annual Availability	100	%
Heat Availability Guaranteed	YES	Yes/No
What would be the max efficiency the plant can	n/a	%
achieve with max heat export		
Is thermal back-up plant available	BRING hires in	Yes/No
	boilers – Yes	
If "Yes" to above how much (Peak)	12	MWth
What is the backup plants fuel source	Diesel	
If "No" to above is space available onsite to	n/a	Yes/No
build backup plant facility		

EfW Heat Network Directory: CSWDC

Are you already supplying heat to an heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	As above	MWth
	currently	
	what's used in	
	current scheme	
	– more steam	
	is available	

Drive and Character (states and states and the DDINIC)		
Primary Circuit (data provided by BRING)		
Medium (Select one.)	Steam	
Maximum Supply Temperature	120	°C
Minimum Supply Temperature	112	°C
Supply Pressure	5	BarG
Maximum Condensate Return Temperature	95	°C
Minimum Condensate Return Temperature	85	°C
Condensate System Operating Pressure	1.5	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	95	°C
Minimum Supply Temperature	90	°C
Maximum Return Temperature	70	°C
Minimum Return Temperature	55	°C
System Operating Pressure	3	BarG
Will the heat provided be sacrificial to	NO	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		

EfW Heat Network Directory: CSWDC

Electricity Carbon Factor (Calculation as	0.519	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.058	kgCO2/kWh
SAP)		

FCC Environment – Dudley EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	31/03/2025
-------------------------------------	------------

Organisation	FCC
Facility	Dudley EfW
Address	Lister Road
	Dudley
	DY2 8JW
Contact Details	
Name	Rob Hayward

EfW Heat Network Directory: FCC - Dudley EfW

Telephone No.	01902 352864
Email Address	rob.hayward@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned	14th February 1998	
(Date)		
Remaining Concession Period	1	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	33000	MWh_th
Daily	90	MWh_th
Minimum Output		MWth
Maximum Output (Peak)		MWth
Heat Plant Annual Availability	0	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	

EfW Heat Network Directory: FCC - Dudley EfW

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	335	°C
Minimum Supply Temperature	90	°C
Supply Pressure	44	BarG
Maximum Condensate Return Temperature	55	°C
Minimum Condensate Return Temperature	25	°C
Condensate System Operating Pressure	-1	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to		Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		

EfW Heat Network Directory: FCC - Dudley EfW

Heat Carbon Factor (Calculation as defined in	kgCO2/kWh
SAP)	

Viridor – Dunbar ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Dunbar ERF
Address	Oxwell Mains
	Dunbar
	East Lothian
	EH42 1SW

EfW Heat Network Directory: Viridor – Dunbar ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2019	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	135,517	MWh_th
Daily	408	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	17	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	15.9	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Dunbar ERF

If "No" to above is space available onsite to	Unknown	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	252	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	5.1	BarG
Maximum Condensate Return Temperature	90	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	95	°C
Minimum Supply Temperature	ТВС	°C
Maximum Return Temperature	75	°C
Minimum Return Temperature	ТВА	°C
System Operating Pressure	0.85	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	3.78	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.084	kgCO2/kWh
SAP)		

FCC Environment – Eastcroft

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

31/03/2025

Organisation	FCC
Facility	Eastcroft
Address	Incinerator Road
	Off Meadow Lane
	Nottingham
	Nottinghamshire
	NG2 3JH

EfW Heat Network Directory: FCC - Eastcroft

Contact Details	
Name	Ashley Corke
Telephone No.	7817641299
Email Address	ashley.corke@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
n/a
Corporate structure of EfW operation
WasteNotts Reclamation Limited
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned	1972	
(Date)		
Remaining Concession Period	6	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	380,000	MWh_th
Daily	1000	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	1600	MWth
Heat Plant Annual Availability	90	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	13.5	%
achieve with max heat export		
Is thermal back-up plant available	Yes	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source	Fuel Oil	

EfW Heat Network Directory: FCC - Eastcroft

If "No" to above is space available onsite to		Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	980 per day	MWth

Primary Circuit		
Medium (Select one.)	Condensate	
Maximum Supply Temperature	150	°C
Minimum Supply Temperature	90	°C
Supply Pressure	9	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature	70	°C
Condensate System Operating Pressure	9	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	78	°C
Minimum Supply Temperature	70	°C
Maximum Return Temperature	135	°C
Minimum Return Temperature	50	°C
System Operating Pressure	6	BarG
Will the heat provided be sacrificial to	No	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as	n/a	kgCO2/kWh
defined in SAP)		

EfW Heat Network Directory: FCC - Eastcroft

Heat Carbon Factor (Calculation as defined in	n/a	kgCO2/kWh
SAP)		

Viridor – Exeter ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

28/04/2025

Organisation	Viridor
Facility	Exeter ERF
Address	Grace Road South
	Exeter
	EX2 8QE
Contact Details	

EfW Heat Network Directory: Viridor – Exeter ERF

Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner / Local Council
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2014	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	55,801	MWh_th
Daily	168	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	7.0	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	35.2	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	Not within current	Yes/No
build backup plant facility	boundaries	

EfW Heat Network Directory: Viridor – Exeter ERF

Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	147	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	4.7	BarG
Maximum Condensate Return Temperature	ТВА	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	1.55	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.120	kgCO2/kWh
SAP)		

enfinium – Ferrybridge FM1

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

22/10/2024

Organisation	enfinium
Facility	Ferrybridge FM1
Address	Ferrybridge,
	Kirkhaw Lane,

EfW Heat Network Directory: enfinium - Ferrybridge FM1

	Knottingley,
	West Yorkshire,
	WF11 8DX
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	July 2015	
(Date)		
Remaining Concession Period	n/a	Years
Is the Concession Renewable	n/a	Yes/No

Annually	160,000	MWh_th
Daily	438	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	20	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No

EfW Heat Network Directory: enfinium - Ferrybridge FM1

If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	-	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature	-	°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature	Not applicable	°C
Minimum Return Temperature	Not applicable	°C
System Operating Pressure	Not applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	4	MWe
annually		

EfW Heat Network Directory: enfinium - Ferrybridge FM1

Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

enfinium – Ferrybridge FM2

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

22/10/2024

Organisation	enfinium
Facility	Ferrybridge FM2
Address	Fryston Ln,
	Knottingley

EfW Heat Network Directory: enfinium - Ferrybridge FM2

	WF11 8AJ
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned (Date)	July 2015	
Remaining Concession Period	n/a	Years
Is the Concession Renewable	n/a	Yes/No

Annually	160,000	MWh_th
Daily	438	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	20	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	

EfW Heat Network Directory: enfinium - Ferrybridge FM2

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	-	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature	100	°C
Supply Pressure	12	BarG
Maximum Condensate Return Temperature	Not Specified	°C
Minimum Condensate Return Temperature	Not Specified	°C
Condensate System Operating Pressure	Not Specified	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature	Not applicable	°C
Minimum Return Temperature	Not applicable	°C
System Operating Pressure	Not applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	4	MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		

EfW Heat Network Directory: enfinium - Ferrybridge FM2

Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

Viridor – Glasgow ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Organisation	Viridor
Facility	Glasgow ERF
Address	425 Polmadie Road
	Glasgow Scotland
	Scotland
	G42 0PJ

EfW Heat Network Directory: Viridor – Glasgow ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner / Local Council
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2019	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	102,036	MWh_th
Daily	307	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	12.8	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	21.9	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Glasgow ERF

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	170	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	3.0	BarG
Maximum Condensate Return Temperature	95	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	2.49	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.092	kgCO2/kWh
SAP)		

FCC Environment – Greatmoor EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.

31/03/2025

Organisation	FCC
Facility	Greatmoor EfW
Address	Greatmoor Road
	Woodham
	Aylesbury
	HP18 OAF
Contact Details	

EfW Heat Network Directory: FCC - Greatmoor EfW

Name	Stephen Rawlinson
Telephone No.	01296 323660
Email Address	steve.rawlinson@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
n/a
Corporate structure of EfW operation
FCC Buckinghamshire Limited
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned (Date)	January 2016	
Remaining Concession Period	25	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	891,768	MWh_th
Daily	2443.2	MWh_th
Minimum Output	10 (est)	MWth
Maximum Output (Peak)	101.8	MWth
Heat Plant Annual Availability	90	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	

EfW Heat Network Directory: FCC - Greatmoor EfW

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	180	°C
Minimum Supply Temperature	90	°C
Supply Pressure	3.5-4.6	BarG
Maximum Condensate Return Temperature	80	°C
Minimum Condensate Return Temperature	50	°C
Condensate System Operating Pressure	-1	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	3MW (est)	MWe
annually		

EfW Heat Network Directory: FCC - Greatmoor EfW

Electricity Carbon Factor (Calculation as	No data	kgCO2/kWh
defined in SAP)	available due to	
	CO2 neutral	
Heat Carbon Factor (Calculation as defined in	No data	kgCO2/kWh
SAP)	available due to	
	CO2 neutral	

FCC Environment – Hartlebury

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	31/03/2025
-------------------------------------	------------

Organisation	FCC
Facility	Hartlebury
Address	Hartlebury Trading Estate
	Worcestershire
	DY10 4JD
Contact Details	
Name	Jasen Jordan

EfW Heat Network Directory: FCC - Hartlebury

Telephone No.	01452 379 886
Email Address	jasen.jordan@severnwaste.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned	March 2017	
(Date)		
Remaining Concession Period	18	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	125000	MWh_th
Daily	300	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	16	MWth
Heat Plant Annual Availability	90	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		

EfW Heat Network Directory: FCC - Hartlebury

Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to		Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

EfW Heat Network Directory: FCC - Hartlebury

Indaver NESS Services Ltd. – NESS Energy Project

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

12/11/2024

Organisation	Indaver NESS Services Ltd.
Facility	NESS EfW
Address	Greenbank Crescent,
	Aberdeen,
	AB12 3BG
Contact Details	
Name	John Little
Telephone No.	+44 7901 946485
Email Address	john.little@indaver.com

EfW Heat Network Directory: Indaver NESS Services Ltd. – NESS Energy Project

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Indaver under contract with EFW NESS Ltd on behalf of Aberdeen City, Aberdeenshire, and Moray Council.

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned (Date)	2023	
Remaining Concession Period	19	Years
Is the Concession Renewable	Yes	Yes/No

Annually	80,000	MWh_th
Daily	240	MWh_th
Minimum Output	0.5	MWth
Maximum Output (Peak)	10	MWth
Heat Plant Annual Availability	91.3	%
Heat Availability Guaranteed	Yes	Yes/No
What would be the max efficiency the plant can	40	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	N/A	MWth
What is the backup plants fuel source	N/A	
If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	10	MWth

EfW Heat Network Directory: Indaver NESS Services Ltd. – NESS Energy Project

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature	100	°C
Supply Pressure	0.24	BarG
Maximum Condensate Return Temperature	110	°C
Minimum Condensate Return Temperature	55	°C
Condensate System Operating Pressure	-0.9	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	100	°C
Minimum Supply Temperature	85	°C
Maximum Return Temperature	70	°C
Minimum Return Temperature	55	°C
System Operating Pressure	4.5	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	2,528 MWh	MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

Thalia – Isle of Wight ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory 21/11/	/2024
--	-------

Organisation	Thalia Waste Management
Facility	Isle of Wight Waste Recovery Park - ERF
Address	Forest Park
	Forest Rd
	Newport PO30 5YS

EfW Heat Network Directory: Thalia – Isle of Wight ERF

Contact Details	
Name	Fiza Hussain
Telephone No.	07751174504
Email Address	fiza.hussain@thalia.co.uk

Owner/Organisational Structure

Company Structure
Wholly owned
Corporate structure of EfW operation
IOW EfW operated by Thalia under contract with the Isle of Wight Council.
Individuals involved and responsibilities
Chris Harrison - Supervisor
Graham Telford - Operations Manager

Waste Source

When was the Plant Commissioned	2024	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	95238.38	MWh_th
Daily	260.93	MWh_th
Minimum Output	5.44	MWth
Maximum Output (Peak)	11.96	MWth
Heat Plant Annual Availability	85	%
Heat Availability Guaranteed	Yes	Yes/No
What would be the max efficiency the plant can	85	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		

EfW Heat Network Directory: Thalia – Isle of Wight ERF

If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	LTHW, Condensate, Steam	Condensate
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature	50	°C
Minimum Condensate Return Temperature	45	°C
Condensate System Operating Pressure	0.1	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	No	Yes/No
Electricity generation		MWe
If "Yes" how much electricity will be lost annually		IVIVVE

EfW Heat Network Directory: Thalia – Isle of Wight ERF

Electricity Carbon Factor (Calculation as	ТВС	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	ТВС	kgCO2/kWh
SAP)		

FCC Environment – Javelin Park

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	31/03/2025
-------------------------------------	------------

Organisation	FCC
Facility	Javelin Park
Address	Gloucestershire EfW Javelin Park
	Stonehouse
	GL10 3ET
Contact Details	
Name	Rob Hayward

EfW Heat Network Directory: FCC - Javelin Park

Telephone No.	01452 379 886
Email Address	rob.hayward@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned	October 2019	
(Date)		
Remaining Concession Period	20	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	125,000	MWh_th
Daily	300	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	16	MWth
Heat Plant Annual Availability	90	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		

EfW Heat Network Directory: FCC - Javelin Park

Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to		Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

EfW Heat Network Directory: FCC - Javelin Park

enfinium – Kelvin

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory22/10/2024

Organisation	enfinium
Facility	Kelvin

EfW Heat Network Directory: enfinium - Kelvin

Address	Kelvin Way
	West Bromwich
	B70 7JR
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	Tbc - 2025	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	120,000	MWh_th
Daily	329	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	15	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No

EfW Heat Network Directory: enfinium - Kelvin

If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	-	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	3	MWe
annually		

EfW Heat Network Directory: enfinium - Kelvin

Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

enfinium – Kemsley

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory22/10/2024

Organisation	enfinium
Facility	Kemsley
Address	Grovehurst Rd,

EfW Heat Network Directory: enfinium – Parc

	Kemsley,
	Sittingbourne,
	Kent,
	ME10 2FP
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned (Date)	July 2020	
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	688,000	MWh_th
Daily	1,885	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	86	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		

EfW Heat Network Directory: enfinium – Parc

Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	55	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	220	°C
Minimum Supply Temperature		°C
Supply Pressure	11.5	BarG
Maximum Condensate Return Temperature	50	°C
Minimum Condensate Return Temperature	40	°C
Condensate System Operating Pressure	4	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		

EfW Heat Network Directory: enfinium – Parc

If "Yes" how much electricity will be lost	22	MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

Suez – Kirklees

The operator will review this document every 2 years at a minimum to capture changing data over time.

11/12/2024

Organisation	Suez
Facility	Kirklees
Address	Diamond St
	Huddersfield
	West Yorkshire
	HD1 6BZ
Contact Details	

EfW Heat Network Directory: Suez – Kirklees

Name	Nick Royston
Telephone No.	
Email Address	nick.royston@suez.com

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
SPV with O&M contract in place.
Individuals involved and responsibilities
Gary Mayson (COO)
Tim Otley (National Energy Director)
Mat Kay (Energy Director North)
Mark Ryan (Plant Manager)

Waste Source (Describe)

When was the Plant Commissioned	2000	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable	Yes	Yes/No

Annually	13383.3 (assuming 2t/hr of	MWh_th
	steam utilised	
	at primary circuit	
	conditions below)	
Daily	36.67 (as above)	MWh_th
Minimum Output	0 (plant offline)	MWth
Maximum Output (Peak)	1.53 (4t/hr steam, subject to	MWth
	agreement)	
Heat Plant Annual Availability	85	%
Heat Availability Guaranteed	No	Yes/No

EfW Heat Network Directory: Suez – Kirklees

What would be the max efficiency	25	%
the plant can achieve with max		
heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel	Oil Burners	
source		
If "No" to above is space available	No	Yes/No
onsite to build backup plant		
facility		
Are you already supplying heat to	No	Yes/No
an heat off-take customer		
If "yes" confirm capacity	n/a	MWth

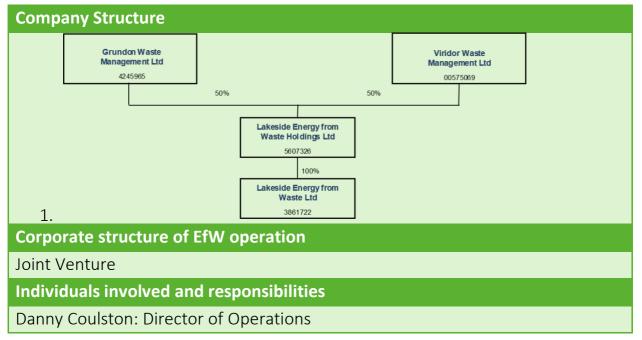
Medium (Select one.)SteamImage: steamMaximum Supply Temperature150°CMinimum Supply Temperature145°CSupply Pressure4BarGMaximum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)°CSecondary LTHW Circuit – if applicableVVMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply TemperatureNa°CMaximum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMaximum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMaximum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMinimum Supply TemperatureNa°CMinimum Supply TemperatureMa°CMinimum Supply TemperatureMa°CMinimum Supply TemperatureMa°CMinimum Supply TemperatureMaMaMaximum Supply Temp			
Maximum Supply Temperature150°CMinimum Supply Temperature145°CSupply Pressure4BarGMaximum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)SarGSecondary LTHW Circuit – if applicablen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°C	Primary Circuit		
Minimum Supply Temperature145°CSupply Pressure4BarGMaximum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMontensate System Operating PressureTbc (depends on consumer load)°CSecondary LTHW Circuit – if applicableImage: Secondary Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CSecondary Supply TemperatureSecondary Supply TemperatureMaximum Supply TemperatureImage: Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureMinimum Supply TemperatureImage: Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureMaximum Supply TemperatureImage: Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureSupply Supply TemperatureMinimum Supply TemperatureImage: Supply Supply TemperatureImage: Supply Supply TemperatureSupply Supply Supply Supply Supply TemperatureSupply Supply Su	Medium (Select one.)	Steam	
Supply Pressure4BarGSupply Pressure4BarGMaximum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CMinimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)SarGSecondary LTHW Circuit – if applicableVVMaximum Supply Temperaturen/a°CMinimum Supply TemperatureNNMinimum Supply Tem	Maximum Supply Temperature	150	°C
Image: constraint of the second sec	Minimum Supply Temperature	145	°C
Temperatureconsumer load)Minimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)BarGConsumer Load)Image: Consumer load)Image: Consumer load)Maximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturem/a°CMaximum Supply Temperaturem/a°CMaximum Supply Temperaturem/am/aMaximum Supply Temperaturem/am/a </td <td>Supply Pressure</td> <td>4</td> <td>BarG</td>	Supply Pressure	4	BarG
Temperatureconsumer load)Minimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)BarGConsumer Load)Image: Consumer load)Image: Consumer load)Maximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturem/a°CMaximum Supply Temperaturem/a°CMaximum Supply Temperaturem/am/aMaximum Supply Temperaturem/am/a </td <td></td> <td></td> <td></td>			
Minimum Condensate Return TemperatureTbc (depends on consumer load)°CCondensate System Operating PressureTbc (depends on consumer load)BarGConsumer load)Image: Consumer load)Image: Consumer load)Condary LTHW Circuit – if applicableImage: Consumer load)Image: Consumer load)Maximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMinimum Supply TemperatureImage: Consumer load)Image: Consumer load)Maximum Supply TemperatureImage: Consumer load)Image: Consumer load)Minimum Supply	Maximum Condensate Return	Tbc (depends on	°C
Condensate System Operating PressureTbc (depends on consumer load)BarGCondary LTHW Circuit – if applicableImage: Consumer loadImage: Consumer loadMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMaximum Supply Temperaturem/am/aMaximum Supply Temperaturem/am/a </td <td>Temperature</td> <td>consumer load)</td> <td></td>	Temperature	consumer load)	
Condensate System Operating PressureTbc (depends on consumer load)BarGSecondary LTHW Circuit – if applicableMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°C	Minimum Condensate Return Temperature	Tbc (depends on	°C
Consumer load)Consumer load)Secondary LTHW Circuit – if applicableCMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CMonimum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°CMaximum Supply Temperaturen/a°C		consumer load)	
Secondary LTHW Circuit – if applicablen/a°CMaximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°C	Condensate System Operating Pressure	Tbc (depends on	BarG
Maximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CImage: Comparison of the sector of		consumer load)	
Maximum Supply Temperaturen/a°CMinimum Supply Temperaturen/a°CImage: Comparison of the sector of			
Minimum Supply Temperature n/a °C Image: Comparison of the second secon	Secondary LTHW Circuit – if applicable		
	Maximum Supply Temperature	n/a	°C
	Minimum Supply Temperature	n/a	°C
Maximum Return Temperature n/a °C	Maximum Return Temperature	n/a	°C

EfW Heat Network Directory: Suez – Kirklees

Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Tbc (depends on	MWe
annually	consumer load)	
Electricity Carbon Factor (Calculation as	0.557 (Suez EfW	kgCO2/kWh
defined in SAP)	Average)	
Heat Carbon Factor (Calculation as defined	n/a	kgCO2/kWh
in SAP)		

Grundon & Viridor – Lakeside EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.


29/10/2024

Organisation	Lakeside EfW
Facility	Lakeside EfW
Address	Lakeside road
	Colnbrook
	Slough
	SL3 OFE

EfW Heat Network Directory: Grundon & Viridor – Lakeside EfW

Contact Details	
Name	Danny Coulston
Telephone No.	01753 688436
Email Address	danny.coulston@lakesideefw.co.uk

Owner/Organisational Structure (Describe)

Waste Source (Describe)

When was the Plant Commissioned	2010	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	290,000	MWh_th
Daily	860	MWh_th
Minimum Output	38	MWth
Maximum Output (Peak)		MWth
Heat Plant Annual Availability	95	%
Heat Availability Guaranteed	0	Yes/No

EfW Heat Network Directory: Grundon & Viridor – Lakeside EfW

What would be the max efficiency the plant can	45	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source	Gas oil	
If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	400	°C
Minimum Supply Temperature		°C
Supply Pressure	45	BarG
Maximum Condensate Return Temperature	130	°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure	2.9	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG

EfW Heat Network Directory: Grundon & Viridor – Lakeside EfW

Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Depends on the	MWe
annually	amount of heat	
	extracted	
Electricity Carbon Factor (Calculation as	0.519	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

Veolia – Leeds ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Leeds ERF	
Address	Newmarket Approach	
	Leeds	
	LS9 ORJ	
Contact Details		
Name	David Wedlake	
Telephone No.	07920410829	
Email Address	david.wedlake@veolia.com	

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Veolia

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	Q1 2016	
(Date)		
Remaining Concession Period	20	Years
Is the Concession Renewable	Yes	

Annually	163,810	MWh th
Daily	480	MWh th
, Minimum Output	0.35	 MWth
Maximum Output (Peak)	20	MWth
Heat Plant Annual Availability	93.5	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	Yes	Yes/No
If "Yes" to above how much (Peak)	Gas boilers and	MWth
	thermal storage	
	operated by a third	
	party	
What is the backup plants fuel source	Natural Gas	
If "No" to above is space available onsite to	Not applicable	Yes/No
build backup plant facility		

EfW Heat Network Directory: Veolia – Leeds ERF

Are you already supplying heat to an heat off-take customer	Yes	Yes/No
If "yes" confirm capacity	20	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	148	°C
Minimum Supply Temperature	133	°C
Supply Pressure	3.5	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature	60	°C
Condensate System Operating Pressure	13	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	100	°C
Minimum Supply Temperature	90	°C
Maximum Return Temperature	70	°C
Minimum Return Temperature	60	°C
System Operating Pressure	7	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	0.19MWe lost	MWe
annually	per 1 MWth	
	output	
Electricity Carbon Factor (Calculation as	0.25319*	kgCO2/kWh
defined in SAP)		

EfW Heat Network Directory: Veolia – Leeds ERF

Heat Carbon Factor (Calculation as defined in	0.18169*	kgCO2/kWh
SAP)		

FCC Environment – Lincolnshire EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	31/03/2025
-------------------------------------	------------

Organisation	FCC
Facility	Lincolnshire EfW
Address	Paving Way
	Lincoln
	LN6 3QW
Contact Details	
Name	Stephen Lormor

EfW Heat Network Directory: FCC - Lincolnshire EfW

Telephone No.	01522814301
Email Address	stephen.lormor@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
FCC Environment (Lincolnshire) Limited
Individuals involved and responsibilities
Juergen Schaper - Operations Director

Waste Source (Describe)

When was the Plant Commissioned	2014	
(Date)		
Remaining Concession Period	15	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	80000	MWh_th
Daily	219	MWh_th
Minimum Output	2.5 (est)	MWth
Maximum Output (Peak)	10	MWth
Heat Plant Annual Availability	92	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	Unknown	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		

EfW Heat Network Directory: FCC - Lincolnshire EfW

Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	180	°C
Minimum Supply Temperature	160	°C
Supply Pressure	3.2-4.9	BarG
Maximum Condensate Return Temperature	80 (100 if	°C
	pumped)	
Minimum Condensate Return Temperature	50 (70 if	°C
	pumped)	
Condensate System Operating Pressure	-1 (13 if	BarG
	pumped)	
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	c. 1.5MW	MWe
annually		

EfW Heat Network Directory: FCC - Lincolnshire EfW

Electricity Carbon Factor (Calculation as	No data	kgCO2/kWh
defined in SAP)	available due to	
	CO2 neutral	
Heat Carbon Factor (Calculation as defined in	No data	kgCO2/kWh
SAP)	available due to	
	CO2 neutral	

Veolia – Marchwood ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024	
Operator			
Organisation	Veolia		
Facility	Marchwood ERF		
Address	Oceanic Way		
	Marchwood		
	Southampton		
	SO40 4BD		
Contact Details			
Name	Sean Speirs		
Telephone No.	07442 639415		
Email Address	sean.speirs@veolia.com		

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Veolia

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned (Date)	2005	
Remaining Concession Period	10	Years
Is the Concession Renewable		

Annually		MWh_th
Daily	72	MWh_th
Minimum Output		MWth
Maximum Output (Peak)	30	MWth
Heat Plant Annual Availability	97.6	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not applicable	MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	140	°C
Minimum Supply Temperature	120	°C
Supply Pressure	4	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature	40	°C
Condensate System Operating Pressure	14	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	TBC depending	MWe
annually	on load	
Electricity Carbon Factor (Calculation as	TBC depending	kgCO2/kWh
defined in SAP)	on load	
Heat Carbon Factor (Calculation as defined in	TBC depending	kgCO2/kWh
SAP)	on load	

FCC Environment – Millerhill

The operator will review this document every 2 years at a minimum to capture changing data over time.

31/03/2025

Operator

Organisation	FCC
Facility	Millerhill
Address	Edinburgh and Midlothian RERC
	Whitehill Road
	Edinburgh
	EH22 1SX
Contact Details	

EfW Heat Network Directory: FCC - Millerhill

Name	Mark Keast
Telephone No.	0131 370 9901
Email Address	mark.keast@fccenvironment.co.uk

Owner/Organisational Structure (Describe)

Company Structure		
Corporate structure of EfW operation		
FCC Edinburgh and Midlothian Limited		
Individuals involved and responsibilities		
Juergen Schaper - Operations Director		

Waste Source (Describe)

When was the Plant Commissioned	April 2019	
(Date)		
Remaining Concession Period	20	Years
Is the Concession Renewable	Depends on	Yes/No
	negotiations	

Annually	155,200	MWh_th
Daily	480	MWh_th
Minimum Output	< 1	MWth
Maximum Output (Peak)	20	MWth
Heat Plant Annual Availability	89	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	59	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	n/a	MWth
What is the backup plants fuel source	n/a	

EfW Heat Network Directory: FCC - Millerhill

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No, but	Yes/No
take customer	currently	
	negotiating an	
	agreement.	
If "yes" confirm capacity	Up to 20	MWth

Primary Circuit		
Medium (Select one.)	Steam (Turbine	
	Bleeds)	
Maximum Supply Temperature	138 / 106	°C
Minimum Supply Temperature	n/a	°C
Supply Pressure	3.4 / 1.3	BarG
Maximum Condensate Return Temperature	n/a	°C
Minimum Condensate Return Temperature	71	°C
Condensate System Operating Pressure	Not as yet	BarG
	specified	
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	115	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	40	°C
System Operating Pressure	Not as yet	BarG
	specified	
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		

EfW Heat Network Directory: FCC - Millerhill

If "Yes" how much electricity will be lost annually	2.7	MWe
Electricity Carbon Factor (Calculation as	No data	kgCO2/kWh
defined in SAP)	available due to	
	CO2 neutral	
Heat Carbon Factor (Calculation as defined in	No data	kgCO2/kWh
SAP)	available due to	
	CO2 neutral	

Thalia - Milton-Keynes ATT

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

21/11/24

Operator

Organisation	Thalia Waste Management
Facility	Milton Keynes Waste Recovery Park ATT
Address	Milton Keynes Waste Recovery Park
	Wolverton
	Milton Keynes
	MK12 5QF

EfW Heat Network Directory: Thalia – Milton-Keynes ATT

Contact Details	
Name	Fiza Hussain
Telephone No.	07751174504
Email Address	Fiza.hussain@thalia.co.uk

Owner/Organisational Structure

Company Structure		
Wholly owned		
Corporate structure of EfW operation		
MK ATT operated by Thalia under contract with the Milton Keynes Council.		
Individuals involved and responsibilities		
Nick Smith – Principal Process Engineer		

Waste Source

When was the Plant Commissioned	2017	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	183190.77	MWh_th
Daily	501.89	MWh_th
Minimum Output	6.27	MWth
Maximum Output (Peak)	23	MWth
Heat Plant Annual Availability	85	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	85	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		

EfW Heat Network Directory: Thalia – Milton-Keynes ATT

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	LTHW, Condensate, Steam	Condensate
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature	50	°C
Minimum Condensate Return Temperature	45	°C
Condensate System Operating Pressure	0.1	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	No	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		

EfW Heat Network Directory: Thalia – Milton-Keynes ATT

Electricity Carbon Factor (Calculation as	ТВС	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	ТВС	kgCO2/kWh
SAP)		

Veolia – Newhaven ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Newhaven ERF	
Address	North Quay Rd	
	Newhaven	
	BN9 OAB	
Contact Details		
Name	Robert Williams	
Telephone No.	07884794560	
Email Address		

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Veolia

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2012	
(Date) Remaining Concession Period	13	Years
Is the Concession Renewable		

Annually		MWh_th
Daily	360	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	15	MWth
Heat Plant Annual Availability	92.3 (2019)	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not applicable	MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to	No	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not applicable	MWth

EfW Heat Network Directory: Veolia – Newhaven ERF

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	122	°C
Minimum Supply Temperature		°C
Supply Pressure	2.1	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	0.18Mwe lost	MWe
annually	per 1 MWth	
	output	
Electricity Carbon Factor (Calculation as	TBC depending	kgCO2/kWh
defined in SAP)	on load	
Heat Carbon Factor (Calculation as defined in	TBC depending	kgCO2/kWh
SAP)	on load	

Encyclis – Newhurst

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of o	completion of the Directory
-----------	-----------------------------

13/12/2024

Operator

Organisation	Encyclis
Facility	Newhurst
Address	Shepshed
	Loughborough
	LE12 9BU
Contact Details	

EfW Heat Network Directory: Encyclis - Newhurst

Name	Plant Manager – Jim Thompson
Telephone No.	+44 (0)7926 581300
Email Address	Jim.thompson@encyclis.com

Owner/Organisational Structure (Describe)

Company Structure
Organogram can be provided upon request.
Corporate structure of EfW operation
Plant Operator – Encyclis Ownership – EQT AB
Individuals involved and responsibilities
Organogram can be provided upon request.

Waste Source (Describe)

When was the Plant Commissioned	
(Date)	
Remaining Concession Period	Years
Is the Concession Renewable	Yes/No

Annually	TBD	MWh_th
Daily	432	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	18	MWth
Heat Plant Annual Availability	92-96	%
Heat Availability Guaranteed	Yes, during	Yes/No
	operation.	
	Shutdown	
	resiliency to be	
	planned for.	
What would be the max efficiency the plant can	TBC, based on	%
achieve with max heat export	real-data Z	
	factors.	

EfW Heat Network Directory: Encyclis - Newhurst

Is thermal back-up plant available	Resiliency to be	Yes/No
	provided by	
	development	
	partner.	
If "Yes" to above how much (Peak)	TBD by	MWth
	development	
	Partner	
What is the backup plants fuel source	N/A	
If "No" to above is space available onsite to	N/A	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	LTHW,	Steam
	Condensate,	
	Steam	
Maximum Supply Temperature	151	°C
Minimum Supply Temperature	ТВС	°C
Supply Pressure	1.87	BarG
Maximum Condensate Return Temperature	118	°C
Minimum Condensate Return Temperature	ТВС	°C
Condensate System Operating Pressure	0.87	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C

EfW Heat Network Directory: Encyclis - Newhurst

System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	TBD based on	MWe
annually	real-data Z	
	factors.	
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

enfinium – Parc Adfer

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory22/10/2024

Operator

Organisation	enfinium
Facility	Parc Adfer

EfW Heat Network Directory: enfinium – Parc Adfer

Address	4 Weighbridge Rd
	Deeside
	CH5 2LL
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	December 2019	
(Date)		
Remaining Concession Period	20	Years
Is the Concession Renewable	Yes (subject to	Yes/No
	consents)	

Annually	80,800	MWh_th
Daily	221	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	10	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		

EfW Heat Network Directory: enfinium – Parc Adfer

Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		

EfW Heat Network Directory: enfinium – Parc Adfer

If "Yes" how much electricity will be lost	2.02	MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

Viridor – Peterborough ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Operator

Organisation	Viridor
Facility	Peterborough ERF
Address	Fengate
	Peterborough
	Cambridgeshire
	PE1 5UR

EfW Heat Network Directory: Viridor – Peterborough ERF

Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917
Email Address	lbrackstone@viridor.co.uk

Owner/Organisational Structure (Describe)

Company Structure
Owned by Peterborough City Council
Corporate structure of EfW operation
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2016	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	39,858	MWh_th
Daily	120	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	5.0	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	18.0	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	

EfW Heat Network Directory: Viridor – Peterborough ERF

If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	155	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	3.3	BarG
Maximum Condensate Return Temperature	ТВА	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	1.62	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.172	kgCO2/kWh
SAP)		

Veolia – Portsmouth ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024	
Operator			
Organisation	Veolia		
Facility	Portsmouth ERF		
Address	Quartremaine Rd		
	Portsmouth		
	PO3 5QH		
Contact Details			
Name	Charles Winterburn		
Telephone No.	07795301873		
Email Address	Charles.Winterburn@veolia.com		

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Operated by Veolia

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	March 2005	
(Date)		
Remaining Concession Period	10	Years
Is the Concession Renewable		

Annually		MWh_th
Daily	72	MWh_th
Minimum Output		MWth
Maximum Output (Peak)	30	MWth
Heat Plant Annual Availability	94.5	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not applicable	MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity	Not applicable	MWth

EfW Heat Network Directory: Veolia – Portsmouth ERF

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	140	°C
Minimum Supply Temperature	120	°C
Supply Pressure	4	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature	40	°C
Condensate System Operating Pressure	14	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	TBC depending	MWe
annually	on load	
Electricity Carbon Factor (Calculation as	TBC depending	kgCO2/kWh
defined in SAP)	on load	
Heat Carbon Factor (Calculation as defined in	TBC depending	kgCO2/kWh
SAP)	on load	

Indaver – Rivenhall IWMF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

05/11/2024

Operator

Organisation	Indaver
Facility	Rivenhall IWMF
Address	Indaver Rivenhall Ltd
	Woodhouse Farm, Woodhouse Lane
	Kelvedon, Colchester
	CO5 9DF
Contact Details	
Name	Funmi Adefioye-Giwa

EfW Heat Network Directory: Indaver – Rivenhall EfW

Telephone No.	07462959272
Email Address	funmi.adefioye-giwa@indaver.com

Owner/Organisational Structure (Describe)

Company Structure		
Wholly owned		
Corporate structure of EfW operation		
Indaver Rivenhall Ltd is a wholly owned subsidiary of Indaver Holdings Ltd		
Individuals involved and responsibilities		
Micheal Geary – Commercial & Bus Dev Director UK/IE		
John Tatton – Managing Director Rivenhall IWMF		

Waste Source (Describe)

When was the Plant Commissioned	Expected Q4 2025	
(Date)		
Remaining Concession Period	N/A	Years
Is the Concession Renewable	N/A	Yes/No

Annually	145,635	MWh_th
Daily	399	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	17.5	MWth
Heat Plant Annual Availability	95	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	ТВС	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	N/A	MWth
What is the backup plants fuel source	N/A	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		

EfW Heat Network Directory: Indaver – Rivenhall EfW

Are you already supplying heat to a heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	17	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	244	°C
Minimum Supply Temperature	153	°C
Supply Pressure	16	BarG
Maximum Condensate Return Temperature	95	°C
Minimum Condensate Return Temperature	60	°C
Condensate System Operating Pressure	2	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	N/A	°C
Minimum Supply Temperature	N/A	°C
Maximum Return Temperature	N/A	°C
Minimum Return Temperature	N/A	°C
System Operating Pressure	N/A	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	Depends on	MWe
annually	consumer	
	demand	
Electricity Carbon Factor (Calculation as	Depends on	kgCO2/kWh
defined in SAP)	consumer	
	demand	

EfW Heat Network Directory: Indaver – Rivenhall EfW

Heat Carbon Factor (Calculation as defined in	Depends on	kgCO2/kWh
SAP)	consumer	
	demand	

Cory – Riverside RRF

The operator will review this document every 2 years at a minimum to capture changing data over time.

[Date of completion of the Directory	25/11/2024
---	-------------------------------------	------------

Operator

Organisation	Riverside Resource Recovery Limited (part of the Cory Group)
Facility	Riverside Resource Recovery Facility
Address	Norman Road Belvedere Kent DA17 6JY
Contact Details	
Name	David Carter – Managing Director Heat
Telephone No.	0207 417 5200
Email Address	david.carter@corygroup.co.uk

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Cory owns and operates the Riverside Facility, which has been in operation since 2011.

Individuals involved and responsibilities

David Carter – Managing Director Heat

Waste Source (Describe)

When was the Plant Commissioned (Date)	2011	
Remaining Concession Period	Perpetual asset	
Is the Concession Renewable		Yes/No

Annually	1,611,840	MWh_th
Daily	4416	MWh_th
Minimum Output	20	MWth
Maximum Output (Peak)	200	MWth
Heat Plant Annual Availability	92	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	Gross Power –	%
can achieve with max heat export	29.8%	
Is thermal back-up plant available	TBC, we are	Yes/No
	looking to reserve	
	space for back up	
	plant	
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to		Yes/No
build backup plant facility		

EfW Heat Network Directory: Cory – Riverside RRF

Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	165	°C
Minimum Supply Temperature	40	°C
Supply Pressure	-0.89 – 6	BarG
Maximum Condensate Return Temperature	165	°C
Minimum Condensate Return Temperature	40	°C
Condensate System Operating Pressure	3-6	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to		Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

Encyclis – Rookery

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

13/12/2024

Operator

Organisation	Encyclis
Facility	Rookery
Address	Green Lane
	Stewartby
	Bedford
	MK43 9LY

EfW Heat Network Directory: Encyclis - Rookery

Contact Details	
Name	Plant Manager – Paddy Kelly
Telephone No.	07926 580 072
Email Address	paddy.kelly@encyclis.com

Owner/Organisational Structure (Describe)

Company Structure
Organogram can be provided upon request.
Corporate structure of EfW operation
Plant Operator – Encyclis Ownership – Rookery South Limited
Individuals involved and responsibilities
Organogram can be provided upon request.

Waste Source (Describe)

When was the Plant Commissioned	Handover Date	21 st January
(Date)		2022
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	TBD	MWh_th
Daily	720	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	30	MWth
Heat Plant Annual Availability	92-96	%
Heat Availability Guaranteed	Yes, during	Yes/No
	operation.	
	Shutdown	
	resiliency to be	
	planned for.	

EfW Heat Network Directory: Encyclis - Rookery

What would be the max efficiency the plant can	TBC, based on	%
achieve with max heat export	real-data Z	
	factors.	
Is thermal back-up plant available	Resiliency to be	Yes/No
	provided by	
	development	
	partner.	
If "Yes" to above how much (Peak)	TBD by	MWth
	development	
	Partner	
What is the backup plants fuel source	N/A	
If "No" to above is space available onsite to	N/A	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

am
G
G

EfW Heat Network Directory: Encyclis - Rookery

Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	TBD based on	MWe
annually	real-data Z	
	factors.	
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

Viridor – Runcorn I

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

28/04/2025

Operator

Organisation	Viridor	
Facility	Runcorn I	
Address	Barlow Way Runcorn Cheshire WA7 4HG	
Contact Details		
Name	Leon Brackstone	
Telephone No.	07801 172917	

EfW Heat Network Directory: Viridor – Runcorn I

Email Address	lbrackstone@viridor.co.uk
---------------	---------------------------

Owner/Organisational Structure (Describe)

Company Structure	
TPSCo	
Corporate structure of EfW operation	
Owner / Local Council	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	2014	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	799,631	MWh_th
Daily	2,407	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	100.3	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	57.6	%
can achieve with max heat export		
Is thermal back-up plant available	Not Required -	Yes/No
	Steam Export	
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	Not Applicable	Yes/No
build backup plant facility		

EfW Heat Network Directory: Viridor – Runcorn I

Are you already supplying heat to a heat off-	Yes	Yes/No
take customer		
If "yes" confirm capacity	100.3	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	276	°C
Minimum Supply Temperature	266	°C
Supply Pressure	16.5	BarG
Maximum Condensate Return Temperature	35	°C
Minimum Condensate Return Temperature	35	°C
Condensate System Operating Pressure	0.08	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	27.9	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.148	kgCO2/kWh
SAP)		

Viridor – Runcorn II ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

28/04/2025

Operator

Organisation	Viridor	
Facility	Runcorn II	
Address	Barlow Way Runcorn Cheshire WA7 4HG	
Contact Details		
Name	Leon Brackstone	
Telephone No.	07801 172917	

EfW Heat Network Directory: Viridor – Runcorn II

Email Address	lbrackstone@viridor.co.uk
---------------	---------------------------

Owner/Organisational Structure (Describe)

Company Structure
Wholly Owned
Corporate structure of EfW operation
Owner
Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2014	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	439,613	MWh_th
Daily	1,323	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	55.1	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	31.7	%
can achieve with max heat export		
Is thermal back-up plant available	Not Required -	Yes/No
	Steam Export	
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		

EfW Heat Network Directory: Viridor – Runcorn II

Are you already supplying heat to a heat off-	No	Yes/No
take customer		
If "yes" confirm capacity	Not Applicable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	338	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	26.0	BarG
Maximum Condensate Return Temperature	35	°C
Minimum Condensate Return Temperature	35	°C
Condensate System Operating Pressure	2.0	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	16.6	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.209	kgCO2/kWh
SAP)		

Veolia – SELCHP ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory25/10/2024		25/10/2024	
Operator			
Organisation	Veolia		
Facility	SELCHP ERF		
Address	Landmann Way		
	London		
	SE14 5RS		
Contact Details			
Name	Husain Suwasrawala		
Telephone No.			
Email Address			

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

SELCHP is operated by Veolia under contract with South East London Combined Heat and Power Ltd.

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned (Date)	1994	
Remaining Concession Period	10	Years
Is the Concession Renewable		

Annually	327,974	MWh_th
Daily	960	MWh_th
Minimum Output	1	MWth
Maximum Output (Peak)	40	MWth
Heat Plant Annual Availability	93.6	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to		Yes/No
build backup plant facility		
Are you already supplying heat to an heat	Yes	Yes/No
off-take customer		
If "yes" confirm capacity	30	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	215	°C
Minimum Supply Temperature	106	°C
Supply Pressure		BarG
Maximum Condensate Return Temperature	110	°C
Minimum Condensate Return Temperature	40	°C
Condensate System Operating Pressure	16	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	110	°C
Minimum Supply Temperature	90	°C
Maximum Return Temperature	85	°C
Minimum Return Temperature	40	°C
System Operating Pressure	10	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost		MWe
annually		
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.058	kgCO2/kWh
SAP)		

Suez – Severnside

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

11/12/2024

Operator

Organisation	Suez
Facility	Severnside
Address	Severn Road
	Hallen
	Bristol
	BS10 7SP
Contact Details	

EfW Heat Network Directory: Suez – Severnside

Name	Krishna Patel
Telephone No.	(+44) 1484448736
Email Address	krishna.patel@suez.com

Owner/Organisational Structure (Describe)

Company Structure		
Corporate structure of EfW operation		
SPV with West London Waste Authority		
Individuals involved and responsibilities		
Gary Mayson (COO)		
Tim Otley (National Energy Director)		
Paul Leighton (Energy Director South)		
David Appleby (Plant Manager)		

Waste Source (Describe)

When was the Plant Commissioned	2016 (taken over on	
(Date)	14/12/2016)	
Remaining Concession Period		Years
Is the Concession Renewable	Yes	Yes/No

Annually	167,816	MWh_th
Daily	559.2612	MWh_th
Minimum Output	0 (heat plant offline)	MWth
Maximum Output (Peak)	23.30255	MWth
Heat Plant Annual	82.21	%
Availability		
Heat Availability	No	Yes/No
Guaranteed		
What would be the max	3 district heating cases defined by the	%
efficiency the plant can	heat and mass balances:	

EfW Heat Network Directory: Suez – Severnside

achieve with max heat export export (P) Case DC5_CHP_Bleed2: Bleed 2 export (LP) Case DC6_CHP_Bleed3: Bleed 3 export (LP) Case DC4_CHP_BaseCase: efficiency; 45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 34.49% Is thermal back-up plant available If "Yes" to above how much (Peak) No No State to backup plants fuel source If "No" to above is space available onsite to build plant) State on heat off-take customer If wo fue fuel with to backup plants backup plant facility No Are you already supplying heat to an heat off-take customer If wo fuel with to backup plants backup plant facility If wo fuel with to backup plants backup plant facility If wo fuel with to backup plants backup plant facility No No No No No No No No No No			
Case DC5_CHP_Bleed2: Bleed 2 export (LP) Case DC6_CHP_Bleed3: Bleed 3 export (LLP)Is was a standard back of the standar	achieve with max heat	Case DC4_CHP_BaseCase: Bleeds 1,2,3	
(LP) Case DC6_CHP_Bleed3: Bleed 3 export (LLP)Case DC4_CHP_BaseCase: efficiency; 45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Is thermal back-up plant availableNoIf "Yes" to above how much (Peak)n/aMwth (Peak)Mite Diesel (BS EN 590 2013 + A1: 2017)If "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Are you already supplying heat to an heat off-take customerNo	export	export (MP, LP, LLP)	
Case DC6_CHP_Bleed3: Bleed 3 export (LP)Case DC4_CHP_BaseCase: efficiency; 45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Ves/NoIs thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)Yes/NoIf "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/No		Case DC5_CHP_Bleed2: Bleed 2 export	
ILLPILLPCase DC4_CHP_BaseCase: efficiency; 45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency; 34.49%Internal back-up plant availableIs thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)MWthIf "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/NoYes/No		(LP)	
Case DC4_CHP_BaseCase: efficiency; 45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Is thermal back-up plant availableNoIs thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)Image: Comparison of the comparison o		Case DC6_CHP_Bleed3: Bleed 3 export	
45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Image: Second Se		(LLP)	
45.73% Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Image: Second Se			
Case DC5_CHP_Bleed2: efficiency; 39.21% Case DC6_CHP_Bleed3: efficiency 34.49%Image: Second		Case DC4_CHP_BaseCase: efficiency;	
39.21% Case DC6_CHP_Bleed3: efficiency 34.49%See DC6_CHP_Bleed3: efficiency 34.49%Is thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)MWthIf "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/No		45.73%	
Case DC6_CHP_Bleed3: efficiency 34.49%See DC6_CHP_Bleed3: efficiency 34.49%Is thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWth(Peak)NoMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)MWthIf "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/No		Case DC5_CHP_Bleed2: efficiency;	
34.49%Second Second		39.21%	
Is thermal back-up plant availableNoYes/NoIf "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)MWthIf "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/No		Case DC6_CHP_Bleed3: efficiency	
availableImage: second sec		34.49%	
If "Yes" to above how much (Peak)n/aMWthWhat is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)Image: Comparison of the comp	Is thermal back-up plant	No	Yes/No
(Peak)Image: Constraint of the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)Image: Constraint of the backup plant is space plant)White Diesel (BS EN 590 2013 + A1: 2017)Image: Constraint of the backup plant is space plant)Yes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/NoYes/No	available		
What is the backup plants fuel sourceWhite Diesel (BS EN 590 2013 + A1: 2017)Image: Constant of the second	If "Yes" to above how much	n/a	MWth
fuel source2017)Image: Source of the s	(Peak)		
If "No" to above is space available onsite to build backup plant facilityYes (Dependent on plans for CCUS plant)Yes/NoAre you already supplying heat to an heat off-take customerNoYes/No	What is the backup plants	White Diesel (BS EN 590 2013 + A1:	
available onsite to build backup plant facilityplant)plantAre you already supplying heat to an heat off-take customerNoYes/No	fuel source	2017)	
backup plant facility Are you already supplying heat to an heat off-take customer	If "No" to above is space	Yes (Dependent on plans for CCUS	Yes/No
Are you already supplying No Yes/No heat to an heat off-take visition Yes/No customer visition Yes/No	available onsite to build	plant)	
heat to an heat off-take customer	backup plant facility		
customer	Are you already supplying	No	Yes/No
	heat to an heat off-take		
	customer		
If yes confirm capacity h/a IVIWth	If "yes" confirm capacity	n/a	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	206	°C
Minimum Supply Temperature	122	°C
Supply Pressure	15	BarG

EfW Heat Network Directory: Suez – Severnside

Maximum Condensate Return	Tbc with consumer	°C
Temperature		
Minimum Condensate Return Temperature	Tbc with consumer	°C
Condensate System Operating Pressure	Tbc with consumer	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	25,493.64984	MWe
annually		
Electricity Carbon Factor (Calculation as	0.557 (Suez EfW	kgCO2/kWh
defined in SAP)	Average)	
Heat Carbon Factor (Calculation as defined	n/a	kgCO2/kWh
in SAP)		

Veolia – Sheffield ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Sheffield ERF	
Address	Bernard Road Service Centre	
	Bernard Rd	
	Sheffield S4 7YX	
Contact Details		
Name	Greg Caseley	
Telephone No.	07747 565255	
Email Address	gregory.caseley@veolia.com	

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Sheffield ERF is operated by Veolia under contract with Sheffield City Council.

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2006	
(Date)		
Remaining Concession Period	18	Years
Is the Concession Renewable	No	

Annually	54,224	MWh_th
Daily	150	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	45	MWth
Heat Plant Annual Availability	92.7	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	Yes	Yes/No
If "Yes" to above how much (Peak)	127	MWth
What is the backup plants fuel source	Natural Gas and	
	Fuel Oil	
If "No" to above is space available onsite to		Yes/No
build backup plant facility		
Are you already supplying heat to an heat	Yes	Yes/No
off-take customer		
If "yes" confirm capacity	45	MWth

Primary Circuit		
Medium (Select one.)	MPHW	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature	80	°C
Supply Pressure	11	BarG
Maximum Condensate Return Temperature	Not Applicable	°C
Minimum Condensate Return Temperature	Not Applicable	°C
Condensate System Operating Pressure	Not Applicable	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	TBC depending	MWe
annually	on load	
Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.089	kgCO2/kWh
SAP)		

enfinium – Skelton Grange

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory22/10/2024

Operator

Organisation	enfinium
Facility	Skelton Grange

EfW Heat Network Directory: enfinium – Skelton Grange

Address	Skelton Grange Road
	Leeds
	LS10 1FQ
Contact Details	
Name	Nick Minnitt
Telephone No.	07423 694845
Email Address	Nick.minnitt@enfinium.co.uk

Owner/Organisational Structure (Describe)

Company Structure	
Corporate structure of EfW operation	
Board, Management Team	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	Tbc - 2025	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable		Yes/No

Annually	160,000	MWh_th
Daily	438	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	20	MWth
Heat Plant Annual Availability	~90%	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant can	-	%
achieve with max heat export		
Is thermal back-up plant available	No	Yes/No

EfW Heat Network Directory: enfinium – Skelton Grange

If "Yes" to above how much (Peak)	-	MWth
What is the backup plants fuel source	-	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat off-	No	Yes/No
take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	110	°C
Minimum Supply Temperature		°C
Supply Pressure		BarG
Maximum Condensate Return Temperature		°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not applicable	°C
Minimum Supply Temperature	Not applicable	°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	4	MWe
annually		

EfW Heat Network Directory: enfinium – Skelton Grange

Electricity Carbon Factor (Calculation as		kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	0.015	kgCO2/kWh
SAP)		

Veolia – Staffordshire ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024	
Operator			
Organisation	Veolia		
Facility	Staffordshire ERF		
Address	Enterprise Drive		
	Wolverhampton		
	WV10 7DF		
Contact Details	Contact Details		
Name	Matthew Richardson		
Telephone No.			
Email Address	matthew.richardson@veolia.com		

EfW Heat Network Directory: Veolia – Staffordshire ERF

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Four Ashes ERF is operated by Veolia under contract with Staffordshire County Council

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	2013	
(Date)		
Remaining Concession Period	13	Years
Is the Concession Renewable		

Annually		MWh_th
Daily		MWh_th
Minimum Output		MWth
Maximum Output (Peak)	32	MWth
Heat Plant Annual Availability	93.8	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	122	°C
Minimum Supply Temperature		°C
Supply Pressure	2.1	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature		°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	0.18Mwe lost	MWe
annually	per 1 MWth	
	output	
Electricity Carbon Factor (Calculation as	tbc	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	tbc	kgCO2/kWh
SAP)		

Suez – Tees Valley Lines 4 & 5

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory

11/12/2024

Operator

Organisation	Suez
Facility	Tees Valley Lines 4 & 5
Address	Haverton Hill Road
	Billingham
	Cleveland
	TS23 1PY
Contact Details	

EfW Heat Network Directory: Suez – Tees Valley Lines 4 & 5

Name	Ben Campbell
Telephone No.	(+44)1642202300
Email Address	benjamin.campbell@suez.com

Owner/Organisational Structure (Describe)

Company Structure
Corporate structure of EfW operation
SPV with South Tyne and Wear Waste Management Partnership
Individuals involved and responsibilities
Gary Mayson (COO)
Tim Otley (National Energy Director)
Mat Kay (Energy Director North)
Darren Thomas (Plant Manager)

Waste Source (Describe)

When was the Plant Commissioned	2013/14	
(Date)		
Remaining Concession Period	18	Years
Is the Concession Renewable	Part	Yes/No

Annually	47,801 (at nominal 5.75 MWth)	MWh_th
Daily	138 (at nominal 5.75 MWth)	MWh_th
Minimum Output	0 (nominal 5.75 MWth)	MWth
Maximum Output (Peak)	11.5	MWth
Heat Plant Annual Availability	94.9% (availability 2019)	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency	~33%	%
the plant can achieve with max		
heat export		
Is thermal back-up plant available	No	Yes/No

EfW Heat Network Directory: Suez – Tees Valley Lines 4 & 5

If "Yes" to above how much (Peak)	No	MWth
What is the backup plants fuel	n/a	
source		
If "No" to above is space available	n/a	Yes/No
onsite to build backup plant		
facility		
Are you already supplying heat to	Yes	Yes/No
an heat off-take customer		
If "yes" confirm capacity	No	MWth

Primary Circuit		
Medium (Select one.)	LTHW	
Maximum Supply Temperature	85	°C
Minimum Supply Temperature	85	°C
Supply Pressure	2	BarG
Maximum Condensate Return	85	°C
Temperature		
Minimum Condensate Return Temperature	55	°C
Condensate System Operating Pressure	1	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature	n/a	°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		

EfW Heat Network Directory: Suez – Tees Valley Lines 4 & 5

If "Yes" how much electricity will be lost	Tbc – heat use	MWe
annually	dependent	
Electricity Carbon Factor (Calculation as	0.557 (Suez EfW	kgCO2/kWh
defined in SAP)	Average)	
Heat Carbon Factor (Calculation as defined	n/a	kgCO2/kWh
in SAP)		

Veolia – Tyseley ERF

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completio	n of the Directory	25/10/2024
Operator		
Organisation	Veolia	
Facility	Tyseley ERF	
Address	James Rd	
	Tyseley	
	Birmingham	
	B11 2BA	
Contact Details		
Name	Paul Collier	
Telephone No.	07880 553508	
Email Address	paul.collier@veolia.com	

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

Tyseley ERF is operated by Veolia under contract with Birmingham City Council

Individuals involved and responsibilities

Waste Source (Describe)

When was the Plant Commissioned	1995	
(Date)		
Remaining Concession Period	10	Years
Is the Concession Renewable	Yes	

Annually	60,774	MWh_th
Daily	184.8	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	7.7	MWth
Heat Plant Annual Availability	90.1	%
Heat Availability Guaranteed	No	Yes/No
What would be the max efficiency the plant		%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)		MWth
What is the backup plants fuel source		
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	re you already supplying heat to an heat No Yes/No	
off-take customer		
If "yes" confirm capacity		MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	150	°C
Minimum Supply Temperature		°C
Supply Pressure	3.5	BarG
Maximum Condensate Return Temperature	100	°C
Minimum Condensate Return Temperature	50	°C
Condensate System Operating Pressure		BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature		°C
Minimum Supply Temperature		°C
Maximum Return Temperature		°C
Minimum Return Temperature		°C
System Operating Pressure		BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	0.2MWe per 1	MWe
annually	MWth extracted	
Electricity Carbon Factor (Calculation as	tbc	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in	tbc	kgCO2/kWh
SAP)		

Viridor – Westfield

The operator will review this document every 2 years at a minimum to capture changing data over time.

Date of completion of the Directory	
-------------------------------------	--

28/04/2025

Operator

Organisation	Viridor
Facility	Westfield
Address	Fife Scotland
Contact Details	
Name	Leon Brackstone
Telephone No.	07801 172917

EfW Heat Network Directory: Viridor – Westfield

Email Address	lbrackstone@viridor.co.uk
---------------	---------------------------

Owner/Organisational Structure (Describe)

Company Structure	
Viridor / Equitix Joint Venture	
Corporate structure of EfW operation	
Owner	
Individuals involved and responsibilities	

Waste Source (Describe)

When was the Plant Commissioned	2025	
(Date)		
Remaining Concession Period		
Is the Concession Renewable		Yes/No

Annually	47,830	MWh_th
Daily	144	MWh_th
Minimum Output	ТВА	MWth
Maximum Output (Peak)	6.0	MWth
Heat Plant Annual Availability	91	%
Heat Availability Guaranteed	ТВС	Yes/No
What would be the max efficiency the plant	7.6	%
can achieve with max heat export		
Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	Not Applicable	MWth
What is the backup plants fuel source	Not Applicable	
If "No" to above is space available onsite to	Yes	Yes/No
build backup plant facility		
Are you already supplying heat to an heat	No	Yes/No
off-take customer		

EfW Heat Network Directory: Viridor – Westfield

If "yes" confirm capacity	Not Applicable	MWth
---------------------------	----------------	------

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	114	°C
Minimum Supply Temperature	ТВА	°C
Supply Pressure	1.62	BarG
Maximum Condensate Return Temperature	85	°C
Minimum Condensate Return Temperature	ТВА	°C
Condensate System Operating Pressure	ТВА	BarG
Secondary LTHW Circuit – if applicable		
Maximum Supply Temperature	Not Applicable	°C
Minimum Supply Temperature	Not Applicable	°C
Maximum Return Temperature	Not Applicable	°C
Minimum Return Temperature	Not Applicable	°C
System Operating Pressure	Not Applicable	BarG
Will the heat provided be sacrificial to	Yes	Yes/No
Electricity generation		
If "Yes" how much electricity will be lost	0.67	MWe
annually		
Electricity Carbon Factor (Calculation as	0.136	kgCO2/kWh
defined in SAP)		
Heat Carbon Factor (Calculation as defined in		kgCO2/kWh
SAP)		

Suez – Wilton 11 EfW

The operator will review this document every 2 years at a minimum to capture changing data over time.

Operator

Organisation	Suez
Facility	Wilton 11 EfW
Address	SUEZ Wilton 11 EfW
	Wilton International
	Redcar
	TS10 4RG
Contact Details	

EfW Heat Network Directory: Suez – Wilton 11 EfW

Name	Stephen Kirkham
Telephone No.	(+44) 7977290617
Email Address	stephen.kirkham@suez.com

Owner/Organisational Structure (Describe)

Company Structure

Corporate structure of EfW operation

SPV ownership, O&M contract in place with on-site customer with all heat

offtake requested on demand under a pre-defined agreement.

Individuals involved and responsibilities

Gary Mayson (COO)

Tim Otley (National Energy Director)

Mat Kay (Energy Director North)

Alex Biggins (Plant Manager)

Waste Source (Describe)

When was the Plant Commissioned	2016	
(Date)		
Remaining Concession Period		Years
Is the Concession Renewable	Yes	Yes/No

Annually	720,000 (8,000 hours)	MWh_th
Daily	2,160	MWh_th
Minimum Output	0	MWth
Maximum Output (Peak)	90	MWth
Heat Plant Annual Availability	91.3	%
Heat Availability Guaranteed	Yes	Yes/No
What would be the max efficiency		%
the plant can achieve with max		
heat export		

EfW Heat Network Directory: Suez – Wilton 11 EfW

Is thermal back-up plant available	No	Yes/No
If "Yes" to above how much (Peak)	N/a	MWth
What is the backup plants fuel	N/a	
source		
If "No" to above is space available	No	Yes/No
onsite to build backup plant		
facility		
Are you already supplying heat to	Yes	Yes/No
an heat off-take customer		
If "yes" confirm capacity	Variable	MWth

Primary Circuit		
Medium (Select one.)	Steam	
Maximum Supply Temperature	410 (HP), 285 (IP), 180 (LP)	°C
Minimum Supply Temperature	315 (HP), 285 (IP), 160 (LP)	°C
Supply Pressure	57 (HP), 17 (IP), 2.7 (LP)	BarG
Maximum Condensate Return	n/a	°C
Temperature		
Minimum Condensate Return	n/a	°C
Temperature		
Condensate System Operating		BarG
Pressure		
Secondary LTHW Circuit – if appli	cable	
Maximum Supply Temperature	n/a	°C
Minimum Supply Temperature		°C
Maximum Return Temperature	n/a	°C
Minimum Return Temperature	n/a	°C
System Operating Pressure	n/a	BarG

EfW Heat Network Directory: Suez – Wilton 11 EfW

Will the heat provided be	Yes	Yes/No
sacrificial to Electricity generation		
If "Yes" how much electricity will	HP steam – 0.238 MWe/t (1t of	MWe
be lost annually	steam = ~ 0.88 MWth)	
	IP steam – 0.290 MWe/t (1t of	
	steam = ~ 0.83 MWth)	
	LP steam – 0.210 MWe/t (1t of	
	steam = ~ 0.78 MWth)	
Electricity Carbon Factor	0.557 (Suez EfW Average)	kgCO2/kWh
(Calculation as defined in SAP)		
Heat Carbon Factor (Calculation	0.403	kgCO2/kWh
as defined in SAP)		