

EZ5011 Total Hardness & Total Alkalinity Analyser

Method and reagent sheets

09/2020, Edition 6

Table of Contents

1.	Legal information	3
2.	Analytical specifications	3
3.	Analysis method	4
3.1	Total Hardness	4
3.2	Total Alkalinity	5
4.	Reagents	6
4.1	Reagent overview and consumption	6
4.2	Storage and quality of chemicals	7
4.3	Acid solution (0.5 M)	7
4.4	Buffer solution	7
4.5	Colour solution	8
4.6	EDTA solution	8
4.7	HCl solution	9
4.8	Calibration solution Hardness	9
4.9	Calibration solution Alkalinity	10
4.10	Cleaning solution (facultative)	10

1. Legal information

Manufacturer: AppliTek NV/SA

Distributor: Hach Lange GmbH

The translation of the manual is approved by the manufacturer.

2. Analytical specifications

Please refer also to the respective technical datasheet at Hach Support Online.

Total Hardness & Total Alkalinity - All specifications					
Analysis method	Acid-base titration (alkalinity); Calma	agite EDTA titration with LE	D dipping probe (hardness)		
Parameter	Total hardness; total alkalinity (CaCo	O ₃)			
Cycle time	20 – 30 minutes				
Limit of detection (LOD)	≤ 10 mg/L Hardness; ≤ 5 mg/L Alkali	inity			
Precision/Repeatability	Better than 2% full scale range for st	tandard test solutions			
Cleaning	Automatic; frequency freely program	mable			
Calibration	Automatic; one point calibration				
Validation	Automatic; frequency freely program	ımable			
Interferences Hardness	Some metal ions interfere by causing fading or indistinct end points or by stoichiometric consumption of EDTA. Suspended or colloidal organic matter also may interfere with the end point. Large amounts of colour and turbidity interferes. Fats, oil, proteins, surfactants and tar.				
Interferences Alkalinity	Soaps, oily matter, suspended solids cause a sluggish response. Allow a electrode come to equilibrium or clea	dditional time between titra	nt additions to let the		
	% of range - Dilution	Low range (mg/L)	High range (mg/L)		
	25% of standard range	10	250		
Measuring ranges Hardness	50% of standard range	25	500		
	standard range	25	1000		
	% of range - Dilution	Low range (mg/L)	High range (mg/L)		
Managering ranges Alkalinite	25% of standard range	10	250		
Measuring ranges Alkalinity	50% of standard range	20	500		
	standard range	40	1000		

3. Analysis method

Summary

The determination of Total Hardness and Total Alkalinity is based on two methods, combined in one analyser.

The Total Hardness concentration is determined in the 'TH'- method. The Total Alkalinity concentration is determined in the 'TA'- method. The concentration of all parameters is determined alternately in the 'Main'-method.

The calibration for Total Hardness is determined in the 'TH'- method. The calibration for Total Alkalinity is determined in the 'TA'- method.

Remark

The methods cannot be started at the same time.

3.1 Total Hardness

Summary

The determination of the total hardness concentration in water is based on the reaction of free calcium and magnesium with calmagite in an alkaline solution to form a purplish-red colour. The calcium/magnesium – indicator complex is release by titration with EDTA, causing a blue colour. The change from red to blue colour is a measure for the amount of calcium and magnesium present in the sample. The colour change is measured at 610 nm.

Analysis steps

The analysis vessel is cleaned and filled with fresh sample. After sampling, the acid solution, buffer solution and colour solution are added. The colorimetric titration with EDTA at 610 nm is performed. After the determination of the end point, the calcium and magnesium concentrations in the sample are determined.

Calibration

The calibration procedure measures a REF2 CaCO₃ solution (channel 10, Val TH valve) to adapt the slope factor by means of a one point calibration.

3.2 Total Alkalinity

Summary

The determination of the alkalinity concentration in water is based on an acid-base titration using a pH electrode. The sample is titrated with hydrochloric acid (HCI). After the determination of the end points, the alkalinity concentration is calculated.

Analysis steps

The analysis vessel is cleaned an filled with fresh sample. After sampling, the initial pH value is measured. Next, the titration with hydrochloric acid (HCI) is started. After the determination of the end point (pH 4.5), the alkalinity concentration is calculated.

Calibration

The calibration procedure measures a REF2 CaCO₃ solution (channel 10, Val TA valve) to adapt the slope factor by means of a one point calibration.

4. Reagents

A CAUTION

Chemical exposure hazard. Obey laboratory safety procedures and wear all of the personal protective equipment appropriate to the chemicals that are handled. Read the safety data sheet from the supplier before bottles are filled or reagents are prepared. For laboratory use only. Make the hazard information known in accordance with the local regulations of the user.

ACAUTION

Chemical exposure hazard. Dispose of chemicals and wastes in accordance with local, regional and national regulations.

4.1 Reagent overview and consumption

In the tables below, the products that are needed to prepare the reagents are listed. The product name, the formula, the molecular weight, the CAS No. and the amount needed to prepare 1 liter of the reagents is given. Check the consumption of the reagents (28 days) to adapt the volumes needed.

Total Hardness

Product	Consumption	Consumption/28 days A rata 1 analysis/20 min	Recommended containers
Acid solution	~ 0.5 mL	< 1.0 L	Plastic – 2.5L
Buffer solution	~ 0.5 mL	< 1.0 L	Plastic – 2.5L
Colour solution	~ 0.5 mL	< 1.0 L	Plastic – 2.5L
EDTA solution	Depending on hardness concentration	1L < Volume < 13.5L	Plastic – 10L
REF2 solution	~ 1 L / Calibration	1	Plastic – 2.5L

Total Alkalinity

Product	Consumption	Consumption/28 days A rata 1 analysis/20 min	Recommended containers
HCI solution	Depending on alkalinity concentration	1L < Volume < 13.5L	Plastic – 10 L
REF2 solution	~ 1 L / Calibration	1	Plastic – 2.5L

4.2 Storage and quality of chemicals

Quality of chemicals

All chemicals should be of ACS grade or better. We recommend the use of pro analysis chemicals.

Quality of water

Reagent grade, carbon dioxide-free de-ionized water must be used to prepare the chemical solutions and for rinse purposes.

Storage of Reagents

While operating the instrument, keep in mind the ambient temperature conditions as stated in the data sheet of the instrument.

Store the reagents cold; Store the reagents in the dark; Refresh the reagents after one month (unless stated differently in the chapters below).

4.3 Acid solution (0.5 M)

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Hydrochloric Acid (36%)	HCI	36.46	7647-01-0	41.5 mL

Preparation:

Prepare a 0.5 M hydrochloric acid (HCI) solution. Dilute 41.5 mL of hydrochloric acid (HCI) in 500 mL de-ionized water and fill up to 1 litre with demineralized water.

4.4 Buffer solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Ammonium chloride	NH ₄ CI	53.49	12125-02-9	54 g
Ammonia solution 25%	NH₄OH	35.05	1336-21-6	350 mL
Mg-EDTA*	C ₁₀ H ₁₂ MgN ₂ Na ₂ O ₈ * 4H ₂ O	430.56	29932-54-5	5 g

^{*}ethylenediaminetetraacetic acid magnesium disodium salt tetrahydrate

Preparation:

Dissolve 54 g of ammonium chloride (NH $_4$ CI) in de-ionized water using a volumetric flask of 1000 mL. Add 350 mL of ammonium hydroxide solution (NH $_4$ OH 25%). Add 5 g Mg-EDTA, dissolve completely and fill up to 1 litre with de-ionized water.

4.5 Colour solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Calmagite	HOC ₁₀ H ₅ [N=NC ₆ H 3(OH)CH ₃]SO ₃ H)	358.37	3147-14-6	0.2 g

Preparation:

Dissolve approximately 0.2 g Calmagite ($HOC_{10}H_5[N=NC_6H_3(OH)CH_3]SO_3H$) in 400 mL degassed de-ionized water using a volumetric flask of 1L. Fill up to the grade mark with de-ionized water.

4.6 EDTA solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
EDTA*	C ₁₀ H ₁₄ N ₂ Na ₂ O ₈ * 2H ₂ O	372.2	6381-92-6	x g

^{*}ethylenediaminetetraacetic acid disodium salt dihydrate

Preparation

Prepare a x M EDTA solution. Dissolve accurately x g ethylenediaminetetraacetic acid disodium salt dihydrate ($C_{10}H_{14}N_2Na_2O_8$ * $2H_2O$) in 500 mL degassed de-ionized water and fill up to 1000 mL.

Remark

When preparing the EDTA solution make sure that the pH of this solution stays above 8, otherwise the EDTA will not dissolve properly. To change the pH, add carefully sodium hydroxide (NaOH) pellets.

Measuring range TH	Concentration EDTA solution	Amount to add to 1 litre
250 mg/L CaCO₃	0.01 M	3.722 g
500 mg/L CaCO₃	0.025 M	9.305 g
1000 mg/L CaCO₃	0.05 M	18.61 g

4.7 HCl solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Hydrochloric acid (1M)	HCI	36.46	7647-01-0	x mL

Preparation

Prepare a x M hydrochloric acid (HCI) solution. Add carefully x mL hydrochloric acid (HCI 1M) to 500 mL de-ionized water and dilute to 1 litre with de-ionized water.

Measuring range	Concentration HCI solution	Amount to add to 1 litre
250 mg/L CaCO₃	0.025 M	25 mL
500 mg/L CaCO₃	0.05 M	50 mL
1000 mg/L CaCO₃	0.1 M	100 mL

4.8 Calibration solution Hardness

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Calcium chloride dihydrate	CaCl ₂ * 2H ₂ O	147.02	10035-04-8	14.702 g

Preparation:

10000 mg/L CaCO₃ stock solution

Dissolve accurately 14.702 g calcium chloride dihydrate ($CaCl_2*2H_2O$) in 200 mL deionized water, using a volumetric flask of 1000 mL. Add de-ionized water up to the mark grade.

CaCO₃ standard solution - REF2

Prepare a x mg/L $CaCO_3$ calibration solution. Add carefully x mL stock solution of 10000 mg/L $CaCO_3$ to 500 mL de-ionized water and dilute to 1 litre with de-ionized water.

Measuring range	Concentration calibration solution	Amount to add to 1 litre
250 mg/L CaCO₃	250 mg/L CaCO₃	25 mL
500 mg/L CaCO₃	500 mg/L CaCO₃	50 mL
1000 mg/L CaCO₃	1000 mg/L CaCO₃	100 mL

4.9 Calibration solution Alkalinity

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Sodium carbonate	Na ₂ CO ₃	105.99	497-19-8	52.995 g

Preparation:

50000 mg/L CaCO₃ stock solution

Dissolve accurately 52.995 g sodium carbonate (Na₂CO₃) in 200 mL de-ionized water, using a volumetric flask of 1000 mL. Add de-ionized water up to the mark grade.

CaCO₃ standard solution - REF2

Prepare a x mg/L CaCO₃ calibration solution. Add carefully x mL stock solution of 50000 mg/L CaCO₃ to 500 mL de-ionized water and dilute to 1 litre with de-ionized water.

Measuring range	Concentration calibration solution	Amount to add to 1 litre	
250 mg/L CaCO₃	250 mg/L CaCO₃	5 mL	
500 mg/L CaCO₃	500 mg/L CaCO₃	10 mL	
1000 mg/L CaCO₃	1000 mg/L CaCO₃	20 mL	

4.10 Cleaning solution (facultative)

The cleaning procedure should prevent any build-up of chemicals in the analyser. To obtain an effective cleaning procedure we recommend to test the cleaning solution and the cleaning interval for each application. Perform the selected cleaning solution and interval for a trial period, check then the effectiveness of the procedure and change if necessary.