
Method 10102 DPD Method*

Test 'N TubeTM Vials

(0 to 5.00 mg/L)

Scope and Application: For testing higher levels of free chlorine (hypochlorous acid and hypochlorite ion) in drinking water, cooling water, and industrial process waters. The estimated detection limit for program number 1480 is 0.04 mg/L Cl₂.

^{*} Adapted from Standard Methods for the Examination of Water and Wastewater

1. Press the soft key under *HACH PROGRAM*.

Select the stored program number for Test 'N Tube free chlorine (Cl₂) by pressing **1480** with the numeric keys.

Press: **ENTER**

Note: Samples must be analyzed immediately and cannot be preserved for later analysis.



2. The display will show: HACH PROGRAM: 1480 Chlorine, TNT

The wavelength (λ) , **530 nm**, is automatically selected.

3. Insert the COD adapter into the sample module by sliding it under the thumbscrew and into the alignment grooves. Fasten with the thumbscrew.

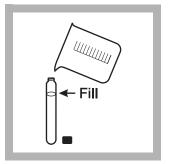
4. Fill an empty Test 'N Tube (TNT) vial with sample (the blank).

Note: Fill to the top of the label.

5. Clean the outside of the sample blank vial with a towel.

Note: Wiping with a damp towel followed by a dry one will remove fingerprints and other marks.

6. Place the blank into the adapter with the Hach logo facing the front of the instrument. Close the light shield.

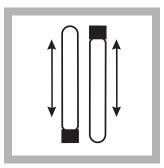


7. Press the soft key under **ZERO**.

The display will show:

0.00 mg/L Cl_2

Note: For alternate concentration units, press the soft key under OPTIONS. Then press the soft key under UNITS to scroll through the available options. Press ENTER to return to the read screen.



8. Remove the cap from a Free Chlorine DPD-TNT tube. Add 10 mL of sample.

Note: Fill to the top of the

label.

Note: A pink color will develop if free chlorine is present.

9. Cap and invert at least 10 times to dissolve the powder (the prepared sample).

Note: Use slow, deliberate inversion for complete recovery. Ten inversions should take at least 30 seconds. One inversion equals turning the vial upside down, then returning it to an upright position.

10. Within 30 seconds after mixing, wipe the vial containing the prepared sample.

11. Place the sample in the adapter with the Hach logo facing the front of the instrument. Close the light shield.

Results in mg/L chlorine (or chosen units) will be displayed.

Interferences

Interfering Substance	Interference Levels and Treatments								
Acidity	Greater than 150 mg/L CaCO ₃ . May not develop full color or color may fade instantly. Neutralize to pH 6–7 with1 N sodium hydroxide. Determine amount to be added on separate sample aliquot, then add the same amount to the sample being tested. Correct for volume addition (see <i>Correcting for Volume Additions</i> in the <i>DR/4000 Procedures Manual</i>).								
Alkalinity	Greater than 250 mg/L CaCO ₃ . May not develop full color or color may fade instantly. Neutralize to pH 6–7 with 1 N sulfuric acid. Determine amount to be added on separate sample aliquot, then add the same amount to the sample being tested. Correct for volume addition (see Correcting for Volume Additions in the DR/4000 Procedures Manual).								
Bromine, Br ₂	Interferes at all levels								
Chlorine Dioxide, CIO ₂	Interferes at all levels								
Chloramines, organic	May interfere								
Hardness	No effect at less than 1,000 mg/L as CaCO ₃								
Iodine, I ₂	Interferes at all levels								
Manganese, oxidized	1. Adjust sample pH to 6–7.								
(Mn ⁴⁺ , Mn ⁷⁺) or Chromium, oxidized	2. Add 3 drops potassium iodide (30-g/L) to a 25-mL sample.								
(Cr ⁶⁺)	3. Mix and wait 1 minute.								
	4. Add 3 drops sodium arsenite (5-g/L) and mix.								
	5. Analyze 10 mL of the treated sample as described in the procedure.								
	Subtract the result from this test from the original analysis to obtain the correct chlorine concentration in the sample.								
Monochloramine	For conventional free chlorine disinfection (beyond the breakpoint), typical monochloramine concentrations are very low. If monochloramine is present in the sample, its interference in the free chlorine test depends on the sample temperature, relative amount of monochloramine to free chlorine, and the time required to do the analysis. Typical interference levels of monochloramine in the free chlorine test are listed below (as mg/L Cl ₂).								
		NH ₂ CI	Sample Temp. °C (°F)						
		(as Cl ₂)	5 (40)	10 (50)	20 (68)	30 (83)			
		1.2 mg/L	+0.15	+0.19	+0.30	+0.29			
		2.5 mg/L	0.35	0.38	0.55	0.61			
		3.5 mg/L	0.38	0.56	0.69	0.73			
Ozone, O ₃	Interferes at all levels								
Peroxides	May interfere								
Extreme sample pH	Adjust to pH 6-7. See pH Interferences in the DR/4000 Procedures Manual.								
Highly Buffered Samples	Adjust to pH 6-7. See pH Interferences in the DR/4000 Procedures Manual.								

Sample Collection, Storage and Preservation

Analyze samples for chlorine immediately after collection. Free chlorine is a strong oxidizing agent and it is unstable in natural waters. It reacts rapidly with various inorganic compounds and more slowly oxidizes organic compounds. Many factors, including reactant concentrations, sunlight, pH, temperature and salinity influence decomposition of free chlorine in water.

Avoid plastic containers since these may have a large chlorine demand. Pretreat glass sample containers to remove any chlorine demand by soaking in a dilute bleach solution (1 mL commercial bleach to 1 liter of deionized water) for at least 1 hour. Rinse thoroughly with deionized or distilled water. If sample containers are rinsed thoroughly with deionized or distilled water after use, only occasional pretreatment is necessary.

Do not use the same sample cells for free and total chlorine. If trace iodide from the total chlorine reagent is carried over into the free chlorine determination, monochloramine will interfere. It is best to use separate, dedicated sample containers for free and total chlorine determinations.

A common error in testing for chlorine is obtaining an unrepresentative sample. If sampling from a tap, let the water flow for at least 5 minutes to ensure a representative sample. Let the container overflow with the sample several times, then cap the sample containers so there is no headspace (air) above the sample. Perform the chlorine analysis immediately.

Accuracy Check

Standard Additions Method

- **a.** Leave the unspiked sample in the cell compartment. Verify that the units displayed are in mg/L. Select standard additions mode by pressing the soft keys under *OPTIONS*, (MORE) and then *STD ADD*.
- **b.** Press **ENTER** to accept the default sample volume (mL), 10.
- c. Locate the average chlorine concentration shown on the certificate enclosed with the HR Chlorine PourRite[®] Ampules. When prompted for the standard concentration, use the numeric keys to enter the certificate value. Press ENTER.
- **d.** Press the soft key under **ENTRY DONE**.
- **e.** Snap the neck off a HR Chlorine PourRite Ampule Standard, 50-75 mg/L Cl₂.
- **f.** Use the TenSette[®] Pipet to add 0.1 mL to a 10-mL sample. Mix thoroughly.
- **g.** Analyze the standard addition sample as described above. Accept the standard addition readings by pressing the soft key under *READ* each time. Each addition should reflect approximately 100% recovery.
- **h.** See *Standard Additions* in the *DR/4000 Procedures Manual* for more information.

Method Performance

Precision

at mg/L Cl ₂	95% Confidence Limits		
0.10	±0.01 mg/L		
2.50	±0.01 mg/L		
3.40	±0.01 mg/L		

For more information on determining precision data and method detection limits, refer to *Section 1.5 of the DR/4000 Procedures Manual*.

Estimated Detection Limit

The estimated detection limit for program 1480 is $0.04 \, \text{mg/L Cl}_2$. For more information on derivation and use of Hach's estimated detection limit, see Section 1.5.2 of the $DR/4000 \, Procedures \, Manual$. To determine a method detection limit (MDL) as defined by the 40 CFR part 136, Appendix B, see Section 1.5.1 of the $DR/4000 \, Procedures \, Manual$.

Sensitivity

Portion of Curve	Δ Abs	∆Concentration
0.10	0.010	0.032 mg/L
2.50	0.010	0.035 mg/L
3.40	0.010	0.036 mg/L

See Section 1.5.3 Sensitivity Explained in the DR/4000 Procedures Manual for more information.

Summary of Method

Chlorine in the sample as hypochlorous acid or hypochlorite ion (free chlorine or free available chlorine) immediately reacts with DPD (N,N-diethyl-p-phenylenediamine) indicator to form a pink color which is proportional to the chlorine concentration.

Safety

Good safety habits and laboratory techniques should be used throughout the procedure. Consult the *Material Safety Data Sheet* for information specific to the reagents used. For additional information, refer to Section 1 of the *DR/4000 Procedures Manual*.

Pollution Prevention and Waste Management

Samples treated with sodium arsenite for interferences will be hazardous waste as regulated by Federal RCRA for arsenic (D004). See Section 1 of the *DR/4000 Procedures Manual* for further information on proper disposal of these materials.

CHLORINE, Free, continued

REQUIRED REAGENTS AND STANDARDS					
	Quantity Required				
Description		Unit			
Test 'N Tube DPD Free Chlorine Reagent	1 vial	25/pkg	21055-45		
Test 'N Tube Vials	1 vial	25/pkg	25831-25		
REQUIRED EQUIPMENT AND SUPPLIES					
COD/TNT Vial Adapter, DR/4000	1	each	48189-00		
OPTIONAL REAGENTS AND STANDARDS					
Chlorine Standard Solution, 2-mL PourRite Ampule, 50-75m	ng/L	20/pkg	14268-20		
Potassium Iodide Solution, 30-g/L					
Sodium Arsenite Solution, 5-g/L					
Sodium Hydroxide Standard Solution, 1.00 N	100) mL* MDB	1045-32		
Sulfuric Acid Standard Solution, 1.000 N					
Water, deionized		4 liters	272-56		
OPTIONAL EQUIPMENT AND SUPPLIES					
Ampule Breaker Kit		each	21968-00		
Beaker, 50-mL					
pH Indicator Paper, 1 to 11 pH					
Pipet, TenSette, 0.1 to 1.0 mL					
Pipet Tips, for 19700-01 TenSette Pipet					
Test Tube Rack					

^{*} Contact Hach for larger sizes.

FOR TECHNICAL ASSISTANCE, PRICE INFORMATION AND ORDERING: In the U.S.A. – Call toll-free 800-227-4224

Outside the U.S.A. – Contact the HACH office or distributor serving you.

On the Worldwide Web – www.hach.com; E-mail – techhelp@hach.com

HACH COMPANY WORLD HEADQUARTERS Telephone: (970) 669-3050 FAX: (970) 669-2932