APPENDIX TITRATION GUIDE

Color changes of some color indicators in pH measurement

Methyl orange (helianthine) Bromophenol blue Bromocresol green Methyl red Bromothymol blue Phenolphthalein pH 3.1 to pH 4.4 pH 3.0 to pH 4.0 pH 4.0 to pH 5.6 pH 4.2 to pH 6.2 pH 6.2 to pH 7.6 pH 8.0 to pH 10.0

Equations of some titration reactions

The syntax below is used to show the relationship between titrant and analyte during the reaction which helps explain the stoichiometry of the reactions.

Acid/base reactions

1 (Na⁺, OH⁻) + 1 (H⁺, Cl⁻) → H₂O + Na⁺ + Cl⁻ Reaction of sodium hydroxide with a monobasic acid

2 (Na⁺, OH⁻) + 1 (SO₄²⁻, 2H⁺) \rightarrow 2 H₂O + 2 Na⁺ + SO₄²⁻ Reaction of sodium hydroxide with a dibasic acid

1 (2 Na⁺, CO₃²⁻) + 2 (H⁺, Cl⁻) \rightarrow CO₂ + H₂O + 2 Na⁺ + 2 Cl⁻ Complete neutralization of sodium carbonate by hydrochloric acid

1 (2 Na⁺, CO₃²⁻) + 1 (2 H⁺, SO₄²⁻) → CO₂ + H₂O + 2 Na⁺ + SO₄²⁻ Complete neutralization of sodium carbonate by sulphuric acid

1 (Na⁺, OH⁻) + 1 (H⁺, -OOC-C₆H₄-COO-, K⁺) → H₂O + (Na⁺, -OOC-C₆H₄-COO-, K⁺) Titration of sodium hydroxide by potassium hydrogen phthalate

2 (Na⁺, OH⁻) + 1 (C₂O₄²⁻, 2 H⁺) \rightarrow 2 H₂O + C₂O₄²⁻ + 2 Na⁺ Titration of sodium hydroxide by oxalic acid

1 (2 Na⁺, $B_4O_7^{-2^-}$) + 1 (2 H⁺, $SO_4^{-2^-}$) + $H_2O \rightarrow 4 HBO_2 + SO_4^{-2^-} + 2 Na^+$ Titration of borax by sulphuric acid

1 (2 Na+, $B_4O_7^{2-}$) + 2 (H⁺, Cl⁻) + H₂O → 4 HBO₂ +2 Cl⁻ + 2 Na⁺ Titration of borax by hydrochloric acid

Example of phosphoric acid H_3PO_4

This is a triacid with the following pKs: $pK_3=2.1$, $pK_2=7.2$ and $pK_1=12$

In an aqueous medium, only the first two acids can be titrated. The reactions are as follows:

$H_3PO_4 + (Na^T, OH^T) \rightarrow (H_2PO_4^T, Na^T) + H_2O$	(рК ₃ =2.1)
$(H_2PO_4^{-1}, Na^+) + (Na^+, OH^-) \rightarrow (HPO_4^{-2}, 2 Na^+) + H_2O$	(pK ₂ =7.2)

 $(HPO_4^{2-}, 2 Na^+) + (Na^+, OH^-) \rightarrow (PO_4^{3-}, 3 Na^+) + H_2O$ (pK₁=12)

Redox reactions

2 (MnO₄⁻, K⁺) + 5 (C₂O₄²⁻, 2 Na⁺) + 16 H⁺ → 10 CO₂ + 2 Mn²⁺ + 8 H₂O + 2 K⁺ + 10 Na⁺ Reaction of potassium permanganate and sodium oxalate

1 (MnO₄⁻, K⁺) + 5 (Fe²⁺, SO₄²⁻) + 8 H⁺ → Mn²⁺ + 5 Fe³⁺ + 5 SO₄²⁻ + 4 H₂O + K⁺ Reaction of potassium permanganate and iron sulphate

1 (Cr₂O₇²⁻, 2 K⁺) + 6 (Fe²⁺, SO₄²⁻) + 14 H⁺ → 2 Cr³⁺ + 6 Fe³⁺ + 6 SO₄²⁻ + 2 K⁺ + 7 H₂O Reaction of potassium dichromate and iron sulphate

1 (I₂) + 2 (S₂O₃²⁻, 2 Na⁺) \rightarrow S₄O₆²⁻ + 4 Na⁺ + 2 I⁻ Reaction of iodine and sodium thiosulphate

2 (Cu²⁺, SO₄²⁻) + 4 (I⁻, Na⁺) \rightarrow 2 Cul + I₂ + 2 SO₄²⁻ + 4 Na⁺ Reaction of Cu²⁺ and iodide

1 (As₂O₃) + 2 (I₂) + 5 H₂O \rightarrow 4 I⁻ + 2 AsO₄⁻³⁻ + 10 H⁺ Reaction of iodine and arsenious anhydride

Complexometric reactions

The most common complexing agent used is disodium salt of ethylenediaminetetraacetic acid, or EDTA, usually expressed in its simple form as H_2Y^{2-} .

As it is often used to complex divalent metals of the Me^{2+} type, the reaction is written as follows: $1 \text{ Me}^{2+} + 1 \text{ H}_{2}\text{Y}^{2-} \rightarrow 1 (\text{Me}\text{Y}^{2-}) + 2 \text{ H}^{+}$

Precipitation reactions

The most important use of precipitation reactions is silver nitrate used to titrate halides (Cl⁻, Br⁻, I⁻) and CN⁻ and SCN⁻ used to titrate Ag⁺ ions.

For halides, the reaction is as follows: $1 \text{Ag}^+ + 1 \text{X}^- \rightarrow 1 \text{AgX}$

Some other reactions correspond to the precipitation of usually divalent metal hydroxides: $1 \text{Me}^{2+} + 2 \text{OH}^{-} \rightarrow \text{Me}(\text{OH})_{2}$

Characteristics of some standards

We consider a standard to be a commercially available substance of sufficient purity, delivered with a certificate. Such a standard can be weighed to make stable solutions.

pH standards

Oxalic acid MW=126.03 g/mol	(COOH) ₂ , 2 H ₂ O
Potassium hydrogen phthalate MW= 204.22 g/mol	KOOC-C ₆ H ₄ -COOH
Sodium carbonate MW=105.99 g/mol	Na ₂ CO ₃
TRIS or THAM MW=121.14 g/mol	H ₂ N-C(CH ₂ OH) ₃
Sodium borate (Borax) MW=381.4 g/mol	Na ₂ B ₄ O ₇ , 10 H ₂ O

Redox standards

Oxalic acid MW=126.03 g/mol

Potassium dichromate MW=294.19 g/mol

Ferrous ammonium sulphate (Mohr's salt) MW=392.14 g/mol

Arsenious anhydride MW=169.87 g/mol

Potassium iodate MW=213.97 g/mol

Complexometric standards

Disodium salt of EDTA	Na,H,Y, 2 H,O
MW=372.24 g/mol	

(COOH),, 2 H,O

(NH₄)₂SO₄, FeSO₄, 6 H₂O

K₂Cr₂O₇

As₂O₃

KIO₇

Precipitation standards

Silver nitrate MW=169.87 g/mol	AgNO
Potassium chloride MW=74.56 g/mol	KCl
Sodium chloride MW=58.44 g/mol	NaCl

hach.com
Outside United States:
United States:

HACH COMPANY World Headquarters: Loveland, Colorado USA 800-227-4224 tel 970-669-3050 tel

970-669-2932 fax 970-461-3939 fax

orders@hach.com int@hach.com

©Hach Company, 2015. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

