

Gas vs. Liquid H₂S Measurement

New sensor provides better H₂S insights in sewer networks

Problem

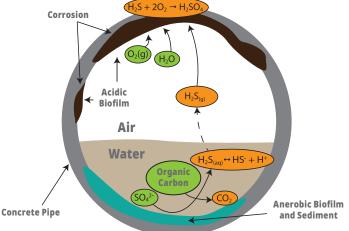
In order to properly manage their assets and operations, water utilities need to fully understand how H₂S impacts their sewer network. This requires a precise understanding of how H₂S behaves across different locations for extended periods of time.

Solution

By continuously measuring H_2S directly in or just above untreated wastewater with Hach H_2S sensors, operators can make decisions on the basis of real-time data throughout the collection system.

Benefits

- Complete and dynamic overview of H₂S challenge.
- Proactive and data-driven approach to H₂S management.
- Real-time data in SCADA & cloud.
- Reliable monitoring unaffected by external factors.
- Uninterrupted measurements.


Background

The toxic, foul-smelling, and highly corrosive gas hydrogen sulfide (H_2S) poses a major challenge to wastewater utilities. H_2S is formed when wastewater is pumped through force mains, and H_2S induced odor and corrosion issues are commonly found in hotspots right after the discharge into the gravitational sewer system. Here, part of the dissolved H_2S is released into the air, while another part remains in the sewage, where it is transported further downstream in the network if left untreated.

Challenge

Wastewater utilities typically use gas loggers to monitor H_2S concentration changes in the diluted air below manhole covers. However, seeing as H_2S is produced and transported in the wastewater and not in the air, wouldn't it make more sense to measure it in liquid?

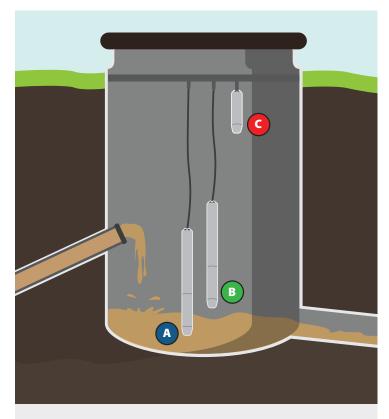
This case study investigates if continuous, liquid-phase measurements provide a better approach to H_2S monitoring than gas-phase measurements and thereby deliver better insights into how H_2S impacts sewer hotspots.

H₂S is formed in the sewage by the reduction of sulfate. Part of the dissolved H₂S may be released to the air where it can cause corrosion after being transformed into sulfuric acid.*

*Model adapted from Hvitved-Jacobsen, Vollertsen, and Nielsen (2013) - Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks & Li, Kappler, Jiang, and Bond (2017) - The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment.

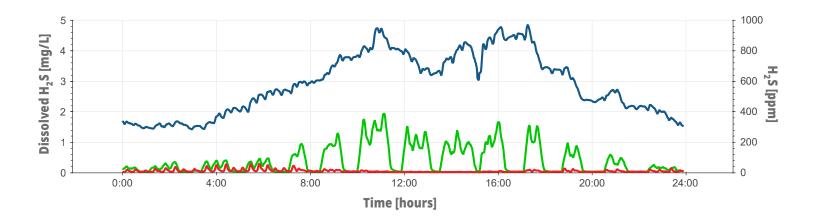
Gas vs. Liquid H₂S Measurement

The Hach H₂S sensor measures H₂S directly in wastewater and in the air above.


Setup

To analyze the benefits of measuring H_2S directly in wastewater, 3 Hach H_2S sensors were installed in the same 3-meter deep force main discharge well at a Danish wastewater utility. Capable of continuously measuring H_2S in both gas and liquid phase, the Hach H_2S sensors were installed in the raw wastewater (A), in the headspace just above the wastewater (B), and in the headspace just below the manhole cover (C).

Results


As seen on the graph, the liquid-phase measurements (A) provide a full overview of how H_2S impacts the sewer hotspot. The gasphase measurements in the air above the sewage (B) were correlated with the liquid-phase measurements, while the gasphase measurements in the diluted air just below the manhole cover (C) were unable to reveal the severity of the H_2S challenge.

The major deviation in the gas-phase data (C) suggests these measurements were heavily affected by external factors such as turbulence, ventilation, and pumping rhythms.

Measurement Locations A In the wastewater (liquid) B Above the wastewater

C Below the manhole cover

A data-driven approach to H₂S management

The Hach H_2S sensor's liquid-phase measurements reveal the true scope of a utility's H_2S challenge. This knowledge enables a datadriven approach to H_2S management for greatly improved corrosion control, optimized chemical dosing, effective root cause analysis, and optimized planning of new infrastructure projects. Finally, the Hach H_2S sensor's unique ability to measure both in and above wastewater makes it a flexible tool suitable for odor detection campaigns as well.

Liquid-phase H₂S measurements provide better insights that enable you to...

- Make data-driven decisions when prioritizing H₂S management activities.
- **Minimize H**₂**S odors** by focusing odor control activities on confirmed hotspots.
- Extend the lifespan of assets and prevent critical infrastructure collapse.
- **Optimize chemical dosing stations** using direct H₂S sensor-controlled dosing—or by verifying the effect of your dosing efforts with downstream control measurements.
- Solve H₂S problems at the source by mapping individual sewer lines.
- **Prevent planning errors** caused by a lack of knowledge or underestimation of the H_2S challenge.

World Headquarters: Loveland, Colorado USA | hach.com

 United States
 800-227-4224
 fax: 970-669-2932
 email: orders@hach.com

 Outside United States
 970-669-3050
 fax: 970-461-3939
 email: int@hach.com