EZ1029 Nitrate Analyser

Method and reagent sheets
09/2021, Edition 1.01

1. Legal information 3
2. Analytical specifications. 3
3. Analysis method 4
4. Reagents 5
4.1 Reagent overview and consumption 6
4.2 DI-water overview and consumption 6
4.3 Storage and quality of chemicals. 7
4.4 Buffer solution 8
4.5 Reducing reagent 8
4.6 Colour solution9
4.7 Sulfamic acid solution 9
4.8 Calibration solution 10
4.9 Cleaning solution (facultative) 10

1. Legal information

Manufacturer: AppliTek NV/SA
Distributor: Hach Lange GmbH
The translation of the manual is approved by the manufacturer.

2. Analytical specifications

Please refer also to the respective technical datasheet at Hach Support Online.

Nitrate - All specifications			
Analysis method	Colorimetric measurement using NEDD colour solution after reduction with hydrazine solution.		
Parameter	$\mathrm{NO}_{3}-\mathrm{N}$		
Cycle time	Standard measurement cycle time: 20 minutes Internal dilution: +5 min. External dilution: $+5-10 \mathrm{~min}$.		
Limit of detection (LOD)	$\leq 0.2 \mathrm{mg} / \mathrm{L}$		
Precision/Repeatability	Better than 2\% full scale range for standard test solutions		
Cleaning	Automatic; frequency freely programmable		
Calibration	Automatic, 2-point; frequency freely programmable		
Validation	Automatic; frequency freely programmable		
Interferences	Ions like Antimony (III) $\left.\left[(\mathrm{Sb})^{3+}\right)\right]$, Bismuth (III) $\left[(\mathrm{Bi})^{3+}\right]$, Chloroplatinate $\left[\left(\mathrm{PtCl}_{6}\right)^{2-}\right]$, Gold (III) $\left[(\mathrm{Au})^{3+}\right]$, Iron (III) $\left[(\mathrm{Fe})^{3+}\right]$, Lead (II) $\left[(\mathrm{Pb})^{2+}\right]$, Mercury (II) $\left[(\mathrm{Hg})^{2+}\right]$, Metavanadate $\left[\left(\mathrm{VO}_{3}\right)^{-}\right]$and Silver $(\mathrm{I})\left[(\mathrm{Ag})^{+}\right]$can precipitate with Nitrate. Presence of Cupric $\left[(\mathrm{Cu})^{2+}\right]$ may decompose the diazonium salt which results in a low result. Strong oxidizing agents. NCl_{3} results in a false red color. Large amounts of color and turbidity interferes. Fats, Oil, Proteins, Surfactants and Tar.		
Measuring ranges	Fats, Oil, Proteins, Surfactants and Tar.		
	5 internal dispenser dilution (factor 100)	200	10000

3. Analysis method

Summary

Nitrate is converted to nitrite by adding reducing reagent. Nitrite reacts with the colour reagent in an acidic medium to form an violet coloured complex. The absorption is measured at a wavelength of 546 nm .

Analysis steps

The analysis vessel is cleaned and filled with fresh sample. After sampling, the sulfamic acid is added. Next, the buffer and reducing reagent are added and the initial absorbance value is measured at 546 nm . Next, the colour solution is added and after respecting a stirring period - performed to obtain complete colour development - the final absorbance value is determined. With the obtained absorbance values, the nitrate concentration can be calculated according to Beer's law.

Calibration

The calibration procedure measures a REF1 $\mathrm{NO}_{3}-\mathrm{N}$ solution (channel 9, REF1 valve) and a REF2 $\mathrm{NO}_{3}-\mathrm{N}$ solution (channel 10, REF2 valve) to adapt the slope and offset factors by means of a two point calibration.

The calibration is performed in the MAIN method.

Remark

The methods cannot be started at the same time.

4. Reagents

$\triangle C A U T I O N$

Chemical exposure hazard. Obey laboratory safety procedures and wear all of the personal protective equipment appropriate to the chemicals that are handled. Read the safety data sheet from the supplier before bottles are filled or reagents are prepared. For laboratory use only. Make the hazard information known in accordance with the local regulations of the user.

$\triangle C A U T I O N$

A
Chemical exposure hazard. Dispose of chemicals and wastes in accordance with local, regional and national regulations.

4.1 Reagent overview and consumption

In the tables below, the products that are needed to prepare the reagents are listed. The product name, the formula, the molecular weight, the CAS No. and the amount needed to prepare 1 liter of the reagents is given. Check the consumption of the reagents (28 days) to adapt the volumes needed.

Product	Consumption	Consumption/28 days A rata $\mathbf{1}$ analysis/20 $\mathbf{~ m i n}$	Recommended containers
Buffer solution	$\sim 0.5 \mathrm{~mL} /$ analysis	$\sim 1.0 \mathrm{~L}$	Plastic -2.5 L
Reducing reagent	$\sim 1.5 \mathrm{~mL} /$ analysis	$\sim 3.0 \mathrm{~L}$	Plastic -5 L
Colour solution	$\sim 1.0 \mathrm{~mL} /$ analysis	$\sim 2.0 \mathrm{~L}(\sim 1.01 \mathrm{~L} / 14$ days $)$	Glass-Amber -2.5 L
Sulfamic acid solution	$\sim 0.25 \mathrm{~mL} /$ analysis	$\sim 0.5 \mathrm{~L}$	Plastic -2.5 L
REF1 solution	$\sim 0.5 \mathrm{~L} /$ calibration	$/$	Plastic -1 L
REF2 solution	$\sim 0.5 \mathrm{~L} /$ calibration	$/$	Plastic -1 L

*This solution is stable for maximum 2 weeks

4.2 DI-water overview and consumption

Rinse water (mL/analysis) Type I	Dilution water (mL/analysis) Type I	Total ($\mathbf{m L} /$ analysis)	Consumption/28 days A rata $\mathbf{1}$ analysis $/ \mathbf{2 0} \mathbf{~ m i n ~}$	
5	60 mL	15 mL	75 mL	151 L

Remark

The indicated volumes are an estimation of the consumption for rinse and dilution water, based on a standard operating procedure, as defined in the specifications of the EZ analyser. Please be aware that, depending on the sample matrix, the rinse water volumes might increase.

4.3 Storage and quality of chemicals

Quality of chemicals

All chemicals should be of Reagent grade, ACS grade or better (*). The use of pro analysis chemicals is recommended. Poor quality of the reagents can affect the analyser performance.
(*) Analytical Reagent (AR), Guaranteed Reagent (GR), UNIVAR, AnalaR, Premium Reagent (PR), ReagentCertified ACS reagent, ACS Plus reagent, puriss p.a. ACS reagent, ReagentPlus ${ }^{\circledR}$, TraceCERT $^{\circledR}$, Suprapur ${ }^{\circledR}$, Ultrapur ${ }^{\circledR}$, or better are also possible.

Quality of DI-water

All EZ analysers are tested with standard solutions, reagents and dilution water prepared using type I water or better as defined by ASTM D1193-91.

To achieve the specifications as stated on the data sheet, method and reagents sheet and acceptance test reports, the same water quality (or better) must be used for the preparation of the standard solutions, reagents and dilution water.

Additionally the water used for the preparation of the standard solutions for an EZ analyser must be free of the parameter or any of the interferences for the method of that EZ analyser.

Storage of Reagents

While operating the instrument, keep in mind the reagent requirements as stated in the reagent overview, the chapters below and/or in the data sheet of the instrument.

$\triangle C A U T I O N$

$\triangle C A U T I O N$

Refresh the reagents after one month (unless stated differently in the chapters below).
Do not mix old reagents with freshly prepared reagents. Remove old reagents from the container before adding freshly prepared reagents.

4.4 Buffer solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Sodium hydroxide	NaOH	40.00	$1310-73-2$	20 g

Preparation

Dissolve 20 g sodium hydroxide (NaOH) in 400 mL de-ionized water using a volumetric flask of 1000 mL . Dilute with de-ionized water to the grade mark.

4.5 Reducing reagent

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Copper(II) sulfate pentahydrate	$\mathrm{CuSO}_{4}{ }^{*} 5 \mathrm{H}_{2} \mathrm{O}$	249.69	$7758-99-8$	-
Hydrazine sulfate	$\mathrm{N}_{2} \mathrm{H}_{4} . \mathrm{H}_{2} \mathrm{SO}_{4}$	130.12	$10034-93-2$	2 g

Preparation

1) Dissolve 0.5 g of copper sulfate $\left(\mathrm{CuSO}_{4}{ }^{*} 5 \mathrm{H}_{2} \mathrm{O}\right)$ in 50 ml of de-ionized water using a volumetric flask of 100 mL . Mix and add de-ionized water up to the grade mark.

This solution is stable for > 1 month.
2) Take 1 mL of the copper sulfate solution and add to 100 mL de-ionized water in a volumetric flask of 1000 mL . Add 2 g of hydrazine sulfate $\left(\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Dissolve and add de-ionized water up to the grade mark.

This solution is stable for maximum 2 weeks. Store the reagent in a fridge during operation to prolong stability.

4.6 Colour solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Phosphoric acid 85%	$\mathrm{H}_{3} \mathrm{PO}_{4}$	98.00	$7664-38-2$	100 mL
Sulfanilamide	$\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}_{2}$	172.20	$63-74-1$	10 g
N -(1-Naphthyl) ethylenediamine dihydrochloride	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2}$	259.17	$1465-25-4$	0.5 g

Preparation

Dilute 100 mL of phosphoric acid ($\mathrm{H}_{3} \mathrm{PO}_{4}, 85 \%$) in 400 mL de-ionized water using a volumetric flask of 1000 mL . Add 10 g of sulfanilamide $\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}_{2}\right)$ and dissolve completely. Add 0.5 g N -(1-naphthyl) ethylenediamine dihydrochloride $\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right)$ and dilute with de-ionized water to the grade mark.

This solution is stable for maximum 2 weeks. Store the reagent in a fridge during operation to prolong stability. Avoid contact of the colour solution with ambient air. The colour solution should be colourless. If the colour solution turns pink/brownish, please replace to guarantee good results.

4.7 Sulfamic acid solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Sulfamic acid	$\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}$	97.09	$5329-14-6$	60 g

Preparation

Dissolve 60 g sulfamic acid $\left(\mathrm{NH}_{2} \mathrm{SO}_{3} \mathrm{H}\right)$ in 400 mL de-ionized water using a volumetric flask of 1000 mL . Mix and fill up with de-ionized water to the grade mark.

4.8 Calibration solution

Products	Formula	MW (g/mol)	CAS No.	1 litre solution
Sodium Nitrate	NaNO_{3}	84.99	$7631-99-4$	6.07 g

Preparation

$1000 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$ stock solution

Prepare a stock solution of $1000 \mathrm{mg} / \mathrm{L} \mathrm{N}^{\mathrm{N}} \mathrm{NO}_{3}$: Dissolve accurately 6.07 g sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ in 500 mL de-ionized water using a volumetric flask of 1000 mL . Add de-ionized water up to the mark grade.

$\mathrm{NO}_{3}-\mathrm{N}$ standard solution - REF2

	Measuring range	Concentration REF2	Amount of stock solution to add to 1 litre
5	$10000 \mu \mathrm{~g} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$	$10000 \mu \mathrm{~g} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$	10 mL

$\mathrm{NO}_{3}-\mathrm{N}$ standard solution - REF1
Prepare a standard solution of $0 \mu \mathrm{~g} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$. Use de-ionized water.

4.9 Cleaning solution (facultative)

The cleaning procedure should prevent any build-up of chemicals in the analyser. To obtain an effective cleaning procedure one has to test the cleaning solution and the cleaning interval for each application. Perform the selected cleaning solution and interval for a trial period, check then the effectiveness of the procedure and change if necessary.

Change Information

Date: 21/09/2021 \quad Previous version: Edition 5 to Edition 1.01

Reason for Change

- Addition of water consumption
- Addition of information reagents

Description of Change

- Addition of estimated consumption of water for rinse and dilution (chapter 4.2)
- Addition of extra information regarding storage and quality of reagents (chapter 4.3)

