
MAY 2022

Mobile Edge 
Computing 

Realizing the benefits of 5G with MongoDB’s 
Developer Data Platform and Verizon 5G Edge

+ 



2

Table of Contents
Introduction 3

Introducing the Network Edge 3

Managing Multiple Edges 4

 Verizon Edge Discovery Service 5

MongoDB for the Edge and Cloud 6

 MongoDB Atlas in the cloud 7

 MongoDB Enterprise at the edge 8

 Realm at the edge 9

AWS Wavelength Integration 12

Data Transfer 13

 Device to edge 13

 Edge to cloud 13

 Edge to edge 13

Containers at the Edge 14

Data Processing 15

 Processing on the device 16

 Processing at the edge 16

 Processing in the cloud 16

Real-World Use Case Applications 17

 Agriculture 17

 Automotive 17

 Smart manufacturing 18

Conclusion 19

Legal Notices 20



3

Introduction
As the world continues to grapple with COVID-19 
and a rapidly evolving technological landscape, 
industries are experiencing change like never 
before. From delays and disruptions to an evolving 
workforce, enterprises are under tremendous 
pressure to innovate.

Enterprises are facing many challenges as 
they evolve their physical infrastructure, digital 
infrastructure, and workforce at large. As an 
increasingly large volume of devices begin 
to become connected, the heterogeneity of 
hardware types, legacy applications, and 
proprietary protocols grows with it. As a result, 
maintenance costs can quickly rise, the need 
for specialized labor further increases, and 
the underlying desire for higher reliability and 
ubiquitous connectivity remains far-fetched.

Beyond the devices themselves, enterprises are 
grappling with the right choice for connectivity. 
With the advent of high-speed 5G networks, 
enterprises are beginning to embrace private 
mobile networks and advanced networking 

solutions, such as SD-WAN and other cloud-
network networking solutions. However, many 
lack the expertise to manage these networks, 
particularly in the face of strong SLOs/SLAs.

Lastly, beyond the digital footprint itself, the labor 
crunch is further accelerating the need for digital 
transformation. The precarious state of COVID-19 
has left workers calling-in sick or in search of new 
opportunities altogether.

Across each of these challenges, one thing 
remains clear. 5G is beginning to unlock new 
opportunities for bold innovators in one sector 
after another. By using the power of 5G networks 
and pairing that with intelligent software, 
customers are beginning to embrace the next 
generation of industry.

In this white paper, learn how the speed, throughput, 
reliability and responsiveness of the Verizon 
network, paired with the sophistication of next 
generation MongoDB developer data platform, is 
poised to transform a variety of industries.

Introducing the Network Edge
As enterprises look to embrace the stringent 
requirements of modern applications, standalone 
5G networks are not enough. While next-
generation networks can introduce up to 100x 
improvements in speed and throughput, the 
underlying cloud computing environments, without 
any optimization, remain the primary bottleneck to 
delivering ultra-low latency applications.

To that end, a new cloud computing paradigm 
has recently emerged that combines the best 
experiences of hyperscaler compute and storage 
with the topological proximity of 5G networks. 
Mobile edge computing, or MEC, introduces 
a new mode of cloud deployments whereby 
enterprises can run applications — through virtual 
machines, containers, or Kubernetes clusters — 
within the network itself, across both public and 
private networks.

In public MEC deployments, operators 
leverage the access network across a variety of 
geographies to deliver cloud computing services 
at the edge of commercial networks, across both 
4G and 5G. One such example, Verizon 5G Edge 
with AWS Wavelength, extends the Virtual Private 
Cloud (VPC) to the network edge to introduce 
subnets within the 5G network while maintaining 
a single-pane-of-glass for management and 
service continuity through best-in-class compute 
(e.g., Amazon Elastic Compute Cloud) and 
storage (e.g., Amazon Elastic Block Storage) 
services respectively.

In private MEC deployments, operators leverage 
the dedicated packet core of the enterprise’s 
private network to co-locate hyperscaler compute 
and storage to enable a seamless extension of the 
parent region to the customer premises. In another 
example, Verizon 5G Edge with AWS Outposts 



4

connects a dedicated, private 5G network with a 
42U AWS Outpost that enables more advanced 
data analytics (e.g., EMR), storage (e.g., EFS), and 
compute services.

One of the most powerful benefits of Verizon 5G 
Edge, Verizon’s mobile edge compute portfolio, 
is the ability to create a unified compute mesh 
across both of these environments — producing 
a seamless exchange of data and stateful 
workloads. This simultaneous deployment of both 
public and private MEC is best characterized as 
a hybrid MEC. Particularly in the case where both 

the Public MEC and Private MEC deployment 
are delivered by the same hyperscaler (e.g., AWS 
Wavelength and AWS Outposts), customers can 
create a single VPC to encapsulate their public 
MEC zones (e.g., Wavelength Zones) alongside 
their dedicated private MEC premises (e.g., 
Outposts). Moreover, in cases where customers 
are looking to connect a nationwide (or even 
global) network of branches, VPC peering and 
Transit Gateways can be used to simplify the 
management overhead of maintaining complex 
cloud networking environments.

Managing Multiple Edges
Beyond the underlying hybrid MEC 
infrastructure, edge computing introduces 
operational challenges that, at face value, 
appear insurmountable. Consider the following 
engineering questions:

• Deployment: Given a dynamic fleet of devices, 
in an environment with 20+ edge zones across 
both public and private MEC, to which edge(s) 
should the application be deployed?

• Orchestration: For Day 2 operations and 
beyond, what set of environmental changes, 
albeit on the cloud, network, or on the  
device(s), should trigger a change to my  
edge environment?

• Edge Discovery: Throughout the application 
lifecycle, for a given connected device, which 
edge(s) is the optimal endpoint for connection? 

Verizon has developed a suite of network APIs 
tailored to answer these questions. From edge 
discovery and network performance to workload 
orchestration and network management, 
Verizon has drastically simplified the level of 
effort required to build resilient, highly available 
applications at the network edge without 
undifferentiated heavy lifting previously required 
to do so.

Prior to edge network APIs, imagine the brute-
force approach to discovering the closest edge 
endpoint across a deployment of 20+ edge zones. 
To start, one could leverage a service registry, 
such as HashiCorp Consul or AWS CloudMap, to 
populate each of the carrier-facing endpoints. 
From there, a client wishing to connect to the 
optimal edge could authenticate to the service 
registry, and retrieve all of the edge endpoints: 
perhaps fully-qualified domain names (e.g., 
edgeapplication.mongodb.com) or Carrier IP 
addresses (e.g., 145.156.11.28). 

Next, the client would have two options to select 
an endpoint. One naïve approach could be to 
arbitrarily select an edge endpoint; this would 
result in the optimal edge being selected roughly 
~5% of the time. Another approach would be to 
conduct an ICMP echo request — colloquially 
referred to as a “ping” — to each of the endpoints 
to identify the lowest-latency endpoint. While this 
approach may yield the optimal result, the latency 
penalty would be far more significant than simply 
connecting to the next-best alternative in the cloud 
(i.e., parent region). As an illustrative example, if 
the average response time was 50ms, this second 
approach would incur a latency penalty of 1,000ms 
— a whole second of latency without any exchange 
of meaningful application traffic.



5

Verizon Edge Discovery Service
Using the Verizon Edge Discovery API, customers 
can let Verizon manage the complexity of 
maintaining the service registry as well as 
identifying the optimal endpoint for a given mobile 
device. Said differently, using the edge discovery 
API workflow in place of the self-implemented 
latency tests, a single request-response would be 
needed to identify the optimal endpoint.

More broadly, why might you need the operator to 
create this API? 

Today, determining the optimal server across a 
cloud deployment typically occurs by leveraging 
well-maintained databases of <IP address, 
geolocation> to identify the coarse location of 

the user device, and then calculating the closest 
server from the user. While GeoIP lookups perform 
well for traditional CDNs and cloud datacenters, 
this method falls wildly short in a world of hyper-
localized edge deployments.

To realize the true potential of edge computing, 
the Verizon Edge Discovery Service selects the 
optimal endpoint is from live network intelligence 
by dynamically evaluating the state of the 
network and making routing decisions based 
on latency, connectivity, load and other unique 
characteristics of the application profile (Source: 
“Introducing the Edge Discovery Service” by 
Robert Belson, Verizon 5G Edge Blog).

155.146.0.225
Boston Wavelength Zone

155.146.65.19
NYC Wavelength Zone

155.146.37.12
DC Wavelength Zone

New edge service:  
serviceEndpointsId=3cdc7175-e629-48ad-9002-175008c37720

Discover closest 5G edge endpoint

{
        "serviceEndpoint": 
        {   "FQDN": "bos.mongoedgeapp.com", 
            "IPv4Address": "155.146.0.225", 
        },
        "applicationId": "edge-app-bos-endpoint-1", 
        "applicationServerProviderId": "AWS", 
         "ern": "us-east-1-wl1-bos-wlz-1",
  }

{
        "serviceEndpoint": 
        {   "FQDN": "nyc.mongoedgeapp.com", 
            "IPv4Address": "155.146.65.19", 
          },
          "applicationId": "edge-app-nyc-endpoint-1", 
          "applicationServerProviderId": "AWS", 
           "ern": "us-east-1-wl1-nyc-wlz-1",
    }

{
          "serviceEndpoint": 
          {   "FQDN": "was.mongoedgeapp.com", 
              "IPv4Address": "155.146.37.12", 
          },
         "applicationId": "edge-app-was-endpoint-1", 
          "applicationServerProviderId": "AWS", 
           "ern": "us-east-1-wl1-was-wlz-1",
    }Edge 

discovery 
service

Service 
registry

While this API addresses the challenge of service 
discovery, routing, and in some cases advanced 
deployment scenarios, there are additional 
challenges outside of the scope of the underlying 
network APIs. In the case of stateful workloads, 
how might you manage the underlying data 
generated from your device fleet? Should all of the 
data live at the edge, or should it be replicated 

to the cloud? What about replication to the other 
edge endpoints?

Using the suite of MongoDB services coupled 
with Verizon 5G Edge and its network APIs, we will 
demonstrate popular reference architectures for 
data across the hybrid edge.

https://verizon5gedgeblog.medium.com/introducing-verizon-edge-discovery-service-53e8354a667b
https://verizon5gedgeblog.medium.com/introducing-verizon-edge-discovery-service-53e8354a667b


6

MongoDB for the Edge and Cloud
Through Verizon 5G Edge, developers can now 
deploy parts of their application that require low 
latency at the edge of 4G and 5G networks using 
the same APIs, tools, and functionality they use 
today, while seamlessly connecting back to the 
rest of their application and the full range of cloud 
services running in a cloud region. 

However, for many of these use cases, a persistent 
storage layer is required that extends beyond the 
native storage and database capabilities of the 
hyperscalers at the edge. 

Given the number of different edge locations into 
which an application can potentially be deployed 
and to which consumers are able to connect, it is 
critical to ensure appropriate data is available at 
the edge. It is also important to note that where 
consumers are mobile (e.g. vehicles), the optimal 
edge location can vary. At the same time, having 
a complete copy of the entire dataset at every 
edge location in order to cater for this is neither 

desirable nor practical due to the potentially 
large volumes of data being managed and the 
associated multi-edge data synchronization 
challenges that would be introduced.

The solution revolves around having a complete 
master view of the dataset stored in the cloud and 
synchronizing only required data to dedicated 
edge data stores on-demand. For many cases 
such as digital twin, this synchronization needs to 
be bi-directional and potentially include conflict 
resolution logic.

MongoDB recommends the use of MongoDB Atlas 
for the central, cloud-based datastore. (Note 
that while it is also technically feasible to run 
MongoDB Enterprise for the central datastore, 
this deployment model is not discussed in detail 
in this paper). For the edge datastores, there are 
two options which are outlined below: MongoDB 
Enterprise, and MongoDB Realm.

Permanent storage in  AWS Parent Regions 
serving as a single “Hub” for all edge zones

“Cloud”

AWS Wavelength zones each serving as a 
“Spoke”, providing for local reads & writes 

and sync back to the central “Hub”

“Edge”

Speak protocols like REST, GraphQL, Realm, 
MQL over Verizon 5G to the nearest Edge

Consumers & Producers

OR

Realm Realm Servers MongoDB 
Servers

Enterprise
Advanced

Atlas

It is important to note that the likely data 
processing requirements at the edge and the 
cloud often differ with edge-based workload being 
primarily operational and operating on a subset 
of the data, while central, cloud-based workloads 
can be more diverse requiring a broader array 

of data processing capabilities. These required 
capabilities will vary based on use case but can 
often include support for analytical workloads, 
search, and the efficient processing of much 
larger data volumes.



7

MongoDB Atlas in the cloud
MongoDB Atlas provides organizations with a fully 
managed, elastically scalable developer data 
platform upon which to build modern applications. 
MongoDB Atlas can be simultaneously deployed 
across any of the three major cloud providers 
(Amazon Web Service, Microsoft Azure, and 
Google Cloud Platform) and is a natural choice to 
act as the central data hub in an edge or multi-
edge based architecture, as it enables diverse 
data to be ingested, persisted, and served in ways 
that support a growing variety of use cases. 

Central to Atlas is the MongoDB database which 
combines a flexible document-based model with 
advanced querying and indexing capabilities. 
Atlas is however more than just the MongoDB 
database and includes many other components 
to power advanced applications with diverse data 
requirements.

Native search capabilities
One of the primary ways users engage with 
applications is through search, and they expect 
those search capabilities to be instant, intuitive, 
and comprehensive while behaving in a way that is 
analogous to Google. This functionality is not well 
suited to databases and as a result, organizations 
often resort to integrating specialized search 
technologies. Atlas Search eliminates the need 
for a separate search architecture by directly 
offering developers built-in, full text search 
capabilities, requiring no additional infrastructure 
management responsibilities.

Atlas’s native search eliminates the challenges 
of setting up, maintaining, or scaling a separate 
search platform, meaning developers can 
develop search based use cases directly against 
Atlas, removing the need to replicate data 
elsewhere. Search capabilities, like visual editor, 
autocomplete, fast faceting, and highlighting 
facilitate rapid, reliable search.

Real-time analytics
Modern end user applications are often required 
to generate real-time insights based on data as 

it becomes available. In parallel, there is typically 
a need to execute more traditional analytical 
queries in order to support data science or to 
train/back-test AI models. MongoDB Atlas can 
support both of these different categories of use 
case simultaneously without needing to integrate 
additional technologies which introduce the need 
for ETL to move data between systems.

MongoDB’s aggregation framework allows for 
arbitrarily complex pipeline based queries to be 
executed. Where these queries are long-running 
analytical queries, they can be directed to a 
dedicated node containing live data such that there 
is no contention between it and an operational 
workload. On the operational front, MongoDB 
supports change streams which allow for event 
based systems to be built which automatically react 
to changes in the underlying data.

Atlas Data Lake operates as a serverless, scalable 
query engine, delivering more valuable data 
insights, and a simpler, faster experience for 
developers. Data stored in AWS S3 in multiple 
formats — JSON, BSON, CSV, TSV, Avro, ORC, and 
Parquet — can be analyzed in place, making it 
possible to glean deeper value from data, while 
avoiding the constraints of siloed data.

Preserving the rich structure of data generated by 
modern connected devices is critical. Using Data 
Lake’s federated query capabilities, developers can 
run a single query to analyze data across multiple 
MongoDB databases and AWS S3 together and 
in-place, resulting in the generation of real-time 
insights while at the same time controlling cost.

BI integration
MongoDB Atlas can be connected to industry-
standard BI tooling via the provision of an SQL-
based interface. This allows developers to use 
existing BI tooling to run analytical queries on live 
data without employing complex ETL processes to 
generate BI reports and dashboards. This ensures 
that Atlas integrates seamlessly with tools that 
teams already rely on, minimizing the disruption to 
current workloads.

https://www.mongodb.com/atlas?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness
https://www.mongodb.com/atlas/search?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness
https://www.mongodb.com/atlas/data-lake?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness


8

Realm integration
Realm was originally developed as an open 
source, embedded, lightweight persistence layer 
for use on resource constrained devices such as 
mobile phones. Realm was acquired by MongoDB 
and is now fully integrated into the Atlas data 
platform. What was once primarily a mobile 
offering has been enhanced to also support 
deployment at the edge, which is discussed in 
greater detail in the following sections.

Core to the integration of Realm into Atlas is 
the ability to automate the synchronization of 
data between the Realm database(s) and a 

central Atlas database via Atlas Data Sync. This 
addresses challenges otherwise left to application 
developers such as variable network latency, 
unreliable connectivity, unpredictable application 
shut down, impacts on battery life, etc. 

It is possible to define server-side functions which 
allow client applications to interact directly with 
the central data platform. These functions on 
Atlas can be called directly from the Realm SDK 
on the client application, allowing edge-based 
devices to interact with the cloud-based data-
store where needed. 

MongoDB Enterprise at the edge
Using MongoDB Enterprise at the edge, developers 
can leverage the underlying compute and storage 
available at the edge to deploy MongoDB clusters 
either a) as standalone clusters or b) highly 
available replica sets that can synchronize data 
seamlessly between members.

MongoDB Enterprise offers the same powerful  
core database used in MongoDB Atlas  
offering advanced data management  
capabilities as required by data-intensive  
edge-based applications.

Database management  
and orchestration
MongoDB Cloud Manager can automate, monitor, 
and back up MongoDB infrastructure, including 
infrastructure deployed at a network edge. 

Cloud Manager Automation enables the 
configuration and maintenance of MongoDB 
nodes and clusters. This is achieved by the 
installation of MongoDB Agents running on each 
MongoDB host which communicates with Cloud 
Manager to maintain MongoDB deployments. 

With Cloud Manager, it is possible to deploy and 
manage both standalone instances, as well as 

highly available MongoDB replica sets onto edge-
based compute and storage resources. 

Data synchronization
As previously mentioned, for most use cases there 
will be a requirement to synchronize data from the 
edge to the cloud. While it is technically possible 
to utilize MongoDB’s native replication capabilities 
(if using MongoDB Enterprise as the central 
datastore), the single master nature of a MongoDB 
replica set will mean that local writes could only 
happen either at the edge or in the cloud. 

Similarly, in multi-edge deployments, if MongoDB 
native replication is used for synchronization 
between edge locations, similar challenges would 
exist with local writes only being available in a 
single location. Extending this pattern to a hybrid-
edge deployment is however discouraged and 
should be considered as an anti-pattern due to the 
latency that could be introduced.

A more flexible approach will be to implement a 
custom solution to facilitate the synchronization 
of data subsets between the edge and the 
cloud and vice versa based on the needs of the 
individual application.

https://www.mongodb.com/products/mongodb-enterprise-advanced


9

Cloud

Edge

Sync Process

Edge

Sync Process

Edge

Sync Process

Cloud

Sync Process

Edge

Edge

Edge

Such a solution can be built using MongoDB’s 
native change stream feature which allows 
a consumer process to register for real-time 
notifications of events occurring in a cluster (e.g. 
data conforming to a query is inserted, updated, 
etc). The consumer assumes responsibility for 

processing these events, potentially including 
conflict resolution and persisting to a target 
cluster. As indicated above, the consumer in 
question can be deployed either centrally or on 
edge nodes, supporting either push or pull models 
of data distribution as needed.

Realm at the edge
While MongoDB Enterprise and Cloud Manager 
are supported at the network edge, there may be 
drawbacks of deploying this pattern. In cases of 
existing MongoDB customers, the management 
of additional clusters and inter-cluster replication 
may not be desired. Moreover, as a cluster 
typically requires three or more nodes, the 
compute and storage resources required may be 
“overkill” for the use case in question.

As a result, for environments utilizing MongoDB 
Atlas in the Cloud, Realm at the edge is a powerful 
alternative. Since its initial design as a mobile-
only database, Realm has evolved to support 
deployment as an edge-based data store. Realm 
persists data on-disk and uses an object-oriented 
data model that saves developers from writing 
thousands of lines of non-value-add code.

Given that Realm is an embedded database, 
there is no associated management overhead or 
dedicated resource requirements. It is deployed 
along with the edge-based application or 
alternatively as a dedicated, independently 
scalable, edge-based persistence layer.

Additionally, Atlas Device Sync supports seamless 
connections back to MongoDB Atlas (see 
below), alongside fully integrated application 
development services like functions, triggers, 
and authentication. Moreover, the underlying 
resources supporting the Device Sync-based 
applications can be fully elastic. Any number of 
instances can be spun up within seconds — via 
auto scaling — within a given edge zone or across 
multiple edge zones, as seen in the diagram below.

https://realm.io


10

Verizon Mobile 
NetworkAWS Region

Service Link

Wavelength Zone 1

Wavelength Zone 2

Realm ASG

Realm ASG

VPC

Atlas Cluster

Availability zone

Availability zone

Availability zone

Destination
10.0.0.0/16
0.0.0.0/0

Target
Local
cgw-id

Verizon Edge 
Discovery Service

Carrier 
gateway

Data synchronization
One of the most powerful capabilities of Realm 
is the built-in synchronization capabilities. Atlas 
Device Sync allows data to be automatically 
bi-directionally synchronized between a Realm 
instance and MongoDB Atlas. This sync includes 
full, deterministic conflict resolution which is 
critical, especially for digital twin use cases.

In complex, multi-edge deployments, the Verizon 
Edge Discovery Service can be used to identify 
the closest Realm endpoint and to retrieve data 
from MongoDB Atlas at the start of a mobile 
session, allowing the architecture to unlock a 
multi-tiered design between the region, mobile 
edge, and device itself.

Key to determining which data should be 
synchronized to which edge location is the 
definition of the Realm object schema. An object 
schema defines the properties and relationships 
of a Realm object using JSON schema notation. 
Using this object schema, an application is able 
to use familiar MongoDB query syntax to define 
which data should be synchronized. This vastly 
simplifies development of applications requiring 
multi-edge architectures. 

In the example below which uses the Flexible Sync 
version of Atlas Device Sync, a subscription is 
initiated for device data in which a field ‘ern’ (Edge 
Resource Name) is equal to the value ‘us-east-1-
wl1-bos-wlz-1’. This will result in all documents in 
MongoDB Atlas matching the specified criteria 
being automatically synchronized to the edge 
location on which the code is executing.

https://www.mongodb.com/realm/mobile/sync?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness


11

Through this Verizon and MongoDB-native 
architecture, the overarching complexity 
of edge data management is dramatically 
simplified both from an application development 
perspective and from a network operations 
perspective. From the complexity of the network 

(e.g., carrier-grade network address translation, 
edge discovery) to the complexity of the 
data (e.g., edge-to-cloud replication, conflict 
resolution), the development time to create 
stateful applications is drastically reduced.

SyncConfiguration config = new SyncConfiguration.Builder(app.currentUser())
  .initialSubscriptions(new SyncConfiguration.InitialFlexibleSyncSubscriptions() {
   @Override
   public void configure(Realm realm, MutableSubscriptionSet subscriptions) {
    // add a subscription with a name
    subscriptions.add(Subscription.create("deviceSubscription",
      realm.where(device.class)
       .equalTo("ern", "us-east-1-wl1-bos-wlz-1")));
   }
  })
  .build();

Realm.getInstanceAsync(config, new Realm.Callback() {
 @Override
 public void onSuccess(Realm realm) {
  Log.v("EXAMPLE", "Successfully opened a realm.");
  // later, you can look up this subscription by name
  Subscription subscription = realm.getSubscriptions().find("deviceSubscription");
 }
});



12

AWS Wavelength Integration
As one such example of mobile edge computing 
on Verizon 5G Edge, AWS Wavelength brings the 
best of AWS compute and storage to the edge 
of the Verizon mobile network. In fact, the vast 
majority of AWS Wavelength’s infrastructure 
concepts are the exact same as what would be 
expected in the parent region today.

In the parent region, a Virtual Private Cloud (VPC) 
consists of a series of subnets corresponding 
to an availability zone (e.g., us-east-1a). With 
Wavelength Zones, subnet creation is exactly the 
same and Verizon Wavelength Zones are denoted 
with the following nomenclature:

Boston: us-east-1-wl1-bos-wlz-1

Atlanta: us-east-1-wl1-atl-wlz-1

Washington DC: us-east-1-wl1-was-wlz-1

New York City: us-east-1-wl1-nyc-wlz-1

Miami: us-east-1-wl1-mia-wlz-1

Dallas: us-east-1-wl1-dfw-wlz-1

Houston: us-east-1-wl1-iah-wlz-1

Chicago: us-east-1-wl1-chi-wlz-1

Charlotte: us-east-1-wl1-clt-wlz-1

Detroit: us-east-1-wl1-dtw-wlz-1

Minneapolis: us-east-1-wl1-msp-wlz-1

San Francisco Bay Area:  
us-west-2-wl1-sfo-wlz-1

Las Vegas: us-west-2-wl1-las-wlz-1

Denver: us-west-2-wl1-den-wlz-1

Seattle: us-west-2-wl1-sea-wlz-1

Phoenix: us-west-2-wl1-phx-wlz-1

Los Angeles: us-west-2-wl1-lax-wlz-1

[Region] [Carrier][City Code][Edge Logical ID]           us-east-1-wl1-nyc-wlz-1

Today, Verizon 5G Edge with AWS Wavelength is 
available in 17 cities across both us-east-1 and us-
west-2 regions. The complete list of cities can be 
found below:

After creation of a subnet in a Wavelength Zone, a 
carrier gateway is attached to the VPC to connect 
the logically-isolated network to that of the 
carrier. The carrier gateway specifically takes care 
of the Network Address Translation (NAT) between 
private IP addresses within the VPC and the 
Carrier IP addresses allocated to each Wavelength 
Zone, otherwise referred to as a network border 
group within AWS parlance.

To ensure that the carrier gateway is participating 
in the routing selection for Wavelength Zone 
subnets, a carrier route table must be created. In 
this route table, the default route will point directly 
to the Amazon Resource Name (ARN) of the carrier 
gateway. As a result, any resources with traffic 
directed to the internet or a Verizon-connected 
mobile device will be routed through the carrier 
gateway to the Verizon carrier network. 

While internet-bound traffic initiated from the 
Wavelength Zone is supported, the reverse is not 
supported. This is due to the overarching security 
posture of the mobile edge computing design.

Across all traffic flows, 4G and 5G-connected 
devices are supported, irrespective of the 
underlying spectral resources consumed. (To learn 
more about Verizon 5G Nationwide or Verizon 
Ultra Wideband, visit the Verizon FAQ page.)

https://www.verizon.com/support/5g-mobile-faqs/


13

Data Transfer

Device to edge
Transferring data from device to edge supports 
a number of protocols. As one example, using a 
MongoDB Realm based architecture at the edge 
it is possible to support both MQTT and RESTful 
interfaces. However, the choice of when to use 
MQTT over REST depends on the use case. REST 
was designed as a request-response model over 
HTTP and supports a small set of predefined 
operations (e.g., GET, POST, PUT). MQTT, on the 
other hand, is a publish-subscribe model over  
TCP/IP sockets that is faster and more flexible.

It should be noted that in a Realm architecture, an 
MQTT-to-Realm proxy service is needed on each 
edge — particularly in the case of IoT applications 
— to connect the underlying MQTT message 
from the IoT device to the Realm database. More 
information on the MQTT implementation can 
be found in this MongoDB Blog: Take Advantage 
of Low-Latency Innovation with MongoDB Atlas, 
Realm, and AWS Wavelength.

Edge to cloud
As discussed at length above, seamless data 
transfer between edge(s) and the cloud is a 
critical component of an edge-based architecture 
using Verizon 5G Edge and MongoDB. Both of 
the outlined data persistence options for edge 
deployment (Realm + Atlas Device Sync and 
Enterprise) are fully supported both for public and 
private MEC.

Edge to edge
Verizon 5G Edge with AWS Wavelength was 
designed with a hub-and-spoke architectural 
model. For each Wavelength Zone deployed, a 
service link that connects the edge back to the 
parent region was constructed for ultra-high 
throughput and reliability. As a result, direct 
edge-to-edge connectivity within a VPC is not 
supported (in the absence of a region-based 
proxy), while edge-to-edge connectivity using 
Carrier IP addresses over the Verizon backbone 
is supported. However, direct edge-to-edge data 
replication is currently considered an anti-pattern.

https://www.mongodb.com/blog/post/take-advantage-low-latency-innovation-mongodb-atlas-realm-aws-wavelength?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness
https://www.mongodb.com/blog/post/take-advantage-low-latency-innovation-mongodb-atlas-realm-aws-wavelength?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness
https://www.mongodb.com/blog/post/take-advantage-low-latency-innovation-mongodb-atlas-realm-aws-wavelength?utm_campaign=mobile_edge_computing&utm_source=solutions_telco&utm_medium=ebook&utm_term=awareness


14

Containers at the Edge 
While the entirety of the reference data 
architectures above have been focused on virtual 
machines, containers are deeply supported at 
the edge. In fact, Verizon 5G Edge with AWS 

Wavelength supports both Amazon Elastic 
Container Service (ECS) and Amazon Elastic 
Kubernetes Service (EKS). Consider the following 
reference architecture for Amazon EKS at the edge:

Verizon Wireless Edge Location

AWS Account

AWS Region

Availability Zone Availability Zone Wavelength Zone

Public SubnetPublic Subnet Carrier Subnet

Private Subnet Private Subnet Private Subnet

Security Group Security Group

Security Group Security Group

Security Group

Security Group

EKS Worker ASG

EKS Worker ASG 

EKS Worker ASG

EKS Worker ASG

Application Load 
Balancer

EKS Worker ASG

Amazon 
Elastic 

Container for
Kubernetes

    
K8s API
Server

K8s API
Server

Internet
Gateway

EC2 VPC
Endpoint

ECR VPC
Endpoint

Elastic 
Container 
Registry 

(ECR)

Carrier
Route 
Table

Amazon Simple 
Storage Service (S3)

RAN 5G Radio
Tower

Verizon 
Mobile 
Device

VPC

K8s API
Server

Load 
Balancer 
Service

Load 
Balancer 
Service

K8s API
Server

Carrier
Gateway

Private 
Route
Table

Cloud 
Ingress

NAT Gateway

Private Route Table Private Route Table

NAT Gateway

S3 Gateway
Endpoint

Private
Route 
Table

Cloud Ingress

When deploying EKS, the control plane is 
instantiated in subnets in the parent region and 
control plane in the Wavelength Zones is not 
supported. After deploying the control plane, self-
managed node groups can be launched in one or 
many Wavelength Zones. However, AWS Fargate 
and managed node groups are not supported in 
AWS Wavelength.

For your node groups to communicate with the 
control plane, there are two primary modes of EKS 
cluster endpoint access.

• Public access: In this access mode, a route over 
the public internet must exist from your carrier 
node groups to the EKS control plane. To do this, 
a Carrier IP must be assigned to each node and 
the EKS control plane security group should 
permit inbound traffic from the node.

• Private access: In this access mode, the 
connection from your node to the control plane 
is forged over the AWS backbone. To do this, you 
must create three VPC Interface endpoints: an 
EC2, ECR (DKR), and ECR (API) endpoint. This, 
in turn, allows the traffic from your Wavelength 
node to be routed through the interface 
endpoints to the cluster endpoint.



15

If MongoDB Enterprise is used at the edge, after 
configuring the cluster, MongoDB can be deployed 
as a StatefulSet within the Kubernetes cluster. 

To schedule a workload to a particular Wavelength 
Zone, node selectors can be used to match the 

workload to a specific Availability Zone ID for a 
given set of nodes. Through the native StatefulSets 
object in Kubernetes, a MongoDB ReplicaSet can 
be deployed. Using a StatefulSet, each MongoDB 
replica is given an ordinal identifier, as seen here:

To learn more about MongoDB and StatefulSets, visit the Kubernetes documentation.

kubectl get pods

NAME READY STATUS RESTARTS AGE
mongo-0 2/2 Running 0  3m
mongo-1 2/2 Running 0  3m
mongo-2 2/2 Running 0  3m

Data Processing
In an edge or multi-edge based application, there 
are multiple layers in which data can be processed 

and the objective of the data processing at each 
layer can differ based on the use case in question. 

Edge Public Cloud

Raw Data

Application 
Processing

Processed Data Processed Data

Application 
Components

Data Sync

End user device

5G/LTE

Visualization

Data Science

Reporting

Analytics

AI Model Training

https://kubernetes.io/blog/2017/01/running-mongodb-on-kubernetes-with-statefulsets/


16

Processing on the device
End devices will typically be responsible 
for the accumulation of large amounts of 
locally generated data. In the example of a 
manufacturing IOT platform or an automotive use 
case, this might be in the form of sensor readings. 
While in some circumstances, local processing 
may be required, in many cases, the devices will 
be mainly responsible for the aggregation of the 

numerous local data sources and the transmission 
of high-fidelity, high-frequency data to the edge 
for processing.

While there can be many formats for data to 
be handled within a device, the transmission of 
the data to the edge will typically use industry 
standard protocols such as MQTT, OPC, or AMQP.

Processing at the edge
By executing data processing at the edge, the 
time taken to react to any given situation is 
minimized by enabling application logic to be 
executed with minimal latency. Additionally by 
processing and aggregating data at the edge, it is 
possible to control the data that is sent upstream 
to the cloud both in terms of content and volume.

Data arriving at an edge can first be pre-
processed to verify the fidelity and completeness 
of the data before it is passed on for application-
specific processing. Application-based processing 
at the edge is able to utilize not only the incoming 
data but also locally stored data via MongoDB or 
Realm. This data can for example include either 
corresponding data from other devices attached 
to the same edge and/or short-term history 
which allows correlation and regression-based 
algorithms to be utilized.

The output from the data processing could 
be that no action is needed and the data 

can simply be persisted for later use. It could 
alternatively result in the generation of an error/
warning which should be sent to the operators. 
In other circumstances however, it could result 
in an automated decision to take action. Where 
action is required, command messages can be 
automatically sent to the end device.

Another responsibility of edge-based processing is 
data aggregation. Data received and processed 
from devices will often be high frequency and 
represent a raw data stream. While this raw data 
stream may be required for edge-based processing, 
the same granularity of data is often not required 
in central, cloud-based storage. Aggregating data 
at the edge allows for available bandwidth to be 
optimized by only sending the data upstream that is 
required for the supported use cases. For example, 
if the cloud-based data is used for reporting and 
visualization, instead of sending every reading 
to the cloud, it might be possible to periodically 
calculate an average reading.

Processing in the cloud
Cloud-based processing typically supports use 
cases such as analytics, visualization (digital twin), 
and data science as well as general application 
services. In order to do this, having a complete 
view of the data accumulated from all edges 
is critical. As mentioned above however, the 
granularity of data required to support these use 
cases is often lower than that required for edge-
based automated decisioning.

In the example of a digital twin use case, human 
operators will often interact with a device based 
on the state presented in the cloud view with any 
actuation commands (e.g. turn on/off) being 
translated and sent to the device via the edge where 
high-level user-based comments are translated into 
messages sent to underlying devices.



17

Real-World Use Case Applications
The techniques and technologies described in this 
paper have far reaching implications for real-world 
use cases across many different industries. Any 

organization that has a requirement for low-latency 
data processing can benefit from edge based 
architectures. Some examples are outlined below.

Agriculture
One of the most powerful uses of data analytics 
at-scale has been in the agriculture sector. 
For decades, researchers have grappled with 
challenges such as optimal plant breeding and 
seed design which, to date, has been a largely 
manual process. 

Through purpose-built drones and ground 
robotics, new ways to conduct in-field inspection 
using computer vision have been used to collect 
height, biomass, early vigor, and anomaly 
detection. However, these robots are often 
purpose-built with large data systems on-device, 
requiring manual labor to upload the data to the 
cloud for post-processing. 

Using the edge, this entire workflow can be 
completely optimized; starting with the ground 
robotics fleet, the device can be retrofitted with 
a 5G modem to disintermediate much of the 
persistent data collection. Instead, the device can 
collect data locally, extract relevant metadata, 
and immediately push data to the edge for real-
time analytics and anomaly detection. 

In this manner, field operators can collect insights 
about the entirety of their operations — across a 
given crop field or nationwide — without waiting 
patiently until the completion of a given mission.

Automotive
Modern vehicles are far more connected 
than ever before with almost all models being 
produced today containing embedded SIM cards 
enabling even more connected experiences. 
Additionally, parallel advances are being made 
to enable roadside infrastructure connectivity. 
Together these advances will power not just 
increased data sharing between vehicles but 
also between vehicles and the surrounding 
environment (V2V2X).

In the shorter term, edge-based data processing 
has the potential to yield many benefits both to 
road users and vehicle manufacturers. 

Data quality and bandwidth 
optimization
Modern vehicles have the ability to transmit 
large amounts of data both in terms of telemetry 
relating to the status of the vehicle but also the 
observed status of the roads. If a vehicle detects 

that it is in a traffic jam, for example, then it might 
relay this information so that updates can be 
made available to other vehicles in the area to 
alert drivers or replan programmed routes. While 
a useful feature, there can be many vehicles 
reporting the same information. By default all of 
this information will be relayed to the cloud for 
processing resulting in large amounts of redundant 
data. Instead, through edge-based processing:

1. Data is shared more quickly between vehicles in 
a given area using only local resources.

2. Costs relating to cloud-based data transfer are 
better controlled.

3. Network bandwidth usage is optimized.

While improving control of network usage is clearly 
beneficial, arguably a more compelling use of 
edge-based processing in the automotive industry 
relates to aggregating data received from many 
vehicles to improve the quality of data sent to the 



18

cloud-based data store. Staying with the example 
of the traffic jam, all of the vehicles transmitting 
information about the road conditions will be 
doing so based on their understanding, gained 
through GPS as well as internal sensors. Some 

vehicles will be sending more complete or 
accurate data than others, and therefore by 
aggregating the many different data feeds at 
the edge, resulting in a more accurate, complete 
representation of the situation.

Smart manufacturing
Modern industrial manufacturing processes 
are making greater use of connected devices 
to optimize production while controlling costs. 
Connected devices exist throughout the process, 
from sensors on manufacturing equipment to 
mobile devices used by employees on the factory 
floor to connected vehicles transporting goods — 
all generating large amounts of data.

To realize the benefits of this data, it is critical 
that it be processed and analyzed in real time 
to enable rapid action. As described earlier in 
this paper, moving this data from the devices to 
the cloud for processing introduces unnecessary 
latency and data transmission that can be 
avoided by processing at the edge.

Process optimization
Through real-time processing of telemetry 
data it is possible to make automated, near-

instantaneous changes to the configuration 
of industrial machinery in response to data 
relayed from a production line. There are 
numerous potential outcomes of such a process 
such as improved product quality, increased 
yield, optimization of raw material use, and the 
tracking of standard KPIs such as OEE (overall 
equipment efficiency).

Preventative maintenance
Similar to process optimization, real-time 
processing of telemetry data can enable the 
identification of potential impending machinery 
malfunctions before they occur and result in 
production downtime. More critically however, 
should a situation be detected which has the 
potential to either damage equipment or pose a 
danger to those working in the immediate vicinity, 
being able to shut it down automatically as soon 
as the condition is detected is vital.



19

About the Authors
Robert Belson is a Principal Engineer at Verizon and currently leads their Developer 
Relations & Experience efforts for Verizon’s edge computing portfolio. In this capacity, 
he serves as Editor-in-Chief of the 5G Edge Blog, designs developer tutorials & training 
modules, and works with large enterprise customers to solve their business challenges 
using automation, hybrid networking, and the edge cloud.

Steve Dalby is a Director in the MongoDB Industry Solutions team where he focuses on 
how MongoDB technology can be leveraged to solve challenges faced by organizations 
working in the telecommunications industry. Prior to this role, Steve held numerous 
leadership roles with MongoDB’s Professional Services team in EMEA.

Conclusion
The future of intelligent machines and data is all 
about taking individual components and having 
them operate together as one. Through data 
generated by connected devices, we can begin 
to orchestrate a new set of applications that will 

drive efficiencies across businesses and improve 
user experiences. Through 5G networks and edge 
computing, we can begin to develop end-to-end 
value chains that perform as a cohesive, self-
improving, and self-healing service.

Resources
For more information, please visit mongodb.com or contact us at sales@mongodb.com.

Case Studies

Presentation

Free Online Training

Webinars and Events

Documentation

MongoDB Atlas database 
as a service for MongoDB

MongoDB Enterprise 
Download

MongoDB Realm

http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
http://mongodb.com/cloud
http://mongodb.com/download
http://mongodb.com/download
http://mongodb.com/realm


20© May 2022 MongoDB, Inc. All rights reserved.

Legal notice (MongoDB)

This document includes certain “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, or the Securities Act, and Section 

21E of the Securities Exchange Act of 1934, as amended, including statements concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the 

anticipated impact of the coronavirus disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of MongoDB Atlas; and our ability 

to transform the global database industry and to capitalize on our market opportunity. These forward-looking statements include, but are not limited to, plans, objectives, 

expectations and intentions and other statements contained in this press release that are not historical facts and statements identified by words such as “anticipate,” 

“believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “project,” “will,” “would” or the negative or plural of these words or similar expressions or variations. 

These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently 

available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested by 

those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or strategies will be attained or achieved. Furthermore, 

actual results may differ materially from those described in the forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that 

are beyond our control including, without limitation: our limited operating history; our history of losses; failure of our database platform to satisfy customer demands; the 

effects of increased competition; our investments in new products and our ability to introduce new features, services or enhancements; our ability to effectively expand our 

sales and marketing organization; our ability to continue to build and maintain credibility with the developer community; our ability to add new customers or increase sales 

to our existing customers; our ability to maintain, protect, enforce and enhance our intellectual property; the growth and expansion of the market for database products and 

our ability to penetrate that market; our ability to integrate acquired businesses and technologies successfully or achieve the expected benefits of such acquisitions; our 

ability to maintain the security of our software and adequately address privacy concerns; our ability to manage our growth effectively and successfully recruit and retain 

additional highly-qualified personnel; the price volatility of our common stock; the financial impacts of the coronavirus disease (COVID-19) outbreak on our customers, our 

potential customers, the global financial markets and our business and future results of operations; the impact that the precautions we have taken in our business relative 

to the coronavirus disease (COVID-19) outbreak may have on our business and those risks detailed from time-to-time under the caption “Risk Factors” and elsewhere in our 

Securities and Exchange Commission (“SEC”) filings and reports, including our Quarterly Report on Form 10-Q filed on December 10, 2019, as well as future filings and reports 

by us. Except as required by law, we undertake no duty or obligation to update any forward-looking statements contained in this release as a result of new information, future 

events, changes in expectations or otherwise.

Legal notice (Verizon)

Further, this document includes statements based on Verizon’s current assumptions and expectations about its future performance, including statements regarding 

operational, technological and business strategy, plans, initiatives and objectives. These statements typically include words such as “will,” “aim,” “anticipate,” “believe,” 

“drive,” “estimate,” “expect,” “intend,” “may,” “plan,” “project,” “strategy,” “target,” and “goal” or similar terms. For those statements, we claim the protection of the safe 

harbor for forward-looking statements contained in the Private Securities Litigation Reform Act of 1995. Our actual future results, including the achievement of our  strategic, 

operational and business plans, initiatives and objectives, could differ materially from our projected results as the result of changes in circumstances, assumptions not being 

realized, or other risks, uncertainties and factors. For information on certain factors that could cause actual events or results to differ materially from our expectations, please 

see our filings with the Securities and Exchange Commission, including our most recent annual report on Form 10-K and subsequent reports on Forms 10-Q and 8-K. Investors 

are cautioned not to place undue reliance on any such forward-looking statements, which speak only as of the date they are made. Verizon undertakes no obligation to 

update any forward-looking statements, whether as a result of new information, future events or otherwise.   


