
The Decision Maker’s
Guide to CSP Billing
Modernization

Go from legacy to leader with modern
architecture and data management approaches.

OCTOBER 2021

2

Introduction
Billing is an increasingly complex and vital part of the underlying business of
communication service providers (CSPs). From operational workloads to customer
insights, billing is simultaneously a core business process and a central tenet of the
end-customer experience.

Both business and customer experience functions
share a common trait: They rely on a complete
and accurate accounting of the underlying
customer base.

Collating this customer information, which is
crucial for smooth operation and making informed
business decisions, is far from trivial. This is
largely due to the unique internal systems and
data architectures that span across the tens or
sometimes hundreds of internal business units at a
given CSP. CSPs also have many different product
offerings, often under completely different
divisions, with each using a different system.

In addition, consolidation in the market has
resulted in many mergers and acquisitions, with
each business bringing its own systems and
customers to be integrated.

This has driven many large CSPs to begin
modernizing and rationalizing their billing functions
to embrace modern architectures and data
management approaches. When done successfully,
this can yield significant improvements in customer
experience while at the same time reducing
costs — critical in an increasingly competitive
marketplace with compressed margins and rising
customer expectations.

Customer
Core Data

Payment Processing

Handle incoming payments
in different forms and
update customer records.

Bill Generation

Process customer data and
usage data to determine
the amount owed and
notify the customer. Service Usage

Collect, process,
and expose usage
data in real time.

Service Provisioning

Support the customer
onboarding process for new
products and services.

Customer Loyalty

Handle customer
retention, cross-
sell/up-sell, loyalty
programs, etc.

Figure 1: Customer Centricity in Billing

3

Customer Data Customer Data Customer Data

Billing Billing Billing

LANDLINE DOMAINCABLE DOMAINMOBILE DOMAIN

Modernization Drivers for CSP Billing
Siloed application stacks, broken out by product
area (e.g., VoIP, mobile, cable, etc.), are common
among large CSPs. These siloed stacks are most
prevalent in systems that are used to generate
bills for customers and process their associated

payments. Added to this, CSPs have traditionally
identified customers through their phone numbers
rather than through the multiple products that
their customers use.

This siloed approach leads to multiple
inefficiencies and complexities.

For example:

1.	 Customers use products that exist in multiple
silos (i.e., they have a fixed line and a
mobile phone, and they potentially access
entertainment services, all through the same
CSP). Any changes to customer data, therefore,
need to be propagated to multiple systems.

2.	CSPs that lack a single, consolidated view of
their customer base find it challenging to use
data to cross-sell and up-sell. This is especially
true for CSPs that have grown via mergers and
acquisitions.

3.	Managing multiple parallel billing
implementations and their associated data
synchronization infrastructure can lead to
significant increases in cost and architectural
complexity. This hampers an organization’s
ability to explore new commercial opportunities
in a timely manner.

In order to address these challenges, many CSPs
are embarking on projects to rebuild their billing
systems to have a single view of the customer and
their billing-related data.

At the heart of any modernization project is the
move to a new data platform.

Figure 2: Siloed Domains

4

From Silo to Single View
There are two key requirements that a data platform
needs in order to facilitate the single customer view
required for a centralized billing function:

1.	 It must be flexible enough to ingest, process,
and search diverse data sets, since customers in
each domain will likely be represented differently.

2.	It must be possible to scale infrastructure to
handle the data ingestion requirements of a
unified billing solution. This ingestion requirement
is often significant when considering usage data
in the form of CDR/IPDR records.

In addition, the right data platform will be integral
for success in the following strategic areas:

•	 Populating each of the data domains with data
from both operations support systems (OSS) and
business support systems (BSS) with a robust
strategy to deal with data conflicts.

•	 Modernizing of billing systems to allow
single-view data consumption and
dataconsistency resolution.

•	 Establishing a single, highly scalable billing
engine that will use the single view data
platform as its single source of truth.

•	 Initiating a program to retire legacy billing
components, aligned to the decommissioning
of functionality as it is ported to the new unified
billing system.

Payment DataCDR/IPDR DataCustomer DataCustomer Data

Customer Domain

CDR/IPDR Data

Usage Domain

Payment Data

Payments Domain

Billing Engine

SINGLE VIEW

Figure 3: Centralizing the Billing Function

5

The legacy challenge
Legacy systems and relational databases hold
CSPs back from realizing the benefits of a single
view of their customer base. By design, these legacy
systems engender a more rigid approach to data,
which requires a predefined schema that is difficult
to alter once established. They are also less able to
scale cost-effectively or distribute across servers
and regions, and they cannot easily accommodate

unstructured data, which by some estimates makes
up 80% to 90% of today’s overall data.

This is a significant challenge for CSPs that are
eager to embrace the opportunity afforded by
using all types of customer and operational data
— including unstructured — to improve billing
functions and the end-customer experience.

Standard Modernization Approaches
The starting position with legacy systems is
frequently characterized by siloed data knowledge
across multiple specialized teams. There might

be some lift and shift of data workloads in the
cloud, but the strong interdependencies reflect a
burdensome cost of change.

Service Layer

Data PlatformData Layer

Legacy

Prioritize Data Accessibility
Data-driven design

Architectural Simplification Create Product-Oriented Developement Teams

D
at

a
A

cc
es

si
bi

lit
y

D

em
oc

ra
tiz

e
D

at
a

A
cc

es
s

Prioritize App Simplification
Application-driven design

Explore Iteratively

TARGET STATE

As outlined in figure 4, there are two main
approaches taken by organizations looking to
modernize legacy infrastructures:

•	 Some organizations start incrementally by
taking a data-centric “data layer” approach
and invest in building single views (or operational
data stores) that sit in front of systems of record

and allow the segregation of read workloads
from write workloads. Doing so can gain in-
channel efficiencies and allow for a low-risk
transitory stage within a larger modernization
program. However, this method can present
additional complexity and cost in terms of
managing coexistence with legacy systems.

Figure 4: Modernization Strategies

https://www.mongodb.com/embracing-the-cloud-exec-brief-mark-porter?utm_campaign=explainer&utm_source=cta_link_50&utm_medium=asset&utm_term=decision&utm_content=telco_billing_wp

6

•	 Other organizations start incrementally by
taking a platform-centric “break the monolith”
approach. This involves self-organized cross-
functional teams that work on a single loosely
coupled business domain with microservices.
This can also yield strong results, but care must
be taken in considering the wider organizational
data management implications.

It’s not unusual for organizations to simultaneously
leverage different pathways in different parts
of the organization, or to alternate between

approaches as blockers or dependencies require.
Each organization’s path will be unique based on
their market situation, competitive environment,
and initial conditions.

MongoDB allows CSPs to embrace numerous data-
management pathways in an effort to move away
from legacy systems. With MongoDB, customers
are supported through all of the aforementioned
transformation pathways, allowing them to
experience accelerated growth and limited risk.

Data-driven modernization
The first step in a data-driven transformation of
legacy systems is the creation of an operational
data layer (ODL). An ODL can become a system
of innovation, allowing CSPs to take a rapid,
iterative approach to digital transformation of
legacy infrastructure. As an architectural pattern,
an operational data layer centrally integrates
and organizes siloed enterprise data, making
it available to consuming applications. An
intermediary between existing data sources and
consumers that need to access that data, an ODL
enables a range of board-level strategic initiatives
(such as legacy modernization and data-as-a-

service) and use cases (such as single view, real-
time analytics, and mainframe offload).

An ODL deployed in front of legacy systems can
enable new business initiatives and meet new
requirements that the existing architecture can’t
handle without the difficulty and risk of a full
rebuild of legacy systems. An ODL can additionally
reduce workloads on source systems, improve
availability, reduce end-user response times,
combine data from multiple systems into a single
repository, and serve as a foundation for rebuilding
aging applications into modern architectures.

System of Record

System of Transaction

Parallel Write

Enriched ODL

Basic ODL

Bu
si

ne
ss

 B
en

efi
ts

Scope

Figure 5: The five stages of data-driven modernization

7

Offloading Reads
The first step in the creation of an ODL is to stand
up data infrastructure in order to model and store
a unified copy of the data being mastered in the
legacy system(s). The existing systems will remain
the single source of truth, with new applications
and services being able to take immediate
advantage of the consolidated data set. Existing
applications can continue to operate without
interruption.

When populating an ODL, consideration should
be given to the velocity of the different data
facets being loaded and the appropriate load
mechanisms used. For data that is updated
infrequently, such as some customer data
subsets, loading data via a regular batch/ETL
process might be appropriate, whereas for rapidly
changing data sets such as CDR records, real-time
population using change data capture tools would
be appropriate.

Legacy Decommissioning
Once new applications and services have
successfully moved their read operations to the
ODL, attention can be turned to migrating write
operations. Old applications should continue to use
the old infrastructure, but new applications and
services should ensure that their writes are mirrored
in both systems. This can be done by having
applications perform dual (or parallel) writes, but
careful consideration must be given to cross-system
consistency in the presence of failure modes.

A more robust, alternative option is for writes to be
performed against the ODL directly and then have
external components detect and mirror the write
to the old system. At this stage, the ODL can be
considered the primary system of transaction.

Lastly, in order to fully decommission legacy
applications, the functionality of legacy
components must be replicated to new
applications and services.

8

Application-Driven Modernization
Application-driven modernization strategies take
an approach whereby existing, often monolithic,
applications are systematically broken down
into self-contained units of functionality. These
can be iteratively refactored to use modern
infrastructure and application design patterns

such as microservices, with each microservice
being a full vertical slice of functionality,
including data and application components.
As the application is refactored and ported,
the legacy application naturally becomes a
candidate for decommissioning.

Modernizing a monolithic application to use
a modern architecture is often a multistep
process that starts with the application. Due
to a combination of design and evolution, the
existing codebase may not be organized into
defined modules. The first (transitory) step,
therefore, is to enumerate the services offered by
the application and to refactor and reorganize
the code into modules that will later form the
basis of microservices.

Similarly, the existing database will likely contain
interdependencies between the data used by

the various modules. Clear delineation should
be made in terms of ownership of the various
data items. In order to expedite the final move
to microservices, the refactoring of the existing
schema should be considered, as should the
mechanisms by which one module gains access
to data owned by another (which should be via
defined service interfaces rather than via direct
database access).

Following the successful modularization of
the codebase, each module can be iteratively
replatformed and made into a defined service.

Module C

Module A Module B
Service

A
Service

B
Service

C

Legacy Application Internal Refactoring Microservices

Database

Database

Data
for A

Data
for B

Data
for C

Common API
Common API

Monolithic App

Figure 6: From monolith to microservices

9

While an application is being refactored, some data
will likely need to be kept in sync between the old
and new systems so old applications can continue

to function in a business-as-usual context. Service
layers will often manage this in order to abstract
the details away from frontend applications.

Application to CSP Billing Systems
In the real world, it is rare to modernize with either
an exclusively application-driven or data-driven
approach. Commonly, a combination of both is
used simultaneously because of the complexity
of billing implementations, including the need to
manage billing for mobile, fixed line, cable, and
more. While taking a purely application-centric
approach might be preferred, the associated
complexity means that such projects will likely
require a very high level of cost/effort and this will
delay the realization of benefits.

The more pragmatic approach is to create an ODL
using data-driven modernization techniques. This
allows immediate value to be unlocked via the
centralization of billing and the creation of a single
source of truth with respect to customers. Following
this, application modernization of existing systems
can be undertaken to create a single set of unified
services. The redundant functionality can then
be retired, reducing the complexity and cost of
managing multiple systems. A flexible database to
accommodate the diverse data sets contained in
the source systems, from multiple domains or even
regional branches, is essential for success.

MongoDB is an application data platform,
designed to empower developers with one
interface, for any application, running anywhere.
MongoDB provides a mature and proven
alternative to relational databases for enterprise
applications and is by far the best technology for
the development of single-view projects.

With MongoDB, the need for niche databases and
the associated costs of deploying and maintaining
a complicated sprawl of data technologies is
reduced. As a result, development teams no longer
need to learn multiple ways of querying or working
with data to address different data requirements.

MongoDB fulfills all requirements for a successful
single view for billing and customer relationship
management (CRM) systems:

•	 Ease: MongoDB’s document model makes it
simple to model — or remodel — data in a way
that fits the needs of applications. Documents
can be closely aligned to the structure of
objects in an application. As a result, it’s simpler
and faster for developers to model how data
in the CRM and billing engines will map to
customer data stored in the database. This
way, data conflicts relating to a customer in
two different source systems with (for example)
different addresses can be easily modeled,
identified, and resolved. Additionally, MongoDB
guarantees the multirecord ACID transactional
semantics that developers are familiar with.

•	 Data Reconciliation and Search: One of the
toughest challenges in single view projects is
data reconciliation — the process of unifying
the identity of a customer ingested from
multiple source systems. Fuzzy search and
autocomplete are incredibly powerful for
reconciling these disparate identities into a
single customer record for the application’s user.
These capabilities are available as part of Atlas
Search, which combines the power of Apache
Lucene — the same technology underpinning the
world’s most popular search engines — with the
developer productivity, scale, and resilience of
the MongoDB Atlas database.

•	 Flexibility: Mongo DB’s document data model
makes it easy for developers to store and
combine the diverse data required by modern
CSP billing systems, including customer data in
the BSS and usage data across multiple product
domains within the OSS, without neglecting
sophisticated validation and consistency
rules to govern data quality. This allows for
the modernization of the billing engine(s) while
avoiding subtle customer data inconsistencies
across various domains. MongoDB documents
are typically modeled to localize all data for a
given entity, such as a customer, into a single
document. This enables, for example, address

https://www.mongodb.com/atlas/search?utm_campaign=explainer&utm_source=cta_link_75&utm_medium=asset&utm_term=decision&utm_content=telco_billing_wp
https://www.mongodb.com/atlas/search?utm_campaign=explainer&utm_source=cta_link_75&utm_medium=asset&utm_term=decision&utm_content=telco_billing_wp

10

changes for a customer with both a landline and
cable to be made in one single document, rather
than spreading it across multiple relational
tables and domains.

•	 Versatility: Building upon the ease and flexibility
of the document model, MongoDB enables
developers to satisfy a range of application
requirements, both in the way data is modeled
and how it is queried. The embedding of arrays
and subdocuments makes the document
model very powerful for modeling complex
relationships and hierarchical data, allowing
developers to manipulate deeply nested data
without rewriting the entire document.

With MongoDB’s expressive query language and
secondary indexing capabilities, documents
relating to customer data can be queried in many
ways, from simple lookups and range queries
to sophisticated processing pipelines for data
analytics and transformations, faceted search,
JOINs, geospatial processing, and graph traversals.

Not having to manage multiple parallel billing
implementations — and their associated data
synchronization infrastructure — reduces cost
and architectural complexity significantly. It also
adds versatility, which is crucial for a single view
of customers. As it evolves over time, the single
view typically incorporates new source systems,
absorbing data model implications that weren’t
foreseen at the outset.

•	 Scalability: MongoDB provides automatic
horizontal scale-out for single view databases
on low-cost, commodity hardware or cloud
infrastructure. This allows the billing data
platform to grow as additional data sources are
added — without incurring unnecessary up-front
costs. MongoDB automatically distributes the
data in the cluster as the data set grows or the
size of the cluster increases or decreases.

•	 Availability: MongoDB maintains multiple replicas
of the data to maintain database availability
and, by extension, customer service availability.
Replica failures are self-healing, so single-view
applications remain unaffected by underlying
system outages or planned maintenance.

•	 Data access and APIs: MongoDB provides
idiomatic drivers for all modern application

development languages. When coupled
with MongoDB’s rich query and aggregation
capabilities, applications can access data
securely and naturally. Additionally, applications
can “register” to be notified of changes to data
stored within the cluster. This is especially useful
when propagating changes automatically, in
real time, to other systems. Many organizations
opt to produce common data access APIs to
facilitate data access. This is natively supported
for both REST and GraphQL endpoints.

•	 Intelligent insights, delivered in real time: With
all relevant data consolidated into a single view,
it is possible to run sophisticated analytics.
For example, customer call behavior can be
analyzed to better cross-sell and up-sell or to
identify the risk of customer churn. Automated
data archival with federated query enables
these analytical workloads to be run over “hot”
data as well as data that has been archived.
Complex queries are executed natively in
the database on dedicated nodes so as not
to interfere with operational workloads. This
enables real-time analytical capabilities without
having to use additional analytics frameworks or
tools. It avoids the latency and complexity that
can come from ETL processes that move data
between operational and analytical systems.

•	 Business intelligence: The MongoDB Connector
for Business Intelligence allows analysts to
connect their existing business intelligence and
visualization tools to the single view in MongoDB
to more easily derive insights. Alternatively,
MongoDB Charts can connect directly to the
single source of truth for native visualizations.

•	 Global multi-cloud coverage with no lock-
in: MongoDB comes with the benefits of a
multi-cloud strategy. MongoDB Atlas supports
70+ regions on all major cloud providers
(Google Cloud, Microsoft Azure, and AWS),
and clusters can be deployed on all of them
simultaneously. This allows for an elastic,
fully managed service without being locked
into a single cloud provider. Global cluster
support enables the simplified deployment
and management of a single geographically
distributed operational data layer.

https://www.mongodb.com/multicloud

11

Case Studies

Presentation

Free Online Training

Webinars and Events

Documentation

MongoDB Atlas database
as a service for MongoDB

MongoDB Enterprise
Download

MongoDB Realm

MongoDB Architecture
Guide

Conclusion
Bringing together disparate data from multiple
isolated silos into a single view as a part of
a modernization program is a challenging
undertaking. Whether your modernization program
is application-driven or data-driven, MongoDB’s
document model, flexibility, and versatility allow
for a single source of truth to be established
without the complexities often incurred by using
traditional relational technologies.

This enables a unified billing engine to consume
validated customer data, avoiding the need to

connect to multiple customer systems and handle
conflicts that arise. By having all data in a single,
accessible location, CSPs can use the data to
cross-sell and up-sell, as well as avoid managing
multiple parallel billing implementations and their
associated costs and architectural complexities.

Modernization and building a single view requires
technical skills, the right tools, and coordination
among many different parts of the business.
MongoDB offers access to the right technology,
people, and processes for success.

Resources
For more information, please visit mongodb.com.

About the Authors
Steve Dalby
Principal, Enterprise Modernization at
MongoDB, London Office
steve@mongodb.com

Vanda Friedrichs
Enterprise Modernization, Industry Consultant
at MongoDB, Dublin Office
vanda.friedrichs@mongodb.com

© October 2021 MongoDB, Inc. All rights reserved.

http://mongodb.com/customers

http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
http://mongodb.com/cloud
http://mongodb.com/download
http://mongodb.com/download
http://mongodb.com/realm
http://mongodb.com/collateral/mongodb-architecture-guide
http://mongodb.com/collateral/mongodb-architecture-guide

