The 5 Phases of
Banking Modernization

Accelerate your digital transformation

while minimizing risk

Nov 2024

0 MongoDB.

Table of Contents

Modernizing Legacy Systems

The 5 Phases of Banking Modernization
The operational data layer
The 5 phases

Approaches to Modernization Planning
Data-driven modernization
Application-driven modernization
Iterative modernization

Modernizing Iteratively

Moving Data Between Systems

Leveraging Al to Accelerate Modernization

Schema transformation and data migration

Code conversion and testing

Leveraging AI With MongoDB

Bendigo and Adelaide Bank Modernize Core Banking Technology with Gen Al

Your Roadmap to Digital Transformation

N AN

O 0 0

10
11
13
14
14
15
15

17

Modernizing Legacy Systems

It’s clear to banks and their customers that modern banking experiences need
to deliver greater convenience in real time without compromising security.

Banking consumers and financial services companies have come to expect popular
features like mobile deposits, multi-factor authentication, AI-enhanced services, chatbots,
speedy dispute resolution, instant money fransfers, and a range of other analytical and
business insights. For banks, these services are a way to streamline operations, automate
services, and differentiate themselves from competitors in a market where costs are high
and margins are slim.

Although both parties are clear on what they want out of modern banking, successfully
implementing these services with existing technical infrastructure is difficult and slow.

To innovate and give customers the modern banking experiences they expect, banks must
first free themselves from the rigid data architectures associated with legacy hardware
and monolithic enterprise banking applications.

Legacy systems like relational database management systems (RDBMS) make change
harder than it needs to be, stalling innovation and entrenching a fear of failure. They also
complicate business requirements that didn’t exist when RDBMS were invented, such as
regulatory compliance.

Because of the inflexible formats required by relational schemas, updating applications
and adding features becomes a chore. The inflexible nature of relational architectures also
leads to silos where data becomes duplicated across different systems and difficult to
analyze.

Despite the limitations of the relational model, organizations are hesitant to embark on a
solution. Legacy modernization is frequently perceived to be time-consuming, complex,
and error-prone.

The reality is that legacy modernization can be straightforward, predictable, and
successful, allowing banks to accelerate their digital transformation, deliver truly modern
banking experiences, and support compliance with increasingly restrictive data privacy
regulations, all while minimizing risk.

The incentives for modernizing are compelling. Banks and other financial institutions that
have successfully modernized have seen cost reductions, faster performance, simpler
compliance practices, and rapid development cycles. New, flexible architectures have
accelerated the creation of value-added services for consumers and corporate clients.

MongoDB has helped thousands of organizations refactor their legacy, monolithic
systems through a straightforward and strategic plan. MongoDB’s approach to
modernization enables banks to modernize iteratively while balancing performance and
risk through five phases.

The 5 Phases of Banking Modernization

Banking systems face a key challenge: protecting existing assets and
operations while modernizing.

The operational data layer

Our approach to modernization begins with a key component called the operational data
layer (ODL). The ODL acts as a bridge between a bank’s existing systems and the new,
refactored environment. It is typically deployed in front of legacy systems to enable new
business initiatives and meet fresh requirements that the existing architecture can’t
handle—without the difficulty, disruption, and risk of a full rip and replace of legacy
systems. It can reduce the workload and cost of source systems, improve availability,
reduce end-user response times, combine data from multiple systems into a single
repository, serve as a foundation for re-architecting a monolithic application into a suite
of microservices, and more. The operational data layer becomes a system of innovation,
allowing the business to take an iterative and progressive approach to digital
transformation.

The ODL is the on-ramp for data that’s being routed to the new environment. It performs
the following functions:

Centrally integrates and organizes siloed enterprise data
Makes data available to consuming applications
Enables legacy modernization and data-as-a-service
Creates a single source of truth

Enables real-time analytics and mainframe offload
Allows for gradual refactoring (vs. rip and replace)
Minimizes disruption when deploying to the cloud

e Serves legacy data to new applications without straining the legacy system
e Makes data immediately available for analysis and business intelligence

Gradually, more reads and writes are routed to the new environment as the legacy RDBMS
is retired one step at a time. By the final phase, all applications will live in the new
environment.

(Web) (Mobile) COpenAPI)
(Bc) (cms) (other)

|
Figure 1: The Operational Data Layer (ODL)

Modern applications need operational data layers that can handle diverse workloads,
scale efficiently, and enable rapid development while ensuring data security and privacy
at the same time. MongoDB, with its flexible schema and robust platform capabilities, is
uniquely suited for this role. Here are a few key reasons:

Flexible data model for complex applications: MongoDB’s document model
accommodates complex and evolving data structures. Unlike fraditional relational
databases, which require predefined schemas, MongoDB allows developers to model data
naturally, aligning closely with the data access patterns of the application. This flexibility

0.

https://www.mongodb.com/resources/basics/databases/document-databases

speeds up development and reduces overhead when changes occur, a critical factor in
dynamic industries like financial services.

Real-time performance at scale: Operational workloads often require low-latency,
high-throughput systems to handle transactional data. Ad hoc queries, indexing, and
real-time aggregation of MongoDB provide powerful ways to access data. MongoDB’s
distributed architecture ensures high availability and horizontal scalability, enabling
organizations to scale out easily as data grows. With features like sharding and
auto-scaling, MongoDB provides the responsiveness required for operational systems,
even during peak loads.

Seamless integration with modern architectures: MongoDB integrates natively with
microservices and event-driven architectures, making it a natural fit for organizations
embracing cloud-native and artificial intelligence (AI) applications. Its ability to act as a
real-time data source for modern APIs enables seamless integration with internal
applications, especially open finance ecosystems, which often prefer using OpenAl and
JSON format for standardized data exchange. MongoDB’s multimodal data also supports
vector data management and search capabilities, enabling improved hyper-personalized
user experiences, accelerating generative Al application development, and
future-proofing customers’ modern operational workloads.

Multi-cloud and developer-friendly: MongoDB enables customers to deploy
anywhere—on-premises, in a self-managed private cloud, or as a managed service on the
public cloud. MongoDB Aflas, the fully managed cloud database service, simplifies
operational management, freeing teams from infrastructure concerns. With its multi-cloud
offering and ability to create clusters across multiple leading hyperscalers, customers can
overcome single cloud outages, achieve higher availability, and reduce cloud
concentration risks. MongoDB’s rich development ecosystem, including SDKs, connectors,
and integration with CI/CD pipelines accelerates application development and
operations, making it a developer-friendly choice.

Enterprise-grade security and compliance: MongoDB comes with a robust set of
security features, including encryption at rest and in transit, fine-grained access controls,
and auditing. For industries with stringent regulatory requirements, MongoDB Atlas
supports compliance with multiple standards such as ISO 27001, PCI-DSS, SOC, and
others, ensuring sensitive data is protected. MongoDB’s groundbreaking and industry-first
Queryable Encryption allows customers to encrypt sensitive application data, store it
securely in an encrypted state in MongoDB, and perform equality and range queries
directly on the encrypted data—with no cryptography expertise required.

https://www.mongodb.com/resources/basics/scaling
https://www.mongodb.com/products/platform/atlas-database
https://www.mongodb.com/blog/post/finance-multicloud-elimination-cloud-concentration-risk
https://www.mongodb.com/blog/post/finance-multicloud-elimination-cloud-concentration-risk
https://www.mongodb.com/products/capabilities/security
https://www.mongodb.com/resources/products/capabilities/queryable-encryption-technical-paper

The 5 phases

MongoDB’s iterative approach to modernization can be broken into five phases, allowing
banks to see progress toward modernization at each step along the way while still
protecting existing assets and business-critical operations.

1. Simple ODL

In the first phase of legacy modernization, reads from the legacy mainframe are
offloaded to the ODL. This reduces read traffic to the mainframe. The ODL provides high
availability, improves performance, and handles long-running analytics queries. The ODL
is interpreted directly by the application. It has a modern interface, and you can start
building modern applications on the ODL.

2. Enriched ODL

In the second phase, the ODL acts as an integration layer enriched with multiple data
sources and metadata. At this stage, you can begin building microservices on top of your
data. The ODL also serves as an operational intelligence platform for insights and
analysis. The ODL offloads more reads from the source systems and enables more use
cases than were previously possible, including a single customer view.

3. Parallel write

In the third phase, reads and writes are performed concurrently on the source system and
the ODL, either directly from application logic or through a messaging system, API layer,
or other intermediary. This is also known as Y-loading or Y-storing. This phase lays the
foundation for a more transformational shift of the ODL’s role in the system architecture.
In this phase, you can test the ODL to ensure functionality before using it as the primary
system for writes.

4. System of transaction

In the fourth phase, transactions are written first to the ODL and then passed on to the
legacy system if necessary. At this point, the ODL is the single source of truth. The
secondary write to the legacy source can be accomplished with a change capture system
listening to the ODL or a similar system, such as MongoDB Change Streams and
MongoDB Atlas Triggers.

5. System of record

In the fifth phase, the ODL becomes the system of record for all consuming applications.
The source system can be decommissioned for cost savings and architectural simplicity.

0,

https://www.mongodb.com/resources/products/capabilities/change-streams
https://www.mongodb.com/resources/products/capabilities/database-triggers

2

=

g The ODL serves as a system of record for
3 SYStem of Record —— a multitude of applications, with deferred
w Transforming the role of enterprise data writes to the mainframe if necessary.

"]

(]
£ . Transactions are written first to

g C ODL First) —— the ODL, which passes the data

(]

on to the source systems of record.

Writes are performed concurrently

Offloading Reads and Writes C Y-Loading) — {osourcesystemsas well as
MongoDB (Y-loading).

. ODL data is enriched with additional sources
C Enriched ODL) to serve as an operational intelligence
Offloading Reads platform for insights and analytics.

) Records are copied from the source
C Slmple ODL) systems into the operational data layer,

which serves reads.

Scope

Figure 2: The five phases of banking modernization

Approaches to Modernization Planning

Before you begin migrating any data, the first step is planning your
modernization. This is where you determine whether to address the data
architecture first, applications first, or follow a blended approach. Each
approach to legacy modernization carries its own advantages and complexities.

1. Data-driven modernization

This approach begins by moving data from the legacy system to the new environment
before any applications or microservices are provisioned (Figure 3). Even in its earliest
phases, data-driven modernization is a big step forward over legacy systems because
once you’ve moved your first data source into the new environment, you can leverage it
immediately and start building modern applications on top of it. Applications can write
directly to the new environment without affecting the existing one. Once more writes are
executed in the new environment than the old one, you can begin to dramatically reduce
the footprint of the legacy system. By the time the last phases of data-driven
modernization are implemented—when the new environment takes over the majority of
the work and becomes the system of record—you can begin to retire legacy applications
entirely.

STEP 1 STEP 2

Introducing ODL/ODS Y-Loading
(p—) /J Application (—) _ ,fj ¥\ Application
Legacy Appllcatlon @ (New and Modernized) Legqcy Appllcatlon @/ (New and Modernized)
Write [. l :
Read/(Write) Read/Write
Read/Write Read/Write Write
E D{ Microservices E D{ Microservices
(Optional) (Optional)
[Read/(Write) [Read/Write

Legacy Database Re—od. (Legacy Database l.;cd

STEP 3 STEP 4
System of Transaction System of Record
f. j S\ Applicati C i - IO icati
. pplication . \ Application
foadoy Appllcqtlon \@P (New and Modernized) fondoy Appllcqtlon \@f (New and Modernized)
l Read/Write l Read/Write
Read/Write
E DH Microservices (Microservices) E DH B Microservices
(Optional) (Optional)
[Read/Write [Read/Write
Upd.i — Read/Write s
Legacy Database @ @
Update

Figure 3: Data-driven modernization

2. Application-driven modernization

With application-driven modernization (Figure 4), all reads and writes from new
applications and microservices are executed in the new data environment from the start.
Existing traffic continues to route to the existing data store. The legacy system continues
to operate unchanged. This enables new functionality to be intfroduced immediately, but it
also infroduces more complexity. Because application-driven modernization is an
all-or-nothing approach, banks must have a clear strategy for retiring the legacy
applications in due course.

e

Adding Innovation

. Application
Legacy Application
gacy Applicati @ (New and Modernized)

Read/Write

Read/Write
E j]{ Microservices
(Optional)

[Read/(Write)

Legacy Database _Read | New MongoDB
Data Platform

Switching Off Legacy Adding New Architecture
Legacy Application @ @ @ @ @ @
Application Application
{New and Modermzed) (New cnd Modernized)
Write
Read/Write T
l Reud/(Wnte) ‘ l Recld/l(Write) l
Microservices Microservices
(Optional) (Optional)
| e | | |
Read/(Write) Read/(Write)
1 l
Legucy Do @ @ @
New MongoDB New MongoDB
Data Platform Data Platform

Figure 4: Application-driven modernization

3. Iterative modernization

Iterative modernization enables organizations to innovate while modernizing (Figure 5).
This approach—the one MongoDB recommends—blends data- and application-driven
approaches for incremental enhancements, starting with the least complex applications
and objects and slowly progressing fo more complex ones. With this approach, you can
explore iteratively and at your own pace. This one-step-at-a-time approach gives you the
best of both worlds: You see immediate gains along the way but are not committing to a
newly refactored environment right away. This minimizes risk while preserving data from
the legacy systems. The next section explores the iterative approach in more detail.

L

Prioritize Data Accessibility
Data-driven approach

Explore Iteratively Prioritize App Simplification
Application-driven approach

Data Accessibility Democratize Data Access

Architectural Simplification Create Product-Oriented Developement Teams

Figure 5: Three approaches to modernization

Modernizing Iteratively

The iterative approach begins by identifying all objects in the application code
and any applications that connect to them.

Each of these objects constitutes a data domain (Figure 6). For instance, “client profiles”
is a data domain that includes details about clients expressed as values, such as how long
they’ve been a client, their transaction details, and the type of account they have. Once
you'’ve identified the objects you’re using, you can assign a complexity score to each
object based on their properties, methods, collections, and other relevant attributes. You
can then identify each application that connects to a domain and rank it based on
variables such as how mission-critical it is, how many users rely on it, how many tasks it
has to perform, and how complex those tasks are.

Subject
Area

Data
Domain

Complexity
Impact Score

1 6
2 12
1 5
[5
2 4
2 8
1 3
Application Score

Figure 6: Ranking data domains and applications

Ranking the data domains and applications by complexity enables you to create a plan
for moving each domain from the legacy system to the new architecture and rerouting
applications to connect to the new domains, starting with the least complex data sources
and gradually progressing to more complex ones.

In Figure 7, the data domains “client profiles” and “schedules” each have a complexity
score of 1 and are used by applications 1, 6, and 7, each with a complexity score of 1.

These are perfect candidates to become the first sources of data migrated to the new
architecture and the first applications refactored to connect to the new data domains.

Once you have a clear picture of all the objects and applications and have scored them
based on the number of dependencies and their complexity, you’ll end up with a graph
that shows the potential sequence and timing for moving objects and applications into
the new data architecture. This will be the basis for your iterative modernization plan.

012

Figure 7: Potential sequence for modernization

- rene Scoring

Client Profiles

Contracts

Syndication

Risk Profiles

Risk Profiles

Broker/Retailer

Broker/Retailer

Broker/Retailer

Contracts

Contracts

Contracts

Financial Scoring

Financial Scoring

Financial Scoring

Client Profiles

Client Profiles

Client Profiles

Client Profiles

Schedules

Schedules

Schedules

Schedules

Schedules

Moving Data Between Systems

Before moving any data from the legacy RDBMS to the new environment, you’ll

need to build temporary scaffolding to transit from the legacy system to the
new environment.

The first part of the scaffolding uses connection services between the legacy RDBMS and
the new environment. Connection services are needed for three different types of data

sources:

L.

Streaming interfaces. Real-time data, generally measured in seconds,
milliseconds, or microseconds, will be replicated between the legacy RDBMS and

the new environment simultaneously.
Service interfaces. End-of-day and batch-processing actions that are common in

banking environments.

0.

3. Specialty connectors. These connect to specific workloads, like Hadoop or Spark.

Once you’ve established which connection service you need for each data source, you can
begin building the intermediary layer that will bridge the RDBMS to the new data
architecture. With the iterative approach, the connection between the legacy RDBMS and
the new architecture is the operational data layer (ODL).

Leveraging Al to Accelerate Modernization

In recent years, AI has emerged as a transformative technology with broad applications
across various domains, including database migration and application development.
Development teams that want to build or utilize a modern operational data layer can
benefit from leveraging AI's rapid enhancement for this purpose.

Migrating a legacy application that runs on a relational database for example to a
modern database like MongoDB may involve challenges such as schema design, data
fransformation, code conversion, and testing. The challenges are similar for a team that
only has experience with a legacy technology stack trying to develop new applications on
a modern operational data layer. Thankfully, AI can significantly streamline these
processes, reducing development time, minimizing errors, and improving overall system
efficiency. Software technologies are starting to emerge in the market to leverage these
advances and here are some examples of how the advancement of AI can help.

Schema transformation and data migration

Transforming an existing relational database schema into another data structure such as
a document model to achieve the flexibility benefits can be challenging, especially in a
large complex legacy application.

AI can analyze current database schemas, identify data relationships, and suggest
optimized target application structures. AI can analyze data patterns within relational
tables and recommend document structures, embedded relationships, or references,
ensuring efficient data retrieval and storage. By leveraging natural language processing
(NLP) or large language models (LLMs), AI can automate schema conversion by
identifying fields, data types, and indexes needed for target databases, reducing the
manual effort involved.

A significant part of migration involves transforming and transferring data from the
existing database to a new modern database. AI can assist in this process by automating

014

data extraction, transformation, and loading (ETL) tasks, ensuring data consistency and
integrity throughout the migration.

Code conversion and testing

Migrating to a new modern database often requires significant code changes to
accommodate the NoSQL query structure, which differs from traditional SQL. Generative
Al (gen AI) can expedite this transition by automating query translation and refactoring
application code.

Gen AlI, for example, can franslate SQL queries for MongoDB’s query API by identifying
equivalent operations, adjusting aggregation functions, and generating code that
matches MongoDB’s syntax and logic.

AI-powered models can analyze existing code bases and automatically refactor them for
new database compatibility, rewriting database interaction code and ensuring that data
handling conforms to the new schema and database structure.

Gen Al can create testing scenarios to verify data consistency, query accuracy, and
application stability after migration. This ensures that migrated functions are correct and
meet predefined performance and reliability standards.

Leveraging Al With MongoDB

Al offers a comprehensive toolkit for developing and migrating applications to a modern
operational data layer, addressing challenges across schema design, data transformation,
code refactoring, and testing. With its ability to automate and enhance migration tasks,
AI empowers organizations fo modernize their database infrastructure with reduced risk,
lower costs, and improved agility.

When it comes to adopting advanced technologies like ML, gen AI, or AI more broadly,
which require data as the foundation, organizations often grapple with the challenge of
integrating these innovations into legacy systems. With MongoDB serving as the ODL, the
flexible document model enables financial institutions to efficiently handle large volumes
of data in real time. By integrating MongoDB with AI, businesses can develop models
trained on the most accurate and up-to-date data, thereby addressing the critical need
for adaptability and agility in the face of evolving technologies.

Legacy systems, marked by their inflexibility and resistance to modification, present
another challenge in leveraging AI to enhance customer experiences and improve

0.

operational efficiency. Challenges also persist, especially in the financial sector, where the
uncertainty of evolving AI models over time requires a scalable infrastructure. MongoDB's
developer data platform future-proofs businesses with its flexible data schema capable of
accommodating any data structure, format, or source. This flexibility facilitates seamless
intfegration with different AI platforms, allowing financial institutions to adapt to changes

in the AI landscape without extensive modifications to the infrastructure.

To accelerate the migration journey and adopt a modern data architecture with Al in
mind, MongoDB has integrated Al into its services to help customers migrate easier and
with greater automation. For example, the MongoDB Relational Migrator uses a

combination of rule-based automated intelligence and gen Al to help customers with their
data migration and modernization efforts. Relational Migrator can help customers move
data snapshots or migrate the entire legacy database from their existing relational
system to MongoDB and convert SQL code for MongoDB’s query API. Such use of AI can
drastically reduce the learning curve and effort to adopt a modern data platform like
MongoDB to accelerate the integration and development of modern AI applications.

Bendigo and Adelaide Bank Modernize Core

Banking Technology with Gen Al

MongoDB is helping clients modernize their
applications by going beyond the database.
For example, MongoDB has partnered with
Bendigo and Adelaide Bank to modernize its
Agent Delivery System (ADS) with MongoDB
Atlas as the keystone of an ambitious
application modernization initiative. The ADS
is a retail teller application for the bank’s
agent branches used in communities where
digital banking functionality is made
available from non-bank businesses, like
newsagents or pharmacies.

MongoDB empowers all its customers to
modernize with applications that are not just
future-ready, but future-defining. This is
paramount for financial institutions that
need to transform quickly and take

Bendigo and Adelaide Bank:

90%

REDUCED DEVELOPMENT TIME

Reduced development tfime required to migrate a
core banking application off a legacy relational
database to MongoDB Atlas by up to 90%.

10%

OF THE COST

Migrated onto MongoDB Atlas at one-tenth of the
cost of a fraditional legacy-to-cloud migration.

80hrs to 5mins

TIME SAVING

Automared repetitive developer tasks with new Al
tooling in order to accelerate developers’ pace of
innovation, For example, Al-powerad automation
reduced the fime spent running application rest
cases from over 80 hours to just five minutes,

0.

https://www.mongodb.com/products/tools/relational-migrator
https://www.mongodb.com/solutions/customer-case-studies/bendigo-and-adelaide-bank
https://www.mongodb.com/solutions/customer-case-studies/bendigo-and-adelaide-bank

advantage of advancements like generative Al to best serve their customers.

Your Roadmap to Digital Transformation

For years, banks and financial institutions have wrestled with the question of whether to
modernize their legacy mainframe systems. With the continued innovation of mobile
banking, real-time transactions, analytics, and agile product development, legacy
modernization has become a business imperative. Now, with the advent of a seamless,
iterative, phased approach to modernization, the case for modernization is as compelling
as it’s ever been. At MongoDB, we’ve seen clients save hundreds of thousands of dollars in
the first year after modernizing and tens of thousands per month on storage costs. Now,
with advancements in LLMs and generative Al, the path to a modernized architecture is
faster than ever. And, by taking an iterative approach to modernization, financial
institutions can rapidly evolve their tech stacks with very little risk of downtime or
disruption to operations.

Learn More

Discover how companies are accelerating their modernization efforts with MongoDB by
exploring the following resources

e Innovate with AI: Drive industry success with artificial intelligence and MongoDB
Atlas

e The MongoDB Solutions Library is curated with tailored solutions to help developers
kick-start their projects

e Accelerate your shift from legacy relational systems to a modern developer data
platform with MongoDB’s Relational Migrator

017

https://www.mongodb.com/resources/solutions/use-cases/innovate-with-ai-the-future-enterprise
https://www.mongodb.com/solutions/solutions-library
https://www.mongodb.com/products/tools/relational-migrator

About MongoDB

MongoDB's developer data platform offers significant architectural advantages by
enabling organizations to securely unify application data (both structured and
unstructured) with Al-related data (vectors). This capability allows financial institutions to
build rich, real-time AI applications. At the core of MongoDB’s developer data platform is
MongoDB Atlas, the most versatile multi-cloud database on the market. Atlas provides
unmatched data distribution and cloud mobility, built-in automation for resource and
workload optimization, and a flexible document model, among other features. MongoDB
also offers the flexibility to deploy applications on-premises, on a single public cloud, or
across multiple clouds simultaneously, ensuring resilience, scalability, and the highest
levels of data privacy and security.

To learn more about MongoDB, visit MongoDB.com

About the authors

Boris Bialek, Vice President and Field CTO of Industry
Solutions, leads MongoDB’s industry practices, with a
focus on the modernization of cross-industry solutions,
including financial solutions from core banking,
payments and card transactions, trade and risk, and
freasury. He is an industry expert in data technologies
and a recognized speaker and author. Before joining
MongoDB, he worked with FIS, IBM, Dell, and Compaq
Computers.

boris.bialek@mongodb.com

Wei You Pan, Director of Financial Services Industry
Solutions, leads the financial services industry function
within MongoDB. Expertise in financial risk
management, loan origination, internet banking and
tfrading systems, he has 20+ years of experience in FSI
in various roles.

weiyou.pan@mongodb.com

© 2024 MongoDB, Inc. All rights reserved.

Resources

For more information, please visit mongodb.com or contact us at sales@mongodb.com.
Case Studies (mongodb.com/solutions/customer-case-studies)

Resources (mongodb.com/resources)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (mongodb.com/docs)

MongoDB Atlas database as a service for MongoDB (mongodb.com/atlas)

MongoDB Enterprise Advanced Download (mongodb.com/try)

Legal Notice

This document includes certain "forward-looking statements” within the meaning of Section 27A of the Securities Act of
1933, as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended, including
statements concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the anticipated impact of
the coronavirus disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of
MongoDB Atlas; and our ability fo tfransform the global database industry and to capitalize on our market opportunity.
These forward-looking statements include, but are not limited to, plans, objectives, expectations and intentions and other
statements contained in this press release that are not historical facts and statements identified by words such as
"anticipate,” "believe,"” "continue,” "could,” "estimate,” "expect,” "intend,” "may," "plan,” "project,” "will," "would" or the
negative or plural of these words or similar expressions or variations. These forward-looking statements reflect our current
views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently
available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies
and prospects as reflected in or suggested by those forward-looking statements are reasonable, we can give no assurance
that the plans, infentions, expectations or strategies will be attained or achieved. Furthermore, actual results may differ
mafterially from those described in the forward-looking statements and are subject to a variety of assumptions,
uncertainties, risks and factors that are beyond our confrol including, without limitation: our limited operating history; our
history of losses; failure of our database platform to satisfy customer demands; the effects of increased competition; our
investments in new products and our ability to infroduce new features, services or enhancements; our ability to effectively
expand our sales and marketing organization; our ability to continue to build and maintain credibility with the developer
community; our ability to add new customers or increase sales to our existing customers; our ability to maintain, protect,
enforce and enhance our intellectual property; the growth and expansion of the market for database products and our
ability to penetrate that market; our ability to integrate acquired businesses and technologies successfully or achieve the
expected benefits of such acquisitions; our ability o maintain the security of our software and adequately address privacy
concerns; our ability fo manage our growth effectively and successfully recruit and retain additional highly-qualified
personnel; the price volatility of our common stock; the financial impacts of the coronavirus disease (COVID-19) outbreak
on our customers, our potential customers, the global financial markets and our business and future results of operations;
the impact that the precautions we have taken in our business relative to the coronavirus disease (COVID-19) outbreak may
have on our business and those risks detailed from time-to-fime under the caption "Risk Factors” and elsewhere in our
Securities and Exchange Commission ("SEC") filings and reports, including our Quarterly Report on Form 10-Q filed on
December 10, 2019, as well as future filings and reports by us. Except as required by law, we undertake no duty or obligation
to update any forward-looking statements contained in this release as a result of new information, fufure events, changes in

"nn "nn "nn

expectations or otherwise.

