Componentized
Core Banking:

The next generation of composable
banking processes built upon MongoDB

January 2023

0 MongoDB.

Summary

Chapter 1: The History of Core Banking
First Generation Core Banking: Digitization
Second Generation Core Banking: Product-Centric
Third Generation Core Banking: Customer-Centric
The Next Generation Core Banking: Process-Centric

Chapter 2: Potential Core Banking Solutions
The Core Banking Platform
The Core Banking Suite
Composable Ecosystems

Chapter 3: Building Blocks for a Composable Ecosystem
JSON
BIAN (Banking Industry Architecture Network)
MACH (Microservices, API-first, Cloud-native, Headless)
Data Domains

Chapter 4: Core Banking Use Cases
Temenos
Current
illimity

About the authors

Legal Notice

N N O o a b A NH DN

O O O

10

11
11
12
13

15

16

0.

Summary

The financial services industry is in a phase of transition. Challenger banks and Fintechs are
infroducing new products at high speeds which requires established players to review their
existing information landscapes. Often driven by regulatory and compliance changes, many
systems, originally designed for never-changing processes, become the static throttle
against innovation. Nothing more so than the so-called core banking systems that are the
backend of all accounting and can reach back to the 1970s in their designs.

Thanks to the progress of software design and the emergence of better data infrastructure
based on JSON, the next-generation of composable core banking processes is here, and it’s
built on a paradigm of a developer data platform.

In this whitepaper, explore the following chapters:

Chapter 1: we provide a history of core banking and how the industry has evolved.
We also explore some of the challenges that traditional core banking systems face,
such as inflexibility and high costs.

Chapter 2: we take a closer look at the current state of core banking and some of the
solutions that are available. We also discuss some of the limitations of these
solutions and how they may not be well-suited to the needs of modern banks.
Chapter 3: we explore the building blocks that are necessary for a composable
ecosystem. We focus on four key building blocks: JSON, BIAN, MACH, and Data
Domains. We discuss how these technologies can be used together to create flexible
and scalable core banking systems.

Chapter 4: we provide real-world use cases for how MongoDB can be used to power
core banking systems. These use cases demonstrate the flexibility and scalability of
MongoDB and how it can help banks meet the changing needs of their customers.

0.

Chapter 1. The History of Core Banking

Core banking, also known as the back-end IT solution, is the engine powering all banking
functionalities to run day-to-day financial operations. First developed in the 1970s to
support basic functionalities such as accounts, balances, positions, and movements, the
core (centralized online real-time exchange) was a transformative technological
innovation in financial banking institutions at the time. However, over the past 30 years,
the core has evolved beyond four basic functionalities and has morphed into a
technological monolith consisting of over 20 functionalities. Yet despite its additions, the
technology foundation of the core continues to be based on 1970s technology.

According to McKinsey & Company, banks urgently need a modernized core platform
based on a “flexible back end”. With rising banking disruptors tackling such legacy
technology, and intfroducing new business models, incumbent banks must act quickly to
innovate their core technology or risk losing market share and being left behind. To
strategically move forward, it’s worth looking at the past and understanding how we got
here in the first place.

First Generation Core Banking: Digitization

Core banking’s origins can be traced back to the 1950s, with the creation of the COBOL
programming language. Roughly 20 years later, financial institutions began developing
their first computerized core banking system based on COBOL and continued to do so
until the 1990s. This development was a fundamental step towards digital fransformation,
as it led fo an innovative way to perform tasks such as customer data management,
fransaction processing, record keeping, etc., all via a central compufter.

However, despite the movement towards digitization, there were quite a number of
difficulties. The technology was developed and kept in-house, which meant that it was
only accessible to employees during business hours. The code was complex, data was
stored in silos, and transactions were processed in batches at the end of the day (batch
processing).

Factors such as time and cost efficiency, accessibility, and customer interaction weren't
considered yet. Whenever development took place, IT costs grew substantially. Because
these monolithic systems were deeply embedded and surrounded by ancillary support
structures that were difficult to replace; updates also resulted in prolonged downtime.

Unfortunately, even today, “end-of-day” processing still takes place and is driven by the
historic Control-M scheduler and batch processing.

0,

https://www.mckinsey.com/industries/financial-services/our-insights/should-us-banks-be-moving-to-next-generation-core-banking-platforms

Second Generation Core Banking: Product-Centric

With a “product-centric” approach from 1990 to 2005, banks began to outsource the
development of core banking functionalities. Doing so allowed them to address specific
products or groups of products by buying “commercial off-the-shelf” software instead of
developing it in-house. The huge advantage of these kits was their broad range of specific
functionalities.

Banking systems also began using certain subroutines and software modules fo make
their code more flexible. The banking interface became more interactive, and 24 /7 access
to banking services became possible. Yet these subroutines added complexity and
resulted in a split between banks choosing to develop in-house and banks adapting to
commercial solutions.

Whether developed in-house or commercially, the “product” optimization of core banking
did not change the underlying data architecture. These systems continued to consist of
siloed structures and the mainframe RDBMS (relational database management system) or
Oracle PL/SQL remained the norm. The code was still quite complex and the inflexibility of
the underlying data architecture was ever-present.

Third Generation Core Banking: Customer-Centric

Shifting away from a product-centric core banking practice, from 2005 to 2020, core
banking became much more “customer-centric” with the end-user experience in focus.
This shift resulted in fundamental changes to the core infrastructure. Banks abandoned
the traditional silo approach by developing new software. This development focused on
digital architecture models, such as service-oriented architecture (SOA) and application
service providers (ASPs). For customer experience, this third-generation development
meant increased accessibility, especially via digital graphic interfaces on the internet.
Improvements surfaced in the user experience and development cycle. Updates ook
place on an annual or semi-annual basis, and version changes were performed over a
weekend.

Despite this, the dilemma of static, complicated database technology persisted. Often the
copying of data and the ETL (extract, transform, load) processes between databases led
to a mixture of sources and critical data. These convoluted systems could only be traced
back to “the core” on the mainframe or Oracle systems.

“We try every year to clean up our data landscape. We currently have
150 different source databases. After the next attempt to reduce, we
will have 151.” - Architect at a G-SIB bank

0.

This customer-centric iteration of core banking has resulted in fremendous improvements,
but without a flexible database foundation, banks are merely scratching the surface.
Incumbent banks fail to compete because they are stuck with a convoluted architecture
that neo-banks have attacked and fransformed with a process-centric mindset.

The Next Generation Core Banking: Process-Cenftric

Process-centric core banking meets both the needs of the banking institution and its
customers. In other words, it is a tour de force of the prior product and customer-centric
core banking generations.

Disrupters are building their foundation on a process-centric concept; this is illustrated in
Figure 1 below. In the past, core banking systems were provided by only one vendor and
each aspect of banking, such as customer accounts, internal bank operations, and other
processes, were separated and handled by separate systems. Not only does such a siloed
approach present challenges to both the bank and the customer; it also increases
operational overhead for developers that find themselves building on top of these
monolithic systems.

First Generations of Core Banking: Banking Siloes

=
—J [Nl *——

Mortgages

SHiE
T—7 0l n *———

Checking / Savings

-
Sl —

Retirement Funds

Delayed response

No omnichannel / No single inferface

Unsatisfactory experience

Mortgage, Consumer
Savings, etc.

Lack of fransparency for the consumer

Next Generation of Core Banking: Process-Centric

—‘ Single Interface)—

- . AL/ML and RPA Immediate response
Single interface / Omnichannel
@ @ @ Transparent user experience
All databases in & Increased developer productivity

asingle platform Process automation

Figure 1: Evolution towards a process-centric core banking system: mortgage example

0,

Only with a fundamental new start focused on “best-of-breed” and process-centric
approaches - as it is presented by neo-banks - can you achieve this new start. These new
core banking solutions enable financial services institutions to create efficient ecosystems
that smoothly orchestrate interactions to offer an increasingly personalized customer
experience, while allowing banks to launch innovative and competitive new products
quickly and cost effectively.

Chapter 2: Potential Core Banking Solutions

As financial disruptors are growing their business and aftracting customers built on the
foundation of process-centric core banking, incumbent banks have hunted for solutions to
tackle such legacy monoliths.

=
_
P e C
Platform Suite Composable Ecosystem
Single vendor Multiple products, often via acquisition Distinct independent services/functions
Tightly coupled Tightly coupled “Best of breed” functionality without
Single, static database of giant Diverse databases with coardinated schema major integration challenges
proportion and complexity Multiple, tightly coupled roadmaps MACH principles applied
Single roadmap Entire suite as “one” Multiple, loosely coupled roadmaps
Entire platform sold as one On-prem OR Saa$S Individual component deployment
ORACLE HNFinacle [CSBONCS™ WOTEMENOS (= | R mouen % TEMENOS BIAN & vaveu

Figure 2: Core banking solutions: platform, suite and composable ecosystem
The Core Banking Platform

One such solution intfroduces a core banking “platform” seen on the left of Figure 2 above.
Software companies such as Oracle, Finacle, and TCS BaNCS develop component-based
solutions designed as native service-oriented architecture (SOA) platforms. Such
platforms allow banks to break down each element of their architectural system so that it
can be handled on its own without affecting existing components. Although this solution
may present various modules, the foundation of the core consists of:

e A ssingle vendor resulting in lock-in
e Multiple tightly coupled modules

0.

e Single static and large database
e Single roadmap

Most detrimentally, however, is that the entire “platform” is sold as one to the client, which
automatically removes the ability to adopt best-of-breed functionalities - outside the
specified vendor - best fit for the banking institution.

The Core Banking Suite

As the core “platform” is inflexible and results in a single database responsible for all of
the core functionalities, software companies have iterated upon and created banking
suites. As seen in the middle of Figure 2, the suite consists of multiple databases; however,
the underlying fechnology and shape of the core banking suite hasn’t changed. Instead, it
has taken a “modular” approach by combining several pieces intfo one pre-set picture.
Now you are left with:

Multiple products often via acquisition

Tightly coupled diverse databases with a coordinated schema
Multiple, tightly coupled roadmaps

On-premise or SaaS

Entire suite as “one” a.k.a vendor lock-in

Although iterative and aimed at improvement, the results of both the platform and suite
approaches showcase the fault of their legacy-based database technology, which simply
cannot keep up with the requirements of modern day core banking.

Composable Ecosystems

Regulations are changing rapidly, advanced technologies are proliferating, and FinTechs
are challenging traditional banking models, putting intense pressure on the financial
services sector to innovate their data infrastructure. Finally, it seems that banks are ready
to confront the serious limitations of their aging systems by adopting a different
approach - one based on a ‘componentized’ model of the banking business as seen on
the far right side of Figure 2. Such a composable ecosystem consists of:

Distinct independent services/functions

“Best of breed” functionality without major integration challenges
Multiple, loosely coupled roadmaps

Individual component deployment, no vendor lock-in

0,

An industry that achieves componentization can specialize and develop more advanced
individual components that can then be combined to deliver ‘best-of-breed’ products and
services. Componentized industries are also better at exploiting new technologies and
approaches, since changes are typically localized and affect only one or a few
components without destabilizing them all.

Chapter 3: Building Blocks for a Composable Ecosystem

MongoDB provides financial institutions with the data foundation, what is called a
developer data platform, which enables the building blocks to create a composable
ecosystem.

The patterns for the composable ecosystem are derived out of four different areas:

BIAN C JSON

Business Banking Data Model

Processes and

Structures

U

MACH

Architecture Patterns
(Microservices, API-

first, Cloud-native,
Headless)

Data
Domains

Business Functions

Figure 3: MongoDB, the developer data platform for your core banking system

0.

https://www.mongodb.com/developer-data-platform

JSON

JSON is an extensible, easy-to-use, and polyglot data format that financial institutions
increasingly depend on. According to McKinsey & Company, the use of JSON documents
is the modern configurability standard in the next generation of core banking platforms.
JSON’s dominance as a data language is evidenced by the definition of JSON data
models through standardization organizations such as SWIFT, ISO20022, and FIX.

Because JSON is limited in types, MongoDB invented BSON (Binary JSON), which stores
data as JSON documents in a binary representation. Unlike most databases that store
JSON data as primitive strings and numbers, the BSON encoding extends the JSON
representation to include additional types such as integer, long, date, floating point, and
decimall28. This makes it much easier for financial applications using MongoDB to
process, sort, and compare data reliably.

By using MongoDB as your developer data platform, you are armed with a flexible
JSON-based document model that increases developer productivity and is the back-end
foundation for your next-generation core banking system.

BIAN (Banking Industry Architecture Network)

Since 2008, top banking application architects from organizations such as HSBC,
Santander and JPMorgan Chase & Co., have worked to define the entire business logic of
modern banking. The result is BIAN (Banking Industry Architecture Network), a standard
defining a component business blueprint for banking. Developed specifically fo address
the problem of platform and suite complexity, BIAN enables banks to progressively
componentize their business operations. This is done by promoting a best-of-breed
concept to help financial services bring new services to market quickly and efficiently.

With BIAN providing a way for banks to achieve standardized business logic, MongoDB
technology is not only the data backend for BIAN but also deliverers BIAN capabilities for
banks by embodying MACH (Microservices, API-first, Cloud-native, Headless) principles.

MACH (Microservices, API-first, Cloud-native, Headless)

As one of the five global MACH enablers, MongoDB is the gold standard for architecting
the data infrastructure for the future of core banking.

MACH (Microservices, API first, Cloud-native, Headless) codifies the design principles
necessary for such component-based architectures. Microservices are defined as small
components which own functionality and data for a given business domain. They
communicate through APIs that define the contracts between the different domain

0,

https://www.mckinsey.com/industries/financial-services/our-insights/should-us-banks-be-moving-to-next-generation-core-banking-platforms
https://github.com/SwiftyJSON/SwiftyJSON
https://www.iso20022.org/about-iso-20022/apis-and-iso-20022
https://www.fixtrading.org/standards/json/
https://www.mongodb.com/json-and-bson
https://bian.org/
http://machalliance.org

teams. Typical application domains consist of hundreds or even thousands of
microservices. Operating such systems in the traditional way would not be feasible;
therefore, they can only be built with cloud-native technologies. In order for microservices
to be able o be composed into applications, they have to expose all their capabilities and
data through documented APIs. There is no need for user interfaces which are captured
by them being headless.

Data Domains

With MongoDB’s document model, you can bring data back into shape with the
introduction of data domains versus convoluted table schema and ETL trains. In order to
better manage financial architectures, data domains allow you to map business
capabilities o your applications and data. Take for example, payments. A payment
architecture that includes the merchant portal, fraud prevention and potentially an ad
bidding platform. These business functions can map directly to data domains as seen in
the payments example in Figure 4 below.

Merchant Functions Payments Terminal *— Loyalty Super App
Onboarding Payment Processor Points Management
Data Api API
I Endpoint I —e endpoint I
Merchants Domain / Payments Domain / Points Domain /
Data & Svc Data & Svc Data & Svc
Operational Plane Operational Plane Operational Plane
Analytical Plane Analytical Plane Analytical Plane
Merchant Portal Fraud Prevention Ad Bidding Platform

Figure 4: Data Domains applied to payments.

With MongoDB, financial institutions receive a component-based data infrastructure
against which they can deliver microservices aligned to different business data domains -
all independently evolvable, scalable, and isolated while making data easily shareable
between applications.

010

https://www.mongodb.com/blog/post/developer-autonomy-document-model

JSON is the glue. The MACH principles and architecture template
are the underpinnings of the BIAN service APIs and coreless
banking process designs. MongoDB is the natural proven developer
data platform for financial services.

Chapter 4: Core Banking Use Cases

Core banking use cases are a crucial aspect of the banking industry, as they enable banks
to deliver a wide range of services to their customers. Such use cases are often tied to
composable ecosystems, which are designed to facilitate collaboration, and innovation
within the banking sector. As discussed, some of the leading composable ecosystem
principles include MACH, BIAN, JSON, and Data-domains - all underpinned by MongoDB.
These principles are used to create a flexible and interoperable environment where
different systems can easily work together to provide a wide range of core banking
services. For example, a core banking use case might embody the MACH principles by
providing a scalable and modular platform that allows banks to easily add new services
and features. Similarly, the use case might embody the BIAN principle by ensuring that
the system is designed to support seamless integration with other systems, enabling
banks to create a truly composable ecosystem.

In the following three use cases, MongoDB demonstrates its capabilities to provide
financial institutions with a composable data ecosystem for the next-generation core
banking platforms, encompassing JSON, MACH, BIAN, and Data Domain principles.

Temenos

“Implementing a good data model is a great start. Implementing a great
database technology that uses that data model correctly, is vital. MongoDB
is a really great fit for banking.”

Tony Coleman, CTO of Temenos at MongoDB World 2022

Temenos is the world’s largest financial services application provider, providing banking
for more than 1.2 billion people and leading the way in banking software innovation.
Temenos and MongoDB joined forces in 2019 to map out the path to data in a
componentized world. Over the past few years, the two tfeams have collaborated on a

011

https://www.youtube.com/watch?v=o6NDfKvqdZs
https://www.temenos.com/about-us/

number of new, innovative component-based services to enhance the Temenos product
family.

Financial institutions can embed Temenos components, which deliver new functionality in
their existing on-premises environments (or in their own environment in their cloud
deployments) or through a full banking-as-a-service experience with Temenos T365,
powered by MongoDB on various cloud platforms. Temenos embraces a cloud-first,
microservices-based infrastructure built with MongoDB, giving customers flexibility while
delivering significant performance improvements.

While thousands of banks rely on MongoDB for many parts of their operations, ranging
from login management and online banking to risk and treasury management systems,
Temenos' adoption of MongoDB is a milestone. It shows that there is significant value in
moving from legacy database technology to a modern developer data platform with
MongoDB. This allows faster innovation, eliminating technical debt along the way, and
simplifying the landscape for financial institutions, their software vendors, and service
providers.

If you'd like to learn about how Temenos and MongoDB are changing the core
banking landscape, take a look at the following:

A New Era in Core Banking Data: How Temenos and MongoDB Change the Core
Banking Landscape

From Core Banking to Componentized Banking: Temenos Transact Benchmark with

MongoDB

Tony Coleman, Temenos and Boris Bialek, MongoDB | MongoDB World 2022

Current

“MongoDB gave us the flexibility to be agile with our data design and
iterate quickly. The primary driver was the development velocity.”

Trevor Marshall, CTO, Current
Current is a digital bank that was founded with the goal of providing its customers with a

modern, convenient, and user-friendly banking experience. To achieve this, the company
knew that it would need to build a robust, scalable, and flexible technology platform to

012

https://www.mongodb.com/collateral/a-new-era-in-core-banking-data-with-mongodb-and-temenos
https://www.mongodb.com/collateral/a-new-era-in-core-banking-data-with-mongodb-and-temenos
https://www.mongodb.com/blog/post/from-core-banking-componentized-banking-temenos-transact-benchmark-mongodb
https://www.mongodb.com/blog/post/from-core-banking-componentized-banking-temenos-transact-benchmark-mongodb
https://www.youtube.com/watch?v=Gbf--Kc13EM
https://current.com/

power its services. Current decided to build its core technology ecosystem in-house, using
MongoDB as the underlying database technology.

MongoDB as a trusted open-source database is well-suited to the needs of modern digital
banks like Current. It offers a high degree of flexibility and scalability, allowing the
company to easily add new features and services as needed. By building its composable
core technology ecosystem on top of MongoDB, Current could quickly and easily develop
a range of innovative banking services, including mobile banking and real-time
tfransactions. This has allowed Current to provide its customers with a seamless and
intuitive banking experience, setting it apart from traditional banks.

To learn more about how Current built its core banking technology on MongoDB,
please refer to the following:

Current built its own banking tech. It's a secret weapon in a crowded field.

Next Generation Mobile Bank Current is Using MongoDB Atlas on Google Cloud to
Make Financial Servi A ible and Affor le for All

ilimity

illimity is a digital bank that was founded in 2017 with the aim of providing innovative
banking services to business and consumers. As the first italian cloud-native bank, illimity
has built its entire infrastructure on top of cloud computing technologies. This allows the
bank to be agile and scalable, laying way to quickly and easily add new features and
functionality to its platform. By using MongoDB as the foundation of its core banking
architecture, illimity is able to take advantage of the flexibility and scalability of the cloud
to provide its customers with the best possible banking experience. This has helped the
bank stay ahead of the competition and continue to grow and thrive in the digital banking
space.

“MongoDB has set itself apart from the field. They are an excellent partner
in terms of research, development, and maturity.”

Filipe Teixeria, CIO illimity

013

https://www.protocol.com/fintech/current-bank-cto-fintech#toggle-gdpr
https://www.mongodb.com/blog/post/next-generation-mobile-bank-current-using-mongodb-atlas-google-cloud-make-financial-services-accessible-affordable-all
https://www.mongodb.com/blog/post/next-generation-mobile-bank-current-using-mongodb-atlas-google-cloud-make-financial-services-accessible-affordable-all
https://www.illimity.com/it

Today, MongoDB continues to support illimity's completely open and modular
technological platform. Specifically, MongoDB Atlas’ single view platform pulls in illimity’s
disparate data sources intfo one location. It can all be easily accessed, managed, and
audited by staff or regulators, wherever they are. It saves money and regulatory
headaches. Now teams can instantly see customer’s interactions and provide the reliable
service they expect. With MongoDB as their developer data platform to build a
composable ecosystem, illimity is moving at incredible speed.

Interested to learn more about illimity and MongoDB, take a look at the following:

illimity & MongoDB: Revolutionary vet Reliable

illimity & MongoDB: rethink modern banking

Conclusion

Naturally, this paper could not discuss every single angle of modern core banking
solutions. Many additional aspects like the approach for a migration and even the need
for parallel operations - and how MongoDB resolves those challenges with ease - are
subject for detailed discussions. The move towards a composable design and solution
landscape is coming fast, and financial services institutions not heeding to this change
may be challenged rather quickly by the competition. Consumer and professional clients
alike expect fast-changing innovative experiences and the cenftricity of the user
community is paramount.

To learn more about how the financial services industry is using next-generation data
platforms such as MongoDB, take a look at the recent Eorrester Study: What’s Driving
Next-Generation Data Platform Adoption in Financial Services.

Get in touch with the MongoDB team, to build your next-generation core
banking platform on MongoDB’s composable data ecosystem.

014

https://www.mongodb.com/blog/post/illimity-and-mongodb-revolutionary-yet-reliable
https://www.youtube.com/watch?v=EOE2PnvYY80
https://www.mongodb.com/collateral/whats-driving-next-generation-data-platform-adoption-in-financial-services
https://www.mongodb.com/collateral/whats-driving-next-generation-data-platform-adoption-in-financial-services
https://www.mongodb.com/contact

About the authors

Boris Bialek, Managing Director, Industry Solutions
leads the industry solution practices at MongoDB and
focuses on modernization and true innovation of FSI
solutions. His experiences range from core banking,
payments and cards to trading and risk & treasury. He
is an industry expert in data technologies and
recognized speaker and author. Before joining
MongoDB, he worked for a lifetime at FIS, IBM, Dell
and Compaqg Computers. He obtained an MS degree
from the Karlsruhe Institute of Technology.

Karolina Ruiz Rogelj is a cross-industry specialist for the
Industry Solutions team. Coming from an
interdisciplinary background in research, data analysis,
and writing, she has a passion for translating industry
knowledge into clear and compelling stories. She
obtained a BSc degree in Computational Cognitive
Science with minors in Linguistics and German from the
University of California, Davis.

Ainhoa Mugica, is an industry specialist focusing on
cross-industry collaboration. She is passionate about
visual narratives, telling stories through the use of
visual media. Ainhoa holds a BSc in Computer Science
from the University of Newcastle and a Master of
Digital Product Design and Direction from ELISAVA,
Barcelona.

© 2023 MongoDB, Inc. All rights reserved.

About MongoDB

MongoDB empowers innovators to unleash the power of software and data. Whether deployed in the cloud or
on-premises, organizations use MongoDB for trading platforms, global payment data stores, digital end-to-end
loan origination and servicing solutions, general ledger system of record, regulatory risk, treasury and many
other back-office processes. At the core of our developer data platform is the most advanced cloud database
service on the market, MongoDB Atlas, which can run in any cloud, or even across multiple clouds to get the best
from each provider with no lock-in.

To learn more about MongoDB, visit MongoDB.com

Resources

For more information, please visit mongodb.com or contact us at sales@mongodb.com. Case Studies
(mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Aflas database as a service for MongoDB (mongodb.com/cloud)

MongoDB Enterprise Download (mongodb.com/download)MongoDB Realm (mongodb.com/realm)

Legal Notice

This document includes certain "forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933,
as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended, including statements
concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the anficipated impact of the coronavirus
disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of MongoDB Atlas; and
our ability to transform the global database industry and fo capitalize on our market opportunity. These forward-looking
statements include, but are not limited to, plans, objectives, expectations and intentions and other statements contained in
this press release that are not historical facts and statements identified by words such as "anficipate,” "believe," "continue,"”
"could,"” "estimate,” "expect,” "intend,"” "may," "plan,” "project,” "will," "would" or the negative or plural of these words or similar
expressions or variations. These forward-looking statements reflect our current views about our plans, intentions,
expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we
have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested
by those forward-looking statements are reasonable, we can give no assurance that the plans, infentions, expectations or
strategies will be attained or achieved. Furthermore, actual results may differ materially from those described in the
forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that are beyond our
conftrol including, without limitation: our limited operating history; our history of losses; failure of our database platform to
satisfy customer demands; the effects of increased competition; our investments in new products and our ability to introduce
new features, services or enhancements; our ability fo effectively expand our sales and marketing organization; our ability to
continue to build and maintain credibility with the developer community; our ability to add new customers or increase sales to
our existing customers; our ability to maintain, protect, enforce and enhance our intellectual property; the growth and
expansion of the market for database products and our ability to penetrate that market; our ability to infegrate acquired
businesses and technologies successfully or achieve the expected benefits of such acquisitions; our ability to maintain the
security of our software and adequately address privacy concerns; our ability to manage our growth effectively and
successfully recruit and retain additional highly-qualified personnel; the price volatility of our common stock; the financial
impacts of the coronavirus disease (COVID-19) outbreak on our customers, our potential customers, the global financial
markets and our business and future results of operations; the impact that the precautions we have taken in our business
relative to the coronavirus disease (COVID-19) outbreak may have on our business and those risks detailed from time-to-time
under the caption "Risk Factors” and elsewhere in our Securities and Exchange Commission ("SEC") filings and reports,
including our Quarterly Report on Form 10-Q filed on December 10, 2019, as well as future filings and reports by us. Except as
required by law, we undertake no duty or obligation to update any forward-looking statements contained in this release as a

nn "o "o

result of new information, future events, changes in expectations or otherwise.

