Optimizing Your Internal

Developer Platform with
MongoDB Atlas

0 MongoDB.

<




Table of Contents

Summary

Building Out the Optimal
Internal Developer Platform

MongoDB Atlas in your Internal Developer Platform
How to Incorporate MongoDB
Atlas into your Internal Developer Platform

Atlas Kubernetes Operator

HashiCorp Terraform MongoDB Atlas Provider

AWS CloudFormation Resources

Accelerate Developer Velocity
with Atlas and your IDP

(&3]

N OO0 00 On



Summary

It’s no secret that there has been a lot of change
happening across the developer landscape. While
the proliferation of tools and cloud technologies
has given developer teams greater choice in how
they want to build, it has also created complex
developer toolchains that have become difficult to
manage. This has led to growing levels of friction
and cognitive load for developers.

As a result, implementing Platform Engineering
teams and Internal Developer Platforms (IDPs)
within developer organizations is becoming a
popular solution for reducing cognitive load and

increasing developer productivity. While IDPs
reduce complexity for developers, choosing which
tools should go into an IDP can be a daunting
process for platform teams—especially when it
comes to an IDP’s data layer.

This white paper provides an overview of how
MongoDB Atlas, MongoDB’s developer data
platform, can make that choice easier and
showcases how you can easily incorporate
MongoDB into an IDP using the tools your
developers are already familiar with.

Building Out the Optimal Internal Developer Platform

DevOps establishes a culture of incorporating
processes and tools designed to deliver
applications and services to users faster and
with more control than the traditional software
development process. While DevOps practices
have significantly improved how developers
build applications, the proliferation of new
technologies and architectures has added
complexity to modern cloud-native setups. These
shifts have contributed to developer cognitive
load and created wider organizational risk.
Developers now face the need for an in-depth,
end-to-end understanding of their toolchains, and
the increased levels of access controls to tools
available across developer organizations can
lead to compliance issues, including inconsistent
security controls and incorrect reporting.

IDPs and platform engineering are quickly
becoming popular solutions to address these
issues. IDPs are bespoke toolchains built and
managed by platform teams, used to create
greater developer self-service. IDPs lower toolchain
complexity through standardization and reduce
the operational expertise required to build or

maintain them, as that responsibility is passed

on to the platform team. This handover enables
developers to focus on building applications,
which not only improves developer productivity
but also enhances the developer experience. As a
result, developer organizations experience greater
collaboration, satisfaction, engagement, and
retention.

While each IDP looks different from team to team,
there are a few common components—such as a
Cl/CD pipeline or an infrastructure management
tool. Whatever tools go into an IDP, it’s important
that they contribute to enabling greater developer
self-service.


https://platformengineering.org/blog/cognitive-load
https://platformengineering.org/blog/what-is-platform-engineering#:~:text=Platform%20engineering%20is%20the%20discipline,in%20the%20cloud%2Dnative%20era.
https://internaldeveloperplatform.org/what-is-an-internal-developer-platform/
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years
https://www.gartner.com/en/newsroom/press-releases/2023-11-28-gartner-hype-cycle-shows-ai-practices-and-platform-engineering-will-reach-mainstream-adoption-in-software-engineering-in-two-to-five-years

CI/CD Layer

Monitoring

Source Repository

e

]

Pipelines

gﬁ% ,

u1/
Control

Interface

Configurations

Data Layer Infrastructure
o Management
Security
Cloud

Image 1: Example of an internal developer platform a team might use

Though IDPs contribute to greater developer
productivity, incorporating the right tools into
them can be a challenge for platform teams
—especially when it comes to an important
component of any IDP: the data layer. Competing
stack preferences across developer teams, as
well as data solutions that are incompatible with
or hard to incorporate into existing developer
toolchains, make choosing the right tools a
daunting task. As a result, most platform teams
resort to incorporating a number of data point
solutions into their IDP, creating a sprawl of
infrastructure. This makes both the data layer and,
consequently, the IDP as a whole harder to build

out, maintain, and scale. It also causes disruptions
in existing workflows, which could potentially lead
to developer dissatisfaction and cause them to
resist platform adoption altogether.

All of this defeats the purpose of introducing a
standardized IDP in the first place. Therefore,

it’s critical that any data solution selected for
an IDP is easy for platform teams to incorporate
and enables the developers using it to address a
breadth of data workloads with ease.




MongoDB Atlas in your Internal Developer Platform

This is exactly what sets MongoDB Atlas,
MongoDB’s developer data platform, apart from
other data solutions. With Atlas, platform teams
can reduce the complexity that comes with
building out an IDP’s data layer and eliminate the
need to add a multitude of data point solutions.

Atlas integrates all the data services you need

to build modern applications into a unified
developer experience. It accelerates time

to value and reduces complexity through a
consistent interface (Query API) that standardizes
operations to drive innovation at scale. It handles
transactional workloads, full-text search, Al-
enhanced experiences, stream data processing,
and more, all while reducing data infrastructure

sprawl and complexity. Atlas’s cutting-edge and
comprehensive controls ensure data security and
privacy, intelligent performance optimization, and
global and multi-cloud deployments, protecting
developer organizations from risk and compliance
issues. It not only prioritizes an intuitive developer
experience but also integrates easily into your
development and deployment workflows to
simplify provisioning and management.

Most importantly, Atlas aims to meet developer
organizations where they are. That includes being
easily incorporated into existing development
stacks through the workflows and tools familiar to
developers.

How to Incorporate MongoDB Atlas into your Internal

Developer Platform

Most tools in an IDP are connected through APIs
and are exposed to developers through simplified
configuration and management interfaces.
MongoDB Atlas can be easily integrated into
existing IDPs through the Atlas Administration API.

The Atlas Administration APl is a RESTful interface
that allows interaction with Atlas resources and
the performance of various actions in MongoDB
Atlas—either directly or using one of the many tools
that leverage the API. Developers can interact with
the Atlas Administration APl and downstream tools
to directly manage and automate various aspects
of MongoDB Atlas, including resources such as
clusters, database users, and backups, to name a
few.

MongoDB Atlas can be integrated and controlled
using tools that likely already exist within your
developers’ toolchain. Three commonly used tools
built on the MongoDB Atlas Administration API
enable developers to interact with Atlas: the Atlas
Kubernetes Operator, the HashiCorp Terraform
Atlas Provider, and AWS CloudFormation. Each of
these tools allows teams to incorporate MongoDB
Atlas into their IDPs through the method(s) of their
choice. All of these options are available to Atlas
customers free of charge.



Terraform communicates

" with the Atlas Admin API
Developers create via Aflas Go SDK to
MongoDBiAilas programmatically create

infrastructure Atlas Clusters and other
Internal Developer Platform - ceploymen Ty resource behind the scenes
4 configuration files

~ | Terraform e I e o & 1 Attas L____
; L 1 Provider J ! ; i S e )
: . i : 1 R I | @ 1 :
! ' P A A i £ | Projects i
- Terraform CLI ! ' . e ! VTR L il !
. Used with MongoDB ! ! | Atlas i ‘ — — ]
Github . Atias . ; s :
i i i N N : ol !
1 1 1
- O R ! E E i ' Deployments !
1 ! 1 1 1 !
1 1 i ¢ 1 1 1 — — 1
1 CDKTF ! 1 ' Infrastructure 1 1 ]
I ! I ' & 1
! Used with MongoDB ! i | configuration ! i . !
! G | : files : L i
1 I 1 1 1 !
1 1 1 1 1

Argo CD

with either Terraform or

” Launch MongoDB Atlas
CDKTF

Image 2: Incorporing MongoDB Atlas into your developer toolchain using the HashiCorp Terraform MongoDB Atlas Provider

Atlas Kubernetes Operotor through an existing Cl/CD pipeline. Developers
can also standardize the management of Atlas in
Kubernetes has become a very common Kubernetes using developer templates provided
foundational layer for many IDPs, not only due by MongoDB for Atlas deployments, which can
to the rising popularity of containers but also be easily adopted and used. The Operator can
because of the significant automation and manage a large number of Atlas deployments
flexibility it offers. consistently, in or across any of the three major

. ) ) cloud providers: AWS, GCP, or Azure.
MongoDB provides a way to work natively with

any certified flavor of Kubernetes—the Atlas

Kubernetes Operator. The Atlas Operator enables HGShiCOI’p Terraform MongoDB
users to manage Atlas with the same tooling and .

processes they use for their existing services in Atlas Provider
Kubernetes. It works by extending the Kubernetes
API through custom resources, allowing
developers to manage Atlas resources as native
Kubernetes objects. This means your developers
can deploy configuration files for Atlas via a CD
tool, like ArgoCD, into Kubernetes, and the Atlas
Kubernetes Operator automates the application The HashiCorp Terraform MongoDB Atlas Provider
of that configuration via the Atlas Admin API. allows Terraform users to easily manage their Atlas
lifecycle by managing Atlas infrastructure as code
in HashiCorp Configuration Language (HCL). The
Terraform Provider gives developers the ability

to provision infrastructure in a way that is easy

to manage and follows a standardized workflow
they are comfortable working in. Customers using
our official plugin also have access to customer

Infrastructure as code (laC) is a foundational
practice in IDPs, enabling automated, consistent,
and scalable management of infrastructure
resources through code, which streamlines
operations and enhances development agility.

The Atlas Kubernetes Operator is an excellent tool
for incorporating Atlas into a Kubernetes-based
IDP for several reasons. The Operator helps reduce
operational complexity, as developers only need
to manage the custom resource configuration files
in a Git repository and apply them to Kubernetes

0.



support. Users can leverage the Terraform Cloud

Development Kit (CDKTF), instead of the Terraform

Provider directly to provision infrastructure
using the language of their choice (JavaScript,

TypeScript, Python, Java, Go, and C#), rather than

having to use HCL.

Using Terraform to incorporate Atlas into your IDP

has several advantages. Atlas’s native integrations

with Terraform and the CDKTF enable developers

to have workflow- and language-specific methods

for incorporating Atlas into existing Cl/CD
pipelines, providing a more developer-friendly
way of using Terraform. Terraform can be used

to manage a large number of MongoDB Atlas
deployments consistently, in or across any of the
three major cloud providers: AWS, GCP, or Azure.
Developers using Terraform also have access to
a large Terraform community, repositories, and
quickstarts, which can help them get started and
troubleshoot faster.

AWS CloudFormation Resources

AWS CloudFormation is an laC tool offered by
AWS. It enables users to provision and manage
Atlas infrastructure as code through AWS-native
workflows. This tool is ideal for teams whose
developers prefer to work with AWS-native
tooling within their IDP. MongoDB Atlas offers
users multiple resources from CloudFormation,
including:

» JSON/YAML resources from the
CloudFormation Public Registry which can be
executed via the AWS CLI / AWS Management
Console. This is a great option for teams
comfortable working in JSSON/YAML and want to
work in a way that is tightly ingrained with AWS.

* AWS’s Quick Starts, formerly known as Partner
Solution Deployments which create an Atlas
project with a standard, single-Region, M10
cluster and enable users to automatically set

up a MongoDB Atlas environment in AWS. This
method is great for teams who want to quickly and
easily provision multiple resources at a time using
templates that have been reviewed by AWS and
MongoDB Atlas.

» The AWS CDK which makes it easier for
developers to define and manage their Atlas
infrastructure natively in their programming
language (JavaScript, TypeScript, Python, Java,
C#, and Go. ) of choice.

Using AWS CloudFormation to incorporate Atlas
into your IDP is an excellent option for teams that
are most comfortable working with and have their
IDP built with AWS-based tools and workflows.
AWS CloudFormation can be used to manage

a large number of MongoDB Atlas deployments
consistently within AWS and gives developers the
flexibility to work in a manner that best fits their
team’s needs.

Accelerate Developer Velocity with Atlas and your IDP

Achieve even greater developer autonomy and
application output speed by leveraging Atlas,
MongoDB’s developer data platform, within your
Internal Developer Platform. You can get started
with creating a MongoDB Atlas account here.

You can learn more about the DevOps tools we
integrate with here:

« Atlas Kubernetes Operator
» HashiCorp Terraform MongoDB Atlas Provider

« AWS CloudFormation

© September 2024 MongoDB, Inc. All rights reserved.

To start using any of our DevOps tools, you can go
to the documentation here.

Additionally, you can watch a demo of how to
integrate each of these tools into your IDP here.

Go build Atlas into your IDP today!



https://github.com/cdktf/cdktf-provider-mongodbatlas
https://github.com/cdktf/cdktf-provider-mongodbatlas
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/blogs/aws/introducing-a-public-registry-for-aws-cloudformation/
https://aws.amazon.com/quickstart/?solutions-all.sort-by=item.additionalFields.sortDate&solutions-all.sort-order=desc&awsf.filter-content-type=*all&awsf.filter-tech-category=*all&awsf.filter-industry=*all&solutions-all.q=mongodb&solutions-all.q_operator=AND
https://aws.amazon.com/cdk/
https://account.mongodb.com/account/login?signedOut=true&n=https%3A%2F%2Fcloud.mongodb.com%2Fgo%3Fl%3Dhttps%253A%252F%252Fcloud.mongodb.com%252Fv2%252F%253Cproject%253E%2523%252FdataFederation%26_ga%3D2.121590028.567858162.1702935684-1592895210.1668436484%26_gac%3D1.90809704.1702935684.CjwKCAiA-P-rBhBEEiwAQEXhH1-PuNDJyW2Z4QzJDKtcrNGmvK965-IyQbQ-bitpEZxRCffLHhX-KRoC1HsQAvD_BwE
https://www.mongodb.com/products/integrations/kubernetes/atlas-kubernetes-operator
https://www.mongodb.com/products/integrations/hashicorp-terraform
https://www.mongodb.com/products/integrations/aws-cloudformation'
https://www.mongodb.com/docs/atlas/api/
https://www.youtube.com/watch?v=P5oaCRqqW18&list=PL4RCxklHWZ9tkmf5ewhA10nKz8u6d4c6r&index=13

