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Vectors: The latest  
bolt-on tech
There’s a modern gold rush happening and 
the hot commodity is artificial intelligence. 
AI is transforming every industry and market 
segment, from technology and healthcare to 
customer service and cybersecurity. Anywhere a 
competitive edge can be gained, someone is using 
AI to do it. But like the gold rush of the early 20th 
century, the modern one requires tools and know-
how to mine for value that may be many layers 
deep. Instead of the maps, picks, and pans of old-
time gold miners, modern AI practitioners need 
technology tools to strike it rich. 

When it comes to AI there are three layers 
that must be in place to extract value from 
the available technology. The first layer is the 
underlying compute resources (GPUs) and 
foundation models that are trained on large 
corpuses of data, usually referred to as large 
language models (LLMs). The second layer is 
the tooling used to fine-tune models and build 
applications that leverage the trained models. 
The third layer is the AI applications themselves. 
In this white paper, we’re going to focus on the 

second layer, because that’s where modern-day 
gold miners can tap into the rich vein that will lead 
them to the riches they seek.

Within that layer lies a collection of tools and 
techniques for improving the information that 
AI systems like generative AI use to respond to 
prompts. When AI relies solely on the corpus of 
data LLMs are trained on, it will often produce 
results that are either inaccurate or lack 
information within a specific business context. 
This is because LLMs are trained on data that 
has since become outdated, incomplete, or lacks 
proprietary knowledge about a specific use case 
or domain. 

One of the techniques used to inform LLMs of this 
critical contextual data is retrieval augmented 
generation (RAG). RAG works by combining a 
pre-trained LLM with a retrieval system of readily 
accessible information. RAG models enable LLMs 
to generate more accurate answers with up-to-
date and relevant context for the task at hand. The 
information is stored as numerical representations 
in high-dimensional space called vector 
embeddings (Figure 1). These embeddings are 
capable of capturing the semantic or underlying 
meaning of specific data sets.

Figure 1. Vectors are a numeric representation of data and related context.
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Taken together, these technology solutions and 
concepts form the foundation of AI tools and 
techniques. But how do you know which tools 
to leverage for your particular scenario? And 
crucially, how do you embrace AI functionality 
without increasing architectural sprawl and 
maintenance work, which often falls on the 
shoulders of developers?

Bolt-on and hang on
When it comes to onboarding AI solutions, in 
many ways, it’s no different than niche use cases 
that came before. When mobile apps and IoT 
devices were first coming to market, they relied 
on a specific data type, time-series data, that is 

Vector embeddings can be searched to find 
similar content based on vectors being “near” 
one another in high-dimensional space. Vector 
embeddings represent enterprise data in a way 
that AI can comprehend, giving it context and 
characteristics, which the rows and columns of a 
relational database are unable to capture.

The database that stores vector embeddings 
is called a vector database, and the method 
for querying a vector database is called vector 
search (also known as semantic search). Vector 
search is the retrieval system responsible for 
finding relevant information from a knowledge 
base that is external to the LLM (Figure 2).

Figure 2. Augmenting a large language model (LLM) with RAG.

capable of capturing the time intervals between 
data records. And when organizations are in need 
of robust search capabilities, they look for ways 
to augment their tech stack with purpose-built 
search engines. As with these specific use cases, 
the tools you choose will have a huge impact on 
performance, scalability, and cost. There are a 
couple of paths you can choose from: You can 
bolt-on a standalone database, or you can take an 
integrated platform approach where the features 
you wish to add are supported natively by the 
database. 

Standalone solutions (also called bolt-on, purpose-
built, or niche) may sound like a quick fix for 

tech problems, but they come with a bundle of 
challenges. From complex implementation and 
maintenance to domain specialization and data 
duplication, bolt-on tech can quickly create an 
unwieldy, expensive tech stack.

In today’s macroeconomic environment, IT 
decision-makers are under pressure to do more 
with less. But that’s not what bolt-on solutions 
are designed to do. As the term “tech stack” 
implies, doing more means adding more: a vector 
database here, a search engine there — time series, 
graph data, archive store, cache tier, the list goes 
on. 

The functionality and capabilities may justify 
the upfront investment, but the increased cost 
of development combined with the ongoing 
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operational overhead of these complex solutions 
eventually catch up. Before you know it, you’re 
replicating data across an increasingly complex 
architecture and hiring specialized consultants 
with expensive skill sets to operate and maintain 
an array of niche technology. 

The following are all important considerations 
anytime you’re considering augmenting the tech 
stack to add capabilities and features like vector 
or semantic search, full-text search, and time 
series databases:

Another database to learn — Each new 
programming language or API has a unique 
syntax, and often introduces new concepts 
that developers need to understand. This 
could include new ways of handling data, 
different types of data structures, or unique 
methods of querying data. Documentation 
and learning resources can accelerate the 
learning process but only if they’re readily 
available, which isn’t always the case.

Another database to sync — Large volumes 
of data can make synchronization processes 
slow and resource-intensive, and ensuring 
data consistency between different databases 
can be complex, especially in distributed 
systems. Changes often need to be captured 
in real time. System compatibility can also be 
an issue because different systems may have 
different formats and standards.

Another database to secure — Cyber threats 
are constantly evolving, and it’s up to 
developers to stay informed and prepared 
through continuous learning and adaptation. 
They’re also responsible for creating secure 
login systems, managing user roles and 
permissions, and handling password storage 
and recovery. Add to these responsibilities the 
important work of protecting sensitive data 
with strong encryption, managing encryption 
keys, and understanding security standards 
and regulations, all of which becomes more 
complicated with each new standalone 
technology you add to the stack.

Another database to integrate — Integrating 
a new database with your tech stack is easier 
said than done. It could involve writing new 

APIs, adjusting data models, or changing 
application logic. Ensuring data consistency 
across different systems is also crucial. 
Migrating existing data to the new database 
involves mapping data from the old schema 
to the new one, handling data transformation, 
and testing the migration process. In addition 
to all these tasks, developers need to ensure 
that the database performs well under 
different loads and that it can be reliably 
deployed in production.

Another database to scale — As applications 
grow or requirements change, it becomes 
increasingly difficult to access all necessary 
data at service levels that users expect. 
Data needs to be located where those users 
are, which means moving databases to 
branches and edge locations for low-latency 
performance. Developers also need to 
ensure that the database satisfies regulatory 
requirements. This involves maintaining 
multiple copies of data and automating 
recovery without adding excessive complexity. 
Scaling a database also often leads to 
escalating costs. Developers need to manage 
these costs while ensuring the database 
continues to perform optimally.

 Another database to monitor — Developers 
are always on the hook for monitoring the 
database for performance issues, resource 
utilization, and potential security threats. Slow 
queries can impede application performance. 
This requires continuous monitoring and 
analysis of query execution times and usage 
of resources like CPU, memory, and storage. 
They also need to monitor for unusual patterns 
or spikes in database activity, which could 
indicate a problem or a potential security 
threat.

Another database to back up — Backing 
up a database involves planning, creating, 
verifying, and storing the backup in a secure 
and reliable location on-site, off-site, or in 
the cloud. Issues to consider include data 
consistency, backup storage size, and 
recovery time. It involves determining what 
data needs to be backed up, the frequency 
of backups, and where the backups will be 
stored. Finally, the recovery time (the time 
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Figure 3. The hidden cost and complexity of bolting on a standalone database

it takes to restore the database from the 
backup) should be minimized to reduce 
downtime.

Developers already assume responsibility for many 
of these important tasks. For every standalone or 
purpose-built database an organization chooses 
to add to their tech stack, these responsibilities 
multiply in terms of the complexity of the task, the 
time it takes to do it, and the risk of not doing it 
right (Figure 3).

Standalone search
When an application has been running for a 
number of years and generating an increasing 
amount of data, users often develop the need to 
search and filter data more efficiently. They may 
require the system to support query conditions 
and flexible data structures that go beyond 
what a standard database can provide. As user 
requirements evolve, demand often increases for 
must-have full-text search capabilities like auto-
complete, faceted search, and pluralizations that 
can be stemmed back to root words.

Users today have become accustomed to full-
text indexing that can support features like fuzzy 
search and synonyms so they can find results even 
when they don’t know the exact phrase. Fuzzy 
search helps validate transactions on the backend 

without humans having to intervene. Fraud 
detection is another common use case for fuzzy 
text search, where it’s used to link transactions 
across accounts and identify suspicious 
transactions.

Search is used in auditing and discovery 
workloads. When organizations are handling 
sensitive information or data that’s subject to a 
regulatory authority, they need the ability to audit 

what’s going on inside the system. Sometimes 
legal proceedings may require information about 
when an operation occurred, who initiated it, why, 
and at what time.

Standalone search solutions run alongside the 
main application database to provide features 
sought by users and customers (Figure 4). Adding 
a full-text search function on top of an operational 
database is one of the most common use cases. 
Popular search solutions include Apache Solr, 
Elasticsearch, Algolia, and OpenSearch.
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Technology veterans have the ability to 
expertly deploy and optimize Elasticsearch, but 
attaining that level of expertise takes time and 
considerable trial and error. More often than not, 
it’s the responsibility of one person or a small 
team figuring out how to stand up, configure, and 
optimize the new search environment as they go 
along.

First they’ll need approval for and access to a 
virtual machine, containerization infrastructure, or 
a physical box to host the solution. The timeframe 
for getting permission to deploy virtual resources 
could be weeks, whereas purchasing physical 
hardware could take months.

The next step is right-sizing resources for 
compute, memory, and storage. Predicting 
the size of a workload is an inexact science. 
Overprovisioning helps ensure resources are 
available if there’s a spike in activity, but it also 
leads to higher costs. So can guessing, which is all 
too common.

Standing up the search service also requires SSL 
certificates, security modules, authentication, 
and user permissions. For someone who’s never 
done this before, it could take weeks to install 
and configure security and permissions for the 
service, all while potentially increasing the risk 
from common vulnerabilities and exposures 
(CVEs). That same person will most likely also 
be responsible for CVE monitoring and rapid 
response. 

Next comes the complicated and consequential 
question of how to move data from the 
application to the search engine. To surface 
relevant and up-to-date search results, 
the database and search engine need a 
synchronization mechanism that replicates data 
from the database to the search engine. This 
typically involves a data pipeline with custom 
filtering and transformation logic built on top 
of messaging systems such as Apache Kafka, 
RabbitMQ, or using packaged connectors from 
specialized providers. Each requires developers 
to be well versed in connecting all the different 
services in order to expose the core functionality. 
They’ll also need to be able to find errors when 
they arise, identify root causes, and remedy issues 
while balancing other responsibilities.

The synchronization mechanism has to be 
deployed onto its own nodes, creating additional 
hardware sprawl. The person or team responsible 
will have to solve for a list of setup issues:

What data should be moved into the search 
engine? 
What format should the data be brought over in? 
Should all the data be moved or just a portion? 
What tool am I going to use to bring the data over? 
Once a dataset has been moved, is there a way 
to capture just the newest data to avoid having to 
move all of it over? 
If you have to move it all over at once, when do you 
do it?

Figure 4. Traditional approach: a standalone search engine
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 1An example of high cardinality — or many data points for a single timestamp — would be sensors on a car  
recording many different data points like location, objects nearby, location, etc. 
2Accelerate Speed of Data and AI-Driven Business Value With Time Series Technology, Forbes January 2023

Moving data between the application and 
search can be a massive undertaking. Copying 
data takes time, sometimes 24 hours or more 
for a terabyte of data. Syncing data in batches 
once a day directly impacts the user experience 
because any changes a user makes to a record 
won’t show up in search for 24 hours or however 
long the interval is between syncs. This could 
result in outdated offerings on a website, a poor 
user experience, and a drag on revenue. The 
alternative is real-time syncing so that every 
time you write to the application, you write to the 
search environment as well. This entails learning 
client libraries and the different query and 
indexing languages.

Different databases have different data models, 
so it’s important to align the data to the model 
of the target database. An ETL tool (extract, 
transform, load) will be required to translate the 
data from source to target. It’s rarely a one-to-
one connection between the source and target. If 
the source has been running for years, dozens of 
integrations may already exist. If there’s a change 
to one table, figuring out all the implications of 
the change will require testing to make sure the 
change was handled properly.

This is a massive amount of work and 
responsibility, and a commensurate amount of 
risk that things will not go right. It’s also a poor 
allocation of resources because most of it is non-
differentiating work. Users expect robust search 
functionality so it’s not a unique differentiator 
from a competitive perspective. It’s a similar 
story when it comes to standalone time series 
databases for data in motion such as IoT sensors, 
where there are many data points for a single 
timestamp (i.e., high cardinality1). 

Time series and streaming 
data
Another common use case for adding a 
standalone solution is time series data, 
which is commonly used in financial services, 
manufacturing, energy and utilities, healthcare, 
and internet of things (IoT). Time series data is 

processed chronologically in high volume and 
indexed or listed in time order. If you were to plot 
the points of time series data on a graph, one of 
your axes would always be time. The exponential 
rate of instrumentation and sensory data that 
continuously emits a stream of time series data is 
only set to grow given the increased emphasis on 
observability and measurement2.

Time series data is very useful for identifying 
trends, such as whether a situation is improving 
or deteriorating. A few examples include high 
frequency trading applications for financial 
institutions, health monitoring of a patient’s 
cerebral electrical activity or heart rate for 
healthcare institutions, and temperature 
measurements for building control or refrigeration 
units.

In IoT use cases, users track information using 
many data points from different sources. Examples 
include an agricultural customer with moisture 
sensors in their cornfield, a distribution center 
monitoring packages moving through its shipping 
and infrastructure network, or a manufacturer 
collecting data from sensors deployed on their 
assembly lines to track operational efficiency over 
time.

When building applications for these use cases, 
developers are presented with a dilemma: retrofit 
existing systems and face performance challenges 
or embrace specialized, bolt-on solutions with 
their unique set of complexities.

Retrofitting general purpose databases for time 
series data requires significant upfront work. Time-
stamped data needs to be manually bucketed, 
and the right instrumentation set up. This 
eventually leads to inefficiencies in data storage, 
querying, analysis, and archiving, as general 
purpose databases are not inherently designed for 
time series data.

As the volume of data grows, the performance of 
these retrofitted solutions can degrade, leading 
to longer query times and scalability challenges. 
Bolt-on time series databases, while designed 
to handle time series data efficiently, are yet 
another solution to learn, manage, scale, secure, 
and procure. In addition, integrating time series 
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databases with the rest of the application and 
data architecture, ETL pipelines, and custom 
integrations adds fragility and complexity.

When working with streams of time series data, 
developers have to know different languages, 
APIs, drivers, and tools to bring streaming data 
(from sources like Apache Kafka) into their 
applications, increasing operational complexity 
with additional systems for teams to manage. 
Typically, developers process streams of data 
after landing events directly into their relational 
databases, which are not well suited for high 
volume, high velocity data. This often introduces 
latency into the system. It also makes for a poor 
developer experience because the rigid schemas 
of relational databases are difficult to adapt as 
user demands grow and functionality evolves. 
Working across streaming data and data in the 
database creates another friction point, driving up 
the cost of development since teams have to deal 
with new syntax and APIs. It also increases the risk 
of bad results or incorrect data being provided to 
business applications.

The worst part about all this complexity is that, 
like the extensive management tasks associated 
with managing a standalone search engine, it’s 
non-differentiating work, meaning it doesn’t 
set the business or the app apart from the 
competition. Users place  a lot of trust that your 
app is delivering reliable information and won’t 
tolerate inconsistencies. You can be happy if they 
reward you for a pleasant experience by returning, 
which isn’t always the case, but they will definitely 
hold any friction they experience against you. So 
developers wind up spending time building DIY 
solutions for table-stakes functionality that they 
could be spending on differentiating features that 
will help the app gain traction among its users.

Lurking beneath the increased complexity and 
sprawl is the inherent risk involved when the 
knowledge required to operate different parts 
of the stack is spread thinly across different 
members of the team. In fact, having more 
systems that require deep expertise increases the 
likelihood that you’ll be using at least one of them 
incorrectly.

Having multiple databases in your tech stack of 
course requires additional training for different 
systems, query languages, workflows, and APIs. 
In today’s highly fluid workforce, there’s always 
the risk that, once team members are trained 
on the relevant systems, they’ll leave for other 
opportunities and need to be replaced with new 
personnel, who will then need to be trained in 
multiple systems.

Developer experience
It may be obvious by now, but it’s often the 
developer who’s responsible for acquiring the 
domain expertise necessary for setting up, scaling, 
and maintaining standalone databases. Having 
and keeping the expertise to maintain these 
systems on an ongoing basis is one of the biggest 
drivers of escalating cloud costs.

Standing up and maintaining a separate search 
engine alongside the database means developers 
will have to learn two different query languages 
to access the database and the search engine. 
This increases the learning curve for developers 
and forces frequent context switching when 
building. It also complicates testing and ongoing 
maintenance. 

All the different sync tools, translation layers, 
message buses, and ETL code make it hard to 
anticipate disruptions. Imagine someone changes 
a schema format without notifying other team 
members and it results in a nightmare chain 
reaction: A change-stream interaction fails 
and breaks full-text indexing. That pipeline is 
throwing exceptions on the stream processor 
and not catching it. Now you need to fully rebuild 
the index. But when did it break? And by how 
much? How do you record what happened in the 
meantime? If it’s been more than 24 hours since 
the last change-stream, it’s already rolled over, 
so you can’t just reprocess it. Essentially, you 
have to rewrite all the full-text indexes, and it’s 
all happening during an unplanned maintenance 
window, so services are down. If the table has a lot 
of data — say terabytes of data — it could be hours 
before you restore full text indexing. 
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Service interruptions are often caused by brittle 
pipelines. When a developer introduces a new 
feature to an application, it necessitates changes 
to the database’s schema that will affect the 
synchronization logic and search engine schema. 
This creates more dependencies that slow down 
the pace of rolling new features into production. 
These are the real real costs of purpose-built 
search solutions.

The story is much the same with mobile and IoT, 
where the undifferentiated heavy-lifting comes in 
the form of building and managing bidirectional 
sync between the mobile database, ​​caching 
layers, ETLs, and the backend (Figure 5). The 
first step is figuring out what subset of data 
you actually need to sync to the mobile device, 
and whether you’re going to only authorize this 
particular user to sync this data with this device. 
This involves authorization code that handles 
the question of what data is actually going to be 
available on this device. It also requires code that 
determines if the user has permission to update 
that data. Then the developer has to decide, 
out of all the data that users can download to 
their devices, what subset of that data will be 
downloadable to multiple users? And out of all 
the users, who is able to make simultaneous and 
conflicting updates? And can they sync that 
data with the backend and each other directly? 
Conflict-resolution code is necessary to decide 
who wins if two users update the same thing. 

Figure 5. Real-time experiences at scale require complex conflict resolution.

Networking is also a key decision when building 
apps for mobile and IoT. Will devices automatically 
connect to the backend in the background or 
do users have to take action? Is there enough 
processing power and storage to handle periodic 
demands for data? What happens when the 
network connection fails halfway through? Will 
users on the front end and the database on the 
backend all remain in a consistent and usable 
state even if sync happens to fail? 

It’s up to the developer to provide answers to all 
of these questions through meaningful design. 
These answers must have a test plan written for 
them, they have to be coded, and they have to 
go through QA and support to make sure the 
application achieves the design goals. It has 
to be performant because app users have high 
expectations. And all these decisions require 
domain knowledge to configure, manage, and 
update on an ongoing basis.

The challenge in IT today is the same as it has 
always been. How can additional functionality 
be introduced to support evolving workload 
requirements while avoiding architecture sprawl 
and increasing cost?
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The modern data platform
At MongoDB, we’ve been singing the praises of the 
document model since our inception. 

The document model is the most intuitive, 
performant, and agile way to store application 
data. Documents let you store objects in the 
same format that you use in your application. 
You can embed related data instead of splitting 
it across multiple tables. This means better read 
performance, as you can minimize the number of 
places your operations are accessing on disk. And, 
since the structure of each document is flexible, 
you can easily evolve your data model throughout 
development. This flexibility makes document 
databases like MongoDB Atlas ideal for handling 
multiple different data types and workloads 
without having to onboard specialized, standalone 
solutions like those described above.  

With Atlas Search, you can iterate and create 
multiple indexes that may or may not work, or 

where part of your application — most likely the 
legacy application — consumes it. You can then 
continue to work on the backend to improve the 
user experience by creating a second index. When 
the index is working properly, you can transition 
the application over to the new index. It doesn’t 
cost any extra time, sync processes, or cognitive 
load. If you have a collection, you just create an 
index on top of it. If it isn’t right, you simply create 
another index on top of it and delete the first. If 
that one isn’t right, you add some fields to it, and 
now you can query it — after about a half-day’s 
worth of experimentation.

Atlas Search runs alongside the Apache Lucene 
search index. There’s no separate system to 
operate and maintain, and everything is fully 
synchronized and managed. The database 
and search engine are highly available through 
a distributed architecture with self-healing 
recovery, relieving developers from tons of non-
differentiating work (Figure 6).

Figure 6. Atlas Search architecture

https://www.mongodb.com/atlas
https://www.mongodb.com/atlas/search
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Atlas eliminates the need to replicate chunks of 
data from a time series database into a NoSQL 
database, or from NoSQL into an object store. The 
data sits in one repository that can be accessed 
by multiple services. If a developer needs to 
integrate time series data, they simply create a 
native time series collection in a new Atlas cluster 
or an existing one. The developer has one API to 
deal with and there’s no need to set up a time 
series data stream or learn a new time-series API.

The hardest part of working with data at the edge 
of the network — syncing with the backend — is 
entirely streamlined through an integrated feature 
in Atlas called Device Sync, which handles sync, 
networking, and conflict resolution, eliminating 
the cost and complexity of DIY solutions. It 
solves bidirectional sync with cascading rules 
and permissions built on the backend. Users can 
create and update rules to establish read and 
write permissions on each document and each 
field within that document using a user-friendly 
GUI or a sophisticated command line interface 
(CLI).

Device Sync allows the user to generate a set of 
sample data with a schema on Atlas and then use 
that to generate code that can be used for the 
mobile database. End users can continue using 
an app even if the device goes offline. Then, when 
the device comes back online, Atlas Device Sync 
will automatically reconnect and resynchronize 
changes between the front and back ends.

When it comes to processing streaming data, 
Atlas Stream Processing simplifies building and 
monitoring modern event-driven applications by 
removing the need to introduce new or specialized 
infrastructure components required for stream 
processing. It increases developer productivity 
by enabling teams to react to and extract 
insights from high volumes of streaming data. 
The document data model is uniquely capable 
of meeting the needs of rich, complex streams of 
data, reducing friction related to rigid schemas 
and enabling adaptability as your application 
grows. Atlas Stream Processing reduces the 
amount of code a developer has to write to 
process streaming data, making it faster to iterate, 
easier to validate for data correctness, and 

simpler to gain visibility, all with less moving parts 
to manage.

The emergence of AI-powered applications and 
use cases only serves to confirm the flexibility 
and versatility of the document model, which is 
the foundation of the MongoDB Atlas developer 
data platform. The primary “intelligence” behind 
AI is reams of unstructured data that is used to 
train machine learning models. From video and 
call transcripts to documentation and transaction 
histories, organizations can leverage their 
own proprietary business data to create truly 
unique AI-powered applications and customer 
experiences. And no database is better suited to 
handle vast quantities of unstructured data than 
a document database. MongoDB was designed 
for managing humongous (hence the “mongo” 
in MongoDB) amounts of documents. And our 
retrieval and storage mechanisms were built 
to optimize for AI-type workload patterns. No 
other database can simply bolt on this type of 
functionality.

With standalone databases, the core object 
store, search, and archive functionality all exist 
in different services that have to be connected. 
In Atlas, there’s no glue code or schema to write 
because it’s already built in. You query the API and 
it fetches the data. If it’s there locally, it fetches 
it. If it’s in an online archive, it fetches it. You don’t 
have to translate it. That’s an enormous amount of 
work developers don’t have to do. 

MongoDB Atlas and Atlas Vector Search enable 
organizations to store vector embeddings right 
alongside their other operational data. And 
developers can query and index that data without 
having to execute expensive and time-consuming 
ETL operations. By storing vectors together with 
operational data, you avoid the need to sync 
data between your application database and 
your vector store at both query and write time. 
It also simplifies the overall architecture of your 
application. You don’t need to maintain a separate 
service or database for the vectors, reducing the 
complexity and potential points of failure in your 
system. MongoDB Atlas with vector search also 
scales horizontally and vertically, allowing you to 
power the most demanding workloads. 

https://www.mongodb.com/products/capabilities/time-series
https://www.mongodb.com/atlas/app-services/device-sync
https://www.mongodb.com/docs/atlas/atlas-sp/tutorial/
https://www.mongodb.com/solutions/developer-data-platform
https://www.mongodb.com/solutions/developer-data-platform
https://www.mongodb.com/products/platform/atlas-vector-search
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With the introduction of Atlas Search Nodes, you 
can deploy dedicated infrastructure for Atlas 
Search and Vector Search workloads, allowing 
you to fully scale search independent of database 
needs. Incorporating Search Nodes into your Atlas 
deployment allows for better performance at scale 
and delivers workload isolation, higher availability, 
and the ability to optimize resource usage.

MongoDB is integrated with a rich ecosystem of 
AI developer frameworks, LLMs, and embedding 
providers. This, combined with our industry-leading 
multi-cloud capabilities, allows organizations 
flexibility to move quickly and avoid lock-in to any 
particular AI technology in a fast-moving space. 

Built-in or bolt-on?
While specialized standalone or bolt-on solutions 
provide users with the rich experiences they 
expect, the ongoing maintenance and specialized 

Figure 7. A modern data platform gives you integrated services rather than bolting on a standalone solution.

domain expertise required outweigh the initial 
business justification. The application stack gets 
more complex and unwieldy, which translates 
to reduced developer velocity, compromised 
customer experience, and escalating costs. An 
integrated, modern data platform like MongoDB 
Atlas comes with built-in tools for working with 
all different types of data, data models, and 
use cases. It enables developers to meet the 
application requirements they face today. Atlas 
provides the maturity of relational databases at 
the performance of a modern general-purpose 
data platform. All Atlas capabilities are seamlessly 
integrated, reducing much of the infrastructure 
and data duplication, maintenance, developer 
overhead and the much of the hidden costs 
associated with bolt-on solutions (Figure 7).

https://www.mongodb.com/docs/atlas/cli/stable/reference/json/search-nodes-config-file/
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Getting started with Atlas
MongoDB Atlas offers a forever-free tier for development. Once deployed, it only takes a few clicks of a 
button to add functionality to your application. To learn more about using Atlas for AI use cases, visit our 
Atlas Vector Search page, or check out our vector search tutorial. To get started with full-text search, 
read our getting started tutorial. You can also read our Atlas Search documentation, which provides a 
complete reference on how to configure, manage, and query search indexes, along with performance 
recommendations. To find out how to use Atlas Search Nodes to provide dedicated infrastructure for 
Atlas Search and Vector Search workloads, read our Search Nodes documentation. Learn how MongoDB 
Atlas supports time series collections. To leverage Atlas for streaming data use cases, read our tutorial 
on getting started with Atlas Stream Processing. To learn more about data-in-motion use cases, visit our 
Atlas Device Sync product page.

https://www.mongodb.com/products/platform/atlas-vector-search
https://www.mongodb.com/docs/atlas/atlas-vector-search/tutorials/vector-search-tutorial/#how-to-perform-semantic-search-against-data-in-your-atlas-cluster
https://docs.atlas.mongodb.com/atlas-search/tutorial/?_ga=2.57836394.1365261121.1681152892-1264722392.1655985864
https://docs.atlas.mongodb.com/atlas-search/?_ga=2.57836394.1365261121.1681152892-1264722392.1655985864
https://www.mongodb.com/docs/atlas/cli/stable/reference/json/search-nodes-config-file/
https://www.mongodb.com/products/capabilities/time-series
https://www.mongodb.com/docs/atlas/atlas-sp/tutorial/
https://www.mongodb.com/atlas/app-services/device-sync

