
Standalone Databases vs.
the Modern Data Platform
How the hidden costs and complexity of bolt-on databases

are a drag on innovation.

APRIL 2024

2

Table of Contents

Vectors: The latest bolt-on tech	 3

Bolt-on and hang on	 4

Standalone search	 6

Time series and streaming data	 8

Developer experience	 9

The modern data platform	 11

Built-in or bolt-on?	 13

Getting started with Atlas	 14

3

Vectors: The latest
bolt-on tech
There’s a modern gold rush happening and
the hot commodity is artificial intelligence.
AI is transforming every industry and market
segment, from technology and healthcare to
customer service and cybersecurity. Anywhere a
competitive edge can be gained, someone is using
AI to do it. But like the gold rush of the early 20th
century, the modern one requires tools and know-
how to mine for value that may be many layers
deep. Instead of the maps, picks, and pans of old-
time gold miners, modern AI practitioners need
technology tools to strike it rich.

When it comes to AI there are three layers
that must be in place to extract value from
the available technology. The first layer is the
underlying compute resources (GPUs) and
foundation models that are trained on large
corpuses of data, usually referred to as large
language models (LLMs). The second layer is
the tooling used to fine-tune models and build
applications that leverage the trained models.
The third layer is the AI applications themselves.
In this white paper, we’re going to focus on the

second layer, because that’s where modern-day
gold miners can tap into the rich vein that will lead
them to the riches they seek.

Within that layer lies a collection of tools and
techniques for improving the information that
AI systems like generative AI use to respond to
prompts. When AI relies solely on the corpus of
data LLMs are trained on, it will often produce
results that are either inaccurate or lack
information within a specific business context.
This is because LLMs are trained on data that
has since become outdated, incomplete, or lacks
proprietary knowledge about a specific use case
or domain.

One of the techniques used to inform LLMs of this
critical contextual data is retrieval augmented
generation (RAG). RAG works by combining a
pre-trained LLM with a retrieval system of readily
accessible information. RAG models enable LLMs
to generate more accurate answers with up-to-
date and relevant context for the task at hand. The
information is stored as numerical representations
in high-dimensional space called vector
embeddings (Figure 1). These embeddings are
capable of capturing the semantic or underlying
meaning of specific data sets.

Figure 1. Vectors are a numeric representation of data and related context.

4

Taken together, these technology solutions and
concepts form the foundation of AI tools and
techniques. But how do you know which tools
to leverage for your particular scenario? And
crucially, how do you embrace AI functionality
without increasing architectural sprawl and
maintenance work, which often falls on the
shoulders of developers?

Bolt-on and hang on
When it comes to onboarding AI solutions, in
many ways, it’s no different than niche use cases
that came before. When mobile apps and IoT
devices were first coming to market, they relied
on a specific data type, time-series data, that is

Vector embeddings can be searched to find
similar content based on vectors being “near”
one another in high-dimensional space. Vector
embeddings represent enterprise data in a way
that AI can comprehend, giving it context and
characteristics, which the rows and columns of a
relational database are unable to capture.

The database that stores vector embeddings
is called a vector database, and the method
for querying a vector database is called vector
search (also known as semantic search). Vector
search is the retrieval system responsible for
finding relevant information from a knowledge
base that is external to the LLM (Figure 2).

Figure 2. Augmenting a large language model (LLM) with RAG.

capable of capturing the time intervals between
data records. And when organizations are in need
of robust search capabilities, they look for ways
to augment their tech stack with purpose-built
search engines. As with these specific use cases,
the tools you choose will have a huge impact on
performance, scalability, and cost. There are a
couple of paths you can choose from: You can
bolt-on a standalone database, or you can take an
integrated platform approach where the features
you wish to add are supported natively by the
database.

Standalone solutions (also called bolt-on, purpose-
built, or niche) may sound like a quick fix for

tech problems, but they come with a bundle of
challenges. From complex implementation and
maintenance to domain specialization and data
duplication, bolt-on tech can quickly create an
unwieldy, expensive tech stack.

In today’s macroeconomic environment, IT
decision-makers are under pressure to do more
with less. But that’s not what bolt-on solutions
are designed to do. As the term “tech stack”
implies, doing more means adding more: a vector
database here, a search engine there — time series,
graph data, archive store, cache tier, the list goes
on.

The functionality and capabilities may justify
the upfront investment, but the increased cost
of development combined with the ongoing

5

operational overhead of these complex solutions
eventually catch up. Before you know it, you’re
replicating data across an increasingly complex
architecture and hiring specialized consultants
with expensive skill sets to operate and maintain
an array of niche technology.

The following are all important considerations
anytime you’re considering augmenting the tech
stack to add capabilities and features like vector
or semantic search, full-text search, and time
series databases:

Another database to learn — Each new
programming language or API has a unique
syntax, and often introduces new concepts
that developers need to understand. This
could include new ways of handling data,
different types of data structures, or unique
methods of querying data. Documentation
and learning resources can accelerate the
learning process but only if they’re readily
available, which isn’t always the case.

Another database to sync — Large volumes
of data can make synchronization processes
slow and resource-intensive, and ensuring
data consistency between different databases
can be complex, especially in distributed
systems. Changes often need to be captured
in real time. System compatibility can also be
an issue because different systems may have
different formats and standards.

Another database to secure — Cyber threats
are constantly evolving, and it’s up to
developers to stay informed and prepared
through continuous learning and adaptation.
They’re also responsible for creating secure
login systems, managing user roles and
permissions, and handling password storage
and recovery. Add to these responsibilities the
important work of protecting sensitive data
with strong encryption, managing encryption
keys, and understanding security standards
and regulations, all of which becomes more
complicated with each new standalone
technology you add to the stack.

Another database to integrate — Integrating
a new database with your tech stack is easier
said than done. It could involve writing new

APIs, adjusting data models, or changing
application logic. Ensuring data consistency
across different systems is also crucial.
Migrating existing data to the new database
involves mapping data from the old schema
to the new one, handling data transformation,
and testing the migration process. In addition
to all these tasks, developers need to ensure
that the database performs well under
different loads and that it can be reliably
deployed in production.

Another database to scale — As applications
grow or requirements change, it becomes
increasingly difficult to access all necessary
data at service levels that users expect.
Data needs to be located where those users
are, which means moving databases to
branches and edge locations for low-latency
performance. Developers also need to
ensure that the database satisfies regulatory
requirements. This involves maintaining
multiple copies of data and automating
recovery without adding excessive complexity.
Scaling a database also often leads to
escalating costs. Developers need to manage
these costs while ensuring the database
continues to perform optimally.

 Another database to monitor — Developers
are always on the hook for monitoring the
database for performance issues, resource
utilization, and potential security threats. Slow
queries can impede application performance.
This requires continuous monitoring and
analysis of query execution times and usage
of resources like CPU, memory, and storage.
They also need to monitor for unusual patterns
or spikes in database activity, which could
indicate a problem or a potential security
threat.

Another database to back up — Backing
up a database involves planning, creating,
verifying, and storing the backup in a secure
and reliable location on-site, off-site, or in
the cloud. Issues to consider include data
consistency, backup storage size, and
recovery time. It involves determining what
data needs to be backed up, the frequency
of backups, and where the backups will be
stored. Finally, the recovery time (the time

6

Figure 3. The hidden cost and complexity of bolting on a standalone database

it takes to restore the database from the
backup) should be minimized to reduce
downtime.

Developers already assume responsibility for many
of these important tasks. For every standalone or
purpose-built database an organization chooses
to add to their tech stack, these responsibilities
multiply in terms of the complexity of the task, the
time it takes to do it, and the risk of not doing it
right (Figure 3).

Standalone search
When an application has been running for a
number of years and generating an increasing
amount of data, users often develop the need to
search and filter data more efficiently. They may
require the system to support query conditions
and flexible data structures that go beyond
what a standard database can provide. As user
requirements evolve, demand often increases for
must-have full-text search capabilities like auto-
complete, faceted search, and pluralizations that
can be stemmed back to root words.

Users today have become accustomed to full-
text indexing that can support features like fuzzy
search and synonyms so they can find results even
when they don’t know the exact phrase. Fuzzy
search helps validate transactions on the backend

without humans having to intervene. Fraud
detection is another common use case for fuzzy
text search, where it’s used to link transactions
across accounts and identify suspicious
transactions.

Search is used in auditing and discovery
workloads. When organizations are handling
sensitive information or data that’s subject to a
regulatory authority, they need the ability to audit

what’s going on inside the system. Sometimes
legal proceedings may require information about
when an operation occurred, who initiated it, why,
and at what time.

Standalone search solutions run alongside the
main application database to provide features
sought by users and customers (Figure 4). Adding
a full-text search function on top of an operational
database is one of the most common use cases.
Popular search solutions include Apache Solr,
Elasticsearch, Algolia, and OpenSearch.

7

Technology veterans have the ability to
expertly deploy and optimize Elasticsearch, but
attaining that level of expertise takes time and
considerable trial and error. More often than not,
it’s the responsibility of one person or a small
team figuring out how to stand up, configure, and
optimize the new search environment as they go
along.

First they’ll need approval for and access to a
virtual machine, containerization infrastructure, or
a physical box to host the solution. The timeframe
for getting permission to deploy virtual resources
could be weeks, whereas purchasing physical
hardware could take months.

The next step is right-sizing resources for
compute, memory, and storage. Predicting
the size of a workload is an inexact science.
Overprovisioning helps ensure resources are
available if there’s a spike in activity, but it also
leads to higher costs. So can guessing, which is all
too common.

Standing up the search service also requires SSL
certificates, security modules, authentication,
and user permissions. For someone who’s never
done this before, it could take weeks to install
and configure security and permissions for the
service, all while potentially increasing the risk
from common vulnerabilities and exposures
(CVEs). That same person will most likely also
be responsible for CVE monitoring and rapid
response.

Next comes the complicated and consequential
question of how to move data from the
application to the search engine. To surface
relevant and up-to-date search results,
the database and search engine need a
synchronization mechanism that replicates data
from the database to the search engine. This
typically involves a data pipeline with custom
filtering and transformation logic built on top
of messaging systems such as Apache Kafka,
RabbitMQ, or using packaged connectors from
specialized providers. Each requires developers
to be well versed in connecting all the different
services in order to expose the core functionality.
They’ll also need to be able to find errors when
they arise, identify root causes, and remedy issues
while balancing other responsibilities.

The synchronization mechanism has to be
deployed onto its own nodes, creating additional
hardware sprawl. The person or team responsible
will have to solve for a list of setup issues:

What data should be moved into the search
engine?
What format should the data be brought over in?
Should all the data be moved or just a portion?
What tool am I going to use to bring the data over?
Once a dataset has been moved, is there a way
to capture just the newest data to avoid having to
move all of it over?
If you have to move it all over at once, when do you
do it?

Figure 4. Traditional approach: a standalone search engine

8
 1An example of high cardinality — or many data points for a single timestamp — would be sensors on a car
recording many different data points like location, objects nearby, location, etc.
2Accelerate Speed of Data and AI-Driven Business Value With Time Series Technology, Forbes January 2023

Moving data between the application and
search can be a massive undertaking. Copying
data takes time, sometimes 24 hours or more
for a terabyte of data. Syncing data in batches
once a day directly impacts the user experience
because any changes a user makes to a record
won’t show up in search for 24 hours or however
long the interval is between syncs. This could
result in outdated offerings on a website, a poor
user experience, and a drag on revenue. The
alternative is real-time syncing so that every
time you write to the application, you write to the
search environment as well. This entails learning
client libraries and the different query and
indexing languages.

Different databases have different data models,
so it’s important to align the data to the model
of the target database. An ETL tool (extract,
transform, load) will be required to translate the
data from source to target. It’s rarely a one-to-
one connection between the source and target. If
the source has been running for years, dozens of
integrations may already exist. If there’s a change
to one table, figuring out all the implications of
the change will require testing to make sure the
change was handled properly.

This is a massive amount of work and
responsibility, and a commensurate amount of
risk that things will not go right. It’s also a poor
allocation of resources because most of it is non-
differentiating work. Users expect robust search
functionality so it’s not a unique differentiator
from a competitive perspective. It’s a similar
story when it comes to standalone time series
databases for data in motion such as IoT sensors,
where there are many data points for a single
timestamp (i.e., high cardinality1).

Time series and streaming
data
Another common use case for adding a
standalone solution is time series data,
which is commonly used in financial services,
manufacturing, energy and utilities, healthcare,
and internet of things (IoT). Time series data is

processed chronologically in high volume and
indexed or listed in time order. If you were to plot
the points of time series data on a graph, one of
your axes would always be time. The exponential
rate of instrumentation and sensory data that
continuously emits a stream of time series data is
only set to grow given the increased emphasis on
observability and measurement2.

Time series data is very useful for identifying
trends, such as whether a situation is improving
or deteriorating. A few examples include high
frequency trading applications for financial
institutions, health monitoring of a patient’s
cerebral electrical activity or heart rate for
healthcare institutions, and temperature
measurements for building control or refrigeration
units.

In IoT use cases, users track information using
many data points from different sources. Examples
include an agricultural customer with moisture
sensors in their cornfield, a distribution center
monitoring packages moving through its shipping
and infrastructure network, or a manufacturer
collecting data from sensors deployed on their
assembly lines to track operational efficiency over
time.

When building applications for these use cases,
developers are presented with a dilemma: retrofit
existing systems and face performance challenges
or embrace specialized, bolt-on solutions with
their unique set of complexities.

Retrofitting general purpose databases for time
series data requires significant upfront work. Time-
stamped data needs to be manually bucketed,
and the right instrumentation set up. This
eventually leads to inefficiencies in data storage,
querying, analysis, and archiving, as general
purpose databases are not inherently designed for
time series data.

As the volume of data grows, the performance of
these retrofitted solutions can degrade, leading
to longer query times and scalability challenges.
Bolt-on time series databases, while designed
to handle time series data efficiently, are yet
another solution to learn, manage, scale, secure,
and procure. In addition, integrating time series

9

databases with the rest of the application and
data architecture, ETL pipelines, and custom
integrations adds fragility and complexity.

When working with streams of time series data,
developers have to know different languages,
APIs, drivers, and tools to bring streaming data
(from sources like Apache Kafka) into their
applications, increasing operational complexity
with additional systems for teams to manage.
Typically, developers process streams of data
after landing events directly into their relational
databases, which are not well suited for high
volume, high velocity data. This often introduces
latency into the system. It also makes for a poor
developer experience because the rigid schemas
of relational databases are difficult to adapt as
user demands grow and functionality evolves.
Working across streaming data and data in the
database creates another friction point, driving up
the cost of development since teams have to deal
with new syntax and APIs. It also increases the risk
of bad results or incorrect data being provided to
business applications.

The worst part about all this complexity is that,
like the extensive management tasks associated
with managing a standalone search engine, it’s
non-differentiating work, meaning it doesn’t
set the business or the app apart from the
competition. Users place a lot of trust that your
app is delivering reliable information and won’t
tolerate inconsistencies. You can be happy if they
reward you for a pleasant experience by returning,
which isn’t always the case, but they will definitely
hold any friction they experience against you. So
developers wind up spending time building DIY
solutions for table-stakes functionality that they
could be spending on differentiating features that
will help the app gain traction among its users.

Lurking beneath the increased complexity and
sprawl is the inherent risk involved when the
knowledge required to operate different parts
of the stack is spread thinly across different
members of the team. In fact, having more
systems that require deep expertise increases the
likelihood that you’ll be using at least one of them
incorrectly.

Having multiple databases in your tech stack of
course requires additional training for different
systems, query languages, workflows, and APIs.
In today’s highly fluid workforce, there’s always
the risk that, once team members are trained
on the relevant systems, they’ll leave for other
opportunities and need to be replaced with new
personnel, who will then need to be trained in
multiple systems.

Developer experience
It may be obvious by now, but it’s often the
developer who’s responsible for acquiring the
domain expertise necessary for setting up, scaling,
and maintaining standalone databases. Having
and keeping the expertise to maintain these
systems on an ongoing basis is one of the biggest
drivers of escalating cloud costs.

Standing up and maintaining a separate search
engine alongside the database means developers
will have to learn two different query languages
to access the database and the search engine.
This increases the learning curve for developers
and forces frequent context switching when
building. It also complicates testing and ongoing
maintenance.

All the different sync tools, translation layers,
message buses, and ETL code make it hard to
anticipate disruptions. Imagine someone changes
a schema format without notifying other team
members and it results in a nightmare chain
reaction: A change-stream interaction fails
and breaks full-text indexing. That pipeline is
throwing exceptions on the stream processor
and not catching it. Now you need to fully rebuild
the index. But when did it break? And by how
much? How do you record what happened in the
meantime? If it’s been more than 24 hours since
the last change-stream, it’s already rolled over,
so you can’t just reprocess it. Essentially, you
have to rewrite all the full-text indexes, and it’s
all happening during an unplanned maintenance
window, so services are down. If the table has a lot
of data — say terabytes of data — it could be hours
before you restore full text indexing.

10

Service interruptions are often caused by brittle
pipelines. When a developer introduces a new
feature to an application, it necessitates changes
to the database’s schema that will affect the
synchronization logic and search engine schema.
This creates more dependencies that slow down
the pace of rolling new features into production.
These are the real real costs of purpose-built
search solutions.

The story is much the same with mobile and IoT,
where the undifferentiated heavy-lifting comes in
the form of building and managing bidirectional
sync between the mobile database, ​​caching
layers, ETLs, and the backend (Figure 5). The
first step is figuring out what subset of data
you actually need to sync to the mobile device,
and whether you’re going to only authorize this
particular user to sync this data with this device.
This involves authorization code that handles
the question of what data is actually going to be
available on this device. It also requires code that
determines if the user has permission to update
that data. Then the developer has to decide,
out of all the data that users can download to
their devices, what subset of that data will be
downloadable to multiple users? And out of all
the users, who is able to make simultaneous and
conflicting updates? And can they sync that
data with the backend and each other directly?
Conflict-resolution code is necessary to decide
who wins if two users update the same thing.

Figure 5. Real-time experiences at scale require complex conflict resolution.

Networking is also a key decision when building
apps for mobile and IoT. Will devices automatically
connect to the backend in the background or
do users have to take action? Is there enough
processing power and storage to handle periodic
demands for data? What happens when the
network connection fails halfway through? Will
users on the front end and the database on the
backend all remain in a consistent and usable
state even if sync happens to fail?

It’s up to the developer to provide answers to all
of these questions through meaningful design.
These answers must have a test plan written for
them, they have to be coded, and they have to
go through QA and support to make sure the
application achieves the design goals. It has
to be performant because app users have high
expectations. And all these decisions require
domain knowledge to configure, manage, and
update on an ongoing basis.

The challenge in IT today is the same as it has
always been. How can additional functionality
be introduced to support evolving workload
requirements while avoiding architecture sprawl
and increasing cost?

11

The modern data platform
At MongoDB, we’ve been singing the praises of the
document model since our inception.

The document model is the most intuitive,
performant, and agile way to store application
data. Documents let you store objects in the
same format that you use in your application.
You can embed related data instead of splitting
it across multiple tables. This means better read
performance, as you can minimize the number of
places your operations are accessing on disk. And,
since the structure of each document is flexible,
you can easily evolve your data model throughout
development. This flexibility makes document
databases like MongoDB Atlas ideal for handling
multiple different data types and workloads
without having to onboard specialized, standalone
solutions like those described above.

With Atlas Search, you can iterate and create
multiple indexes that may or may not work, or

where part of your application — most likely the
legacy application — consumes it. You can then
continue to work on the backend to improve the
user experience by creating a second index. When
the index is working properly, you can transition
the application over to the new index. It doesn’t
cost any extra time, sync processes, or cognitive
load. If you have a collection, you just create an
index on top of it. If it isn’t right, you simply create
another index on top of it and delete the first. If
that one isn’t right, you add some fields to it, and
now you can query it — after about a half-day’s
worth of experimentation.

Atlas Search runs alongside the Apache Lucene
search index. There’s no separate system to
operate and maintain, and everything is fully
synchronized and managed. The database
and search engine are highly available through
a distributed architecture with self-healing
recovery, relieving developers from tons of non-
differentiating work (Figure 6).

Figure 6. Atlas Search architecture

https://www.mongodb.com/atlas
https://www.mongodb.com/atlas/search

12

Atlas eliminates the need to replicate chunks of
data from a time series database into a NoSQL
database, or from NoSQL into an object store. The
data sits in one repository that can be accessed
by multiple services. If a developer needs to
integrate time series data, they simply create a
native time series collection in a new Atlas cluster
or an existing one. The developer has one API to
deal with and there’s no need to set up a time
series data stream or learn a new time-series API.

The hardest part of working with data at the edge
of the network — syncing with the backend — is
entirely streamlined through an integrated feature
in Atlas called Device Sync, which handles sync,
networking, and conflict resolution, eliminating
the cost and complexity of DIY solutions. It
solves bidirectional sync with cascading rules
and permissions built on the backend. Users can
create and update rules to establish read and
write permissions on each document and each
field within that document using a user-friendly
GUI or a sophisticated command line interface
(CLI).

Device Sync allows the user to generate a set of
sample data with a schema on Atlas and then use
that to generate code that can be used for the
mobile database. End users can continue using
an app even if the device goes offline. Then, when
the device comes back online, Atlas Device Sync
will automatically reconnect and resynchronize
changes between the front and back ends.

When it comes to processing streaming data,
Atlas Stream Processing simplifies building and
monitoring modern event-driven applications by
removing the need to introduce new or specialized
infrastructure components required for stream
processing. It increases developer productivity
by enabling teams to react to and extract
insights from high volumes of streaming data.
The document data model is uniquely capable
of meeting the needs of rich, complex streams of
data, reducing friction related to rigid schemas
and enabling adaptability as your application
grows. Atlas Stream Processing reduces the
amount of code a developer has to write to
process streaming data, making it faster to iterate,
easier to validate for data correctness, and

simpler to gain visibility, all with less moving parts
to manage.

The emergence of AI-powered applications and
use cases only serves to confirm the flexibility
and versatility of the document model, which is
the foundation of the MongoDB Atlas developer
data platform. The primary “intelligence” behind
AI is reams of unstructured data that is used to
train machine learning models. From video and
call transcripts to documentation and transaction
histories, organizations can leverage their
own proprietary business data to create truly
unique AI-powered applications and customer
experiences. And no database is better suited to
handle vast quantities of unstructured data than
a document database. MongoDB was designed
for managing humongous (hence the “mongo”
in MongoDB) amounts of documents. And our
retrieval and storage mechanisms were built
to optimize for AI-type workload patterns. No
other database can simply bolt on this type of
functionality.

With standalone databases, the core object
store, search, and archive functionality all exist
in different services that have to be connected.
In Atlas, there’s no glue code or schema to write
because it’s already built in. You query the API and
it fetches the data. If it’s there locally, it fetches
it. If it’s in an online archive, it fetches it. You don’t
have to translate it. That’s an enormous amount of
work developers don’t have to do.

MongoDB Atlas and Atlas Vector Search enable
organizations to store vector embeddings right
alongside their other operational data. And
developers can query and index that data without
having to execute expensive and time-consuming
ETL operations. By storing vectors together with
operational data, you avoid the need to sync
data between your application database and
your vector store at both query and write time.
It also simplifies the overall architecture of your
application. You don’t need to maintain a separate
service or database for the vectors, reducing the
complexity and potential points of failure in your
system. MongoDB Atlas with vector search also
scales horizontally and vertically, allowing you to
power the most demanding workloads.

https://www.mongodb.com/products/capabilities/time-series
https://www.mongodb.com/atlas/app-services/device-sync
https://www.mongodb.com/docs/atlas/atlas-sp/tutorial/
https://www.mongodb.com/solutions/developer-data-platform
https://www.mongodb.com/solutions/developer-data-platform
https://www.mongodb.com/products/platform/atlas-vector-search

13

With the introduction of Atlas Search Nodes, you
can deploy dedicated infrastructure for Atlas
Search and Vector Search workloads, allowing
you to fully scale search independent of database
needs. Incorporating Search Nodes into your Atlas
deployment allows for better performance at scale
and delivers workload isolation, higher availability,
and the ability to optimize resource usage.

MongoDB is integrated with a rich ecosystem of
AI developer frameworks, LLMs, and embedding
providers. This, combined with our industry-leading
multi-cloud capabilities, allows organizations
flexibility to move quickly and avoid lock-in to any
particular AI technology in a fast-moving space.

Built-in or bolt-on?
While specialized standalone or bolt-on solutions
provide users with the rich experiences they
expect, the ongoing maintenance and specialized

Figure 7. A modern data platform gives you integrated services rather than bolting on a standalone solution.

domain expertise required outweigh the initial
business justification. The application stack gets
more complex and unwieldy, which translates
to reduced developer velocity, compromised
customer experience, and escalating costs. An
integrated, modern data platform like MongoDB
Atlas comes with built-in tools for working with
all different types of data, data models, and
use cases. It enables developers to meet the
application requirements they face today. Atlas
provides the maturity of relational databases at
the performance of a modern general-purpose
data platform. All Atlas capabilities are seamlessly
integrated, reducing much of the infrastructure
and data duplication, maintenance, developer
overhead and the much of the hidden costs
associated with bolt-on solutions (Figure 7).

https://www.mongodb.com/docs/atlas/cli/stable/reference/json/search-nodes-config-file/

14© April 2024 MongoDB, Inc. All rights reserved.

Getting started with Atlas
MongoDB Atlas offers a forever-free tier for development. Once deployed, it only takes a few clicks of a
button to add functionality to your application. To learn more about using Atlas for AI use cases, visit our
Atlas Vector Search page, or check out our vector search tutorial. To get started with full-text search,
read our getting started tutorial. You can also read our Atlas Search documentation, which provides a
complete reference on how to configure, manage, and query search indexes, along with performance
recommendations. To find out how to use Atlas Search Nodes to provide dedicated infrastructure for
Atlas Search and Vector Search workloads, read our Search Nodes documentation. Learn how MongoDB
Atlas supports time series collections. To leverage Atlas for streaming data use cases, read our tutorial
on getting started with Atlas Stream Processing. To learn more about data-in-motion use cases, visit our
Atlas Device Sync product page.

https://www.mongodb.com/products/platform/atlas-vector-search
https://www.mongodb.com/docs/atlas/atlas-vector-search/tutorials/vector-search-tutorial/#how-to-perform-semantic-search-against-data-in-your-atlas-cluster
https://docs.atlas.mongodb.com/atlas-search/tutorial/?_ga=2.57836394.1365261121.1681152892-1264722392.1655985864
https://docs.atlas.mongodb.com/atlas-search/?_ga=2.57836394.1365261121.1681152892-1264722392.1655985864
https://www.mongodb.com/docs/atlas/cli/stable/reference/json/search-nodes-config-file/
https://www.mongodb.com/products/capabilities/time-series
https://www.mongodb.com/docs/atlas/atlas-sp/tutorial/
https://www.mongodb.com/atlas/app-services/device-sync

