
Transforming
Customer Experience
With MongoDB
Atlas Search
October 2021

Introduction
The search bar is truly magical. Whether
we are shopping for groceries, buying
a new home, browsing the web to find
answers to our burning questions, servicing
our customers, looking for our next job, or
seeking suggestions for our next vacation,
the search bar helps us navigate and
discover exactly what we are looking for — all
just a simple, natural language query away.

Conditioned by years of internet search
engines, our users expect the applications
they rely on at home and at work to provide
search functionality. But building full-text
search into applications is hard. Developers
have had to turn to one of two approaches,
both of which come with major downsides
and trade-offs:

1. Use the search features built into your
database to directly query stored
data. However, these features are
limited, failing to provide the rich
search functionality users have come
to expect.

2. Bolt on a specialized search
engine alongside your database,
synchronizing data between the
two. Now users get the rich search
experience they expect but the
application stack has gotten much
more complex and unwieldy. All of
this translates to reduced developer
velocity, compromised customer
experience, and escalating costs.

MongoDB Atlas Search gives you a much
better way. It combines the power of
Apache Lucene — the same technology
underpinning the world’s most popular
search engines — with the developer
productivity, scale, and resilience of the
MongoDB Atlas database.

A couple of API calls or clicks in the Atlas
UI and you instantly expose your data to
sophisticated, relevance-based search
experiences that boost engagement and
improve customer satisfaction. Your data
is immediately more discoverable, usable,
and valuable. And it’s all fully managed
for you in the cloud, removing operational
burden. Customers have reported 30% to
50% improvements in time to market for
new application functionality by adopting
Atlas Search.

In this white paper, we dig deeper into the
challenges of implementing search today
and how that’s transformed with Atlas
Search. We discuss the ideal use cases for
Atlas Search, along with those requirements
where you may be better served
considering alternative approaches. And
we wrap up with how you can get started
with Atlas Search.

Transforming Customer Experience
With MongoDB Atlas Search

2

https://www.mongodb.com/atlas/search

Although search is essential for every
modern application, building it isn’t easy.
Application owners need to consider how
both the speed of search and the relevance
of search results will evolve over time. The
more demanding each becomes, the more
sophisticated their search needs will be.

To address search requirements, developers
typically either try to contort their
database to handle search queries, or they
turn to specialized search engines, bolting
them on to their application’s database.
Before choosing which approach to take,
it is important to recognize that databases
and search engines are fundamentally
different technologies, designed to do
different things.

Database Design Goals
Databases are very powerful when users
know upfront exactly what they want to
query — for example, returning the account
balance for a specific customer or booking
a specific hotel in a city. Databases provide
indexes to make these queries fast, but you
need to know your users’ query patterns in
advance so that the right indexes can be
defined on the underlying data.

Beyond retrieving data, databases
must also optimize for the demands of
transactional and analytical “systems
of record” applications, prioritizing data
correctness and integrity, concurrency,
resilience, and scalability.

Search Engine Design Goals
Search engines are very powerful when
users want to retrieve information with
natural language search terms and are
open to suggestions in the results that are
returned to them. In essence, a search
engine has to infer intent from a user’s
query, providing users with the ability to
explore related information.

For example, a search engine will improve
discoverability to users researching city
vacations in different destinations that
meet their desired criteria, such as cities
that are situated on the coast and less than
three hours’ flight time away. Alternatively,
the user might want to find articles with
information related to a specific topic or get
recommendations for a movie to stream.

For these more open-ended questions,
specialized inverted indexes that contain
the position of each word in a document
are required. Each piece of content is
extracted, analyzed, and converted to a set
of terms that are then scored and indexed.
The search engine follows the same
process when parsing a query to match
the search term to the most relevant top-k
documents and then returns them as a set
of suggestions to the user.

A search engine should also enable the
application owner to customize how data is
indexed, correct user typos, surface related
information, and tune result sets to provide
the most relevant, highly scored results first.

The Trouble With Search

Transforming Customer Experience
With MongoDB Atlas Search

3

Option 1: Using
Database Search
Because the database stores the
application data that needs to be searched,
using its built-in query and indexing features
would seem to be a simple solution. There
is no need to replicate data out of the
database into a separate system which
then has to be independently maintained.
Also, developers can continue to work with
a single query language and driver they are
already familiar with.

Many databases, including MongoDB
Atlas, offer built-in index and query features
for text search or more general regular
expressions (regex operators), which can
be useful for simple search needs (e.g.,
where there is a limited set of matching
documents or infrequent exact matches).

However, as search requirements evolve,
developers may quickly encounter feature
limitations and compromised application
performance that impacts user experience.

Limited Functionality,
High Complexity
Databases lack many of the features that
are expected for sophisticated search
experiences. Features that are either absent
or limited in functionality can include
searching across different data types,
relevance tuning, fast faceted navigation
and counts, fuzzy search, autocomplete,
highlighting, and broad international
language support. The importance of each
of these features is discussed in more detail
in the “Key Atlas Search features” section of
this white paper.

It is also not uncommon to find that
queries needing to filter many database
records are composed of long chains of
subqueries. These are hard to write, test,
debug, and maintain, adding further
friction to development.

Performance Overhead
As users’ search queries become broader
and more sophisticated, developers need
to create more indexes against the data.
Failing to do so means queries have to scan
every record in the database to find the
required matches, crippling performance.

Indexes don’t come for free, however. As
data is written to the database, the index
has to be maintained alongside the base
data. Multiple indexes cause more write
amplification and consume additional
memory, CPU, and I/O, all of which
impose a performance overhead on the
database for regular operations as well as
for search queries.

Some databases do offer specialized
inverted indexes that can reduce the
number of secondary indexes that need to
be created and maintained. However, these
also impose performance penalties to the
database, especially when indexed data is
being frequently updated. This is because
the index has to be rebuilt to merge new
data, making it inaccessible to queries until
the process — which itself is CPU and I/O
intensive — is complete.

Beyond the performance overhead
of index maintenance, it is important
for application owners to consider the
additional workload the database now
has to support. In addition to handling

Transforming Customer Experience
With MongoDB Atlas Search

4

https://docs.mongodb.com/manual/text-search/
https://docs.mongodb.com/manual/text-search/
https://docs.mongodb.com/manual/reference/operator/query/regex/

the core data persistence and processing
demands of the application, the database
also has to support search operations. To
avoid resource contention between these
two workloads, the database needs to be
carefully sized and closely monitored and
scaled, driving up operational overhead
and cost.

Option 2: Bolting On a
Specialized Search Engine
If the database’s internal search features
are not adequate to satisfy the desired user
experience, then another option is to bolt
on a dedicated search engine alongside
the database.

This will provide the more sophisticated
search features demanded by customers,
but it will impose additional constraints on
developers and ops teams while driving up
data duplication and technology sprawl
(see Figure 1).

Figure 1: Database cluster, data sync, and search cluster create complexity and architectural sprawl, inhibiting developer
productivity and increasing operational load.

Impacts on Developer
Productivity
It is critical in today’s digital economy for
developers to build and evolve applications
at speed. Introducing a search engine
alongside the database means developers
now have two separate systems they need
to work with, which slows them down.

With this approach, developers have to
learn how to work with two entirely different
query languages to access the database
and the search engine. This increases
their learning curve and means frequent
context switching when building application
functionality, both of which impact their
productivity while complicating testing and
ongoing maintenance.

Because this approach requires two
different APIs/drivers, application
dependencies become much more
complex, reducing the pace and frequency
of releasing applications to production.

Architectural complexity
Difficult to keep data in sync between two
separate systems

Operational overhead
More to provision, secure, upgrade,
patch, back up, monitor, scale, etc.

Application

Database Cluster Data Sync Search Cluster

Database driver and
query language

Search driver and
query language

Lower developer productivity
Developers need to use different query
APIs for database and search and
coordinate schema changes

Transforming Customer Experience
With MongoDB Atlas Search

5

DevOps Burden
Doubling up with a database and search
engine also adds time, cost, and complexity
to operations and site reliability engineering
(SRE) teams.

Now they have an additional system in
their technology stack that needs constant
care and feeding: It has to be provisioned,
secured, monitored, scaled, patched, and
backed up with its own tooling and APIs.
It also means working across multiple
vendors, making issue resolution more
complex. Every new project means another
dataset living in its own silo, adding to data
sprawl and governance overhead.

Synchronization Overhead
To surface relevant and up-to-date search
results, the database and search engine
need to be kept synchronized, duplicating
data between systems.

This means engineering teams need to
create a synchronization mechanism that
replicates data from the database to the
search engine. Typically they will create
a data pipeline with custom filtering
and transformation logic built on top
of messaging systems such as Apache
Kafka, or using packaged connectors from
specialized providers. Whether building
or buying, the process takes time and
adds ongoing costs. The synchronization
mechanism also has to be deployed
onto its own nodes, creating additional
hardware sprawl.

Once the synchronization mechanism
has been deployed, it needs to be
monitored and managed, adding more
engineering overhead.

It is important that replication to the search
engine keeps pace with database writes
so that search results do not excessively
lag the database and break application
SLAs. Monitoring the replication process
is necessary to identify and remediate
synchronization issues. This becomes
especially complex if the search index falls
so far behind the database that it has to be
resynced from scratch, causing potential
application downtime.

New application features that necessitate
changes to the database’s schema often
need both the synchronization logic and the
search engine schema to also be updated
at the same time. This creates more
dependencies that slow down the pace of
rolling new features to production.

Performance Overhead and
Impact to User Experience
Beyond the overhead of creating and
managing the synchronization mechanism,
using two systems can impact application
performance. Complex queries may need
to return data from both the search
engine and the database, requiring
coordinated query routing and additional
network hops between the two systems.
Network round-trips add latency that
impacts user experience.

Transforming Customer Experience
With MongoDB Atlas Search

6

Why Not Just Use a Search
Engine as a Database?
With search engines storing and querying
data, some engineering teams may
consider eliminating the database
altogether and just using the search engine
for data persistence. At first glance, this
would address many of the constraints
discussed above, presenting a single system
to develop against and to operationalize,
while eliminating the overhead of data
synchronization.

But as noted earlier, databases and search
engines are different technologies designed
to do different things.

Beyond serving application queries,
databases are designed around a core
set of data persistence and processing
capabilities. These demand data integrity,
consistency, and durability; balanced
performance across reads and writes;
concurrency; availability; security; disaster
recovery; and more.

With a specialized architecture and
indexing focused on fast, relevance-based
information retrieval, dedicated search
engines have a different set of design goals
that compromise many of the capabilities
that make databases so essential.

One of the industry’s largest search engine
vendors cautions against using a search
engine as a database both in press articles
and in core product documentation.

Customers
have reported

improved
development

velocity of
30% to 50%

after adopting
Atlas Search.

Transforming Customer Experience
With MongoDB Atlas Search

7

https://www.zdnet.com/article/elasticsearch-6-0-not-that-new-but-quite-improved/
https://www.elastic.co/guide/en/elasticsearch/reference/current/general-recommendations.html#large-size

MongoDB Atlas Search makes it easy to
build fast, relevant, full-text search on
top of your data in the cloud. A couple of
API calls or clicks in the Atlas UI and you
instantly expose your data to sophisticated
search experiences that boost engagement
and improve satisfaction with your
applications. Your data is immediately
more discoverable, usable, and valuable.

By embedding an Apache Lucene search
index directly alongside the database, data
is automatically synchronized between the
two, developers work with a single API, there
is no separate system to run and pay for,
and everything is fully managed for you,
relieving operational burden. The MongoDB
application data platform radically
simplifies your data architecture, enabling
you to gain a competitive advantage by
innovating faster while reducing cost, risk,
and complexity.

Figure 2: An integrated and unified platform for database and search improves developer productivity and operational efficiency.

MongoDB Atlas Search:
A Better Approach to
Building Search

Higher developer productivity
Build database and search features using
the same query API

Fully managed platform
Get the security, performance, and
reliability of Atlas

Simplified data architecture
Automatic data synchronization, even as
your data and schema changes

Application

Same driver and
query API

Atlas Database Atlas Search

MongoDB Atlas

Transforming Customer Experience
With MongoDB Atlas Search

8

https://www.mongodb.com/atlas/search
https://lucene.apache.org/

How Does Atlas
Search Work?

Index Creation and Data
Synchronization
As soon as you create a search index,
an Apache Lucene process is deployed
alongside your database on each node of
the Atlas cluster. Document fields that you
want indexed are automatically synced
from the database to Lucene. When the
initial sync is complete, Atlas Search opens
a change stream against the MongoDB
database from which it receives notifications
of all relevant data changes as they happen.

It then applies these changes to Atlas
Search, keeping the indexes fresh in close
to real time, using MongoDB’s native, event-
driven data streaming pipeline (see Figure 3).

This process is fully automated and
transparent, so there is no need to write
and maintain your own custom data sync,
and there are no additional hardware or
shadow copies of your data to manage.
Because the database and search
index processes are colocated on the
same physical node, network hops are
eliminated. This minimizes replication lag
so you are serving fresher results to your
users. Additionally, query performance is
improved, returning results faster.

Figure 3: MongoDB Atlas Search architecture.

App

Higher developer productivity
Build database and search features using
the same query API

Fully managed platform
Get the security, performance, and
reliability of Atlas

Simplified data architecture
Automatic data synchronization, even as
your data and schema changes

Application

Same driver and
query API

Atlas Database Atlas Search

MongoDB Atlas

Transforming Customer Experience
With MongoDB Atlas Search

9

https://docs.mongodb.com/manual/changeStreams/

You can reconfigure or refine your search
index at any time — for example, by
modifying the fields you want to index or
changing index analyzers. Atlas Search
makes this process transparent and non-
disruptive to your users. With no-downtime
indexing, your applications can continue to
read and write to your database and search
cluster while the index is being rebuilt. Once
Atlas Search rebuilds the index, the old
index is replaced in the background without
any further action from you.

Developer Experience
The advanced search features offered by
Apache Lucene are exposed to developers
via regular MongoDB Query API syntax,
drivers, and tools.

Developers use a single, unified API and
driver to work across both database
and search, reducing context switching,
simplifying their code, and eliminating
unnecessary dependencies. As a result, they
are building, testing, iterating, and shipping
applications and new features faster.

Operational Experience
Atlas Search is an integrated service
within the MongoDB Atlas application
data platform. It is fully managed for
you, with Atlas handling provisioning,
replication, patching, upgrades, scaling,
security, backup, and disaster recovery.
Because Atlas Search sits right alongside
your database, operations teams use the
same APIs and UI, dramatically simplifying
operational processes.

Through the Atlas tooling, you are able to
monitor and visualize Atlas Search CPU,
memory, and disk consumption alongside
database metrics. You can also configure
alerts to trigger when consumption exceeds
predefined thresholds and configure
auto-scaling so that your Atlas resources
are automatically scaled up and down in
response to application demand.

MongoDB Atlas is a global, multi-cloud
service available in more than 80 regions
around the world, so you get unmatched
data distribution across Amazon Web
Services (AWS), Microsoft Azure, and Google
Cloud, all in a single cluster. You can take
advantage of the best features of each
cloud; deliver low-latency, highly resilient
search to users in any country; and avoid
lock-in to any one single cloud provider.

Key Atlas Search Features
Having an integrated and fully managed
platform isn’t useful if it doesn’t provide
the features you need to build compelling
search experiences for your users.

Based on Apache Lucene — the same
search library underpinning Elasticsearch
and Apache Solr — Atlas Search provides
the essential capabilities required for
building search across multiple use cases,
including those described below.

Transforming Customer Experience
With MongoDB Atlas Search

10

https://www.mongodb.com/mongodb-query-api
https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/view-atlas-search-metrics/
https://docs.atlas.mongodb.com/view-atlas-search-metrics/
https://docs.atlas.mongodb.com/cluster-autoscaling/
https://docs.atlas.mongodb.com/cluster-autoscaling/

User Experience
 ° Fuzzy search: Providing typo

tolerance, fuzzy search automatically
surfaces relevant results even if the
user incorrectly spells the search term
or tries to use an inexact match. This
gives more precision (accuracy) to the
search results with lower user effort.

 ° Autocomplete: Also called type-
ahead, autocomplete provides
suggested search terms. This is
especially powerful in helping users
complete their search query faster
with less typing, or when a user is
unsure of the precise search term
to use.

 ° Highlighting: By extracting snippets
from a document and displaying them
with a document’s title, highlighting is
an effective way of showing users why
a result matched their search term,
making it faster for them to identify
the most relevant results.

 ° Geospatial-aware search:
Accomplished with Atlas Search’s
geoShape and geoWithin operators,
geospatial-aware search supports
use cases that require distance-
based sort orders in results sets.

Relevance
 ° Custom scoring: Enables developers

and search engineers to tune
the relevance of search results,
either boosting or burying specific
documents from the results set. This
is useful when merchandizing specific
offers or surfacing promoted content
to users.

 ° Synonyms: Provides context-sensitive
search by allowing alternative words
to find related content. For example,
“bike” also returns results for “bicycle”
and “cycling”; “NoSQL’’ also returns
“non-relational.” This can be very
powerful at expanding the recall
(breadth) of relevant search results.

 ° Analyzers: Control how search
terms are indexed and queries are
parsed, such as where to break up
word groupings, whether to consider
punctuation and capitalization, and
how to handle special characters
and different languages. Atlas
Search offers a number of built-in
analyzers, along with the ability to
create your own. Collectively, these
analyzers allow you to customize
your search experience for specific
industries and locales.

 ° Rich query API: Combine search
operators with other MongoDB
stages in aggregation pipelines so
you can build powerful application
functionality that blends,
transforms, and enables analytics
against your data.

Speed
 ° Facets: Simplifies information

navigation and discovery by
grouping related search results into
categories — for example, displaying
vacation options by destination, trip
type, and price band. Faceting also
provides fast counts of all documents
matching each category, helping
users identify relevant results faster.

Transforming Customer Experience
With MongoDB Atlas Search

11

https://docs.mongodb.com/manual/aggregation/

 ° Index intersection: Complementing
MongoDB’s powerful indexing and
query planner, Atlas Search’s index
intersection allows complex ad
hoc queries to use multiple term
indexes in Lucene simultaneously to
filter query results, providing higher
performance when interrogating
data using multiple predicates.

Beyond the ubiquitous search bar,
these features also power many pieces
of application functionality that don’t
require user input. Examples include social
media feeds, trending topics, and content
personalization and recommendations.

You can learn more about each of these
features and how to get started with them
from the Atlas Search documentation.

Beyond Search: A
Complete Application
Data Platform
Atlas Search is built on top of MongoDB,
the most popular and widely used modern
database in the market. MongoDB has
become so popular because engineering
teams can build and ship applications
faster than other data platforms. You can
get started with both MongoDB Atlas and
Atlas Search in minutes on a fully managed
service that handles operations for you — on
any cloud you choose.

What makes MongoDB Atlas database and
Atlas Search the right choice for you?

1. The document data model is
intuitive and flexible. Documents
map directly to the objects in your
code so they are much easier and
more natural to work with. You can
store, index, and search data of any
structure and modify your schema at
any time as you add new features to
your applications.

2. You work with data as code. The
MongoDB Query API and drivers
are idiomatic to your programming
language. Ad hoc queries, indexing,
full-text search, and real-time
aggregations provide powerful
ways for accessing, grouping,
transforming, searching, and
analyzing your data to support any
class of workload.

3. With a distributed architecture,
your database and search engine
is resilient and globally scalable.
Replication with self-healing recovery
keeps your applications highly
available while giving you the ability
to isolate operational and search
workloads on separate nodes within
a single cluster. Native sharding
provides elastic and application-
transparent horizontal scale-out
to accommodate your workload’s
growth, along with geographic
distribution for data residency
controls. These controls ensure that
data is kept close to users for low
latency and to comply with data
sovereignty mandated by modern
privacy regulations.

Transforming Customer Experience
With MongoDB Atlas Search

12

https://docs.atlas.mongodb.com/atlas-search/
https://db-engines.com/en/ranking
https://www.mongodb.com/document-databases

Database and search capabilities
are the foundation of the MongoDB
application data platform, providing a
unified developer experience for modern
applications that span from cloud to edge.
You can easily extend the value of your
data by using additional services, including:

 ° MongoDB Charts. Create, share, and
embed visualizations of search results
without having to move data into
separate analytics or BI tools.

 ° MongoDB Realm Application
Services. Benefit from a serverless
and fully managed GraphQL
endpoint that directly accesses
Atlas Search from your search bar.
GraphQL makes it fast to query and
return results straight from a single
endpoint, avoiding data over-fetching
that is typical with REST APIs.

 ° MongoDB Realm Sync and mobile
database. Simplify code when
building offline-first applications that
require data synchronization with
your Atlas cloud back end.

 ° MongoDB Atlas Data Lake. Query
and combine MongoDB Atlas
application data with other data
assets stored on Amazon S3. With
Atlas Online Archive, you can
configure custom retention policies
to automatically tier aged data out
of hot MongoDB storage onto low-
cost S3 object storage. Data remains
accessible with federated database
queries that span both hot and cold
data tiers using a single connection
string from your application.

Use Cases for Atlas Search
Previewed in 2019 and in general availability
as of 2020, Atlas Search has been widely
used by customers of all sizes and across all
industry sectors.

Customers can use Atlas Search at any
stage of their application lifecycle. Some
are building new applications that use Atlas
Search from the start. Some are extending
existing MongoDB workloads with new
search functionality, while others are
replacing existing database-plus-search
bolt-ons with the unified Atlas platform.

There are three core use cases that Atlas
Search is powering today:

1. Product catalog and content
search: We define these as “search-
first” use cases because the search
bar is the primary interface for users
to interact with the service.

2. In-application search: These are
business applications supporting
internal users or customer self-service
portals where search is a supporting
function used to enhance the
application experience.

Transforming Customer Experience
With MongoDB Atlas Search

13

https://www.mongodb.com/products/charts
https://www.mongodb.com/realm/appdev
https://www.mongodb.com/realm/appdev
https://www.mongodb.com/realm/appdev
https://www.mongodb.com/realm/mobile/sync
https://www.mongodb.com/realm/mobile/sync
https://www.mongodb.com/atlas/data-lake
https://www.mongodb.com/atlas/online-archive

3. Single view (i.e., customer 360):
As with application search, users
interact with the single view via
search as a supporting function.
What’s different is that the single view
application itself relies on specific
Atlas Search capabilities that make it
much easier to unify disparate data
ingested from multiple sources.

In the following section, we provide a
definition of each use case, along with
the required capabilities mapped to Atlas
Search features and examples of customers
using Atlas Search today.

Product Catalog and
Content Search
With online and mobile sales volumes
growing at around 50% every year —
growth that has been accelerated by
the COVID-19 pandemic — it is vital for
companies to deliver the best possible
experience that drives conversions when
customers browse and search their
ecommerce product catalogs.

At the same time, the increasing ubiquity
of high-speed internet connectivity and

smart mobile devices is changing the
content management landscape. Sites
have to create engaging, relevant, and
immersive experiences enlivened with rich
media assets and user-generated content,
all of which have to be discoverable with
low latency for any device, anywhere on
the planet. Content search use cases
include websites, digital and social media,
online publications, research and training
materials, documentation, user forums, and
image repositories.

MongoDB is already widely used for both
product catalog and content management,
with application owners taking advantage
of MongoDB’s flexible document data
model, distributed architecture, and
rich query API. The relevance of each
of these is summarized in the following
table. The addition of Atlas Search means
organizations can deliver rich and intuitive
search experiences without having to bolt
on an external search engine.

As “search first” use cases, product catalog
and content search are the most demanding
of all search applications, relying on all
of the capabilities discussed in the earlier
“Key Atlas Search Features” section. Table 1
highlights the most important requirements.

Transforming Customer Experience
With MongoDB Atlas Search

14

https://www.mongodb.com/use-cases/catalog
https://www.mongodb.com/use-cases/content-management

Required Capabilities Why MongoDB?

User search experience

1. Quickly find the most relevant matches to
products or content using flexible search terms in
a variety of languages.

2. Intuitively research and compare different
product and content categories.

3. Receive a concise summary of product or content
directly within the search results.

4. Perform geospatial-aware search (for use cases
requiring distance-based sort orders).

5. Boost preferred search results for merchandising
or content promotion.

Rich search capabilities

1. Fuzzy search, autocomplete, synonyms, and
analyzers help users get the right search
results faster.

2. Faceted search and counts help users efficiently
navigate categorized search results.

3. Highlighted extract snippets help users
understand a document’s relevance.

4. Geospatial search allows users to filter and return
results by location.

5. Custom scoring returns sponsored or preferred
documents higher up in the results set.

Store and query complex data

1. Handle massive variability in catalog and
content-management attributes, metadata,
media assets, and user-generated content.

2. Quickly update the schema as new products and
content are added.

Document data model

1. Store complex, multi-structured data in a
polymorphic and flexible schema with support for
rich data types.

2. Avoid disruptive schema migrations via a
dynamic schema that instantly adapts to
accommodate new data models.

User personalization and data insights

1. Serve personalized product or content
recommendations that improve sales conversions
and reduce bounce rates.

2. Monitor sales performance and content
consumption in real time.

Real-time analytics

1. Capture clickstreams and sales attributions
in MongoDB time series collections, exposing
events to data science tools using the MongoDB
Spark connector or R and Python drivers to tune
scoring, expand synonyms, etc.

2. Create and share dashboards for real-time
insights and reporting with MongoDB Charts.

Application resilience and performance

1. Benefit from always-on, low-latency search.

2. Never slow down under peak loads generated
by promotions, seasonal shopping events, or
new publications.

Distributed architecture

1. Replica sets for built-in redundancy and self-
healing recovery.

2. Deploy multi-region clusters for wider geo-
resilience and data colocation close to users.

3. System resources auto-scale up and down
in response to user demand; scale out as
data volume and customer base grows via
native sharding.

Table 1: Required capabilities for “search first” applications.

Transforming Customer Experience
With MongoDB Atlas Search

15

https://www.mongodb.com/time-series
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/spark-connector

Atlas Search in Action
Keller Williams is one of the largest real
estate companies in the world. Employing
190,000 people, the company closed on
1.2 million homes in 2020, representing
sales volumes in excess of $400 billion.
The business relies on its web and mobile
sites, underpinned by two core MongoDB
Atlas databases to connect buyers with
properties and agents.

 ° The Fast Facets database supports
faceted search so customers
and agents can quickly browse
information about multiple properties
for sale in a specific area.

 ° The Master Dataset database, or
MDS, contains all of the property
details that come into play once a
prospective buyer is interested in a
particular property and wants to drill
down to learn more.

Atlas Search is a key part of the Keller
Williams platform, providing fast and
intuitive geospatial-aware search that
matches properties to each customer’s
search criteria.

Atlas Search powers a diverse range of
catalog and content management use
cases across many industry sectors.

One of the world’s largest auto
manufacturers uses MongoDB Atlas to
unify its after-sales parts product catalog
and the content management system
that stores manuals and maintenance
procedures. It replaced Elasticsearch with
MongoDB Atlas to reduce data duplication
and simplify its architecture, freeing
developers to build new applications faster
and cut operational overhead. Atlas Search
is used by its B2B marketplace that serves
hundreds of thousands of users across 160
countries and 30 languages. Autocomplete,
synonyms, and fuzzy search enable users to
quickly find the parts and manuals they are
looking for. The scalability of Atlas and the
rich search functionality provided by Atlas
Search become even more valuable as the
company opens up its marketplace to B2C
channels and millions of new users.

Humanitix powers search across its
events catalog and content with Atlas
Search. Donating profits from ticket
sales to educational projects that help
disadvantaged children around the world,
Humanitix always seeks to minimize costs.
Bringing database management and search
together in MongoDB Atlas creates a much
simpler, integrated architecture that scales
as the organization expands into new
geographic markets.

Transforming Customer Experience
With MongoDB Atlas Search

16

https://www.mongodb.com/customers/keller-williams
https://www.mongodb.com/blog/post/humanitix-wants-close-education-gap-600-million-kids-looks-mongodb-multiplier-good

One of North America’s fastest-growing
medicinal supply companies uses MongoDB
Atlas as the back end to its ecommerce
platform. Its product catlaog runs on
MongoDB and uses Atlas Search and its
geospatial operators to connect customers
with local dispensaries in their area.

The world’s leading 3D geometric deep-
learning software company uses Atlas
Search as part of its digital twin platform
used by manufacturers in their engineering
assemblies and designs. The metadata
for more than 30 billion 3D-rendered
components is stored in the MongoDB
database and indexed by Atlas Search,
making it fast and easy for engineers to find
what they need with exact search precision.

In-Application Search
Whether building applications to support
internal business users or portals for
customer self-service, the search bar has
become an essential feature of any UI,
serving to enrich the overall application
experience. With the added power of
search, users and customers can quickly
navigate order, inventory, payments, claims,
audit logs, employee information, accounts
data, and more.

If search isn’t available or isn’t implemented
well, internal users will waste a lot of time
trying to find the right information and
customers will defect to competitors who
can better serve them.

Although search requirements for general-
purpose in-app experiences are not as
broad as they are for product catalogs and
content management, there are still several
critical capabilities you need to provide
alongside the database powering the
application (see Table 2).

Transforming Customer Experience
With MongoDB Atlas Search

17

Required Capabilities Why MongoDB?
User search experience

1. Quickly find relevant records, allowing for typos,
similar terms, and incomplete query criteria.

2. Locate the right record from a large corpus of
information using complex query criteria.

3. Expose high-performance search directly from
the application’s UI.

Rich search capabilities

1. Fuzzy search, synonyms, and autocomplete help
users get to the right results faster with less effort.

2. Index intersection evaluates multiple predicates
to efficiently return matching records.

3. MongoDB Realm allows developers to simply
click to enable a GraphQL endpoint behind their
search bar, providing direct access to
Atlas Search.

Balance fast application development
evolution with data integrity

1. Store records without lengthy upfront schema
design or complex object-relational mapping
(ORM) abstractions.

2. Quickly build and deploy new application
functionality.

3. Ensure data quality and accuracy for business-
critical applications.

Document data model with
transactional guarantees

1. Use documents that match the objects
developers work with in code.

2. Dynamic schema instantly adapts to
accommodate new app features and data
structures, avoiding disruptive schema
migrations.

3. Strong data consistency, backed by ACID
transaction guarantees. Schema validation
provides centralized governance over your data
models.

Powerful application functionality
and business insights

1. Enable everything from simple lookups through
to sophisticated data transformations and
aggregations via support for multiple access
patterns and query types.

2. Deliver insights to applications in real time.

3. Monitor business performance and automate
optimizations via dashboards, BI, and machine
learning.

4. Tier and query data anywhere.

Fast queries and real-time analytics

1. Support multiple query types with the expressive
MongoDB query API and secondary indexing.
Use aggregation data pipelines for in-database
data preparation, readying data for analytics.

2. Group and count related data with Atlas Search
facets. Increase query speed by caching
common result sets with Materialized Views.

3. Create and embed data visualizations with
MongoDB Charts. SQL integration for BI tools with
the BI Connector. AI automation with the Spark
Connector and idiomatic R and Python drivers.

4. Tier aged business data to S3 by using Atlas
Online Archive, then federate queries across
storage tiers via Atlas Data Lake.

Resilience, performance, and
regulatory compliance

1. Ensure always-on applications.

2. Scale to meet business growth.

3. Protect data security and preserve user privacy.

Distributed architecture with
end-to-end security

1. See capabilities list in Table 1.

2. See capabilities list in Table 1.

3. Complete security protection with fine-grained
data access controls; encryption of data in flight,
in use, and at rest; audit log for forensic analysis
of system activity; and data sovereignty policies
to meet modern privacy regulations.

Table 2: Required capabilities for application search.

Transforming Customer Experience
With MongoDB Atlas Search

18

https://www.mongodb.com/transactions
https://www.mongodb.com/transactions
https://docs.mongodb.com/manual/core/schema-validation/
https://docs.mongodb.com/manual/core/materialized-views/

Atlas Search in Action
Current is one of the United States’ fastest-
growing challenger banks, serving several
million customers and doubling in size every
six months. Its core banking platform runs
on MongoDB Atlas and Google Cloud.
Every transaction is stored in the MongoDB
database, with Atlas Search enabling
users to quickly browse each payment
and track rewards points. Atlas Search
is also used to connect account holders,
providing faster and easier access for
peer-to-peer payments. Current had initially
considered using Elasticsearch, but saw
the opportunity to simplify its technology
stack and eliminate the overhead of data
synchronization between separate systems
by using Atlas Search.

One of the world’s largest home fitness
companies uses Atlas Search to help its
course instructors and in-store staff curate
and construct playlists from the company’s
internal web portal. Fuzzy search and
faceted navigation help the organization
quickly find the right mix of tracks for each
session and log consumption in the database
so it can pay royalties to each artist.

A multinational convenience store chain
with more than 70,000 locations around
the world uses Atlas Search in its internal
web portal. Store managers use fuzzy
search to quickly track internal inventory
and to browse internal reports that track
sales data. The company is also using
Atlas Search in a new self-checkout system
currently in trial in select stores. If the
point-of-sale system fails to capture the
barcode, the system scans the item’s shape

and weight and passes the results to Atlas
Search, which returns a list of likely options
to the customer, making checkout even
more convenient.

One of the world’s largest stock exchanges
is using Atlas Search to power its internal
credit risk application, improving developer
velocity by over 30% compared to its
previous solution. Prior to the addition of
Atlas Search, market data feeds had to be
pre-processed in application code before
being loaded into MongoDB Atlas, where
they could then be exposed to users for
basic regex search.

Atlas Search significantly reduced the
complexity of the data-ingestion pipeline
by allowing raw data to be loaded and
indexed, using standard features like fuzzy
search and autocomplete to help internal
users quickly find top trending articles for
each company they are following.

Single View
A single view, sometimes called Customer
360, aggregates data from multiple source
systems into a central repository to create
a single view of a customer. By creating
this single, real-time view, organizations
enhance business visibility and enable new
classes of analytics to better understand
and serve their customers.

Even before the availability of Atlas Search,
MongoDB was well established for single-
view use cases. LCL, a subsidiary of Crédit
Agricole and one of the major retail banks
in France, uses MongoDB to build a single
view of its customers, cutting development

Transforming Customer Experience
With MongoDB Atlas Search

19

https://current.com/
https://www.mongodb.com/blog/post/next-generation-mobile-bank-current-using-mongodb-atlas-google-cloud-make-financial-services-accessible-affordable-all
https://www.mongodb.com/blog/post/next-generation-mobile-bank-current-using-mongodb-atlas-google-cloud-make-financial-services-accessible-affordable-all
https://www.mongodb.com/use-cases/single-view
https://www.mongodb.com/use-cases/single-view
https://www.mongodb.com/presentations/major-french-bank-lcl-modernises-with-mongodb-to-enhance-customer-experience-and-improve-time-to-market-by-40-percent?tck=financialservicespage

time to market by 40%. Alight Solutions,
formerly a part of Aon Hewitt, migrated from
its legacy mainframes and built a single
employee view on MongoDB, improving
application performance and customer
experience by 250x.

These and many other customers have
been able to take advantage of MongoDB’s
flexible document data model, rich query
API, and distributed systems architecture —
all captured in Table 2 above — to build their
single customer view.

Atlas Search adds two critical new
capabilities to single view applications:
fuzzy search and autocomplete. One of
the toughest challenges in single view
projects is data reconciliation — the process
of unifying the identity of a customer
ingested from multiple source systems. It is
not uncommon, for example, that in a CRM
system the customer has one identifier, in
an after-sales system they have another
identifier, and in a billing system, yet
another. Fuzzy search and autocomplete
are incredibly powerful for reconciling these
disparate identities into a single customer
record for the application’s user.

One of the global top 10 insurers is using
Atlas Search on top of the single view built
on the MongoDB database to reconcile

fragmented customer records. Data is
ingested from the company’s back-end
databases and Master Data Management
(MDM) system, where it is then exposed to 10
different applications — from call center to
internal business processes to its customer
self-service portal.

Fuzzy search enables disconnected
customer details and policy information
to be unified within the application’s
UI. Without fuzzy search, the insurer’s
development team would have had to
write its own application-side logic to try
to match these records at runtime. With
Atlas Search handling this requirement, the
insurer’s users and customers get higher
performance, and internal development
effort is reduced.

A major European energy provider is using
Atlas Search for a very similar use case.
All customer data from the company’s
backend CRM and ERP systems is ingested
into the single view stored in MongoDB.
Atlas Search is used to expose this data to
internal business users and to customers via
its self-service web portal. As the company
expands into smart home solutions, the
single view will become even more critical
for user experience, enabling customers to
track energy consumption and cost down to
the level of individual devices.

Transforming Customer Experience
With MongoDB Atlas Search

20

https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view
https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view

Is Atlas Search Always
the Right Solution?
As the use cases above demonstrate, Atlas
Search is a highly capable solution for a
broad spectrum of search requirements.

Because Atlas Search is tightly integrated
with MongoDB Atlas, all data first has to be
loaded to MongoDB database collections
in order to create the required search
indexes. There are some highly specialized
applications that need to aggregate and
search across multiple data repositories —
databases, data warehouses, object stores,
file systems, message queues, API gateways,
and so on. Examples include DevOps
observability platforms; security-event

and threat-hunting applications that are
continuously ingesting and searching log
data from source systems; and enterprise-
wide document management systems.

For these use cases, it is better to use
MongoDB as one of your data sources
alongside a dedicated search engine. In
these scenarios, some dedicated search
engines provide a number of built-in
connectors and agents to extract data
from multiple source systems, index them
(typically with Lucene), and then make data
searchable with custom-built tools.

Transforming Customer Experience
With MongoDB Atlas Search

21

Getting Started
With Atlas Search
Atlas Search is designed as a self-service
platform. You have to be running a
MongoDB Atlas database (version 4.2 and
up). From there you can use your own data or
load one of our sample data sets to try it out.
Create a search index from the Atlas UI, CLI,
or API, and then start querying your data.

Atlas Search is available with all Atlas
clusters — including free clusters — so you
can evaluate it at no cost. Our Getting
Started tutorial steps you through the
process. Atlas Search documentation
provides a complete reference on
how to configure, manage, and query
search indexes, along with performance
recommendations. The MongoDB Developer
Hub and MongoDB YouTube channel
provide a wealth of articles and tutorials for
beginners through to expert users.

Our professional services team can
also support you at any stage of your
application lifecycle. They can partner
with you throughout a project to implement
sophisticated solutions, including Atlas
Search and other components of the
MongoDB application data platform, as well
as help drive longer-term strategic initiatives.

With Flex Consulting, our consulting engineers
help teams address questions about Atlas
Search in short, technical sessions:

 ° The Design and Develop track helps
you apply best practices and patterns
as you start out. Our consultants
work with you to configure and tune
your indexes, map fields, choose
the right analyzers, and use more
advanced Atlas Search features such
as synonyms, autocomplete, custom
scoring, and highlights, alongside
Atlas Search operators.

 ° The Migrate and Simplify track is
designed to move data into MongoDB
Atlas from existing databases and
external search engines.

 ° Optimize is useful for existing Atlas
Search deployments. It will help you
find opportunities to further improve
search performance, recall, and
precision by analyzing execution
statistics and explain plans, tuning
index mappings, and optimizing
query design and system sizing,
along with advanced topics such as
rightsizing edgeGrams and nGrams
for autocomplete.

Whether you are building a new application,
extending an existing MongoDB workload,
or looking to simplify your application
estate, Atlas Search makes it easy to
get started, and makes your user
experiences more engaging and delightful.
Try Atlas Search on a free cluster today and
see for yourself.

Transforming Customer Experience
With MongoDB Atlas Search

22

https://docs.atlas.mongodb.com/reference/atlas-search/tutorial/
https://docs.atlas.mongodb.com/reference/atlas-search/tutorial/
https://docs.atlas.mongodb.com/atlas-search/
https://www.mongodb.com/developer/learn/?content=Articles&products=Atlas%20Search
https://www.mongodb.com/developer/learn/?content=Articles&products=Atlas%20Search
https://www.youtube.com/user/mongodb
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting/flex-consulting
https://www.mongodb.com/atlas/search

C A S E S T U D I E S

mongodb.com/customers

P R E S E N TAT I O N S

mongodb.com/presentations

F R E E O N L I N E T R A I N I N G

university.mongodb.com

W E B I N A R S A N D E V E N T S

mongodb.com/events

D O C U M E N TAT I O N

docs.mongodb.com

M O N G O D B AT L A S D ATA B A S E A S A
S E RV I C E F O R M O N G O D B

mongodb.com/cloud

M O N G O D B E N T E R P R I S E D O W N L O A D

mongodb.com/download

M O N G O D B R E A L M

mongodb.com/realm

Safe Harbor
The development, release, and timing of any features or functionality described for our
products remains at our sole discretion. This information is merely intended to outline our
general product direction and it should not be relied on in making a purchasing decision nor is
this a commitment, promise or legal obligation to deliver any material, code, or functionality.

Resources
For more information, please visit mongodb.com
or contact us at sales@mongodb.com.

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com © 2021 MongoDB, Inc. All rights reserved.

Transforming Customer Experience
With MongoDB Atlas Search

23

http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
http://mongodb.com/download
http://mongodb.com/realm
http://mongodb.com

