
Implementing an Operational Data

Layer for Product Catalog

Modernization

Why retailers are moving from PIMS to an operational data layer

to meet product catalog requirements

September ����

1633 Broadway, 38th Floor, New York, NY, 10019 United States | mongodb.com

http://mongodb.com/

Content

Introduction 3

Modernization Drivers for Product Catalog 4

Common Challenges with Legacy Product Catalogs 4

So what does a Modern Product Catalog need? 6

Architecting an Operational Data Layer for Product Catalog 8

Building an Operational Data Layer 8

Maturing the Product Catalog 12

Phase One: Creating the Product Catalog 13

Phase Two: Enriched Product Catalog 13

Phase Three: O�oading Reads & Writes 14

Phase Four: ODL First/ System of Transaction 14

Phase Five: System of Record 15

Why MongoDB for a Product Catalog ODL? 15

Summary 20

About the Author 21

Resources 22

Legal Notice 23

2

Introduction
The product catalog is at the heart of any retail company- simply put it is the window into
the list of all products that are for sale and their information. These days that information
can be extensive- from name, dimensions, price (and per-store price) to images, videos,
and third party reviews. For a seamless digital, in-person or omnichannel experience, the
data needs to be consistent and available in real-time for a number of di�erent retail
front ends- the ecommerce website, the customer facing application, in-store workforce
applications, POS devices and more.

Product catalog data management is a complex problem for retailers. Older, more
established retailers have traditionally relied on vendor-supplied product information
management systems (PIMS) as their backend data store. The PIMS is a tool or set of
tools built specifically to help retailers produce and manage product content across the
various digital channels they support. Typically, this will act as the “single source of truth”
across the organization for product information, including technical data, usage data,
emotional data and digital catalog data (number of products, variations, seasonality).

Product data will be input to the PIMS and then a subset of it will be ETL’d to a product
catalog data store to be combined with other necessary information that the viewer will
require. For example, the product catalog for ecommerce will need review data and upsell
recommendations, whereas the product catalog for the workforce mobile app will need
in-store stock location information. The rigidity of the relational database management
systems (RDBMS) used often meant that a new product catalog data store was created
on top of the PIMS for each use case. This led to a proliferation of data silos that each
needed to be updated every time a new product or product information was added, and
unreliable consistency when it comes to o�ering an omnichannel experience as stock and
location of items is near impossible to reconcile.

After years of relying on PIMS and multiple monolithic, vendor-provided systems, retailers
have learned that product catalogs built on legacy databases are unsuitable for modern
ecommerce experiences. Retailers are now increasingly approaching their product
catalog modernization by implementing an operational data layer (ODL) that centrally
integrates and organizes siloed product data, making it available to all consuming
applications. This enables a range of use cases such as single view of product, real-time
analytics, and omnichannel experiences. Here we’ll discuss the modernization drivers, the
journey to implement an ODL and why MongoDB’s document model and architecture
make it a great fit for the use case.

3

Modernization Drivers for Product Catalog
Let’s discuss in more detail some of the challenges that arise from the PIMS approach
that retailers are using today. Broadly speaking, the data silos and the complexity of
keeping them consistent and up to date cause a lack of access to rich, consistent product
information across sales channels, which is vital for a smooth customer journey.

Figure 1. Current PIMS approach shows siloed data stores

Common Challenges with Legacy Product Catalogs

Loss of revenue and customer trust due to inconsistent view of product

● Digital, in-person or omnichannel journeys (e.g. buy online, pick up in store) require
an up to date view of product and stock to prevent risk of loss of sale and
customer trust.

● There are inconsistencies in product data resulting from siloed data or the
spaghetti architecture that most retailers are forced to put into place to bridge the
gap between their legacy estate and the modern front end applications. Di�erent
data stores meet di�erent uses for the data (e.g. analytical vs. operational) and a

4

tangled web of ETL processes between them- this creates complex data
synchronization issues and lags in updating data.

Loss of competitive edge due to delays in new products and info going
live

● Delays in bringing products to market quickly can cause a loss of competitive edge
(e.g. fast fashion: SHEIN uploads 6k products a day to keep up with trends), and
the inability to add information to existing products can lead to delays in the
overall business’s initiatives (e.g. grocery: updating food packaging reqs for
expansion to new geo).

● Relational data models that require up-front schema definition and downtime to
change schema inhibit the ability for new products (with potentially di�erent
attributes) to be added or new attributes for existing ones to be discovered.
Waiting for change windows and time spent retro-fitting object based data into a
tabular schema is a non value add e�ort that delays launch & update. Additionally,
the inability to flexibly scale data infrastructure can lead to slow-downs as data
size increases.

Increase in churn or bounce rate due to poor product search
capabilities

● Despite the fact that most customers start their digital buying journey at the
search bar, it’s estimated that 84% of companies aren’t optimizing their online
search experience. Customers expect an Amazon-esque search experience, and
studies show that after a successful product search a customer visit is 2x more
likely to convert to a sale.

● Legacy architectures typically require a retailer to maintain at least 3 di�erent
systems to enable this capability: 1) data in RDBMS, 2) search technology, 3)
caching layer to allow faster responses to page rendering. This is costly to manage
and maintain, because developers need to integrate with several di�erent
technologies and query languages, which often leads to synchronization issues.

5

Inability to increase revenue through cross sell or upsell

● Maximizing the spend per customer is one of the best ways to gain additional
wallet share (e.g. AO.com % profit from install , insurance and cross sell). This
requires the ability to do real-time in-app analytics and provide personalized
recommendations.

● Many retailers are stuck in the past- executing overnight batch jobs to output
analytical data from their operational database into another system. This causes a
lag time in the availability of data to do analytics on and removes the ability to
provide real-time personalized promotions or recommendations.

Di�culty maintaining profitability due to low margins and high
operational cost

● As competition for customers rises, many retailers are squeezed to lower prices
and operate on a thin profit margin, e.g grocery chains that price match their
competitors. For sustainable business, the cost to serve them must be brought
down to match.

● Maintaining and managing a legacy tech estate can have high operational costs,
especially compared to cloud service based o�erings. Additionally, one has to
consider the sometimes punitive licensing policies of RDBMS vendors and MIPS
charges from Mainframe.

So what does a Modern Product Catalog need?

● Single consolidated view of the holistic product catalog
● Flexibility to model and evolve diverse products over time
● Scalability to add products and product data without sacrificing speed
● Search that is easy to enable and provides fast sophisticated results
● Analytical capabilities to o�er personalized up sell and cross sell

These are the tenants of a modern operational data layer (ODL): a single consolidated
view across all data that has the flexibility, scalability and technical capabilities to serve
the operational and analytical needs of the consuming business applications.

6

The sample reference architecture of this pattern is visualized in the diagram shown below.
An operational data layer (ODL) is an intermediary between existing data sources and
consumers that need to access that data.

By deploying an ODL in front of legacy systems, new business initiatives and requirements
can be met without the risk or di�culty of ripping and replacing the existing architecture.
It can reduce workload on source systems, improve availability, reduce end-user response
times, combine data from multiple systems into a single repository, serve as a foundation
for re-architecting a monolithic application into a suite of microservices, and more. The
operational data layer becomes a system of innovation, allowing the business to take an
iterative approach to digital transformation.

Figure 2. Producer and consumer communication via MongoDB’s Operational Data Layer

Architecting an Operational Data Layer for
Product Catalog
The implementation of this architecture tends to be a staged approach, with degrees of
value attributed to each stage. At each stage of maturity along this journey, we’ll see
added business benefits to the product catalog.

7

Building an Operational Data Layer
Outside of the ODL itself, the chief components in this architecture are the source systems
and the consuming systems. In the move towards an ODL architecture, the transfer of
data from the source systems or “Data Producers” is the first step. These are usually
databases, but sometimes file systems or other data stores. Generally, they are systems
of record for one or more applications, either o�-the-shelf packaged apps: PIMS as
mentioned above is one of the key sources, but data will also be coming from, ERP, CRM,
etc. as well as internally-developed custom apps. or companies with an earlier established
data estate this could be a Mainframe.

Data loading will typically take two stages: Initial day one bulk loading of data and then
delta updates of the additional products added or product info changed since the last
load.

Bulk Loading
For the initial day one bulk load there are a wide range of methods and technologies that
can be used, but this a classic Extract Transform Load (ETL) function- the data must be
taken from the source database, transformed into a format suited to the operational data
layer, and then loaded into the ODL.

Figure 3. Bulk loading from heritage system to operational data layer via ETL process.

8

It’s key here to remember that the movement of the data is only one part- the
transformation of the data to a new model that is suited to provide optimum performance
for the intended workload is key. For a product catalog use case, the schema should be
optimized for the APIs that will be driven from the ODL and the performance of the most
business critical queries from the new microservices/ applications that will be developed.
For most product catalogs, the primary workload will be read dominant, so the data
modeling should reflect this. This transformation can be done en-route (most common) or
data could be landed in a staging database and transformed in the MongoDB ODL itself
using aggregation (in this instance it must be ensured that the data is synced correctly).

Some data modeling and architecture best practices for product catalog are covered
[here]. MongoDB Data Modeling courses are available at MongoDB university [here]. The
use of MongoDB Professional Services to provide expert opinion, training & MongoDB
Relational Migrator is recommended.

Data can also be moved and transformed with custom scripts or batch jobs built in-house,
or with o�-the-shelf ETL tools. Some of the most commonly used o�-the-shelf ETL
technologies include Informatica, Talend, Ab Initio, IBM Datastage and Pentaho.

Delta Loading
The product catalog now needs to be kept up to date with new products that are added
to the existing systems and changes or additions to existing products. For other ODL use
cases this “Delta Load” could be done in a batched manner- end of the day or end of the
week, but for a modern product catalog this should be kept up to date in real-time, so
that any read workload gets an accurate view of the product.

9

https://www.mongodb.com/blog/post/retail-reference-architecture-part-1-building-flexible-searchable-low-latency-product
https://university.mongodb.com/courses/M320/about

Figure 4. Delta loading process

Change Data Capture in this instance is most commonly achieved through the use of
Kafka. Many source databases will have a Kafka connector, which can act as a source
(e.g. Oracle GoldenGate has a BigData handler for Kafka) to publish data to topics, which
the MongoDB Kafka connector can then sink to the ODL.

Figure 5. Leveraging MongoDB’s Kafka Sink Connector for Change Data Capture

Depending on the tech stack and skill sets that are already present in the organization,
other technologies are also adopted for this purpose, for example, other messaging
technologies like MQTT or RabbitMQ, Pub/Sub technologies e.g. Google Pub/Sub &
Dataflow or an o�-the-shelf CDC solution like Qlik Replicate (Attunity) or Debezium.

10

At this stage, the bulk of the read workload can now be redirected to the ODL rather than
the legacy data stores. This will have an immediate impact on the speed and stability of
the product catalog. In the next section we’ll talk about additional benefits that can be
found by maturing the Product Catalog and what the next stages of leveraging the
architecture shift are. It’s important to note that even if the architecture shift ends here,
there is huge value to be found in this alone, including:

● Speed: By serving product catalog read queries from a highly performant system
whose architecture is optimized for read workload, UI speeds will be improved
leading to better customer and employee experience with a knock on e�ect into
revenue generation and e�ciency of workforce.

● Stability: MongoDB’s replica set architecture typically provides enhanced uptime
(esp Atlas 99.995% SLA).

● MIPS Reduction: In the case where the source system is mainframe, MIPS will be
lessened as the reads will hit the ODL instead.

11

Figure 6. Read queries are directed to the ODL while writes go to the previously existing systems

Maturing the Product Catalog
The creation of the operational data layer for the product catalog can be the start in a
journey to move away from legacy tech all together. Retailers will begin to build
functionality, analytical insights and use the product catalog as a point to begin to
redevelop existing applications. The maturity curve in retailers follows a staged approach,
transforming the role of the data layers.

Often, an operational data layer evolves over time. From a focused and simple start, it
grows in scope and strategic importance, delivering increased benefits to the business. In
fact, it is a best practice to begin an ODL implementation with a limited scope and grow it
over time. An operational data layer that tries to incorporate all possible data sources
from the beginning may stall before it proves its value; it’s much better to demonstrate
the ODL’s capabilities with a small set of sources and consumers, then iterate from there,
incorporating best practices that have been developed along the way.
One of our observations of working with many enterprises on their ODL projects is that as
more data sources are integrated, the ODL becomes valuable for serving reads from a
broadening range of consumers. Over time, it begins accepting writes, and ultimately can
become a system of record in its own right.

12

Figure 7. Maturity Model of an Operational Data Layer

Phase One: Creating the Product Catalog ODL

This phase is covered in the above section- by moving and combining

records from legacy existing systems to an operational data layer, the read

workload of the product catalog can be served in a more performant and

resilient manner.

Phase Two: Enriched Product Catalog
Once the ODL has proven its value, a logical next step is to enrich its data by adding
useful metadata or integrating new (related) data sources. With this enrichment, the ODL
can not only o�oad more reads from source systems, but also enable use cases that
weren’t possible before. A typical use case for this is to enable advanced analytics across
a fuller picture of data or create a single product view.

German retailer OTTO combined customer preference data into their product ODL to
provide a personalized ecommerce experience
https://www.mongodb.com/customers/otto.

13

https://www.mongodb.com/customers/otto

Phase Three: O�oading Reads & Writes
The ODL’s scope can be expanded by introducing a smarter architecture to orchestrate
writes between both source systems and the ODL concurrently. In this phase, when a
given consuming system performs a write, it goes to both an ODL and a source system,
either directly from the application or via a messaging system, API layer, or other
intermediary from which both repositories can receive the write. This pattern is also
referred to as “Y-loading”, and can help lay the foundations for a more transformational
shift of the ODL’s role in your enterprise architecture.

Some organizations move directly to phase 4 below, but Y-loading can allow you to run
both systems in parallel and road-test the ODL before using it as the primary system for
writes.

This allows retailers to build new application functionality making use of the enriched
product data and features that the ODL can provide.

● Ticketek Combines MongoDB Atlas and Google Cloud to Drive Analytics
● Queenly Create a Robust Search Engine for Formalwear with MongoDB Atlas Full

Text Search

Phase Four: ODL First/ System of Transaction
In this phase, all writes are directed to the ODL by default. Where necessary, changes are
routed back to the older data stores, either so that other legacy applications can continue
to rely on a source system before being redirected to the ODL, or merely as a
precautionary fallback. The secondary write to the source system can be accomplished
with a CDC system listening to the ODL or a similar system, like MongoDB Triggers.

● AO: Discovering Customer Signals In Real Time

14

https://www.mongodb.com/blog/post/how-ticketek-combines-the-power-of-mongodb-atlas-and-google-cloud-to-drive-analytics
https://www.mongodb.com/blog/post/built-mongodb-queenly
https://www.mongodb.com/blog/post/built-mongodb-queenly
https://www.mongodb.com/presentations/discovering-customer-signals-in-online-retail?tck=retailpage

Figure 8. Operational Data Layer, accepting writes and optionally pushing them back to source systems, with
select source systems decommissioned

Phase Five: System of Record
Ultimately, the operational data layer can evolve to serve as the system of record. Once
all consuming systems for a given legacy source have been ported to the ODL, and its
stability has been proven, the source system can be decommissioned for cost savings and
architectural simplicity.

Retailers and software vendor solutions are building and replatforming product catalog
solutions directly on MongoDB. Commercetools, a leading provider of ecommerce
solutions uses MongoDB for its entire catalog management solution.
https://www.mongodb.com/collateral/ecommerce-at-mach-speed-with-mongodb-and-c
ommercetools

Why MongoDB for a Product Catalog ODL?
We covered earlier the requirements for a product catalog and how they map nicely to the
capabilities of an operational data layer. Now why might a retailer consider MongoDB in
this context? Operational use cases are exactly what MongoDB was designed for; the

15

https://www.mongodb.com/collateral/ecommerce-at-mach-speed-with-mongodb-and-commercetools
https://www.mongodb.com/collateral/ecommerce-at-mach-speed-with-mongodb-and-commercetools

ability to handle high throughput workloads at speed to serve modern application needs.
Naturally this has led to operational data layers becoming the most common architectural
application of MongoDB’s technology. This is true across all industries, but especially in
Retail, where we see standardized adoption of MongoDB to meet use cases like product
catalog, single view or customer 360. Let’s look at the requirements we discussed above.

Single consolidated view of the holistic product catalog

● Versatile Document Model: Documents are a natural way to describe data- in
product catalog use cases where descriptions of physical objects are stored, the
mapping to a document becomes a natural fit. They present a single data
structure, with related data embedded as sub-documents and arrays. This makes it
easy to store product data where relationships between products are complex in a
way that is increasingly di�cult in a row-column structure; think of hierarchies,
per-store pricing, recommended product pairings, and parts with dozens of
permutations of dimensions. These problems become easy to solve when there's
optionality in the modeling process.

● Rich Query Language: A single view storage approach like an operational data
layer is only successful if it provides the ability for all of the consuming
applications to work with the data easily. Many document model databases do not
provide hard types (inc. geoJSON or Decimal128), expressive query language
operators, or the ability to join data between collections, creating a burden on the
application layer. MongoDB’s rich and expressive query language provides all of
the above and more, including multi-document ACID transactions and the
aggregation framework to create sophisticated processing pipelines for data
analytics and transformations. For a product catalog that must serve multiple
consuming applications- both customer and business facing - it's imperative that
data be easy to work with. Similarly, new consuming systems that connect to the
ODL will have access patterns and query requirements that haven’t been seen
before. An operational data layer needs to be versatile enough to meet a wide
variety of requirements.

16

Flexibility to model and evolve diverse products over time

● Flexible Schema: With MongoDB, there’s no need to pre-define a schema.
Documents are polymorphic: fields can vary from document to document within a
single collection. For example, all documents that describe products might contain
the product ID and the last date it was purchased, but only some of these
documents might contain the products it was purchased with or location data from
a mobile app. This makes it possible to merge data from source systems storing
records on overlapping but non-identical sets of entities. On the consuming side,
MongoDB’s flexibility makes it easy to alter the data model as needed to meet the
requirements of new applications being built on the ODL, for example, no schema
change or downtime when adding a product with a new attribute. This flexibility is
crucial for an Operational Data Layer. As a product catalog evolves over time, it
typically incorporates new source systems, with data model implications that
weren’t planned from the outset. This can prevent delay in onboarding new
products or product lines, or adding additional data to scale the business into new
territories which may require new data for local regulations.

Scale to add products & product data without sacrificing speed

● Speed: Using MongoDB for an ODL means you can get better performance when
accessing data, and write less code to do so. In most legacy systems, accessing
data for an entity, such as a customer, typically requires JOINing multiple tables
together. JOINs entail a performance penalty, even when optimized – which takes
time, e�ort, and advanced SQL skills. The situation is even worse when you
consider that for a given requirement, a consuming system may need to access
multiple legacy databases.

● Unified Data: In MongoDB, a document is a single place for the database to read
and write data for an entity. This locality of data ensures the complete document
can be accessed in a single database operation that avoids the need internally to
pull data from many di�erent tables and rows. For most queries, there’s no need to
JOIN multiple records. If the MongoDB-based ODL integrates data from multiple

17

source systems, the performance benefits of accessing that unified data are even
greater.

● Horizontal Scalability: Even if an ODL starts at a small scale, you need to be
prepared for growth as new source systems are integrated, adding data volume,
and new consuming systems are developed, increasing workload. To meet the
needs of a product catalog with large data sets and high throughput
requirements, MongoDB provides horizontal scale-out on low-cost, commodity
hardware or cloud infrastructure using sharding. Sharding automatically partitions
and distributes data across multiple physical instances, or shards, all in a
completely application-transparent way. To respond to fluctuating workload
demand, nodes can be added or removed from the ODL in real-time, and
MongoDB will automatically rebalance the data accordingly, without manual
intervention.

● Atlas Online Archive: As the product catalog grows, there will be a rise in needing
to archive o� old or seasonal product data, as appropriate. MongoDB Atlas, our
fully managed developer data platform, provides the ability to create an online
archive, which will automatically “time out” data into cloud object storage to save
on costs and increase e�ciency. Atlas takes care of the data movement and sync,
and provides a unified access API to pull data from both MongoDB and the archive
in one query. Imagine a business user wanting to understand a view of all products
that are and have been for sale over the past 5 years in a certain category.

Search that is easy to enable and provides fast sophisticated results

The core MongoDB database runs the same everywhere: on-premises in your data
centers, on developers’ laptops, in the cloud, or as an on-demand fully managed
Database as a Service: MongoDB Atlas. Atlas is a true developer data platform that
provides additional built-in services to quickly help add features to your application. In
the context of product catalog, one stands out:

● Atlas Search: MongoDB's Atlas Search allows fine-grained text indexing and
querying of data on your Atlas cluster. We have embedded Apache Lucene 8 into
the platform to enable advanced search functionality for your applications without

18

any additional management or separate search system alongside your database.
Atlas Search provides options for several kinds of text analyzers, a rich query
language that uses Atlas Search aggregation pipeline stages like $search and
$searchMeta in conjunction with other MongoDB aggregation pipeline stages, and
score-based results ranking. Search is considered table stakes in modern product
catalog applications, by implementing a product catalog ODL on MongoDB Atlas,
retailers can add functionality like full text search, facets, fuzzy-matching,
highlighting, synonyms etc. without considerably increasing their time to market.

Analytical capabilities to be able to o�er personalized up-sell and
cross-sell

● In-App Analytics: Consuming systems aren’t limited to operational applications.
Within modern product catalogs, retailers are adopting in-app real-time analytics
to provide better customer experience and leverage personalized data to provide
up-sell and cross-sell functionality. For this, it's necessary to be able to conduct
in-place analytics in the operational data layer. MongoDB has unique capabilities
to enable this through the ability to isolate workloads- serve analytical queries on
up-to-date data on an analytic node of the replica set, without having an impact
on production applications. MongoDB’s aggregation framework can be used to
create advanced processing pipelines to transform and compute data within the
database itself.

● Business Visualization: The ODL can also provide internal retail teams additional
real-time insight into the product data stored; many data analytics tools can use
MongoDB’s connectors to access the ODL. The connector for business intelligence
allows analysts to connect to a MongoDB ODL with their BI and visualization tools
of choice; alternatively, MongoDB Charts can connect directly to the ODL for native
visualization. The connector for Apache Spark exposes MongoDB data for use by
all of Spark’s libraries, enabling advanced analytics such as machine learning
processes.

19

https://www.mongodb.com/docs/atlas/atlas-search/analyzers/#std-label-analyzers-ref
https://www.mongodb.com/docs/atlas/atlas-search/query-syntax/#std-label-query-syntax-ref
https://www.mongodb.com/docs/atlas/atlas-search/query-syntax/#std-label-query-syntax-ref
https://www.mongodb.com/docs/atlas/atlas-search/query-syntax/#mongodb-pipeline-pipe.-search
https://www.mongodb.com/docs/atlas/atlas-search/query-syntax/#mongodb-pipeline-pipe.-searchMeta

Summary
We see retailers embarking on this journey of modernizing their product catalog by developing
and implementing an operational data layer. It's a staged approach, with huge amounts of
value seen at the first stage, just by the combination of the data. The product catalog ODL
delivers a hard to grasp real-time view of products across multiple channels and most
importantly faster time to market for new products and services. Implementing an
operational data layer is the first, and necessary step towards an enriched product catalog,
real time product personalization and analytics, and perhaps a complete move o� legacy and
into the future.

20

About the Author

Genevieve Broadhead is the Principal for Retail EMEA
in the Industry Solutions team at MongoDB, bridging
the gap between new technology trends and how to
apply them in a Retail context. Having spent years
designing data architectures across industries, she
now liaises between product development and some of
the largest retailers in EMEA. She sits on the MACH
Alliance TECH Council.

21

Resources

For more information, please visit mongodb.com or contact us at sales@mongodb.com.
Case Studies (mongodb.com/customers)
Presentations (mongodb.com/presentations)
Free Online Training (university.mongodb.com)
Webinars and Events (mongodb.com/events)
Documentation (docs.mongodb.com)
MongoDB Atlas database as a service for MongoDB (mongodb.com/cloud)
MongoDB Enterprise Download (mongodb.com/download)
MongoDB Realm (mongodb.com/realm)

22

mailto:sales@mongodb.com
https://www.mongodb.com/who-uses-mongodb
https://www.mongodb.com/resources/presentations
https://university.mongodb.com/
https://www.mongodb.com/events
https://docs.mongodb.com/
https://www.mongodb.com/cloud
https://www.mongodb.com/try
https://www.mongodb.com/realm

Legal Notice
This document includes certain "forward-looking statements" within the meaning of Section 27A of the Securities Act of
1933, as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended, including
statements concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the anticipated impact of
the coronavirus disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of
MongoDB Atlas; and our ability to transform the global database industry and to capitalize on our market opportunity.
These forward-looking statements include, but are not limited to, plans, objectives, expectations and intentions and other
statements contained in this press release that are not historical facts and statements identified by words such as
"anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "plan," "project," "will," "would" or the
negative or plural of these words or similar expressions or variations. These forward-looking statements reflect our current
views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently
available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies
and prospects as reflected in or suggested by those forward-looking statements are reasonable, we can give no assurance
that the plans, intentions, expectations or strategies will be attained or achieved. Furthermore, actual results may di�er
materially from those described in the forward-looking statements and are subject to a variety of assumptions,
uncertainties, risks and factors that are beyond our control including, without limitation: our limited operating history; our
history of losses; failure of our database platform to satisfy customer demands; the e�ects of increased competition; our
investments in new products and our ability to introduce new features, services or enhancements; our ability to e�ectively
expand our sales and marketing organization; our ability to continue to build and maintain credibility with the developer
community; our ability to add new customers or increase sales to our existing customers; our ability to maintain, protect,
enforce and enhance our intellectual property; the growth and expansion of the market for database products and our
ability to penetrate that market; our ability to integrate acquired businesses and technologies successfully or achieve the
expected benefits of such acquisitions; our ability to maintain the security of our software and adequately address privacy
concerns; our ability to manage our growth e�ectively and successfully recruit and retain additional highly-qualified
personnel; the price volatility of our common stock; the financial impacts of the coronavirus disease (COVID-19) outbreak
on our customers, our potential customers, the global financial markets and our business and future results of operations;
the impact that the precautions we have taken in our business relative to the coronavirus disease (COVID-19) outbreak may
have on our business and those risks detailed from time-to-time under the caption "Risk Factors" and elsewhere in our
Securities and Exchange Commission ("SEC") filings and reports, including our Quarterly Report on Form 10-Q filed on
December 10, 2019, as well as future filings and reports by us. Except as required by law, we undertake no duty or obligation
to update any forward-looking statements contained in this release as a result of new information, future events, changes in
expectations or otherwise.

23

