Reference Architecture:
Mainframe Modernization

Creating an Operational Data Layer

November 2022

0 MongoDB.

Table of Contents

Table of Contents

Introduction

Purpose & Audience

What is MongoDB?

Mainframe Modernization: What and Why?
Common Approaches and Patterns

Enabling Technologies for Mainframe Modernization
Required Platform Capabilities

Mainframe Modernization in Action

Conclusion

NN

11
14
20
23

0.

Introduction

Despite its long predicted demise, the
mainframe remains a critical asset in the IT
infrastructure of many large enterprises. But
ongoing reliance on the mainframe does not
come without challenges, some of which
include:

e Costs: Industry analysts found that almost
all CIOs with mainframes in their
environments cite overall cost as one of
their top concerns, with mainframe prices
rising up to 11% in the previous year, and
data center costs expected to increase 6%
year to year.

e Skills Availability: CIOs fear a skills
shortage as qualified mainframe staff age
and retire, resulting in project delays and
further cost increases as the scarcity of
remaining staff commands higher
premiums.

e The Growth of Digital: Every organization
is re-inventing itself as a digital business.

Purpose & Audience

This reference architecture will illustrate how
MongoDB can be used to modernize existing
applications and provide a foundation to
accelerate new digital initiatives. It is
designed for architects seeking to gain a
deeper understanding of the scenarios,
patterns, and use cases where MongoDB can
power a mainframe modernization initiative.
This implementation is often alternatively
referred to as an operational data layer (ODL)
or operational data source (ODS).

Drawing directly from our experience across
domains, this document is intended to help
you achieve secure, scalable, efficient, low-risk

Web, mobile, social, Artificial Intelligence,
and Internet of Things applications are
driving a deluge of new data. The volume,
speed, and diversity of this data are
overwhelming mainframe environments.
Coupled with pressures to meet new
regulatory demands, CIOs are challenged
in how quickly they can remake the
business for digital while trying to innovate
on top of legacy fechnologies.

With each MIPS costing up to $5,000 per
annum, mainframe operating costs can now
account for up to 40% of an organization’s
total IT budget and decrease valuable funds
that could be better directed towards driving
new digital innovation. To counter spiraling
costs and unlock business agility, more
enterprises are modernizing workloads from
existing mainframes to modern data
platforms such as MongoDB.

implementations that provide a platform for
digital innovation.

It is important to note that this reference
architecture concentrates mainly on the
modernizing of read operations from the
mainframe. For many of our customers,
however, the logical extension of this initial
step is the eventual deprecation of the
mainframe as an operational data store, in
favor of a more agile and flexible MongoDB
developer data platform. Whether seeking to
merely modernize reads from the mainframe
or enable complete deprecation, these
projects are proven to deliver a significantly

0.

https://modernsystems.oneadvanced.com/news-and-opinion/offloading-your-mips-getting-smart-about-mainframe-cost-reduction/

lower TCO and faster time fo market for new
applications through the use of commodity
hardware, more affordable licensing, lower

What is MongoDB?

MongoDB is a developer data platform with
an integrated set of database and data
services. Not only does it deliver a
high-performance, high-reliability, horizontally
scalable document database, it also increases
developer productivity and enables customers
to:

e Leverage data and technology to maximize
competitive advantage.

e Reduce the risk associated with
mission-critical deployments.

e Accelerate time-to-value.

e Dramatically lower total cost of ownership.

With MongoDB’s distributed design and
non-tabular data model, developers can
deliver applications that were never possible
with traditional relational databases at the
speed of modern day and age. MongoDB
provides a technology foundation that enables
development teams through:

1. The storage of data in flexible,
JSON-like documents, meaning fields
can vary from document to document and
data structures can be changed over time.

2. The document model, which maps to the
objects in your application code,
making dafa easy to work with.

3. Adistributed database, so high
availability, horizontal scaling, and
geographic distribution are built in and
easy fo use.

With these capabilities, you can build an
operational data layer, providing you with:

staff costs, and the introduction of modern
application development practices.

e Flexible, Fast, Transactional Model: A
flexible document data model coupled
with dynamic schema and idiomatic
native language drivers make it fast for
developers to build and evolve
applications. With the document model,
you can combine data of any structure
without giving up sophisticated
governance, controls, data access, rich
indexing, and ACID transactional
guarantees. The schema can be
dynamically modified without application
downtime. As a result, development teams
spend less time preparing data for the
database and more fime putting data to
work.

e Multi-Region Scalability: MongoDB can
be scaled across geographically
distributed data centers and cloud
environments, providing new levels of
availability and scalability to meet the
demands of customers, wherever they are.
As deployments grow in data volume and
throughput, MongoDB scales easily with
no downtime, and without changing the
application.

e Multi-model Feature Set: for building rich
operational and analytical apps. Analytics
and data visualization, text search, graph
processing, geospatial, in-memory
performance, and global replication
enable architects to reliably and securely
deliver a wide range of real-time
applications on a single technology. No
need to install multiple databases to meet
the needs of different applications. No
need to move data into expensive data
warehouses or complex and ungoverned
data lakes, to extract insight and value
from data.

0,

e Lower TCO: Application development and
operational teams are more productive
when they use MongoDB. Single-click
management means operations teams are
as well.MongoDB runs on commodity
hardware in your own data center, in the
cloud, or as a fully-managed service,
dramatically lowering costs. Finally,
MongoDB offers affordable monthly and
pay-as-you-go subscriptions, including
24x7x365 global support. Applications can
be one tenth the cost to deliver compared
to using traditional relational databases.

A survey of over 1,000 C-level executives and
1,000 developers by Stripe and Evans Poll
concluded that the biggest hindrance to
developer productivity is maintenance of
legacy systems and ftechnical debt. By
modernizing with MongoDB, you can build
business functionality 3-5x faster, scale to
millions of users, and cut costs by 70% and
more. All by unshackling yourself from legacy
systems.

You can learn more about MongoDB by
downloading the Architecture Guide.

Mainframe Modernization: What and Why?

Mainframe modernization is the process of
replicating commonly accessed data from
the mainframe to a separate data store, the
operational data layer (ODL), against which
queries from consuming applications run.

An illustrative high-level goal state
architecture is provided in Figure 1. The
individual components and processes are
described in more detail throughout this

paper.

There are many drivers for introducing an
ODL to modernize the mainframe and,
depending on the sector within which an
organization operates, some may be more
important than others. However, it is highly
likely that most of the following
considerations are significant factors.

Cost savings

Redirecting queries away from the mainframe
to the ODL directly reduces million instruction
per second (MIPS) costs. Even a reduction of

just 20%-30% in MIPS consumption can save $
millions in mainframe operating costs.

What’s more, these already significant savings
do not account for the increase in datfa
volumes most organizations are experiencing.
Data growth is estimated to double every two
to three years, which would result in major
cost from increased MIPS consumption unless
the load can be modernized into an ODL.

New digital initiatives

Organizations are increasingly seeking to
engage customers across new digital
channels, which in turn drives significant
growth in both the number of consumers and
the frequency with which mainframe data is
accessed. For example,

e Financial institutions provide access to
online account balances and policies to
customers across new web and mobile
channels.

e Refail systems expose a customer’s
current order status and complete

0.

https://www.mongodb.com/mongodb-architecture

purchase history rather than just the past
month's transactions.

e Government portals enable citizens to
review their latest tax statements without
contacting a call center.

e Field sales staff access pricing data and
stock inventory in real-time while meeting
face-to-face with their customers.

In addition fo opening up mainframe data to
new apps, many organizations are focused on
improving the customer experience by
integrating data from multiple back-end
mainframe systems into a_single, 360-degree
customer view. This single view helps increase
the speed with which customers are served
and provides deeper insight into each
customer in order to better personalize
experiences and drive cross-sell and upsell
opportunities.

Trying to serve these new digital initiatives
from an existing mainframe platform can
present major challenges that drastically
reduce the pace of application delivery while
escalating cost and risk:

e Drives greater consumption of expensive
mainframe MIPS, further increasing costs,
especially if larger systems have to be
acquired to handle the increased load.

Limits the organization’s ability to grow
and scale new services quickly due to its
expensive, coarse-grained scale-up model
for expanding capacity. The lead time for
new hardware means there's no way to
react to sudden peaks in demand. As a
result, mainframe customers must
over-provision hardware to cope with
temporary usage spikes, with the
hardware remaining relatively idle during
normal business demand.

Reliance on mainframe-based relational
databases with rigid schemas inhibits both
agile development and the ability to
intfegrate multiple data sources to build a
single, consolidated customer view.
Difficulty in finding experienced
mainframe staff who can build new digital
apps on top of the mainframe. It is also
cost and performance prohibitive to
prototype new classes of applications on
the mainframe.

Poor customer experience due to the
increased latency of accessing remote
mainframe systems. Also, customers often
contend with limited mainframe resources
shared with other users and with core
backend business system processing.
Mainframe downtime also negatively
impacts customer experience, especially if
serving the new digital applications
discussed earlier, creating risk of churn.

0,

https://www.mongodb.com/use-cases/single-view
https://www.mongodb.com/use-cases/single-view

Producers

‘ MDM H Logistics ‘
X
y
[-X-]
X
ee
. Fi\eExpcrrs
Mainframe

Consumers/Channels

l Mabile

API (Authorization, Authentication, Logging, etfc.)

CDC Process 4,—_.;.-.5 \

(E)TL

Message Queues
e.g. Kafka, ActiveMQ,
RabbitMQ

Files
Op‘rlonal
3 — »
(Change Data Capture) \{]]]]I[I]/ e.g. Ab Initio, Talend, Informatica Additicnal

Dc:‘rc Sources

Operational & Systems

Data Layer

Figure 1. Example of high-level mainframe modernization architecture

Meeting regulatory demands

Organizations are challenged with meeting
new regulatory demands cost-effectively and
mitigating risk. For example,

e The open banking initiative and the
revised payment services directive (PSD2)
require exposing customer account
information through open APIs to enable
greater competition in financial services.
Not only does this requirement increase
the load on the system, buft it also allows
potential competitors to directly access
the mainframe running your core business
processes.

e The EU’s_General Data Protection
Requlation (GDPR) and other privacy

regulations demand that only aggregated
views of customer data are exposed to
prevent disclosing personally identifiable
information (PII). An ODL can serve these
views while being isolated from raw
customer data stored on the mainframe.
Mainframe downtime resulting from an
outage or scheduled maintenance
activities - even for a short period of time
- can frigger fines in regulated industries
such as financial services and
telecommunications. Downtime also
negatively impacts customer experience,
especially if serving the new digital
applications discussed earlier, creating a
risk of churn.

0.

https://www.mongodb.com/cloud/trust/compliance/gdpr
https://www.mongodb.com/cloud/trust/compliance/gdpr

Transforming the role of
the mainframe

System of
Transaction

Modernizing

System of Record

MongoDB serves as system of record for a
multitude of applications, with deferred writes to
the legacy if still necessary.

“MongoDB First” - Transactions are written first to
MongoDB, which passes the data on to the legacy
system of record.

Writes are performed concurrently to the legacy

Reads & Writes Parallel Write

Enriched ODL

as well as MongoDB (Y-Loading), e.g. via a
service-driven architecture.

ODL data is enriched with additional sources to

Business Benefits

Modernizing
Reads

Basic ODS

serve as operational intelligence platform for
insights and analytics.

e Records are copied via CDC/Delta Load

mechanism from the legacy infrastructure into
MongoDB, which serves as operational data store
(ODS), e.g. for frequent reads.

Figure 2. The 5 main phases of mainframe modernization

In the next section of this reference
architecture, we will present a set of common
approaches and patterns that enable

mainframe modernization. We will then
discuss the required capabilities of the ODL
and present a selection of successful customer
mainframe modernization projects.

Common Approaches and Patterns

The main phases of mainframe modernization

Regardless of the degree to which the
mainframe is eventually modernized, the end
goal is commonly implemented in stages over
tfime, as illustrated at a high level in Figure 2.

Modernization reads

Initial use cases primarily focus on
modernizing costly read operations, e.g.,
highly concurrent, self-service querying of
customer data across new digital channels,
reading large numbers of fransactions for
analyftics, or refrieving historical views across
customer data. Because mainframe data can
often be static in nature once it is written, a

considerable portion of reads can be
modernized to the ODL with relative ease.
Using either a change data capture (CDC) or
delta load mechanism - described in detail in
further sections below - to move data, you
can create an ODL alongside the mainframe
that can serve read-heavy operations.

This step results in a significant amount of
read traffic being modernized from the
mainframe and redirected infto MongoDB.
Depending on the use case, this can vary from
10% to 50% of read traffic reduction on the
mainframe. It must be noted that at this
stage, all write traffic still goes o the
mainframe.

0,

Reads

A

Application

Writes

[ele]

[Xe]

(o]

Mainframe

\

Figure 3: Read modernizing, with writes still directed to the mainframe

Modernizing reads and data enrichment

A logical next step is to enrich the data in the
ODL by decorating it with metadata, or
merging it with other adjacent data sources -
a typical use case being to more efficiently
enable advanced analytics or create a “single
customer view.” For example, financial
fransaction data could be subsequently

categorized by enriching it using external, 3rd
party information such as ufility bill payments,
retail purchases, etc. A retail bank could, for
instance, then make it much easier for their
customers to determine their spending on
each category, i.e. on uftilities over the last n
months.

Reads

Application

\

Writes
\
oo
oo
oo
Mainframe

Additional J—
Data Sources

Figure 4: Read modernizing with data enrichment

Enrichment can potentially result in even more use cases being modernized from the mainframe.
The degree to which this is feasible is obviously determined by the specific application, but it can

0.

vary between 25% to 75% of read traffic modernized from the mainframe. Note that, as before, all
write traffic still goes to the mainframe.

4(Source Mainframe Data)7

0000003948572,2017-10-19T17:27:58.3632,AcmeDryGoods, $19.88
0000003948572,2017-10-18T10:36:32.731, NorthsideElectricCo,$124.66

0000003948572,2017-10-22T14:55:58.763Z,FossilFuels,$42.35

Format Conversion

{ " 4d" : "08080839485727,
"Debits": [
{
“ts":ISODate("2017-18-19717:27:58.3632"),
"vendor": "Acme Dry Goods"
"amount" : NumberDecimal(19.88) },
{
“ts":ISODate("2017-10-18710:36:32.7312"),
"vendor" : "'Northside Electric Co"
"amount" : MNumberDecimal(124.66) }, ...
Enrichment

—(Analytics & External Data Feeds)—

- Reference Data
- Currency Data

Y
{ id": 0080003948572",
"Debits" : [
{ "ts": ISODate("2017-10-19T17:27:58.3632"),
"vendor": "Ame Dry Goods"

"amount" :NumberDecimal(19.88) 1,
"category" : ["retall", "household"]
“ts":ISODate("2017-10-18T10:36:32.7312"),

"vendor": "Northside Electric Co",
"amount" : NumberDecimal(124.66),
"category" : ["utilities","household","monthly"] }

Figure 5: Document sample: Modernizing and enriching mainframe data to create enhanced customer

experiences

Modernizing reads and writes

By introducing a smarter architecture to
orchestrate writes between both the
mainframe and the MongoDB ODL
concurrently, it is possible to augment the
change data capture (CDC) or delta load
mechanisms we describe below. And of course,

those writes against MongoDB can be
protected with multi-document ACID
fransactional guarantees.

This can infroduce a number of significant
advantages, both technical and commercial:

0,

Real-time view of the data - ODL users are
immediately consuming the newest
version of the data, rather than waiting for
updates to propagate from source
systems to the ODL.

Reduced application complexity - read
and write operations no longer need to be
segregated between different systems.
Enhanced application agility - with
fraditional relational databases running
the source systems on the mainframe, it
can tfake weeks or months’ worth of
developer and database administrator
(DBA) effort o update schemas. ORMs,
and application code to support new
business functionality. MongoDB’s flexible

data model with a dynamic schema makes
the addition of new fields a runtime
operation, allowing organizations to
evolve applications more rapidly.

This pattern is often also referred to as
“Y-loading” and can help lay the foundations
for a more transformational shift of the role of
the mainframe in your entferprise architecture.
Moreover, only those writes that must be
exposed to legacy mainframe applications
need fto be written back onto the mainframe.
As a result, further savings can be realized, as
new applications that would otherwise have
had to access the mainframe can now operate
against the ODL.

Application

‘ Microservices / API Layer ‘

oo

oo

oo

Mainframe

Data Sources

Writes

Additional

==

Reads

\

T

Files

Figure 5: Read and write modernizing, with dual write (Y-loading) approach

Typically 40% to 80% of reads go to
MongoDB. Additionally, some of the writes are
now against data that is not stored in the
mainframe, which results in a write
modernizing of, for example, 10% to 25%.

Transforming the role of the
mainframe:“ODL-first”

With a shift fowards writing to MongoDB first,
before writing to the mainframe (if at all), you
are further changing the meaning of “system

010

of record” and “mainframe” within the
organization. This also further simplifies the
architecture, possibly eliminating the need for

Application

A A

Yyvy

Microservices / API Layer

Writes | | Reads

oo Writes
00 |e
oo
Mainframe g(\
. T
Additional —
Data Sources
Files

Figure 6: Read and write modernizing with ODL as
initial target for application write traffic

In this architecture, transactions are first
executed on MongoDB, before they are
executed on the mainframe. The estimated
saving here is that 60% to 90% of all reads go
to MongoDB.

Taken a step further, the MongoDB ODL can
evolve fo serve as the system of record, with
writes only optionally being passed on to the
mainframe solely to serve downstream legacy
app dependencies. And as those legacy

distributed fransactions that may otherwise
be required to guarantee data consistency
between the mainframe and ODL

Application

A A

Yy

Microservices / API Layer

Writes Reads

oo

Processing
PP PR T S Y S R SER B >
oo
Mainframe gv \
T
Additional J—
Data Sources
Files

Figure 7: ODL as System Of Record

applications themselves are modernized, there
is the possibility of decommissioning the
mainframe enfirely.

The estimated saving here is that 90% to 100%
of all reads go to MongoDB. At this stage, all
writes are directed against MongoDB, with
only some being propagated back to the
mainframe because of legacy application
requirements. Depending on the use cases,
this approach may improve write savings in
the range of 50% to 90%.

Enabling Technologies for Mainframe Modernization

011

Regardless of how far an organization is
intending to go in its mainframe
fransformation journey - whether it is just
modernizing read operations or writes - there
are a number of foundational technologies
and enabling patterns that are essential to
delivering a successful project. See figure 1
earlier in the paper for a high-level view of the
reference architecture to support mainframe
modernization.

When making choices about technologies and
approaches for modernizing, requirements
around the timeliness of data will factor
heavily into the decision process. For example,
does the organization require data to be
synchronized in real-time (often sub-second,
or whatever “real-time” means to the
business), or will batch updates suffice,
perhaps on an hourly or daily basis? In many
cases, there may be different approaches for
ODL “bootstrapping” (i.e., batch) versus
subsequent delta loads (i.e., “real-time”
stream/ queue-based synchronization).

Change data capture, queuing
and ETL

Fundamental to successfully mirroring data
from the mainframe info an ODL is the ability
to detect changes to the relevant source data
stored on the mainframe. However, as
highlighted above, there is often also a need
to replicate modifications made to data in the
ODL back info the mainframe.

CDC is essentially the act of:

e Idenftifying data manipulation language
(DML) changes to the database (inserts,
updates, deletes).

e Capturing the specific data change(s).

e Triggering some action(s) using the
changed data.

Depending on the type of mainframe, there
may be a number of CDC mechanisms
available, with some mainframe databases
providing native capabilities such as IBM
InfoSphere CDC for Db2. Other commercial
options include Ab Initio or Attunity Replicate.

In some cases, however, CDC may be a
completely manual process, requiring active
programmatic monitoring of the underlying
database’s logging and auditing capabilities.

Within the context of a mainframe
modernization project, a queuing system or
message broker, such as Kafka, is often used
to decouple the source mainframe system
from the destination system (the MongoDB
ODL) and to allow for greater deployment
flexibility.

Messaging systems are also typically deployed
in a highly available topology, distributed
across several nodes for redundancy and
scale.

The key benefits of putting a message queue
between the CDC system and the operational
databases are increased resiliency and
deployment agility. Increased resiliency is
provided by using a durable pub/sub queue as
a caching mechanism, which can also assist
with consistency and/or reconciliation
concerns between the source mainframe and
target ODL. Deployment agility allows for
other related systems to easily ‘produce’ or
‘consume’ data info or from the queue o
expand the available services. This is
extremely useful when developing modern
agile applications where new requirements
may be added, or existing functionality
modified, with very little notice.

You can learn more about using MongoDB and
Kafka here.

An alternative solution to that based on
queuing is o use a more traditional ETL-based

012

https://www.mongodb.com/kafka-connector

approach. Coming in various flavors, both
proprietary commercial and freely available
open-source, ETL tools are often capable of
leveraging not only simple batch-based file
tfransfer approaches but also CDC
approaches.

Commonly used ETL tools include Talend, Ab
Initio, Attunity Replicate, and Informatica.

Synchronizing writes into the
mainframe with change streams

Implemented as an API on top of MongoDB’s
operation log (oplog), consumers can open
change streams against collections and filter
on relevant events using the $match, $project,
and $redact aggregation pipeline stages. The
consumer can register for notifications
whenever a MongoDB document or collection
is modified, enabling the mainframe to apply
new data in real-time. These changes can be
consumed from directly or via a message
broker such as Kafka.

Exposing data from the
MongoDB ODL

Once the mechanism for the replication of
changes to MongoDB ODL is online, it is ready
to be exposed to consumers. This is typically
done through APIs, such as RESTful web
services, that abstract access to the
underlying data of the ODL.

In modern microservice, it is good practice to
use the API approach as any number of
consuming applications - whether
customer-facing web and mobile services or
backend enterprise and analytics applications
- can be repointed to the web service API with
no or minimal modification to the
application’s underlying logic and code.
Native MongoDB drivers can be used to write
such APIs and custom modules. These drivers

If MongoDB is to be used fo ingest writes and
then push them back into the mainframe, then
change streams provide another potential
solution for cross-platform synchronization. In
the context of mainframe modernization,
change streams can be used fto propagate
write operations from MongoDB to the
mainframe. Change streams also enable
developers to build real-time apps that can
view, filter, and react to data changes as they
occur in the MongoDB database. It makes it
simple to stream data changes and trigger
actions wherever they are needed.

are idiomatic and support all popular
programming languages and frameworks to
make development fast and natural. Available
drivers include Java, Javascript, .NET, Python,
Perl, PHP, Scala and others, in addition to 30+
community-developed drivers.

MongoDB Atlas App Services can be used to
further accelerate the development of an API
layer to the ODL. App Services provides a
suite of managed cloud services including
Aflas Device sync, serverless cloud functions,
declarative access rules, flexible Data API,
GraphQL API and more. You can use App
Services to write and host a full application in
a managed cloud environment backed by
MongoDB Atlas - gefting your apps to market
faster while reducing operational costs and
efforts.

Your existing applications access their data
using the same MongoDB drivers, but new
applications can use new RESTful APIs built
using features of App Services:

e Create the API using App Services HTTP
service and webhooks.

e Control data access using rules; these
rules can easily interact with existing
authentication systems.

e App Services functions can be used to
enrich the data fo meet new application
requirements.

013

https://www.mongodb.com/docs/manual/core/replica-set-oplog/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/#stage-operators

e JSON is the universal data format for
applications, RESTful APIs, MongoDB, and
MongoDB App Services. Because of this,
there is no need to waste development
and runtime resources converting between
formats.

As a fully-managed serverless platform
running in the cloud, no additional
infrastructure is required, and Atlas App

Required Platform Capabilities

The data platform used fo manage the ODL
modernization from the mainframe provides
the core technology foundation for the project,
and is therefore critical to determining success
or failure.

Relational databases, once the default choice
for enterprise applications, are unsuitable for
ODLs used in mainframe modernization use
cases. The data layer is forced to
simultaneously accommodate the schema
complexity of all source mainframe
databases, requiring significant upfront
schema design effort. Any subsequent
changes in any of the source systems’ schema
- for example, when adding new application
functionality - will break the database
schema. The schema must be updated, often
causing application downtime. Onboarding
new data sources from the mainframe
multiplies the complexity of adapting the
relational database's rigid, tabular schema.

Relational databases also struggle to meet the
performance SLAs of the system. Typically, the
mainframe data set will be normalized across
multiple tables, which must then be JOINed to
materialize the modernized data to the
consumer. This process can add significant
query latency while also inhibiting scalability
as the ODL grows to onboard new data
sources and serve new applications.

Services automatically scales as the use of the
ODL's APIs increases. Learn more about Atlas
App Services here.

The following sample code example is a Java
snippet showing how to implement a Kafka
listener which can process messages from a
Kafka queue and insert corresponding
documents infto MongoDB

MongoDB and its document model provide a
marture, proven alternative to relational
databases for enterprise applications,
including ODL projects. MongoDB is the
leading developer data platform today.
MongoDB is at the center of legacy
modernization initiatives across a range of
organizations, including Travelers, Cisco,
eharmony, RBS, Sega, China Eastern, and
many more.

As discussed below, the required capabilities
demanded by a mainframe modernization
project are well served by MongoDB, providing
a fechnology foundation that enables
development teams through:

1. The document data model - presenting
them the best way to work with data

2. Adistributed systems design - allowing
them to intelligently put data where
they want it.

3. A unified experience that gives them the
freedom to run anywhere- allowing
them to future-proof their work and
eliminate vendor lock-in.

For more details on each of these areas,

please refer fo the MongoDB architecture
quide.

The power of document-oriented
databases

014

https://www.mongodb.com/atlas/app-services
https://www.mongodb.com/initiatives/legacy-modernization
https://www.mongodb.com/initiatives/legacy-modernization
https://www.mongodb.com/mongodb-architecture
https://www.mongodb.com/mongodb-architecture

MongoDB is the pioneer of what has come to
be called NoSQL databases, which developed
because RDBMS systems based on SQL did
not support the scale or rapid development
cycles needed for creating modern
applications.

NoSQL is an umbrella term; it includes
document-oriented databases like MongoDB,
columnar databases, in-memory databases,
and more.

In MongoDB, records are stored as
documents in compressed BSON files. The
documents can be retrieved directly in JSON
format, which has many benefits:

e Itisanatural form to store data.
It is human-readable.
Structured and unstructured information
can be stored in the same document.

e You can nest JSON fo store complex data
objects.

e JSON has a flexible and dynamic
schema, so adding fields or leaving a
field out is not a problem.

e Documents map to objects in most
popular programming languages.

Most developers find it easy tfo work with
JSON because it is a simple and powerful
way to describe and store data.

Perhaps most importantly, the developer
conftrols the database schema. Developers
adjust and reformat the database schema as
the application evolves without the help of a
database administrator. When needed,
MongoDB can coordinate and control
changes to the structure of documents using
schema validation.

MongoDB created Binary JSON format
(BSON) to support more data types than
JSON. This new format allows for faster
parsing of the data. Data stored in BSON can
be searched and indexed, fremendously
increasing performance. MongoDB supports
a wide variety of indexing methods, including
text, decimal, geospatial, and partial.

Using MongoDB enables your team to go
further and faster when developing software
applications that handle data of all sorts in a
scalable way.

Intelligent insights, delivered in
real time

When designing the schema of a database, it
is impossible fo know in advance all the
queries. An ad hoc query is a short-lived
command whose value depends on a
variable. Each time an ad hoc query is
executed, the result may be different
depending on the variables in question.

Optimizing the way in which ad-hoc queries
are handled can make a significant
difference at scale, when thousands to
millions of variables may need to be
considered. This is why MongoDB, a
document-oriented, flexible schema
database, stands apart as the cloud
database platform of choice for enterprise
applications that require real-tfime analytics.
With ad-hoc query support that allows
developers to update ad-hoc queries in
real-time, the improvement in performance
can be game-changing.

MongoDB supports field queries, range
queries, and regular expression searches.
Queries can return specific fields and also
account for user-defined functions. This is
made possible because MongoDB indexes
the documents and provides a very powerful
query mechanism, MongoDB Query
Language (MQL).

Enabling business intelligence
(BI) and advanced analytics

The ODL, among other things, serves as the
foundation for analytics and BI. MongoDB
provides integration with popular analytics
frameworks and SQL-based BI tools to power
advanced analytics and help you build
insightful visualizations.

015

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/json-and-bson
https://www.mongodb.com/json-and-bson

MongoDB Connector for BI and
MongoDB Charts

We often see that enterprises use business
intelligence fools, such as Tableau,
MicroStrategy, and Qlik, to visually analyze
and understand their data. These tools expect

to see the data in tabular format. The
MongoDB Connector for BI lets you use such
SQL- based BI and analytics tools without
sacrificing the benefits of MongoDB’s flexible
data model to store data in rich,
multi-dimensional documents and quickly
build new functionalities.

—
— ()@ —

Application Data Document

Mapping Meta-data Table

Analytics & Visualization

(MongoDB Connector for BI)

Figure 9: MongoDB Connector for BI to integrate with relational BI tools

The MongoDB Connector for BI acts as a layer
that passes queries and data between a
MongoDB instance and your reporting tool. It
stores no data and purely serves to bridge
your MongoDB server with business
intelligence tools. To learn more, read the
documentation here.

For users who do not have an existing
investment in BI fools, MongoDB Charts is a
tool to create visual representations of your
MongoDB data. Because Charts natively
understands the MongoDB document model,
you can create charts from data that varies in
shape or contains nested documents and
arrays, without needing to first map the data
into a flat, fabular structure.

Using Charts, you can quickly and easily
visualize your data, place multiple charts onto
a single dashboard, and then share that
dashboard with key stakeholders to support
collaborative analysis and decision making.
When you connect to a live data source,
MongoDB Charts will keep your visualizations
and dashboards up-to-date with the most
recent data. Charts will automatically
generate an aggregation pipeline from your
chart design, which is then executed on your

MongoDB server. With MongoDB’s workload
isolation capabilities - enabling you to
separate your operational from analytical
workloads in the same cluster - you can use
Charts for a real-tfime view without having any
impact on production workloads.

MongoDB Connector for Apache Spark

An increasing humber of businesses are
leveraging Apache Spark with MongoDB to
perform advanced analytics. The MongoDB
Connector for Apache Spark makes it easy
and efficient. The connector exposes all of
Spark’s libraries, including Scala, Java,
Python, and R. MongoDB data is materialized
as DataFrames and Datasets for analysis with
machine learning, graph, streaming, and SQL
APIs.

The MongoDB Connector for Spark can also
take advantage of MongoDB’s aggregation
pipeline and rich secondary indexes to extract,
filter, and process only the range of data it
needs - for example, analyzing all customers
located in a specific geography. This is very
different from less mature non-tabular data
stores that do not offer either secondary

016

https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/docs/bi-connector/master/
https://www.mongodb.com/docs/bi-connector/master/
https://www.mongodb.com/products/charts
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/spark-connector

indexes or in-database aggregations. In these
cases, Apache Spark would need to extract all
data based on a simple primary key, even if
only a subset of that data is required for the

Spark process. This means more processing
overhead, more hardware, and longer
tfime-to-insight for the analyst.

Analytics Application

Scala, Java, Python, R APIs

Spor‘!‘(?

Machine
SQL Learning
Libraries

Streaming

Graph

MongoDB Connector for Apache Spark

A

I

1

I

I

Spark
Worker

Spark
Worker

Spark
Worker

Spark
Worker

URTIR;

Figure 10: Enable advanced analytics MongoDB Connector for Spark

To further maximize performance across large,
distributed datasets, the MongoDB Connector
for Apache Spark can co-locate resilient
distributed datasets (RDDs) with the source
MongoDB node, thereby minimizing data
movement across the cluster and reducing
latency. To learn more about the MongoDB
Connector for Apache Spark refer to the
MongoDB Spark Connector documentation
here.

Please note that if you are running analytics, it
is a good practice to provision MongoDB
replica sets with dedicated analytics nodes.
This allows data scientists and business
analysts to simultaneously run exploratory
queries and generate reports and machine
learning models against live data without

impacting nodes serving the modernized
mainframe data to operational applications.

Intelligently distribute data for
scale and availability

Successful mainframe modernization projects
can demand rapid scalability of the ODL. As
new data sources and attributes, along with
additional consumers such as applications,
channels, and users, are onboarded, the
demands for processing and storage capacity
quickly grow.

To address these demands, MongoDB
provides horizontal scale-out for the ODL
platform on low-cost, commodity hardware
using a technique called sharding, which is

017

https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/docs/spark-connector/current/

fransparent to applications. Sharding
distributes data across multiple database
instances. Sharding allows MongoDB
deployments to address the hardware
limitations of a single server, such as

Shard 1 Shard 2

O]

bottlenecks in CPU, RAM, or storage 1/0,
without adding complexity tfo the application.
MongoDB automatically balances modernized
mainframe data in the cluster as the data set
grows or the size of the cluster increases or
decreases.

Shard 3 Shard N

Horizontally Scalable

Y

Figure 11: MongoDB scale-out as the ODL grows

MongoDB maintains multiple replicas of the
data to maintain database availability.
Replica failures are self-healing, and so the
ODL remains unaffected by underlying system

outages or planned maintenance. Replicas can
be distributed across regions for disaster
recovery and data locality to support global
user bases. Find out more about scalability
with MongoDB Atlas here.

Figure 12: Global distribution of the ODL

018

https://www.mongodb.com/collateral/scalability-with-mongodb-atlas#:~:text=Scalability%20is%20the%20ability%20of,multi%2Dcloud%20developer%20data%20platform.

Freedom to run anywhere:
Enterprise deployment model

MongoDB can be run on a variety of
platforms - from commodity x86 and
ARM-based servers, through to IBM Power
and even IBM zSeries mainframes, which
can be useful for those who aren't ready to
modernize apps, but want to evaluate a
modern data platform on their existing
hardware. You can deploy MongoDB on
servers running in your own data center or in
public and hybrid clouds. With the MongoDB
Atlas service, we can run the ODL for you on
any of the leading cloud provider platforms.

MongoDB Enterprise Advanced is the
production-certified, secure, and supported

version of MongoDB, offering:

e Advanced security. Robust access
conftrols via LDAP, Active Directory,
Kerberos, x.509 PKI certificates, and
role-based access controls to ensure a
separation of privileges across
applications and users. Data
anonymization can be enforced by
read-only views to protect sensitive,
personally identifiable information. Data in
flight and at rest can be encrypted to FIPS
140-2 standards, and an auditing
framework for forensic analysis is
provided. You can learn more from the
MongoDB Security Architecture.

e Automated deployment and upgrades .
With Ops Manager, operations teams can
deploy and upgrade distributed MongoDB
clusters in seconds, using a powerful GUI
or programmatic API.

e Point-in-time recovery. Confinuous
backup and consistent snapshots of
distributed clusters allow seamless data
recovery in the event of system failures or
application errors without the latency of
rehydrating the ODL from the source
mainframe systems.

MongoDB Atlas: Fully-managed,
on-demand cloud service

An increasing number of companies are
moving to the public cloud fo not only reduce
the operational overhead of managing
infrastructure, but to also provide their feams
with access to on-demand services that give
them the agility they need to meet faster
application development cycles. This move
from building IT to consuming IT as a service
is well aligned with parallel organizational
shifts, including agile and DevOps
methodologies and microservices
architectures. Collectively, these seismic shifts
in IT help companies prioritize developer
agility, productivity, and time tfo market.

MongoDB offers the fully managed,
on-demand, and elastic MongoDB Aflas
service, in the public cloud. Atlas enables
customers to deploy, operate, and scale
MongoDB databases on AWS, Azure, or GCP in
just a few clicks or programmatic API calls.
MongoDB Aflas is available through a
pay-as-you-go model and billed on an hourly
basis. It’s easy to get started - use a simple
GUI to select the public cloud provider, region,
instance size, and features you need.
MongoDB Atlas provides:

e Automated database and infrastructure
provisioning so teams can get the
database resources they need, when they
need them, and can elastically scale
whenever they need fo.

e Security features to protect your data,
with network isolation, fine-grained access
control, auditing, and end-to-end
encryption, enabling you to comply with
industry regulations such as HIPAA.

e Built-in replication both within and across
regions for always-on availability.

e Global sharding allows you to deploy a
fully managed, globally distributed
database that provides low latency,

019

https://www.mongodb.com/atlas/database
https://www.mongodb.com/atlas/database
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/collateral/mongodb-security-architecture
https://www.mongodb.com/products/ops-manager

responsive reads and writes to users
anywhere, with strong data placement
conftrols for regulatory compliance.

e Fully managed, continuous and consistent
backups with point in tfime recovery to
protect against data corruption, and the
ability to query backups in-place without
full restores.

e Fine-grained monitoring and customizable
alerts for comprehensive performance
visibility.

e Automated patching and single-click
upgrades for new major versions of the
database, enabling you to take advantage
of the latest and greatest MongoDB
features.

e Live migration to move your self-managed
MongoDB clusters info the Atlas service or
to move Atlas clusters between cloud
providers.

e Widespread coverage on the major cloud
platforms with availability in over 50 cloud
regions across Amazon Web Services,
Microsoft Azure, and Google Cloud
Platform. MongoDB Atlas delivers a
consistent experience across each of the
cloud platforms, ensuring developers can
deploy wherever they need to, without
compromising critical functionality or
risking lock-in.

MongoDB Aflas can be used for everything
from a quick proof of concept, fo dev/test/QA
environments, fo powering production
applications. The user experience across
MongoDB Atlas and on-premise deployments
is consistent, ensuring that you easily move
from your own facilities to the public cloud
and between providers as your needs evolve.

Executing mainframe
modernization: Application
modernization factory

Beyond the ODL platform technology,
MongoDB has worked with many companies
to support mainframe modernization
initiatives. The application modernization
factory (AMF) is a professional services
engagement that provides advisory
consulting, program governance, and
application lifecycle expertise.

Working with MongoDB consultants, the first
step in the AMF process is to identify
application stakeholders and then build an
inventory and characterization of existing
apps, before identifying the best-fit
candidates for modernization. From there, we
scope the project, quantify the economic value
of change, and provide a roadmap for
delivery.

We support the modernization of applications
throughout the software development
lifecycle, harnessing patterns and technologies
such as agile and DevOps, microservices,
cloud computing, and MongoDB best
practices. We partner with your feams to
accelerate the assessment, prioritization, and
redesign of legacy apps and work with them
through the modernization efforts of
redevelopment, consolidation, and
optimization. To learn more, review the

MongoDB Legacy Modernization page.

Mainframe Modernization in Action

Global retail and investment
banking group

The bank has reduced its reliance on its legacy
mainframe systems by modernizing customer
data to a new agile, scalable, and resilient
ODL built on MongoDB.

020

https://www.mongodb.com/initiatives/legacy-modernization

Like many large banks, it faced a significant
challenge in meeting customer demand for
new digital banking services

while relying on legacy infrastructure. In
addition, with many core banking applications
running on the mainframe, the platform itself

had become a single point of failure. Two
mainframe outages in the previous 12 months
prevented customers from making payments.
Not only had this resulted in reputational
brand damage, but it also caught the
attention of industry regulators.

Assess
Application Portfolio

- Assess application portfolio in
batches of increasing size.
- Score applications, filter for

Iterate to next batch of appli

“best fit” modernization targets
- Report on application set,
filtered and prioritized

Understand
Application Detail

- Understand legacy application data
and infrastructure architecture

- 2nd-pass filter and prioritize :

- Produce high level design of filtered
application set

- Review for Go/No-Go decision for
re-platforming on MongoDB

—

Design
MongoDB Modernization

Next application sprint

Implement
Re-Platforming

i e - Govern implementation of
- Design application in)
re-platforming
MongoDB context . H
: - Integration with
: - Re-model data &
>) . > development teams
infrastructure architecture Sorint supoort. design
- Produce modernization pr pport, desig
reviews, code reviews,

strategy & execution plan optimization.

Validate Optimize
Application Outputs Application Roadmap :

Govern validation of
re-platforming & release
Validate performance
SLAs, data behaviours.
Cut-over and Production
validation

- Post-deployment
performance reviews

> - Plof target maturity

- Produce Application,
Roadmap for MongoDB

Figure 13: MongoDB application modernization factory accelerating and de-risking mainframe modernization

To mitigate future risk, the bank explored ways
it could make customer data accessible even
when the mainframes were down. An analysis
of customer journeys through the bank’s
digital channels revealed that 92% of all traffic
was generated by just 25 interaction types,
and 85% of these were read-only, i.e., for
customers to view their balances and review
fransactions. This analysis confirmed that
creating a new real-time, synchronized,
read-only copy of customer account data in
an ODL was a viable approach to improving
resilience.

As the bank began the project of modernizing
customer data to MongoDB, it realized it was

now able to enrich the original service
provided by the mainframe. Rather than
display just the last 300 transactions for each
account - which is too limited for business
customers - it could now efficiently retrieve
the entire transaction history, and provide
customers with rich search over the data.

Building upon these early successes, the bank
has started to create entirely new services on
top of the ODL. For example, landing pages
required 15 or more expensive queries across
the backend mainframe databases to present
a single view fo the customer of their personal
accounts, savings, mortgages, and more. This
is now being served by a single query to the

021

ODL, increasing performance to improve
customer experience, and reducing mainframe
costs.

In addition to single view, the bank is using
the ODL to present personalized offers to its
customers when they log into their accounts.
The ODL also allows the bank to better
prepare for the new PSD2 payments services
directive by enabling customer data o be
accessed via APIs to third-party platforms, for
example, checking account balances via
Facebook.

In summary, the mainframe modernization
project has enabled the bank to move from
using the ODL purely as a system for resilience
to one where the ODL is now the system of

TBA

Near|Time

innovation. The bank has been able to reduce
costs and risk while enabling new digital
initiatives that were just not possible on the
mainframe. You can learn more from the

press coverage on the project.

Alight Solutions (Aon Hewitt)
mainframe modernization and
single view

Alight Solutions, formerly part of Aon PLC, is
the leading provider of outsourced benefits
administration, cloud-based HR and financial
solutions, serving close to 40 million
employees from over 1,400 organizations,
including nearly 50% of the Fortune 500.

Message

Message

Y

System (Kafka)

Processing

Batch
Workday

A

Workday
Near Time
Processor,

Near Time

Merge Records
Apply MDM Rules

Service

Gateway |

Service
Connect

—>4—
v

MongoDB
Database

REST

API

UPoint

Phase 2: Real time and batch data pipeline to create a single view with Kafka & MongoDB. (Image
courtesy of Alight Solution’s MongoDB World presentation)

To meet the demands of the business, the
architecture feam was tasked with building a
cross-platform single customer view to unlock
greater data insights and improve application
responsiveness while also reducing mainframe
costs. Retrieving customer data from frontend
consumer interfaces such as Salesforce, the
UPOINT HR portal, and mobile apps meant
accessing multiple backend source systems
running on a mainframe platform and
Workday. Each request added to the ongoing
mainframe MIPS costs, and scaling multiple
systems to support customer growth was

proving difficult. Query latency was typically
0.5 of a second, which negatively impacted
the customer experience.

After researching multiple options, the Alight
team decided MongoDB was the best choice
for its single view platform, hosting data

modernized from the mainframe:

With its flexible document data model,
MongoDB offered the schema flexibility
needed to accommodate multi-structured,

022

https://diginomica.com/barclays-has-plans-to-let-customers-use-facebook-for-banking

polymorphic customer data from the
source systems.

e Itfs expressive query language and
secondary indexes enabled business users
to access customer data in whichever way
they needed.

e MongoDB distributed, self-healing
architecture enabled Alight to
operationalize the single view, ensuring
high scalability and always-on availability
with minimal overhead to the ops team.

Application performance was a key driver for
the project. With customer data aggregated
intfo a single document, query latency was
reduced from 500 milliseconds when
accessing the mainframe to less than 2
milliseconds from MongoDB, representing a
250x improvement!

The project has been delivered over three
phases. From the initial phase that delivered a
working solution in less than six months,
through to the current phase that provides
more granular insights intfo each customer’s
benefit classes.

In phase 1, data was extracted from the
mainframe in batches, transformed in
Hadoop, and then loaded infto MongoDB.
Phase 1 was a vital first step in demonstrating
the possibilities of mainframe modernization
and building a single view, but Hadoop’s
fragility and reliance on multiple independent
technologies complicated the data
fransformation process. In addition, change
data capture was slow, and the data merging

Conclusion

and matching rules were too simplistic,
affecting data quality.

In phase 2, Alight replaced Hadoop with
Apache Kafka, enabling changes in source
data to be sent as messages in both batches
and in real-time streams. Data could then be
merged by applying more sophisticated
master data management (MDM) rules, before
being loaded into MongoDB, where it was
exposed to consuming systems via a REST
API.

In the third phase, Alight engineers redesigned
their data structures to model customer data
by benefit class, enabling greater deployment
flexibility for scalability and high availability.
Data versioning was also added to track
changes to each customer record over time.

The benefits the single view project has
delivered to the business so far include:

e Customer experience: faster
responsiveness, and ease in delivering new
functionality.

e Lower costs: fewer calls to the mainframe,
and reductions in peak consumption.

e Unlocked innovation: greater insight into
customer data, and improved agility in
delivering new services.

To learn more, take a look at how Alight
Solutions (Aon Hewitt) improved customer
experience by over 250x with mainframe
modernization and single view here.

Modernizing data into an ODL is a challenging undertaking. However, by partnering with a
vendor that combines proven methodologies, tools, and technologies, organizations can
innovate faster with lower risk and cost. MongoDB is that vendor.

023

https://www.mongodb.com/zh/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view

About MongoDB

MongoDB empowers innovators to unleash the power of software and data. Whether
deployed in the cloud or on-premises, organizations use MongoDB for trading platforms,
global payment data stores, digital end-to-end loan origination and servicing solutions,
general ledger system of record, regulatory risk, treasury and many other back-office
processes. At the core of our developer data platform is the most advanced cloud database
service on the market, MongoDB Atlas, which can run in any cloud, or even across multiple
clouds to get the best from each provider with no lock-in.

To learn more about MongoDB, visit MongoDB.com

Resources
For more information, please visit mongodb.com or contact us at sales@mongodb.com.
Case Studies ()

Presentations ()

Free Online Training ()

Webinars and Events ()

Documentation ()

MongoDB Atlas database as a service for MongoDB ()
MongoDB Enterprise Download ()MongoDB Realm

()

http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
http://mongodb.com/download
http://mongodb.com/realm

Legal Notice

This document includes certain "forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933,
as amended, or the Securities Act, and Section 21E of the Securities Exchange Act of 1934, as amended, including statements
concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the anficipated impact of the coronavirus
disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of MongoDB Atlas; and
our ability to transform the global database industry and fo capitalize on our market opportunity. These forward-looking
statements include, but are not limited to, plans, objectives, expectations and intentions and other statements contained in
this press release that are not historical facts and statements identified by words such as "anficipate,” "believe,” "continue,"”
"could,"” "estimate,” "expect,” "intend,"” "may," "plan,” "project,” "will," "would" or the negative or plural of these words or similar
expressions or variations. These forward-looking statements reflect our current views about our plans, intentions,
expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we
have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested
by those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or
strategies will be attained or achieved. Furthermore, actual results may differ materially from those described in the
forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that are beyond our
conftrol including, without limitation: our limited operating history; our history of losses; failure of our database platform to
satisfy customer demands; the effects of increased competition; our investments in new products and our ability to introduce
new features, services or enhancements; our ability fo effectively expand our sales and marketing organization; our ability to
continue to build and maintain credibility with the developer community; our ability to add new customers or increase sales to
our existing customers; our ability to maintain, protect, enforce and enhance our intellectual property; the growth and
expansion of the market for database products and our ability to penetrate that market; our ability to infegrate acquired
businesses and technologies successfully or achieve the expected benefits of such acquisitions; our ability to maintain the
security of our software and adequately address privacy concerns; our ability to manage our growth effectively and
successfully recruit and retain additional highly-qualified personnel; the price volatility of our common stock; the financial
impacts of the coronavirus disease (COVID-19) outbreak on our customers, our potential customers, the global financial
markets and our business and future results of operations; the impact that the precautions we have taken in our business
relative to the coronavirus disease (COVID-19) outbreak may have on our business and those risks detailed from time-to-time
under the caption "Risk Factors” and elsewhere in our Securities and Exchange Commission ("SEC") filings and reports,
including our Quarterly Report on Form 10-Q filed on December 10, 2019, as well as future filings and reports by us. Except as
required by law, we undertake no duty or obligation to update any forward-looking statements contained in this release as a

"nn "o "o

result of new information, future events, changes in expectations or otherwise.

