
MARCH 2023

7 NoSQL
Considerations

2

Table of Contents
Introduction	 4

Key Consideration #1: Data Model	 5

	 Key-Value and Wide-Column Databases	 5

	 Graph Database	 5

	 Document Database	 6

Key Consideration #2: Query Model	 7

	 Key-Value and Wide-Column Databases	 7

	 Graph Database	 8

	 Document Database	 8

Key Consideration #3:
Consistency and Transactional Model	 9

	 Consistent Systems	 10

	 Eventually Consistent Systems	 10

Key Consideration #4: Interfaces	 11

	 Idiomatic Drivers	 11

	 APIs		 11

	 Command Line Interface (CLI)	 12

	 Visualization and Reporting	 12

3

Table of Contents
Key Consideration #5: Mobile Data	 13

	 Schema Flexibility	 13

	 Edge-to-Cloud Synchronization	 13

Key Consideration #6: Data Platform	 14

	 The Data and Innovation Recurring Tax (DIRT)	 14

	 The Superset of Data Models	 15

	 Database as a Service	 15

	 Additional Data Workloads	 15

Key Consideration #7: Commercial Support,
Community Strength, Freedom From Lock-In 	 16

	 Commercial Support	 16

	 Community Strength	 16

	 Freedom From Lock-In	 17

Conclusion	 18

Resources		 18

4

Introduction
Data and software are at the heart of business today. But for many organizations,
realizing the full potential of the digital economy remains a significant challenge. Since
the inception of MongoDB, we’ve understood that the biggest challenge organizations
face is working with data:

•	 Demands for higher productivity and faster time
to market are being held back by rigid relational
data models that are mismatched to modern
code and impose complex interdependencies
among engineering teams.

•	 Organizations are unable to work with, and
extract insights from, massive increases in the
new and rapidly changing structured, semi-
structured, and polymorphic data generated by
today’s applications.

•	 Monolithic and fragile legacy databases inhibit
the wholesale shift to distributed systems and
cloud computing that deliver the resilience and
scale businesses need, making it harder to satisfy
new regulatory requirements for data privacy.

•	 Previously separate transactional, analytical,
search, and mobile workloads are converging
to create rich, data-driven applications and
customer experiences. However, each workload
traditionally has been powered by its own
database, creating duplicated data silos
stitched together with fragile ETL pipelines
accessed by different APIs.

To address these limitations, several non-tabular
alternatives to relational databases have emerged.

Generally referred to as NoSQL databases, these
systems discard the foundation that has made
relational databases so useful for generations
of applications: expressive query language,
secondary indexes, and strong consistency. NoSQL
databases share several key characteristics,
including a more flexible data model, higher
scalability, and superior performance.

Although the term NoSQL often is used as an
umbrella category for all non-tabular databases,
it’s too vague and poorly defined to be a useful
descriptor of the underlying data model. Primarily,
it neglects the trade-offs NoSQL databases make
to achieve flexibility, scalability, and performance.

To help technology decision-makers navigate
the complex and evolving domain of NoSQL
and non-tabular databases, we’ve highlighted
the key differences between them in this white
paper. We also explore critical considerations
based on seven dimensions that define these
systems: data model; query model; consistency
and transactional model; APIs; mobile data; data
platform; and commercial support, community
strength, and freedom from lock-in.

https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://www.mongodb.com/use-cases/analytics
https://www.mongodb.com/nosql-explained

5

Key Consideration #1: Data Model
The primary way in which NoSQL databases differ
from relational databases is the data model.
Although there are dozens of NoSQL databases,

they generally fall into three categories: key-value
or wide-column, graph, and document.

Key-Value and Wide-Column Databases
From a data model perspective, key-value
databases are the most basic type of non-tabular
database. Every item in the database is stored
as an attribute name or key, together with its
value. The value, however, is entirely opaque to
the system — data can be queried only by the
key. This model can be useful for representing
polymorphic and unstructured data because the
database does not enforce a set schema across
key-value pairs.

Wide-column databases use a sparse, distributed,
multidimensional, sorted map to store data. Each
record can vary in the number of columns that
are stored. Columns can be grouped together
into column families or spread across multiple

families. Data is retrieved by primary key per
column family.

Applications
Key-value and wide-column databases are useful
for a specialized set of applications that query
data by using a single key value. The appeal of
these systems is their performance and scalability,
which can be highly optimized due to the
simplicity of the data access patterns and opacity
of the data itself.

Examples
Redis, Amazon DynamoDB (key-value); Apache
HBase, Apache Cassandra (wide-column)

Graph Database
Graph databases use graph structures with
nodes, edges, and properties to represent data
relationships. In essence, data is modeled as a
network of relationships among specific elements.
Their main appeal is in their ability to model
and navigate relationships among entities in
an application. This makes graph databases
incredibly efficient for finding patterns, making
predictions, and creating solutions. Flexible
schemas allow developers to easily make changes
to graph databases as requirements change. This
is especially valuable for agile teams building
modern applications.

Applications
Graph databases are useful in cases where
traversing relationships is core to the application,
such as navigating social network connections,
network topologies, or supply chains. Other
use cases include detecting fraud, building
recommendation engines, managing IT networks,
and computing graph algorithms between data.

Examples
Neo4j, Amazon Neptune

https://www.mongodb.com/databases/key-value-database
https://www.mongodb.com/databases/key-value-database
https://www.mongodb.com/databases/mongodb-graph-database

6

Document Database
Whereas relational databases store data in rows
and columns, document databases store data in
documents by using JavaScript Object Notation
(JSON), a text-based data interchange format
popular among developers. Documents provide
an intuitive and natural way to model data that
closely aligns with object-oriented programming
— each document is effectively an object that
matches the objects developers work with in code.
Documents contain one or more fields, and each
field contains a typed value such as a string,
date, binary, decimal value, or array. Rather than
spreading out a record across multiple columns
and tables connected with foreign keys, each
record is stored along with its associated (i.e.,
related) data in a single, hierarchical document.
This model accelerates developer productivity,
simplifies data access, and, in many cases,
eliminates the need for expensive join operations
and complex abstraction layers such as object
relational mapping (ORM).

The schema of a relational database is defined by
tables; in a document database, the notion of a
schema is dynamic — each document can contain
different fields. This flexibility can be particularly
helpful for modeling data where structures can
change between each record — i.e., polymorphic
data. It also makes it easier to evolve an
application during its life cycle, such as by adding
new fields.

False assumptions about NoSQL databases are
prevalent. One of the most common assumptions
is that NoSQL databases are schemaless and that
data modeling is not necessary. This impression
comes from the fact that NoSQL databases are
ideally suited for storing unstructured data, and
because they dispense with the tabular structure
of relational databases. This is why NoSQL
databases are often referred to as non-relational
databases. Ideally, schema design and data
modeling in a document database are based on

the access patterns for the data you’re working
with. In essence, data that is accessed together
should be stored together. While a document
database does allow you to store data without
defining what it is, the shape of that data matters
if you plan to do more than simply retrieve whole
documents by keys. In some cases, schema
design is irrelevant — for example, if you’re simply
storing pre-existing documents — and a simple
key-value store would suffice. On the other hand,
if you expect to filter, modify, and retrieve data
efficiently, schema design and data modeling
are essential.

Developers are often in the best position to know
the data access patterns for their applications.
Document schemas can increase performance
for a given set of hardware by reducing
computation, I/O operations, and contention
between users. With today’s pay-as-you-go cloud
pricing, that’s an important consideration. What
really differentiates a document database from
relational databases is the ability to co-locate
related data in the atomic unit of storage so
multiple values for an attribute can exist within
a single record rather than being broken up into
rows and stored independently. A document
database with a properly designed schema
enables you to filter and retrieve data with minimal
computational overhead and in a single I/O
operation. This can make finding and retrieving
data far faster and less expensive.

Applications
Document databases are useful for a wide variety
of applications due to the flexibility of the data
model, the ability to query on any field, and
the natural mapping of the document model to
objects in modern programming languages.

Examples
MongoDB, Azure CosmosDB, Apache CouchDB

https://www.mongodb.com/document-databases
https://www.mongodb.com/json-and-bson
https://www.mongodb.com/json-and-bson
https://www.mongodb.com/nosql-explained/data-modeling
https://www.mongodb.com/nosql-explained/data-modeling

7

Takeaways
•	 Documents are a superset of other data models,

so they support a wider variety of data types
and use cases.

•	 Key-value and wide-column databases are
opaque to the system — only the primary key can
be queried.

•	 The wide-column model provides more granular
access to data than the key-value model but is
less flexible than the document model.

•	 Key-value and wide-column databases are
desired for their simplicity, performance,
and scalability.

•	 Graph databases use nodes to represent
relationships such as parent-child, actions,
and ownership.

•	 Graph databases are most useful for navigating
social connections, network topologies, and
supply chains.

•	 The document data model has the
broadest applicability.

•	 The document data model is the most natural
because it maps directly to objects in modern
object-oriented languages.

•	 Despite common assumptions, data modeling
and schemas are critical elements of document
databases if you expect to filter, modify, and
retrieve data efficiently.

Key Consideration #2: Query Model
Each application has its own query requirements.
In some cases, a basic query model may be
appropriate, where the application accesses
records based on a primary key. For most
applications, however, it’s important to have the
ability to query based on several different values
in each record. For example, an application that
stores data about customers may need to query
by customer name, company name, size, sales

value, ZIP code, state, or aggregations of multiple
values. It’s also common for applications to
update multiple records, including one or more
individual fields. To satisfy these requirements,
the database needs to be able to perform queries
based on secondary indexes. In these cases,
a document database often will be the most
appropriate solution.

Key-Value and Wide-Column Databases
Key-value and wide-column databases provide
the ability to retrieve and update data based on a
single or limited range of keys. For querying other
values, developers need to build and maintain
their own indexes. Some products provide limited
support for secondary indexes, but with caveats.
To perform an update in these systems, multiple
round trips may be necessary — first to find the
record, then to update it, and then to update the

index. The index, therefore, may not be consistent
with the base data, which can then return stale or
deleted data, dramatically increasing application
complexity and decreasing the accuracy of query
results. In these systems, the update may be
implemented as a complete rewrite of the entire
record at the client, regardless of whether a single
attribute or the entire record has changed.

Graph Database
Graph databases provide rich query models in
which simple and complex relationships can be
interrogated to make direct and indirect inferences
about the data in the system. Although relationship
analysis tends to be efficient, other types of
analysis are less optimal. As a result, graph
databases are rarely used for general-purpose,
operational applications. Rather, they’re often
coupled with document or relational databases
to surface graph-specific data structures and

queries. For use cases involving multiple query
patterns, there’s an option to employ a multimodel
database where different data models and query
types are available within a single platform. For
example, MongoDB offers the $graphLookup
aggregation stage for graph processing natively
within the database. $graphLookup enables
efficient traversals across graphs, trees, and
hierarchical data to uncover patterns and surface
previously unidentified connections.

Document Database
Document databases provide the ability to
query and update any field within a document,
although capabilities in this domain vary. Some
databases, such as MongoDB, provide a rich set
of indexing options to optimize a wide variety
of queries and to automate data management,
including text, geospatial, compound, sparse,
wildcard, time to live (TTL), and unique indexes.
Some document databases support real-time
analytics against data in place without having to
replicate to a dedicated analytics application or

search engine. MongoDB, for instance, provides
an aggregation framework for developers to
create processing pipelines for data analytics
and transformations via faceted search, joins,
unions, geospatial processing, materialized views,
and graph traversals. To update data, MongoDB
provides expressive update methods that enable
developers to perform complex manipulations
against matching elements of a document —
including elements embedded in nested arrays —
all in a single transactional update operation.

Takeaways
•	 The biggest difference between non-tabular

databases lies in the ability to query
data efficiently.

•	 Key-value databases and wide-column stores
provide a single means of accessing data:
primary keys. Although fast, they offer limited
query functionality and may impose additional

development costs and application-level
requirements to support more complex
query patterns.

•	 Document databases provide the richest query
functionality, which allows them to address
a wide variety of operational and real-time
analytics applications.

8

https://www.mongodb.com/docs/drivers/java/sync/current/fundamentals/builders/aggregates/#lookup
https://www.mongodb.com/docs/drivers/java/sync/current/fundamentals/builders/aggregates/#lookup
https://www.mongodb.com/basics/mongodb-index
https://www.mongodb.com/basics/aggregation

9

Key Consideration #3: Consistency and
Transactional Model
Most NoSQL systems maintain multiple copies
of data for availability and scalability purposes.
These databases can impose different guarantees
on the consistency of data across copies. NoSQL
databases tend to be categorized as either
strongly consistent or eventually consistent.
With a strongly consistent system, writes by the
application are immediately visible in subsequent
queries. With an eventually consistent system, the
visibility of writes depends on which data replica
is serving the query. For example, when reflecting
inventory levels for products in a product catalog,
with a consistent system each query will see
the current inventory as it’s updated by the
application. With an eventually consistent system,
the inventory levels may not be accurate for a
query at a given time but will eventually become
accurate as data is replicated across all nodes in
the database cluster. For this reason, application
code can be different for eventually consistent
systems — rather than updating the inventory by
taking the current inventory and subtracting one,
for example, developers are encouraged to issue
idempotent queries that explicitly set the inventory
level. Developers also need to build additional
control logic in their apps to handle potentially
stale or deleted data.

Most NoSQL systems offer atomicity guarantees
at the level of an individual record. Atomicity is
one of four transaction properties that constitute
ACID transactions. The four properties in an ACID
transaction are:

•	 Atomicity

•	 Consistency

•	 Isolation

•	 Durability

The point of ACID transactions is to guarantee
data validity despite errors, power failures, and
other mishaps. Atomicity is an assurance that
database operations are indivisible or irreducible
such that either all operations complete or none
complete. Because these databases can combine
related data that otherwise would be modeled
across separate parent-child tables in a tabular
schema, atomic single-record operations provide
transaction semantics that meet the data integrity
needs of the majority of applications.

It’s important to note that some developers and
database administrators have been conditioned
by 40 years of relational data modeling to assume
multirecord transactions are a requirement
for any database, regardless of the underlying
data model. Some are concerned that although
multidocument transactions aren’t needed by their
apps today, they might be in the future. And for
some workloads, support for ACID transactions
across multiple records is required.

MongoDB added support for multidocument ACID
transactions in 2018 so developers could address a
wider range of use cases with the familiarity of how
transactions are handled in relational databases.
Through snapshot isolation, transactions provide a
consistent view of data and enforce all-or-nothing
execution. MongoDB is relatively unique in offering
the transactional guarantees of traditional
relational databases with the flexibility and scale
that come from NoSQL databases.

https://www.mongodb.com/basics/acid-transactions

Consistent Systems
Applications can have different requirements
for data consistency. For many applications, it’s
imperative for data to be consistent at all times.
Because development teams have worked under
a model of consistency with relational databases
for decades, this approach is more natural and
familiar. In other cases, eventual consistency is an
acceptable trade-off for the flexibility it allows in
the system’s availability.

Document and graph databases can be
consistent or eventually consistent. MongoDB
provides tunable consistency. By default, data
is consistent — all writes and reads access the
primary copy of the data. As an option, read
queries can be issued against secondary copies
where data may be eventually consistent if the
write operation has not yet been synchronized
with the secondary copy; the consistency choice is
made at the query level.

Eventually Consistent Systems
With eventually consistent systems, there is a
period of time during which copies of data are
not synchronized. This may be acceptable for
read-only applications and data stores that do
not change often, such as historical archives or
write-intensive use cases where the database
is capturing logs that will be read at a later
point in time, often after it has been moved
into another system that offers richer query
capabilities. Typically, key-value and wide-
column databases are considered eventually
consistent. Eventually consistent systems must
be able to accommodate conflicting updates
in individual records. Because writes can be

applied to any copy of the data, it is possible
and not uncommon for writes to conflict with one
another when the same attribute is updated on
different nodes. Some systems use vector clocks
to determine the order of events and ensure the
most recent operation prevails in the case of a
conflict. However, the older value may already
have been committed back to the application.
Other systems retain all conflicting values and
push the responsibility of resolving conflicts back
to the user. For these reasons, inserts tend to
perform well in eventually consistent systems, but
updates and deletes can involve trade-offs that
complicate the application.

Takeaways
•	 Different consistency models pose different

trade-offs for applications in the areas of
consistency, availability, and performance.

•	 MongoDB provides tunable consistency, defined
at the query level.

•	 Eventually consistent systems provide some
advantages for inserts at the cost of making
reads, updates, and deletes more complex,

while incurring performance overhead via read
repairs and compactions.

•	 Most NoSQL databases provide single-record
atomicity. This is sufficient for many applications
but not all.

•	 MongoDB provides multidocument ACID
guarantees, making it easier to address a range
of use cases with a single data platform.

10

11

Key Consideration #4: Interfaces
There is no single standard for interfacing with
NoSQL databases. Each presents different designs
and capabilities for application developers. The

maturity of APIs can affect the time and cost
required for developing and maintaining the
application and database.

Idiomatic Drivers
Programming languages provide different
paradigms for working with data. Idiomatic
drivers are created by development teams that
are experts in a given language and know how
programmers prefer to work within a language.
This approach can also provide efficiencies for
accessing and processing data by leveraging
specific features in a programming language.
Because idiomatic drivers are easier for
developers to learn and use, they reduce the
onboarding time required for teams to begin
working with a database. For example, idiomatic

drivers provide direct interfaces to set and get
documents or fields within documents. With other
types of interfaces, it may be necessary to retrieve
and parse entire documents and navigate to
specific values in order to set or get a field.

MongoDB supports idiomatic drivers in more than
a dozen languages including Java, .NET, Ruby,
Node.js, Python, PHP, C, C++, C#, JavaScript,
Go, Rust, and Scala. Dozens of other drivers are
supported by the developer community.

APIs
Some systems provide representational state
transfer (RESTful) interfaces. This approach has
the appeal of simplicity and familiarity, although
it also relies on the inherent latencies associated
with HTTP. For our multi-cloud developer data
platform, MongoDB Atlas, the MongoDB Atlas
Data API is a fully managed REST-like API that
enables developers to access their MongoDB
Atlas data and perform CRUD operations and
aggregations. With the Atlas Data API, you can
read and write data in Atlas with standard
HTTPS requests.

SQL-like APIs help reduce the learning curve
for non-developers already skilled in SQL, such
as business analysts and data scientists. The
MongoDB Atlas SQL Interface enables users to
leverage existing SQL knowledge and familiar
tools to query and analyze Atlas data live. The
Atlas SQL Interface uses mongosql, a SQL-
92-compatible dialect that’s designed for the
document model. It also leverages Atlas Data
Federation functionality for running queries across
Atlas clusters and cloud storage, like S3.

https://www.mongodb.com/docs/drivers/
https://www.mongodb.com/atlas
https://www.mongodb.com/atlas/app-services/data-api
https://www.mongodb.com/atlas/app-services/data-api
https://www.mongodb.com/atlas/sql
https://www.mongodb.com/atlas/data-federation
https://www.mongodb.com/atlas/data-federation

Command Line Interface (CLI)
CLIs are text-based interfaces for interacting with
a database, application, file, or piece of hardware.
CLIs are often the interaction method of choice
by advanced developers who prefer control and
speed over a more visual interface like a graphical
user interface (GUI). The MongoDB Atlas CLI is

the fastest way to create and manage an Atlas
database, automate ongoing operations, and scale
a deployment for the full application development
lifecycle. The Atlas CLI gives users a streamlined
experience for both onboarding and ongoing
management of an Atlas database in the cloud.

Visualization and Reporting
Many companies conduct data visualization,
analytics, and reporting using SQL-based
BI platforms that do not natively integrate
with NoSQL technologies. To address this,
organizations turn to an Open Database
Connectivity interface, or ODBC driver, to provide
industry-standard connectivity between their
NoSQL databases and third-party analytics tools.
For example, the MongoDB Connector for BI allows
analysts, data scientists, and business users to
visualize semi-structured and unstructured data

managed in MongoDB alongside traditional
data from SQL databases using popular BI tools.
MongoDB Atlas Charts allows users to create
and share visualizations of their MongoDB data
in real time without needing to move data into
other systems or rely on third-party tools. Because
Charts natively understands the MongoDB
document model, users can create charts
from data that vary in shape or contain nested
documents and arrays without needing to first
map the data into a flat, tabular structure.

12

Takeaways
•	 The maturity and functionality of APIs vary

significantly across non-relational products.

•	 MongoDB’s idiomatic drivers minimize
onboarding time for new developers and simplify
application development.

•	 Carefully evaluate the SQL-like APIs offered by
non-relational databases to ensure they can
meet the needs of applications and developers.

https://www.mongodb.com/tools/atlas-cli
https://www.mongodb.com/products/bi-connector
https://www.mongodb.com/products/charts

13

Key Consideration #5: Mobile Data
The performance of mobile applications is just as
important as the performance of server-based
architectures. But mobile apps introduce the
added challenge of not always being connected
to the network. Application developers need a
solution for keeping all of their customers’ apps in
sync with the backend database, no matter where
they are in the world and what kind of network
connection they have. The solution also needs to

scale easily and quickly as more users download
an app, and to support the cutting edge of mobile
development technologies as they evolve. NoSQL
databases — which are engineered to scale out on
demand by leveraging less expensive commodity
hardware or cloud infrastructure — are ideally
suited to the extra demands placed on the
backend by mobile applications that sync to it.

Schema Flexibility
Because new features are always being added in
mobile apps, making schema changes in relational
databases for new situational relationships
becomes increasingly time-consuming. Mobile
applications also present more use cases than
relational databases are designed to handle,
including device type, operating system, firmware,
and location. For NoSQL databases, adding

features or updating objects to account for new
use cases is simply a matter of entering new lines of
code. NoSQL databases also are ideal for handling
frequent application updates that are a continual
part of the app development life cycle. There’s no
need to overhaul the logic just to fix a bug. And
making changes in one part of the database is not
likely to affect other parts of the application.

Edge-to-Cloud Synchronization
MongoDB Atlas Device Sync is a fully managed
service that syncs mobile data and MongoDB
Atlas. This solution addresses the unique
technical challenges of mobile and offline-first
development, allowing organizations to rapidly
build responsive applications for their customers

and remote workforces that drive user adoption,
improve productivity, and deliver ROI. Device
Sync enables teams to take advantage of robust
bidirectional data sync between devices and Atlas
without having to write complex conflict resolution
and networking code.

https://www.mongodb.com/atlas/app-services/device-sync

14

Key Consideration #6: Data Platform
Relational databases have a long and successful
history of running with proprietary software and
hardware as part of an on-premises ecosystem of
applications, servers, and endpoints. But modern
infrastructure has moved to the cloud. Server
workloads are widely distributed across multi-
cloud architectures that continually expand the
edge of the network far beyond the confines of
traditional on-premises environments. Widely
distributed workloads place high demands
on databases that must fulfill their role as the
single source of truth, where truth is measured in
microseconds. The simplicity of NoSQL databases
makes them better suited for the velocity and
volume of modern data transactions. And their

portability enables organizations to transform
the traditional centralized data repository into
a highly flexible and responsive data platform
capable of distributing workloads closer to where
applications need them.

As data privacy regulations expand to include
data sovereignty requirements, and local
application servers require the most relevant
data to be close by to ensure low-latency reads
and writes, organizations need more control over
where they deploy their data. MongoDB Atlas
cloud database gives organizations this level of
control over where they deploy their data, whether
for regulatory or for performance purposes.

The Data and Innovation Recurring Tax (DIRT)
Working with data is a critical part of building and
evolving applications. Although developers are
always finding new ways to build applications,
most continue to use the same underlying data
infrastructure that’s been in use for decades.
Legacy relational databases can inhibit
innovation due to the rigid nature of tabular
structures, which tend to clash with modern data
and object data types developers are used to
working with. This makes experimenting and
iterating on applications harder. Complicating
this further is a sprawl of single-purpose data

technologies, each designed to solve for a small
slice of a growing set of necessary use cases
as organizations look to expand their digital
footprint. Organizations as a whole are spending
more energy trying to figure out how to move data
across systems, designing, testing, monitoring,
and maintaining an exponential increase in the
number of system component interactions. We
refer to this as the Data and Innovation Recurring
Tax (DIRT), and it can lead to a fragmented
developer experience, significant data integration
efforts, and unnecessary data duplication.

Takeaways
•	 The same flexible data model, higher scalability,

and superior performance found in NoSQL
databases for server environments make
NoSQL an ideal solution for mobile applications
and data.

•	 NoSQL databases are engineered to scale
out on demand by leveraging less expensive
commodity hardware or cloud infrastructure.

•	 The lack of rigid relational schemas makes
NoSQL development more agile and better
equipped to add new features, update apps,
and fix bugs without having to overhaul the
entire database.

•	 MongoDB Atlas Device Sync is a fully
managed service that syncs mobile data and
MongoDB Atlas.

https://www.mongodb.com/it-it/cloud/trust/compliance/gdpr

The Superset of All Data Models
The way to eliminate DIRT is by using a developer
data platform that simplifies and accelerates how
developers work with data. MongoDB has built a
developer data platform that reduces the need
for niche databases and the associated costs
of deploying and maintaining a complicated
sprawl of data technologies. It makes it faster
and easier for teams to work with data to support
the demands of modern applications while
helping to massively simplify an organization’s
data infrastructure.

In many cases, the relationships between
data is more natural to model with documents
and subdocuments than in separate tables.
Documents map directly to objects in modern
object-oriented languages, so the developer
experience more closely resembles how they
already think and code. This makes it an ideal
platform to build upon. The document model is a
superset of other data models because it can be
used to support graph workloads, key-value, time-
series, and geospatial data. So there’s no need for
additional niche NoSQL databases.

Database as a Service
A modern developer data platform enabled
through a database-as-a-service capability gives
developers the freedom and flexibility to work
seamlessly with data wherever their applications
and users need it, and build integrated search
features on top of cloud data across all the major
public cloud platforms. Rather than rigid tabular

schemas and complex relationships, the Atlas
developer data platform provides a fully elastic
data infrastructure that can be updated as
needed via idiomatic drivers that developers are
already familiar with. This allows developers more
time to focus on their applications rather than
managing databases themselves.

Additional Data Workloads
Atlas enables fully integrated full-text search,
eliminating the need for a separate search engine.
Flexible local datastore offers seamless edge-
to-cloud sync for mobile and IoT devices. You
can perform in-place, real-time analytics with
workload isolation and native data visualization.
You can also run federated queries across
operational or transactional databases and

cloud object storage. And it allows global data
distribution for data sovereignty and faster access
to data because it resides closer to where it’s
being used. Atlas also offers industry-leading
data-privacy controls with client-side field-level
encryption, and it can be deployed globally in
over 90 regions.

15

Takeaways
•	 Modern multi-cloud environments require

flexibility, speed, and elasticity not found in
relational databases with tabular schemas.

•	 Rigid tabular structures lead to the Data and
Innovation Recurring Tax (DIRT).

•	 Distributed databases deployed in the cloud
to the edge of the network give organizations

the ability to create a resilient, high-availability
data platform that puts data closer to the
applications that need it.

•	 Database-as-a-service capabilities allow
developers to spend less time managing
databases and more time building applications
and rich query experiences.

https://www.mongodb.com/atlas/search
https://www.mongodb.com/atlas/data-federation

16

Key Consideration #7: Commercial Support,
Community Strength, Freedom From Lock-In
A database is a major investment. Once an
application has been built on a given database,
it is costly, challenging, and risky to migrate it
to a different one. Companies usually invest in a
small number of core technologies so they can
develop expertise, integrations, and best practices

that can be amortized across many projects.
NoSQL databases are still a relatively emergent
technology. Although there are many new options
in the market, only a subset of technologies and
vendors will stand the test of time.

Commercial Support
Consider the health of the vendor or product when
evaluating a database. It is important not only
that the product continues to exist, but also that
it evolves and adds new features as the needs

of users dictate. Having a strong, experienced
support organization capable of providing
services globally is another relevant consideration.

Community Strength
There are significant advantages to having
a strong community around a technology,
particularly databases. A database with a
strong community of users makes it easier to
find and hire developers who are familiar with
the product. It makes it easier to find best

practices, documentation, and code samples, all
of which reduce risk in new projects. It also helps
organizations retain key technical talent. A
strong community encourages other technology
vendors to develop integrations and participate in
the ecosystem.

https://www.mongodb.com/community/forums/

Freedom From Lock-In
Many organizations have been burned by
database lock-in and abusive commercial
practices. The use of open-source software and
commodity hardware has provided an escape
route for many, but organizations also have
concerns that as they move to the cloud, they may
end up trading one form of lock-in for another.

It’s important to evaluate the licensing and
availability of any major new software investment.
Also critical is having the flexibility to run the
database wherever it’s needed — whether it’s from
a developer’s laptop in early-stage adoption, on
your own infrastructure as you go into production,

or in the cloud under a database-as-a-service
consumption model.

MongoDB Atlas database enables you to deploy
data across AWS, Google Cloud, and Microsoft
Azure. In addition, you can create a multi-cloud
cluster to enable applications that make use of
two or more clouds at the same time. MongoDB
Enterprise Advanced gives developers and
DevOps teams the option to download and run the
database on their own infrastructure. Wherever
you choose to run MongoDB, it uses the same
codebase, APIs, and management tooling.

Takeaways
•	 Community size and commercial strength are

important for evaluating NoSQL databases.

•	 MongoDB is one of the very few NoSQL
database companies to be publicly traded,
it has the largest and most active community,
its support teams spread across the world
provide 24/7 coverage, it boasts user

groups in most major cities, and it provides
extensive documentation.

•	 MongoDB is available to run on your own
infrastructure or as a fully managed
cloud service on all of the leading public
cloud platforms.

17

https://www.mongodb.com/cloud/atlas/aws-mongodb
https://www.mongodb.com/cloud/atlas/mongodb-google-cloud
https://www.mongodb.com/mongodb-on-azure
https://www.mongodb.com/mongodb-on-azure
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced

Conclusion
As the technology landscape evolves, organizations increasingly find the need to evaluate new
databases to support changing application and business requirements. Considering the media hype
around NoSQL databases and the commensurate lack of clarity in the market, it’s important to make
clear distinctions between the available solutions when possible. As discussed in this white paper, there
are several key criteria to consider when evaluating these technologies. Many organizations find that
document databases such as MongoDB are best suited to meet these criteria.

Resources

Customer Success Stories

Presentations

Free Online Training

Webinars and Events

Try MongoDB

For more information, please visit MongoDB.com.

© March 2023 MongoDB, Inc. All rights reserved.

https://www.mongodb.com/who-uses-mongodb?utm_campaign=thought_leadership&utm_source=cta_button_100&utm_medium=asset&utm_term=consideration&utm_content=7_nosql_considerations
https://www.mongodb.com/resources/presentations?utm_campaign=thought_leadership&utm_source=cta_button_100&utm_medium=asset&utm_term=consideration&utm_content=7_nosql_considerations
https://university.mongodb.com/?utm_campaign=thought_leadership&utm_source=cta_link_100&utm_medium=asset&utm_term=consideration&utm_content=7_nosql_considerations
https://www.mongodb.com/events?utm_campaign=thought_leadership&utm_source=cta_button_100&utm_medium=asset&utm_term=consideration&utm_content=7_nosql_considerations
https://www.mongodb.com/try?utm_campaign=thought_leadership&utm_source=cta_button_100&utm_medium=asset&utm_term=consideration&utm_content=7_nosql_considerations
http://www.mongodb.com
https://www.mongodb.com/

