
Scalability With 
MongoDB Atlas



2

Understanding Vertical and Horizontal Scaling

Vertical scaling
Vertical scaling (or scale-up) is the action of 
increasing the processing power and capacity 
of a single server (or VM, or instance) by adding 
more CPU, RAM, or disk space. Vertical scaling has 
been available in the majority of general-purpose 
databases for decades. 

In many cases, vertical scaling is very useful 
and easy to set up, but eventually you will 
reach limits in maximum processing power and 
throughput, or going to the next machine size 
will be prohibitively expensive. The limitations 
of available technology may restrict a single 
machine from being sufficiently powerful for a 
given database workload. Additionally, cloud-
based providers have hard ceilings based on 
available hardware configurations. 

Introduction
Scalability is the ability of a database to 
constantly adjust its resources to meet 
application demands. As an application grows 
or traffic increases, the original server resources, 
such as RAM, CPU, storage, and I/O, might not 
suffice. This is when you will need to scale your 
database. You can scale temporarily if you 
expect a sudden burst of traffic (e.g., for a new ad 
campaign) or more permanently when you see a 
steady increase in usage. 

MongoDB has a full range of vertical, horizontal, 
and elastic scaling options available, and they are 
built into MongoDB Atlas, MongoDB’s multi-cloud 
developer data platform. In this document, we will 
discuss these scaling options. 

MongoDB’s documentation provides more 
detailed information on specific topics. We have 
provided links throughout this document to help 
guide you to other valuable resources.

Figure 1: Vertical scaling

https://www.mongodb.com/atlas/database
https://docs.mongodb.com/


3

Horizontal scaling
Horizontal scaling (or scale-out) involves dividing your application data and workload over multiple 
servers and adding servers to increase capacity. Each machine handles a subset of the overall 
workload, giving you unlimited scalability. Expanding the capacity of the deployment only requires 
adding additional servers as needed, which gives you cost linearity compared to vertical scaling. 

MongoDB natively supports horizontal scaling through a method called sharding, which we will describe 
later in this document. 

Horizontal vs. vertical scaling: which one to choose?
There are several factors to consider when 
deciding whether to scale vertically vs. 
horizontally, including read/write throughput, 
IOPS, RAM, and disk limitations.

Other basic considerations when deciding whether 
you should scale vertically or horizontally include:

• Workload permanence: If you only need to scale 
temporarily, vertical scaling is likely all you will 
need. This way, you can quickly scale back down 
afterward and save some money.

• Current architecture: If you use a more 
traditional relational database, you might need 
some significant investments in additional 
software before horizontal scaling. In contrast, 
if you use a solution that natively supports 
horizontal scaling, the process of sharding  
will be easier.

•  Pricing: As you scale vertically, you will 
inevitably hit a point where adding more 
resources becomes prohibitively expensive.  
At that point, it may be cheaper to start  
scaling horizontally.

Figure 2: Horizontal scaling  



4

Scaling Proactively Vs. Reactively
Proactive scaling refers to scaling your database 
in advance of known load or high-traffic events 
that will occur in the future. This could be based 
upon a regular pattern (e.g., day of the week or 
certain times of the year), or it could be done 
before specific events, such as launching a 
marketing campaign.

In contrast, reactive scaling refers to scaling in 
response to application metrics. These could be 

warning signs, such as throughput and query 
response times, or they could be alerts coming 
from your database monitoring. In the worst-case 
scenario, this could be in response to an outage 
caused by the excess load.

Naturally, when possible, proactive scaling is 
preferable. MongoDB Atlas makes scaling as easy 
as setting the right configuration.

MongoDB Atlas Vertical Scaling with Auto-Scaling
Vertical scaling in Atlas is as simple as configuring a cluster tier or leveraging the power of  
cluster auto-scaling, both described below. 

Atlas cluster sizing and tier selection
Choosing the correct Atlas cluster tier and 
configuration is an important step in setting up a 
successful MongoDB production deployment. You 
can always modify a cluster at a later time, but 
getting started with the right tier is possible with a 
few calculations based on your data size, working 
set, and network requirements.

You can also configure your cluster to 
automatically scale its cluster tier, storage 
capacity, or both in response to cluster usage, 
thereby reducing the manual maintenance 
required for your cluster. This is done with  
zero downtime. 

https://docs.atlas.mongodb.com/cluster-tier/
https://docs.atlas.mongodb.com/cluster-autoscaling/
https://docs.atlas.mongodb.com/cluster-tier/
https://www.mongodb.com/resilience-and-high-availability-with-mongo-db-atlas


5

Figure 3: MongoDB Atlas cluster tier 



6

Atlas cluster auto-scaling
MongoDB cluster tiers M10 and greater support 
cluster auto-scaling. Cluster auto-scaling is 
an intelligent and fully automated capacity 
management service in MongoDB Atlas. It allows 
your cluster resources to auto-scale in response 
to workload changes. Atlas monitors key metrics 
in real-time and adjusts cluster compute and 
storage based on predictive modeling and proven 
practices from managing tens of thousands of 
MongoDB deployments.

Cluster auto-scaling removes the need to write 
complex scripts or use consulting services to 
make scaling decisions. You can easily specify 
a range of minimum and maximum cluster sizes 
in the API or Atlas user interface (UI) to handle 
your workload’s variability. You can also maintain 
visibility into auto-scaling events with automated 
alerts and detailed activity feed updates.

Cluster auto-scaling offers other significant 
benefits. With intelligent automation, key metrics 
are tracked against thresholds in real-time, 
and auto-scaling events are applied in a rolling 
fashion to ensure no downtime to your cluster. 
Automation is based on heuristics from managing 
tens of thousands of MongoDB deployments. 
Flexible capacity management allows users to set 
upper and/or lower cluster tier limits for cluster 
tier auto-scaling and to save on costs for periods 
of reduced workload with automated cluster tier 
downscaling. And cluster auto-scaling offers real-
time visibility and control. Users receive real-time 
alerts when cluster tier auto-scaling events occur. 
They can review all cluster tier auto-scaling events 
in the Atlas activity feed, and they maintain the 
ability to manually scale and make other cluster 
configuration changes.

Cluster auto-scaling is enabled by default when 
you create new clusters in the Atlas UI, but 
not when you create new clusters via the Atlas 
Admin API. With auto-scaling enabled, Atlas 
automatically scales your cluster tier, storage 
capacity, or both in response to cluster usage. 
Auto-scaling allows your cluster to adapt to your 
current workload and reduces the need for  
manual intervention.

Cluster tier scaling automatically scales your 
cluster tier up or down in response to various 
cluster metrics. To opt-out of cluster tier auto-
scaling, uncheck the “Cluster Tier Scaling” box in 
the Auto-scale section.

To control how Atlas should auto-scale your 
cluster, you set:

• The maximum cluster tier to which your cluster 
can automatically scale up. By default, this 
setting is set to the next higher cluster tier.

• The minimum cluster tier to which your cluster 
can scale down. By default, this setting is set to 
the current cluster tier.

Auto-scaling reacts quickly but not instantly; if you 
expect your application to have a spiky workload, 
it’s a good idea to set some extra headroom 
into the minimum cluster tier to accommodate 
temporary increases in usage.

Storage scaling automatically increases your 
cluster storage capacity when 90% of disk 
capacity is used. This setting is enabled by default 
to help ensure that your cluster can always 
support sudden influxes of data. To opt-out of 
cluster storage scaling, uncheck the Storage 
Scaling box in the Auto-scale section.

https://docs.atlas.mongodb.com/cluster-autoscaling/
https://docs.atlas.mongodb.com/api/atlas-admin-api/
https://docs.atlas.mongodb.com/api/atlas-admin-api/


7

Figure 4: MongoDB Atlas cluster auto-scaling

Proactive scaling
Atlas auto-scales by default, but you can also 
control cluster scaling directly through the UI, 
API, or integrations like Kubernetes, Terraform, 
and CloudFormation. For example, if you expect 
a change in workload characteristics — e.g., 
seasonal variation, product launch, or usage 
growth due to a new marketing campaign — it’s 

simple to scale your cluster in advance. Scaling 
a live cluster in Atlas is as easy as setting it up in 
the first place. By editing the configuration in the 
Atlas UI and selecting the new specifications, you 
kick off the scaling event. Atlas applies the new 
configuration, scaling up each node in a rolling 
fashion so there is zero downtime. 



8

Scheduled scaling 
If you have regular workload variations, you can 
configure Atlas to scale on a schedule using Atlas 
Scheduled Triggers. For example, if an application 
sees the most usage during known business hours, 
you could scale down a cluster for cost savings 
on weekends or overnight, and scale it back up 
before the load returns.

Scheduled scaling is a good alternative to (or 
companion to) auto-scaling when workloads 

follow known patterns. Auto-scaling responds 
to fluctuations in workload automatically but is 
more conservative about scaling down in order 
to avoid false positives (e.g., scaling down during 
a transient lull, only to have to scale back up 
quickly). When you are confident that workload 
will decrease for a given time period, scheduled 
scaling can reduce the size of your cluster more 
quickly than auto-scaling will.

MongoDB Atlas Horizontal Scaling With Sharding
As mentioned above, MongoDB Atlas provides 
horizontal scaling for databases using sharding. 
Sharding is fully transparent to your application: 
The client only has to send queries to the 
cluster, and MongoDB automatically routes 
them appropriately. MongoDB distributes data 
across multiple replica sets called shards. 
Sharding allows MongoDB deployments to scale 

beyond the limitations of a single server, such as 
bottlenecks in RAM or disk I/O, without adding 
complexity to the application. With automatic 
balancing, MongoDB ensures data is always 
equally distributed across shards as data volume 
increases or decreases. 

Sharding is only available for Atlas clusters with 
tiers M30 and larger.

https://www.mongodb.com/blog/post/atlas-cluster-automation-using-scheduled-triggers
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/replication/


9

Sharded cluster
A MongoDB sharded cluster consists of the 
following components:

• Shards: Each shard contains a subset of the 
data and is deployed as a replica set.

• Mongos: The mongos acts as a query router, 
providing an interface between client 
applications and the sharded cluster. 

• Config servers: Config servers store metadata 
and configuration settings for the cluster.

The graphic below describes the interaction of 
components within a sharded cluster.

Figure 5: Sharding architecture 

Sharding architecture

Primary

Secondary

Secondary

Shard 1
Primary

Secondary

Secondary

Shard 2
Primary

Secondary

Secondary

Shard N

••••••

•••

Application

App Server

Mongos
Application

App Server

Mongos

Primary

Secondary

Secondary

Config Server

Atlas automates the deployment and 
management of a sharded cluster and all its 
components. After the user configures the desired 
number of shards, Atlas automatically sets them 
up and deploys the mongos and config servers.

Users should consider deploying a sharded cluster 
in the following situations: 

• RAM limitation: The size of the system’s active 
working set (frequently accessed documents 
plus indexes) is expected to exceed the capacity 
of the maximum amount of RAM available in 
your maximum Atlas tier. 

• Disk I/O limitation: The system will have a large 
amount of write activity, and the operating 
system will not be able to write data fast enough 
to meet demand, or I/O bandwidth will limit how 
fast the writes can be flushed to disk. 

• Storage limitation: The dataset will grow to 
exceed the storage capacity of a single replica 
set. Atlas has a 4 TB (compressed) storage limit 
for a replica set. 

• Location-aware requirements: The dataset 
needs to be assigned to a specific data center 
to support low-latency local reads and writes.

Applications that meet these criteria or are 
likely to do so in the future should be sharded 
in advance rather than waiting until they have 
consumed available capacity. When designing 
their data models, applications that will eventually 
benefit from sharding should consider which 
collections they will need to shard and the 
corresponding shard keys. 

https://docs.mongodb.com/manual/core/databases-and-collections/
https://docs.mongodb.com/manual/core/sharding-shard-key/


10

Sharding strategies
MongoDB supports three types of sharding 
strategies, enabling administrators to 
accommodate diverse query patterns:

• Range-Based Sharding: Documents are 
partitioned across shards according to the 
shard key value. Documents with shard key 
values close to one another are likely to be co-
located on the same shard. This approach is well 
suited for applications that need to optimize 
range-based queries.

• Hash-Based Sharding: Documents are uniformly 
distributed according to an MD5 hash of the 
shard key value. Documents with shard key 
values close to one another are unlikely to be 

co-located on the same shard. This approach 
guarantees uniform distribution of writes across 
shards — provided that the shard key has high 
cardinality — making it optimal for certain write-
intensive workloads.

• Zone-Based Sharding: MongoDB Atlas zones 
allow developers to define specific rules 
governing data placement in a sharded cluster. 
You can easily create distributed databases to 
support geographically distributed apps, with 
policies enforcing data locality within specific 
cloud regions. Each zone can have one or more 
shards. Zones are exposed in Atlas through Atlas 
Global Clusters, discussed below. 

The importance of selecting a good shard key
MongoDB sharding has always been highly 
flexible — you can shard on any document field 
or combination of fields. This means you can 
select a shard key that is best suited to your 
application’s requirements.

The choice of shard key is important, as it defines 
how data is distributed across the shards. Ideally, 
you want to select a shard key that:

• Gives you low-latency and high-throughput 
reads and writes by matching data distribution 
to your application’s data access patterns.

• Evenly distributes data across the cluster so you 
avoid any one shard taking too much load (e.g., 
a “hot shard”).

• Provides linear scalability as you add more 
shards in the future.

Not only do you have the flexibility to select any 
field(s) of your documents as your shard key, but 
it’s also possible to seamlessly change the shard 
key (reshard) on a live cluster. If you chose a shard 
key that didn’t work well, or if your application’s 
requirements changed such that the original shard 
key was no longer the best one, the impact on 
performance would be significant.

https://en.wikipedia.org/wiki/MD5


11

Live resharding: horizontal scaling without fear or friction
Prior to MongoDB 5.0, resharding was a manual 
process that required either downtime or 
custom logic. Starting with 5.0, MongoDB made 
complex manual resharding a thing of the past 
with live resharding. You just need to run the 

reshardCollection  command from the shell, 
point at the database and collection you want 
to reshard, specify the new shard key, and let 
MongoDB take care of the rest.

When you invoke the reshardCollection  
command, MongoDB clones your existing 
collection into a new collection with the new 
shard key, then starts applying all new oplog 
updates from the existing collection to the new 
collection. This enables the database to keep 
pace with incoming application writes. When all 
oplog updates have been applied, MongoDB will 
automatically cut over to the new collection and 
remove the old collection in the background.

Let’s walk through an example where live 
resharding would really help a user:

• The user has an orders collection. In the past, 
they needed to scale out and choose the order_
id field as the shard key.

• They realize that they have to regularly query 
each customer’s orders to quickly display order 
history. This query does not use the order_id 
field. To return the results for such a query, all 
shards need to provide data for the query. This is 
called a scatter-gather query.

• It would have been more performant and 
scalable to have orders for each customer 
localized to a shard, avoiding scatter-gather, 
cross-shard queries.

• They realize that the optimal shard key would be 
“customer_id: 1, order_id: 1” rather than just the 
order_id.

• With live resharding, the user can just run the 
reshard command, and MongoDB will reshard 
the orders collection for them using the new 
shard key, without having to bring down the 
database and the application.

reshardCollection: “<database>.<collection>”, key: <shardkey>

Figure 6: Before live resharding

78%
Load

22%
Load

Shard 1 Shard 2

Original Shard Key:  Order_id

https://docs.mongodb.com/manual/core/replica-set-oplog/


12

Figure 7: After Live Resharding  <IMAGE LINK for 

Content Marketing>

With live resharding, not only can you change 
the field(s) for a shard key, you can also review 
your sharding strategy, changing between range-
based or hash-based sharding, or modifying your 
geographic distribution strategy with zones.

At this point in time, no other mainstream 
distributed database provides a capability like  
live resharding. 

Deploying a sharded cluster in MongoDB Atlas

Figure 7: After live resharding

Figure 8: Deploying a sharded cluster in MongoDB Atlas

50%
Load

50%
Load

Shard 1 Shard 2

New Shard Key after Live Resharding : Customer_id, Order_id

Deploying a sharded cluster in Atlas is as simple 
as a setting in the cluster configuration. When you 
turn on sharding and set the number of shards, 
Atlas automates the setup of the sharded  
cluster infrastructure. 

There is also, however, a more advanced 
deployment option that distributes shards in 
different cloud regions around the world:  
Global Clusters.

https://docs.google.com/presentation/d/15AZoDGow55T4aOqBv8P7eD1hxtCLwKCvt3leiU3Z9CQ/edit?usp=sharing
https://docs.google.com/presentation/d/15AZoDGow55T4aOqBv8P7eD1hxtCLwKCvt3leiU3Z9CQ/edit?usp=sharing


13

Global sharding with MongoDB global clusters
Today’s users expect high-performing, responsive 
applications regardless of where they are 
located, but distributing your data globally can 
be challenging. MongoDB Atlas global clusters 
remove the complexity of globally distributing your 
database to keep relevant data close to end-users 
for regulatory compliance and low-latency reads 
and writes.

MongoDB Atlas global clusters simplify data 
residency requirements by automating the process 
of isolating data that’s subject to regulations 
within specified geographic boundaries, so you 
can confidently and easily meet local privacy and 
compliance needs in any region. 

Global clusters use a highly curated implementation 
of MongoDB zones that allows you to place 

database instances capable of accepting reads 
and writes in distinct, geographically distributed 
zones made up of one or more cloud regions. You 
can do this on AWS, Google Cloud, or Azure, or on a 
multi-cloud cluster, and it is all on-demand and fully 
managed by Atlas. Global clusters enable you to 
read and write your data locally, providing single-
digit millisecond latency for distributed applications 
and allowing you to have strong controls over where 
the data lives. 

As your application and user base grow, global 
clusters allow you to seamlessly adjust coverage 
with support for more than 80 cloud regions, making 
it simple to add or remove zones at any time. You 
can quickly deploy using prebuilt zone templates 
or build your own custom zones by choosing cloud 
regions in an easy-to-use, visual interface.

Figure 9: Serving always-on, globally distributed, write-everywhere apps with MongoDB Atlas global clusters

https://docs.atlas.mongodb.com/global-clusters/


14

MongoDB Atlas Elastic Scaling With  
Serverless Instances
Serverless computing is quickly gaining popularity 
among developers as a preferred way of building 
and running modern applications. Cloud functions 
are commonly used to power business logic in 
applications, and many teams rely on completely 
automated IT operations.

The appeal of serverless technology is hard 
to deny: Elastic scaling eliminates the need 
for upfront resource provisioning and ongoing 
maintenance, and consumption-based pricing 
means paying only for resources that are used. It 
abstracts and automates away many of the lower-
level infrastructure controls that developers don’t 
want to have to learn or manage; instead, they 
can focus on building differentiated features.

When it comes to databases, compute and 
storage resources have traditionally been 
tightly coupled. Applying a serverless model 

to databases means decoupling them and 
changing the way engineering teams think about 
infrastructure. Rather than asking a developer to 
predict an application’s future workload patterns, 
break them down into individual resource 
requirements, and then map them to arbitrary 
units of database instance sizes, serverless 
databases offer a much simpler experience: 
Define where your data lives, and get a database 
endpoint you can use.

This not only streamlines the database 
deployment process, it also eliminates the need 
to monitor and adjust capacity on an ongoing 
basis. Developers are free to focus on thinking 
about their data rather than their databases, and 
leave the lower-level infrastructure decisions to 
intelligent, behind-the-scenes automation.

Understanding serverless databases
Serverless databases share many of the same 
characteristics as serverless application platforms:

• Elastic scaling: The ability to automatically 
scale a database based on workload, including 
the ability to scale down to zero compute 
resources when there is no workload. Unlike 
serverless application platforms, which 
only manage compute, serverless database 
platforms have both a compute layer and a 
storage layer that can scale elastically. 

• Consumption-based pricing: A pricing model 
that only charges for the data stored in the 
database and the resources used to service the 
database workload. 

These attributes confer advantages similar to the 
serverless application model:

• You don’t need to think about scaling up to meet 
increasing workloads or storage needs.

• You don’t need to worry about paying for 
database resources you are not using.

MongoDB Atlas serverless instances
Serverless instances provide you with the flexible, 
expressive power of MongoDB with the ease of the 
serverless model, so you can get an on-demand 
database endpoint for your application without 
having to think about resource provisioning. You 
simply choose a cloud region to get started, then 
start building. MongoDB Atlas serverless instances 

will seamlessly provide the database resources 
your application needs at any given time and 
come with the same built-in security defaults as 
Atlas, keeping your data secure and available. This 
removes the need to manually scale up and down 
between different cluster tiers.

https://www.mongodb.com/serverless
https://www.mongodb.com/blog/post/embrace-benefits-serverless-development-atlas


15

Configuration, automation, and pricing
• Serverless instances require minimal 

configuration: All you need to do is choose a 
cloud provider and region to create a serverless 
instance on MongoDB Atlas.

• Serverless instances scale automatically to 
meet your workload: With serverless instances, 
MongoDB Atlas will instantly provide the 
database resources your application needs at 
any given time, with the ability to fully scale 
down to zero and back up when needed without 
cold starts, allowing you to better address 
sudden spikes in usage or longer idle periods 
when the database is not needed.

• Serverless instances are billed on usage: Our 
consumption-based, pay-as-you-grow model 
only charges for the operations you run (reads, 
writes, data transfer, and storage), so you never 
pay for excess resources. Daily tiering of read 
operations even provides you with automatic 
discounts as your usage scales without any up-
front commitments required. 

You can view and manage serverless instances 
using the same UI and API as your existing 
database clusters. They also support the latest 
MongoDB capabilities, so you never have to worry 
about backward compatibility or upgrades.

Serverless Instances

Figure 10: Creating a serverless instance

https://www.mongodb.com/pricing


© July 2022 MongoDB, Inc. All rights reserved.

Conclusion
Scalability is a key requirement of modern, 
distributed applications and database systems. 
MongoDB Atlas has been built for scalability 
from the ground up, with innovative options to 
automatically scale vertically, horizontally, and 
elastically. Users have the option of using Atlas’s 
several scaling options, including auto-scaling, 

sharding, and serverless instances. MongoDB Atlas 
also makes it easy to combine scalability with 
global data distribution using Global Clusters.

You can test Atlas’s scalability by deploying a  
free MongoDB Atlas cluster. 

MongoDB Scalability Resources
For a deeper dive into scalability with MongoDB, 
sign up for the free, on-demand M103 Basic Cluster 
Administration MongoDB University course. 
MongoDB can also provide instructor-led training 
for operations professionals and teams, covering a 
broad set of skills to manage mission-critical  
Atlas environments. 

MongoDB Professional Services connect your 
team with our consulting engineers to support a 
variety of operations challenges, from deployment 
architecture and preparing for production to 
optimizing performance and costs on a  
live deployment.

About MongoDB
MongoDB’s developer data platform allows 
developers to move fast and simplify how they 
build with data for any application. The platform 
provides developers with a unified interface to 
serve transactional, search, real-time, and data 
lake application needs. The result: less time spent 
rationalizing data infrastructures, and more 
focus on applications that users love and their 
organizations need. 

We are the MongoDB experts. More than  
35,000 customers rely on us to drive their 
businesses. We offer software and services to 
make your life easier. For more information,  
please visit mongodb.com or contact us.

Learn More
Documentation

Customer success stories

Resources 

Webinars and events 

https://www.mongodb.com/try
https://university.mongodb.com/courses/M103/about
https://university.mongodb.com/courses/M103/about
https://www.mongodb.com/products/training/instructor-led#operations-program
https://www.mongodb.com/products/training/instructor-led#operations-program
https://www.mongodb.com/products/consulting
https://www.mongodb.com/
https://www.mongodb.com/contact
http://docs.mongodb.com
http://mongodb.com/who-uses-mongodb
http://mongodb.com/resources
http://mongodb.com/events

