
JUNE 2025

The Operational
Data Layer

How MongoDB empowers enterprises
to modernize and innovate

2

Table of Contents
Abstract 3

Use Cases 4

 Empowering next-gen AI applications 4

 Single view / overcoming silos 7

 Data-as-a-Service (DaaS) 8

 Data governance and data sovereignty 8

 Data APIs 9

Architectural Approaches 10

 Levels of implementation 11

 Architectural patterns 12

 Data ingestion and modelling 17

 Access layer architecture 23

Business Domains 26

 Financial services 26

 Retail 30

 Telco 34

 Manufacturing 36

 Healthcare 37

 Insurance 38

3

Abstract
Every large organization inevitably accumulates “digital dirt”. Legacy systems evolve,
new applications are introduced, and the overall infrastructure becomes increasingly
complex. Mergers and acquisitions only add to this complexity.

Applications originally built for specific user groups
and access patterns are suddenly expected to
interoperate with other systems, support holistic
data views, and enable use cases far beyond
their initial design. This white paper presents the
architectural blueprint for an Operational Data
Layer (ODL), an approach that consolidates and
organizes siloed enterprise data, making it readily
accessible to consuming applications, particularly
next-generation AI initiatives. It focuses on how
MongoDB empowers enterprises by serving as
the core foundation for this ODL and outlines key
architectural patterns, data ingestion methods,
and access layer considerations.

By simplifying data modeling and management,
decoupling modern workloads from the limitations
of legacy systems, and improving scalability,
availability, and responsiveness, an ODL
empowers organizations to innovate faster and
adopt an agile data strategy.

The ODL is a powerful enabler of innovation,
essential for empowering next-gen AI, generative
AI, and agentic AI applications. It is also critical for
addressing data fragmentation and overcoming
silos, enabling the creation of a unified single view
of data (such as customer 360 or product 360) by
consolidating data from multiple sources. This
white paper also presents a series of real-world,
industry-specific examples that demonstrate the
impact of an ODL across various business domains.

Agentic AI systems are currently a topic of
discussion at nearly all major companies. These
are artificial intelligence systems that function
with a certain level of autonomy, capable of
initiating actions to pursue specific objectives
while adapting their behavior in response
to changing environments, goals, or inputs.
Leveraging MongoDB as the underlying memory
layer for these systems offers a highly scalable and
flexible solution—one that can evolve alongside
shifting or expanding requirements.

4

Use Cases
Let’s explore the most prominent projects and use cases where an Operational Data
Layer has proven to be a powerful enabler of innovation, allowing organizations to
leverage existing data in new and modern ways.

Empowering next-gen AI applications
Large organizations are aggressively exploring
ways to capitalize on the emerging paradigm of
large language models (LLMs) and agentic AI—
both to streamline existing applications and to
create entirely new ones, unlocking fresh revenue
streams in the process.

At the heart of this transformation is the strategic
use of data—leveraging the vast amounts of
existing organizational data, combined with the
continuous influx of new data generated daily in
gigabytes or even terabytes, depending on the
industry (e.g., IoT sensor data, telemetrics, call
detail records, etc.).

The goal is to build a robust data layer capable
of powering real-time intelligence and decision-
making—whether it’s determining fraud in a split
second, acting as an internal advisor that provides
natural language insights to employees, or fueling
complex agentic AI workflows.

In reality, many of these AI initiatives are failing
today. A key reason is the incompleteness of
the data being used. Much of the necessary
information remains trapped in silos, fragmented
across systems, and difficult to access in a
holistic and unified way. As a result, LLMs often
hallucinate, inventing information to fill in the gaps.

This can have serious consequences: A customer
service chatbot may provide inaccurate—or
even laughably incorrect—advice, rendering it
ineffective or embarrassing. Worse still, in high-
stakes use cases such as financial risk assessment,
flawed outputs can lead to poor decisions,
regulatory fines, and ultimately a loss of money,
reputation, or trust.

We now highlight four fundamental AI use cases
that can significantly benefit from an operational
data layer: feeding AI training data, providing
context for LLMs to build a RAG architecture,
powering agentic AI workflows, and establishing
hybrid search experiences.

5

AI training data
One of the first steps in an AI process pipeline
is the creation of custom machine learning
models. These models are necessary whenever
standard solutions, such as open-source models,
are not sufficient to address the specific needs
of a business. Instead of relying on generic
approaches, organizations must develop models
that are tailored to their particular use cases.

This need arises because standard models
cannot account for the individual ways in which
companies operate. In areas like fraud detection
and prevention, for example, generic models often
fail because fraud patterns vary widely based
on how each organization operates—whether in
the channels they use, the roles involved, or the
types of products and services they offer. Each of
these variables influence the types of fraudulent
behaviour that may emerge. To achieve reliable
and accurate results, models must be trained with
specialized, context-specific data rather than
relying on generalized assumptions.

An operational data layer provides the ideal
foundation for building such models. It offers
access to rich, continuously updated training
data, supports iterative improvement of model
quality over time, and scales effortlessly with
growing data volumes and performance
demands. By centralizing and managing
enterprise data effectively, the ODL ensures that
AI initiatives are not only more precise but also
more resilient and future-proof.

Context for RAG
Large language models excel at providing natural
language answers and solutions across a wide
range of domains. Their capabilities extend
beyond text, offering multi-modal outputs such as
generated images, audio, and more. LLMs have
quickly become a foundation for many AI-driven
applications, delivering sophisticated interactions
that feel intuitive and human-like.

However, the knowledge LLMs rely on is limited
to the data incorporated during their initial
training. Every model has a so-called cut-off
date, beyond which it has no awareness of new
developments. Moreover, LLMs are typically
trained only on publicly available information
and do not have access to proprietary
enterprise data. This creates significant gaps,
particularly when applications require the latest
insights or organization-specific knowledge.
Without additional input, models are prone to
hallucination—inventing information to fill these
gaps—which undermines trust and effectiveness.

To address this, retrieval-augmented generation
(RAG) has emerged as a powerful architectural
approach. By supplying relevant, up-to-date
information alongside the user’s query, RAG
ensures that LLMs work with accurate and
complete context. MongoDB’s native support
for vector search and vector embeddings allows
models to retrieve semantically similar documents
from internal, proprietary sources, delivering
highly relevant and reliable responses. Combined
with a centralized enterprise knowledge
base powered by an ODL, organizations can
significantly enhance chatbot performance,
automate customer support, and enable real-
time, AI-driven decision-making, creating smarter,
faster, and more responsive user experiences.

https://www.mongodb.com/products/platform/atlas-vector-search

6

Agentic AI
Agentic AI refers to a class of artificial intelligence
systems designed to autonomously make
decisions and take actions to achieve specific
goals with minimal human intervention. Unlike
traditional AI, which often operates within
predefined parameters, agentic AI systems
exhibit higher levels of autonomy, enabling them
to plan, adapt, and execute complex tasks in
dynamic environments. These systems integrate
various AI techniques, including natural language
processing, machine learning, reinforcement
learning, and knowledge representation, to
function effectively across diverse applications.

The core technical challenge in building such
systems is their constant need for relevant,
contextualized data—both structured and
unstructured, historical and real-time. These
agents must integrate insights from diverse
formats: logs, sensor streams, transaction
records, documentation, conversations,
media files, and embeddings. The data is not
only vast but highly volatile, evolving rapidly
as environments shift and agents interact.
Traditional architectures struggle under this
strain, especially when composed of isolated

systems with narrow interfaces. Data translation
friction, inconsistent latency, and poor support
for semantic or event-driven access hinder
the responsiveness these agentic systems
require. Since AI agents operate continuously
and adaptively, any bottleneck in accessing or
interpreting the operational state directly harms
system performance and decision quality.

This is where an ODL becomes essential. It
serves as a unified foundation that connects
legacy systems, real-time feeds, and diverse
data sources—delivering a coherent, queryable
interface designed for AI agents. It allows these
systems to reason across modalities, find patterns
based on meaning rather than structure, and
react to state changes without brittle custom
integrations. By unifying operational memory into
a single layer that supports semantic queries,
streaming updates, and multimodal access, the
ODL forms the infrastructure backbone for agentic
AI. It gives agents the high-fidelity, low-latency,
and context-rich access they need to operate
autonomously—supporting complex architectures
without introducing fragility or opacity.

MongoDB has developed a cross-industry
Framework for Rapid AI Agent Deployment.

Application

Structured
data

Semi-structured
data

Transactional
data

Master data

Operational
data

Log data

Unstructured
data

Text data

Media files

Sensor data

Reference
data

Communication
data

Order
processing

Payment
records

Employee
details

Product
catalogs

Country codes

Tax rates

Sensor data
(JSON)

Server logs

Application
logs

Email headers

Email body

Social media
posts

Image and
video

Audio files

Temperature
data

Motion and
proximity

 Figure 1: How MongoDB handles structured, semi-structured, and unstructured data.

https://www.mongodb.com/solutions/solutions-library/agentic-framework

77

Advanced search experiences
Modern search experiences have moved far
beyond simple keyword matching. Users today
expect intelligent, fast, and highly relevant results,
not just based on words but on context, intent,
and across multiple data formats like text, images,
audio, and even video. A seamless, intuitive
search experience has become critical for driving
engagement, satisfaction, and loyalty across
digital platforms.

The reason for this shift is clear: Traditional
keyword-based approaches fail to capture
the true meaning behind a query. They miss
nuance, intent, and the growing expectation for
personalization and immediacy. As businesses

compete for user attention, delivering smarter,
more responsive search capabilities has
become a key differentiator, whether for retail,
entertainment, e-commerce, or customer support.

This is where an ODL proves invaluable. By
combining full-text indexing with vector search
in a unified architecture, it enables applications
to understand meaning, not just keywords. It
supports petabyte-scale data ingestion and
high query throughput without performance
bottlenecks, enforces data governance across
diverse sources, and empowers AI-driven
insights—all while ensuring search experiences
are faster, more accurate, and more personalized
than ever before.

Single view / overcoming silos
Over the years, enterprise data landscapes
have become increasingly fragmented. Many
applications were built for narrow, internal use
cases such as billing, CRM, and support, with
little thought given to scale, reuse, or long-term
flexibility. Each acquisition introduced new
systems and redundant data silos. The result has
been a patchwork of disconnected platforms,
mismatched schemas, and operational blind
spots. These legacy architectures cannot support
new audiences, prevent consistent SLAs, and
make even basic tasks like assembling a customer
profile unnecessarily complex and error-prone.

This fragmentation is more than just inefficient.
It actively blocks innovation. Critical upstream
projects stall because access to the necessary data
is technically impossible, operationally infeasible,
or simply too expensive. AI initiatives lack the
clean, contextual data they need. Real-time service
improvements and cross-functional automation
efforts are slowed to a crawl. Teams spend more

time waiting for integration work or managing
inconsistent datasets than delivering value.

An ODL offers a fundamentally different
approach. Instead of starting with the limitations
of legacy systems, teams can begin with the
goal. Define the outcome: What data is needed?
What API should expose it? And in what format
it must be structured for efficient development
and access? Only then do we trace back to
where that data resides—in which systems,
tables, and formats—and define change-data
capture (CDC) or extract, transfer, load (ETL/ELT)
pipelines accordingly. This reverses the traditional
model: We design as if building a greenfield
app, unconstrained by outdated infrastructure,
while still integrating what’s necessary from
legacy systems. The result is a streamlined,
forward-looking architecture that accelerates
development, decouples teams from legacy
bottlenecks, and makes room for real-time, AI-
driven and scalable innovation.

8

Data-as-a-Service (DaaS)
Data as a Service (DaaS) is a modern approach to
data delivery that treats data not as a side effect
of business systems, but as a reusable product—
available on demand, consistently structured, and
consumable through APIs, subscriptions, or query
interfaces. It decouples data access from the
systems where data is stored, giving developers,
analysts, operations teams, and even external
partners a unified, governed, and always-on way
to work with information. In a DaaS model, data
behaves like any other service: discoverable,
versioned, and accessible wherever it’s needed.

The challenge isn’t that organizations lack
data. It’s that their current architectures were
never designed to deliver data as a product.
Most internal data flows are tightly bound to
application logic or limited to one-off extracts for
narrow use cases. Data pipelines are handcrafted,
context-specific, and hard to reuse. This makes
data access brittle and slow, but it also creates
deeper organizational friction. Teams duplicate
effort, developers reinvent interfaces, and analysts
build parallel logic simply because there’s no
shared foundation to consume data consistently.

The cost isn’t just technical debt but lost speed,
insight, and alignment.

This is where an ODL can help realizing the
promise of DaaS. The ODL acts as a unified,
centralized layer that aggregates and harmonizes
data from multiple sources, transforming
fragmented and inconsistent information into a
single, coherent view. It provides real-time or near-
real-time synchronization with underlying systems,
ensuring that the data delivered through DaaS is
always current and actionable. The ODL exposes
this data through robust APIs, event streams, and
virtual views, making it easily consumable by a
wide range of applications and users. Crucially,
the ODL incorporates comprehensive governance,
security, and access controls, so that data is
not only accessible but also trustworthy and
compliant. Its scalable and resilient architecture
allows organizations to expand data services as
needs evolve, supporting a growing ecosystem
of data consumers without disrupting existing
operations. In this way, the ODL transforms DaaS
from a theoretical ideal into a practical, reliable,
and strategic capability for modern organizations.

Data governance and data sovereignty
Data governance and sovereignty refer to an
enterprise’s ability to control, protect, and
regulate how data is accessed, shared, stored,
and processed, both internally and externally.
This includes enforcing who can see what,
ensuring that sensitive or personal data is handled
appropriately, and supporting compliance with
local regulations like GDPR. It’s not just about
access; it’s about accountability, traceability,
and trust. True sovereignty means an organization
can decide where its data resides, how it’s used,
and under what legal and technical conditions it’s

exposed. At the technical level, this encompasses
encryption, access controls, auditing, and the
ability to deliver only the minimum required data,
such as exposing aggregates instead of raw
records to downstream consumers.

In the absence of robust governance and
sovereignty mechanisms, enterprises face
significant risk. Without clear data boundaries and
access controls, sensitive customer information
can leak across teams, systems, or borders.
Regulatory breaches can lead to steep fines,

9

reputational damage, and legal exposure. Worse
still, a lack of control often leads to over-correction:
Organizations restrict data access so severely that
teams can’t move forward. Innovation slows, AI
models operate on incomplete inputs, and business
users are forced to work around IT in nonsecure,
fragmented ways. The result is both risk and
inefficiency—two forces that pull the organization in
opposite directions at the same time.

An ODL provides a clean, enforceable separation
between data producers and consumers,
allowing governance to be applied centrally and
consistently. Instead of connecting each team or
application directly to source systems, the ODL
acts as a controlled interface—shaping, filtering,
and enriching data according to defined policies.
Sensitive fields can be masked, access restricted
by role, and data aggregated before exposure,
ensuring that customer-level details are only

shared when strictly necessary. Encryption at rest
and in transit, along with detailed audit logging,
ensures that every data operation is visible
and verifiable. Crucially, the ODL allows these
policies to be implemented without slowing down
development, enabling real-time access where
permitted, and denying it where not.

By shifting governance into a structured, purpose-
built layer, enterprises don’t have to choose
between control and agility. The ODL gives
them both. It ensures that data usage complies
with regional regulations like GDPR and internal
policies while still enabling teams to move fast,
collaborate securely, and build with confidence.
Data sovereignty becomes operational, not
theoretical, embedded into how data flows,
decisions are made, and systems interact. This
unlocks innovation with guardrails, allowing
organizations to act boldly without losing control.

Data APIs
In modern architectures, data APIs have become
a strategic mechanism for delivering data, not
just within teams but across organizational and
even ecosystem boundaries. Internally, they
allow developers to access trusted, real-time
data without needing direct access to complex
source systems. Externally, they enable partners,
platforms, or customers to consume selected
datasets in a controlled, auditable, and secure
way. In both cases, APIs offer clean contracts,
schema stability, access control, and observability
far beyond what traditional database access or
file exports can provide.

Crucially, data APIs also decouple data
consumption from the performance and
availability limitations of internal source
applications. Rather than hitting backend
systems directly—which may have variable load,

maintenance windows, or no built-in resilience—
requests are served through the ODL, which acts
as a scalable, real-time buffer and governance
layer. This separation allows the API to meet
independent, high-availability SLAs—even 99.995%
or higher—without being tied to the uptime of
legacy infrastructure.

With the ODL managing data access,
transformations, and caching, data APIs become
stable, fast, and predictable. Developers
build confidently on well-defined interfaces.
Partners integrate without needing deep system
knowledge. Consumers, whether human or
machine, get reliable access to the data they
need, when they need it, with full compliance and
control. Data APIs, powered by the ODL, turn data
delivery into a product—consistent, secure, and
built to scale.

10

Architectural Approaches
Designing an ODL with MongoDB involves more than integrating tools and
technologies—it requires aligning architectural decisions with the goals of performance,
flexibility, scalability, and maintainability. This section outlines core architectural
paradigms and patterns that guide a robust ODL implementation using MongoDB.

Processing/Serving
Layer

Ingestion LayerSource Systems Operational
Data Layer

MongoDB Clusters

Document Data Model

Unified Query API

Distributed Systems
Architecture

Cloud, On-Premises,
and 5G Edge

Extract
Transform

Load
(ETL)

Mainframe

CRM

ERP

Order Mgmt

Supply Chain Mgmt

Billing

Marketing Automation

Websites

Social Media

Reference Data

Third-Party APIs

HR

Consumer
Applications

Business
Intelligence (BI)

Applications

 Operational Apps
and Services

Gen AI and
Advanced Analytics

API
Calls

Logs

Time Series Data

Change
Data

Capture
(CDC)

Real-Time
Data

Changes

Delta Load

Batch Load
Batch File
Exports

Atlas Stream Processing

MongoDB
Native
Drivers

MongoDB Connectors

API
Calls

Data
Access

API

Change
Streams

Figure 2. Operational data layer architecture.

The architecture in Figure 2 depicts a MongoDB-
centric ODL spanning five conceptual layers:

1. Source systems
These are the systems where data originates—
enterprise applications, operational databases,
third-party APIs, or legacy systems. Often
referred to as “systems of record,” they capture
critical business transactions and events that
must be synchronized into the ODL to enable
real-time and contextualized insights.

2. Ingestion layer
Data from the source systems is then ingested
into the Operational Data Layer through
different ingestion methods, which can be
batch-based ETL processes or real-time change-
data capture (CDC) mechanisms. The ingestion
method is determined by latency requirements
and source system capabilities.

3. Operational data layer
This is the core of the architecture, where
MongoDB consolidates structured, unstructured,
and semi-structured data from multiple sources
into a flexible document data model. It supports
hybrid workloads—including transactional
processing, real-time analytics, and full-text
search—while enabling a unified query interface
and seamless scaling across cloud, on-premises,
and edge environments.

4. Processing/serving layer
This layer enables secure and performant
data access through MongoDB native drivers
and connectors such as Atlas SQL. It serves
data to downstream systems, exposing it in a
consistent and governed way to support internal
applications, external services, and advanced
analytics use cases.

https://www.mongodb.com/docs/atlas/data-federation/query/sql/connect/

11

5. Consumer applications
These are the consuming applications and
services that leverage data from the ODL.
They include operational applications, gen

AI and agentic AI systems, and business
intelligence tools—each benefiting from real-
time, consolidated, and queryable access to
enterprise data.

Levels of implementation
Organizations adopting an ODL do not need to
follow a rigid sequence of phases. Instead, they
can choose the level of integration that aligns
with their strategic goals, technical readiness,
and desired outcomes. These levels—read-only,

enriched, and read-write—represent distinct
architectural patterns that can be adopted
independently or combined. Each unlocks specific
benefits across use cases such as AI enablement,
unified views, data services, and governance.

Read-Only ODL

Read
ConsumersLegacy

Read

Read-Write ODL

ConsumersLegacy

Write Write

Read Read

Enriched ODL

Consumers
Legacy

Write
Aggregated / Derived Data

Additional
Sources Read Read

Figure 3. Levels of implementation of an ODL.

Read-only ODL
At this level, the ODL acts as a high-performance
read replica of the source systems, often including
legacy mainframes or siloed transactional
databases. This setup is ideal for organizations
looking to offload read traffic, support analytics, or
modernize access to critical data via APIs. The ODL
essentially acts as a flexible cache in this scenario.

By centralizing operational reads, teams can begin
delivering data-as-a-service, making curated, low-
latency data available to downstream consumers
without impacting source systems. This level
also lays the groundwork for data APIs, enabling
developers to build modern apps with consistent
access to legacy and real-time data.

This approach is common in low-risk
modernization initiatives, where the ODL offloads
read traffic from source systems, enhancing
performance and availability.

Enriched ODL (read with context)
At this level, the ODL evolves beyond being a
simple replica of source systems. It is enriched
with metadata and reference data, including
inputs from external sources such as third-party
providers or public web datasets. Rather than just
replaying raw operational data, the ODL delivers
contextualized, queryable information that
supports a wide range of use cases.

For example, an enriched ODL might ingest raw
IP address data and augment it with geolocation
metadata—such as country, city, and timezone—
enabling personalized recommendations or
region-specific services.

This enriched context allows organizations to
break down data silos and build a single customer
view, providing both operational and analytical
systems with access to unified, trusted records
across channels. The enriched ODL also serves as

12

a foundation for governed data access, applying
policies for data quality while enabling self-service
analytics and exploration.

Crucially, this level accelerates the development
of gen AI applications by delivering complete,
real-time, and contextual inputs to LLMs and AI
pipelines—without requiring costly upstream
data consolidation.

This approach is especially valuable for
organizations pursuing operational intelligence,
regulated access to cross-domain data, and rapid
AI innovation using rich and timely data.

Read-write ODL
At this level, the ODL participates in writes.
Applications write data both to the ODL and to the
source system—often using messaging platforms
or API gateways to coordinate this dual-write
pattern (sometimes called Y-loading or Y-storing).

To maintain consistency across systems,
organizations often adopt the transactional

outbox pattern or the saga model. These
techniques ensure coordinated writes without
requiring distributed locking, balancing resilience
with practical guarantees of correctness.

This model supports true bidirectional data flow
and paves the way for legacy replacement,
system rationalization, or even real-time
operational platforms powered by the ODL.
Data APIs can be fully backed by the ODL,
supporting both transactional and analytical
behaviors. Generative AI applications benefit
from immediate feedback loops, where user
interactions or AI-inferred updates are captured
directly in the ODL. This level also enables
dynamic data governance, enforcing policies not
just on reads but on data creation and lineage.

Organizations implement this level when the goal
is architectural transformation—moving toward
modern, cloud-native operations, reducing
dependency on legacy systems, or positioning the
ODL as a system of record.

Architectural patterns
Event-driven and microservices
architectures
Modern data systems often adopt a microservices
architecture, where functionality is split into
independently deployable and scalable services.
These services own their logic and are typically
grouped into bounded contexts, each of which
may manage its own data store. This promotes
agility, modularity, and resilience while allowing

multiple related services to interact with a shared
domain model.

To support loosely coupled interactions, an event-
driven architecture (EDA) is often layered on top.
In this model, services publish and subscribe to
events (e.g., OrderPlaced, PaymentCompleted) via
a message broker like Kafka. This asynchronous
communication model enhances scalability and
evolution by decoupling producers from consumers.

https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/saga.html
https://martinfowler.com/bliki/BoundedContext.html

13

Figure 4. Comparison between monolithic and microservices architectures.

An ODL is the ideal foundation for implementing
microservices and event-driven architectures
because it provides a unified, real-time access layer
that bridges the data silos typically introduced by
service-level autonomy. While microservices benefit
from owning their own data for encapsulation and
independence, this often leads to fragmentation
and duplication when services need to share or
correlate data. The ODL solves this by acting as
a central hub that aggregates, harmonizes, and
serves operational data across services without
compromising their autonomy. It ensures that
each service can access up-to-date, relevant
information without tight coupling or direct
dependency on other services’ internal databases.

This is especially powerful in event-driven systems,
where the ODL can serve as both a source and
sink of enriched contextual data—enhancing
event payloads, supporting idempotency, and
enabling reactive patterns such as event replay,
compensation, and temporal queries. In short,

the ODL provides the high-performance, scalable
data backbone that modern microservices
architectures require to operate efficiently and
evolve independently.

Workload isolation: OLTP and OLAP
In traditional data architectures, analytical (OLAP)
workloads often compete with transactional
(OLTP) operations for the same resources,
leading to degraded performance and reliability.
This is especially problematic when real-time
responsiveness is critical for transactional systems.

Workload isolation solves this by separating the
two types of workloads—typically within the same
database infrastructure—so that heavy analytics
don’t interfere with operations like inserts, updates,
or low-latency queries. In MongoDB, this can be
achieved through several architectural patterns
that allow database operations to become more
infrastructure and data center aware, enabling
geographic and operational separation.

https://www.mongodb.com/docs/manual/core/workload-isolation
https://www.mongodb.com/docs/manual/data-center-awareness/

14

Workload isolation patterns
in MongoDB
Replication

One common approach is to use replication.
MongoDB replica sets allow for direct read
operations from secondary nodes, preserving
the primary node for write-heavy transactional
operations. This is done using read preferences
like secondaryPreferred. With this setup, analytical
workloads such as reporting or aggregations can
be offloaded to secondaries, while operational
workloads remain isolated on the primary. Sharding
can further enhance this pattern by segmenting
data across multiple shards, based on data access
patterns or domains.

Shard key-based isolation

Another pattern is shard key–based isolation. A
shard key is crucial for distributing data across
shards in a sharded cluster and plays a key role
in query isolation. MongoDB sharding enables
horizontal scalability by distributing data and
load across nodes. Selecting the right shard key
can significantly impact performance by allowing
for efficient routing of queries to specific shards,

minimizing the number of shards that need to be
scanned. If shard keys are chosen to reflect usage
profiles—such as region or workload type—this can
ensure that OLTP and OLAP traffic is directed to
different parts of the infrastructure. Using zone
sharding, it’s possible to map certain types of
workloads to dedicated hardware, allowing for
a clean separation between operational and
analytical use cases.

This separation of workloads is not CQRS in
the strict architectural sense, but it aligns with
the same principle: isolating operational and
analytical concerns to optimize for each. While
CQRS typically refers to a software pattern that
decouples read and write models at the application
level, shard key–based isolation achieves a similar
outcome at the infrastructure level. By mapping
different traffic profiles—such as high-throughput
writes versus complex analytical reads—to distinct
zones or shard ranges, MongoDB allows systems
to scale more effectively and avoid resource
contention. In this way, infrastructure-level isolation
can complement or even substitute for full CQRS
implementations, especially when the underlying
platform supports intelligent query routing and
workload-aware data placement.

Primary

Secondary
OLTP workload / OLAP optional

Secondary
OLTP workload / OLAP optional

Secondary
OLAP workload

Secondary
OLAP workload

Replication Replication

Replication

Figure 5. OLTP vs OLAP workload isolation diagram.

https://www.mongodb.com/docs/manual/replication/
https://www.mongodb.com/docs/manual/sharding/
https://microservices.io/patterns/data/cqrs.html

15

Application

Driver

Mongos

Primary

Secondary

Secondary

Shard 1

Primary

Secondary

Secondary

Shard 2

Primary

Secondary

Secondary

Shard N

Mongos ••••••

•••

Application

Secondary
(isolated workload)

Secondary
(isolated workload)

Figure 6. Sharded cluster.

Atlas Data Federation

MongoDB Atlas also provides Data Federation,
which allows querying the data stored in multiple
sources, including cloud object storage—like S3
bucket storage, without loading that data into
MongoDB itself. This is useful when historical or
low-access-frequency data needs to be queried
without affecting the core operational database.
For example, audit logs or user history can remain
in cold storage, while being accessed in real time
through federated queries, eliminating the need for
duplication in the ODL.

Geographical workload segregation

Geographical workload segregation is another
useful strategy. MongoDB supports region-
aware routing, allowing queries to be directed
to the nearest available node. OLTP workloads

can be served from local infrastructure to
ensure performance, while OLAP queries can
be routed to centralized or lower-cost regions
where they won’t interfere with transactional
performance. This is particularly effective
for global applications that have different
performance or compliance requirements in
different geographies. In addition to performance
benefits, geo-sharding also supports data
sovereignty by enabling data to reside within
specific jurisdictions—an increasingly common
requirement in regulated industries and regions
with strict data residency laws. (Visit: Cloud
Providers and Regions.)

These workload isolation techniques not only
improve performance and scalability, but also help
reduce infrastructure costs by aligning resource
usage with workload characteristics.

https://www.mongodb.com/docs/atlas/data-federation/overview/
https://www.mongodb.com/docs/atlas/cloud-providers-regions/
https://www.mongodb.com/docs/atlas/cloud-providers-regions/

16

Unifying fragmented architectures
with MongoDB
Modern architectures built on microservices
and event-driven systems offer flexibility and
scalability, but they also introduce fragmentation.
Data ends up scattered across different services,
each with its own persistence layer, making
consistency, observability, and operational
intelligence harder to maintain.

MongoDB helps address this by acting as a
central aggregation and processing layer—a
purpose-built operational data layer that
reunifies data coming from different services,
systems, and workloads.

In event-driven environments, MongoDB can
act as a sink for Kafka or other event brokers,
capturing transactional signals from across the
system in real time. These events can be stored
and made queryable for downstream applications,
dashboards, or analytical processes.

In microservices-based systems, each service
often manages its own data independently.
MongoDB can serve as a common data access
layer, where data from services like orders,
inventory, or payments can be joined, searched,
and analyzed together. Thanks to its flexible
document model, MongoDB can support a variety
of schemas without requiring rigid definitions or a
central monolith.

Workload isolation also plays a role here. Since
MongoDB supports both OLTP and OLAP patterns
natively—through replica sets, sharding, read
preferences, and Atlas Data Federation—teams
can build an ODL that powers both transactional
APIs and real-time analytics, without duplicating
data or sacrificing performance.

In doing so, MongoDB becomes the operational
backbone of distributed systems—unifying
fragmented data into a consistent, scalable, and
high-performance layer that supports both business
operations and data-driven decision-making.

17

Data ingestion and modelling
MongoDB’s document-oriented model supports
constantly evolving schemas, making it ideally
suited for an operational data layer. Its inherent
flexibility enables iterative and agile development,
ensuring that data structures remain aligned with
dynamic application requirements and changing
data integrations.

Schema design patterns
MongoDB provides a set of established schema
design patterns developed in collaboration with

customers across industries. These patterns serve
as practical tools to help developers fully leverage
the power of the document model. They offer a
structured way to think in documents—bringing out
the strengths of document-oriented storage by
aligning data models with real-world application
needs. Rather than relying on ad hoc modeling,
developers can use these patterns to build
scalable, efficient, and maintainable access to
enterprise data in the ODL.

Figure 7. Schema design patterns.

Use Case Cagetories

https://www.mongodb.com/blog/post/building-with-patterns-a-summary
https://www.mongodb.com/blog/post/building-with-patterns-a-summary

18

Embedding vs. referencing
Relational database systems enforce rigid
referencing through normalization rules and
foreign key constraints to maintain structural
integrity. MongoDB, however, provides the
flexibility to choose between embedding and
referencing on a case-by-case basis, facilitating
a more nuanced approach to data modeling.
Embedding is best when you need to access
related data together frequently and efficiently,
while referencing is better for managing large,
complex datasets independently and minimizing
data duplication.

Developers can embed data to enhance query
performance and document clarity or employ
referencing through MongoDB’s native _id
(primary key) attribute to manage complex
relationships and maintain the distinctness of
top-level entities. This flexibility enables precise
optimization of data models, achieving an
optimal balance between clarity, performance,
and scalability.

To further dig into the art of data modelling,
MongoDB provides a comprehensive set of
learning material for further reading. Also,
MongoDB has developed the Relational Migrator,
which is a tool that helps automate the process of
migrating from a relational, tabular database like
Oracle or PostgreSQL to MongoDB.

Ingestion methods
A foundational element of any operational data
layer is its ability to effectively ingest data from
diverse sources. With data flowing from enterprise
applications, APIs, IoT devices, event streams, and
legacy systems, choosing the right ingestion method
is critical to ensure data is processed, stored, and
made available in a timely, scalable, and efficient
manner. From batch processing to real-time
streaming and hybrid approaches, modern data
ingestion strategies are designed to support varied
operational requirements and use cases.

Batch ingestion

Batch ingestion is a foundational technique
used when data can be processed in scheduled
intervals. Typically, this involves loading large
volumes of data, such as hourly transaction logs
or daily exports, into MongoDB from files or other
databases. This approach is ideal for consolidating
updates from systems that do not support real-
time integration or for initial data loads.

MongoDB import tools (mongoimport)

One of the simplest tools for batch ingestion
into MongoDB is mongoimport. This command-
line utility supports importing JSON, CSV, or
TSV files directly into a collection, making it
especially useful for loading structured files during
development or testing. For example, the following
command loads a CSV file containing sales data
into a MongoDB collection:

mongoimport --uri “mongodb+srv://USERNAME:PASSWORD@CLUSTER_URL” \
 --collection sales \
 --type csv \
 --file daily_sales.csv \
 --headerline

This command connects to a MongoDB
deployment via the URI, specifies the file type,
and uses the CSV headers to define field names.

While effective for small-scale use cases,
mongoimport is typically not suitable for complex
or large-scale pipelines.

https://www.mongodb.com/docs/manual/data-modeling/concepts/embedding-vs-references/
https://www.mongodb.com/docs/manual/data-modeling/concepts/embedding-vs-references/
https://www.mongodb.com/resources/basics/databases/data-modeling
https://www.mongodb.com/resources/basics/databases/data-modeling
https://www.mongodb.com/products/tools/relational-migrator

19

Bulk write API for programmatic
batch control

To support larger or more programmatically
controlled workflows, MongoDB provides the
bulk write API. This allows developers to insert
multiple documents in a single operation,

offering efficiency and control in scripted
batch pipelines. Consider a Node.js application
that programmatically inserts product data.
Developers can construct an array of operations
and execute them in bulk using the API, which
significantly reduces the overhead compared to
individual inserts.

Beyond these tools, MongoDB also integrates with
a broader ecosystem of platforms and utilities that
facilitate batch ingestion. MongoDB Compass,
our graphical user interface, provides guided
import options suitable for non-technical users. For
more advanced workflows, MongoDB Atlas Data

Federation allows querying and materializing data
from external sources like AWS S3. Developers
can also build custom ingestion pipelines using
native MongoDB drivers or leverage connectors
available in ETL platforms like Apache NiFi, Talend,
or Informatica.

const { MongoClient } = require(“mongodb”);
async function batchInsert() {
 const uri = “mongodb+srv://USERNAME:PASSWORD@CLUSTER_URL”;
 const client = await MongoClient.connect(uri);
 const db = client.db(“ecommerce”);
 const collection = db.collection(“sales”);

 const data = [
 { item: “shirt”, quantity: 10, price: 20 },
 { item: “pants”, quantity: 15, price: 30 },
 { item: “shoes”, quantity: 100, price: 50 }
];

 const operations = data.map(doc => ({ insertOne: { document: doc } }));
 await collection.bulkWrite(operations);

 console.log(“Batch Data Inserted”);
 client.close();
}
 batchInsert();

https://www.mongodb.com/products/tools/compass
https://www.mongodb.com/docs/drivers/

20

ETL vs. ELT

When building data pipelines, organizations often
adopt either ETL (extract, transform, load) or ELT
(extract, load, transform) strategies, depending on
their infrastructure and data processing needs.

In a traditional ETL pipeline, data is first extracted
from one or more sources, transformed externally
(cleaned, enriched, or reshaped) and then loaded
into the destination system, such as MongoDB.
This is useful when incoming data needs to be pre-
processed before it is ready for operational use.

In contrast, ELT flips the transformation step. Data
is extracted from its source, loaded directly into
MongoDB in its raw form, and then transformed
within MongoDB itself. This approach takes
advantage of MongoDB’s robust Aggregation

Pipeline and integration with tools like Apache
Airflow to handle transformations post-ingestion.

MongoDB supports both paradigms flexibly. In
an ETL setup, developers can use platforms like
Apache Nifi or Talend to clean and shape data
before writing it to MongoDB. In an ELT context,
connectors such as Airbyte, the MongoDB
Kafka Connector, and the MongoDB Spark
Connector enable fast loading of raw data into
MongoDB, where downstream transformations
can be performed either natively or through
orchestration tools.

To illustrate this, consider a scenario using Apache
Spark. A Spark job can read data from a CSV
file, then write that data directly to a MongoDB
collection using the Spark Connector:

This hybrid integration allows teams to use Spark for powerful data transformations while benefiting
from MongoDB’s flexibility as a storage engine.

from pyspark.sql import SparkSession

spark = SparkSession.builder\
 .appName(“Example”)\
 .config(“spark.mongodb.output.uri”,
“mongodb+srv://USERNAME:PASSWORD@CLUSTER_URL/ecommerce.sales”)\
 .getOrCreate()

data = spark.read.csv(“daily_sales.csv”, header=True)
data.write.format(“mongodb”).mode(“append”).save()

https://www.mongodb.com/developer/products/mongodb/mongodb-apache-airflow/
https://medium.com/@bilative/data-flow-with-nifi-writing-data-to-mysql-mongodb-and-slack-from-stream-data-api-d8c983ed66a0
https://help.qlik.com/talend/en-US/studio-user-guide/8.0-R2024-08/creating-connection-to-mongodb-database
https://www.mongodb.com/developer/products/atlas/elt-mongodb-data-airbyte/
https://www.mongodb.com/products/integrations/spark-connector
https://www.mongodb.com/products/integrations/spark-connector
https://www.mongodb.com/docs/spark-connector/current/

21

Real-time ingestion and streaming

In operational workloads requiring immediate data
access—such as fraud detection, personalization
engines, or telemetry—real-time ingestion is
critical. MongoDB integrates tightly with Apache
Kafka to support event-driven architectures. Using

the MongoDB Kafka Connector, developers can
configure a Kafka sink that listens to a topic and
writes streaming records directly into MongoDB
collections with minimal latency.

A typical Kafka Sink Connector configuration
looks like the following:

With this setup, transactional events from a
payment platform, for example, are streamed in
real time into MongoDB, enabling live processing
and analytics downstream.

Beyond Kafka, MongoDB supports custom stream
ingestion pipelines using code. Developers can

implement a Node.js Kafka consumer to listen for
messages on a topic—say, IoT sensor data—and
insert them into a MongoDB collection as they
arrive. This is useful for telemetry, event logging,
or system monitoring.

connector.class=com.mongodb.kafka.connect.MongoSinkConnector
topics=transactions
key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter=org.apache.kafka.connect.json.JsonConverter
connection.uri=mongodb+srv://USERNAME:PASSWORD@CLUSTER_URL
database=banking
collection=transactions

const kafka = require(‘kafka-node’);
const { MongoClient } = require(‘mongodb’);

const consumer = new kafka.Consumer(client, [{ topic: “sensorData”, partition: 0 }], {
autoCommit: true });

consumer.on(‘message’, async function(message) {
 const mongoClient = await MongoClient.connect(“mongodb+srv://USERNAME:PASSWORD@
CLUSTER_URL”);
 const collection = mongoClient.db(“iot”).collection(“readings”);

 const sensorEvent = JSON.parse(message.value);
 await collection.insertOne(sensorEvent);

 console.log(“Inserted Sensor Data:”, sensorEvent);
 mongoClient.close();
});

This stream processing approach allows MongoDB to continuously receive and store data with near
real-time responsiveness, making it ideal for high-throughput pipelines.

https://www.mongodb.com/docs/atlas/atlas-stream-processing/overview/

22

Change data capture

Change-data capture (CDC) is a powerful
technique used to monitor and track data
changes—such as inserts, updates, and deletes—in
a source database and propagate those changes
to downstream systems in real time. Depending on
the implementation context, CDC can serve either
as a real-time ingestion method or as part of a
broader stream processing architecture.

When used for real-time ingestion, CDC enables
immediate propagation of data changes to
support time-sensitive workflows. For example,
in banking, CDC can power fraud detection
mechanisms by instantly flagging suspicious

transaction patterns as they occur. Similarly, in
retail environments, CDC can help maintain up-to-
date inventory records across distributed systems
by synchronizing stock levels in real time.

In stream processing scenarios, CDC feeds these
change events into platforms like Apache Kafka,
enabling continuous transformation, enrichment,
or aggregation before further consumption. This is
particularly useful in use cases such as ingesting
IoT telemetry, where sensor updates are reflected
in MongoDB collections with minimal latency,
or monitoring telecom networks, where real-
time analysis of service events can uncover and
address outages as they happen.

External APIs Atlas Data
Federation

CDC

Change
capturing

Data
Transformation

Schema validation

Data enrichment

Normalization

Aggregation Pipeline

Batch loads

Delta loads

ETL

Ingestion LayerData Sources Destination

Change
streaming

Legacy Systems

CRM

ERP

Iot devices/sensors

Supply Chain Mgmt

Billing

Marketing Automation

Websites

Social Media

Reference Data

Third-Party APIs

HR

Logs

Time Series Data

Operational Data
Layer

Figure 8. Ingestion and modeling flow.

23

MongoDB partnerships for CDC in
mobile applications

MongoDB also extends CDC capabilities to mobile
and edge environments through partnerships with
PowerSync, Ditto, and Ably, providing offline-first
and real-time sync functionality for distributed apps.

PowerSync allows developers to sync only the
most relevant data changes to mobile clients,
reducing bandwidth utilization and ensuring timely
updates. In a delivery app, for instance, drivers
can receive new orders in real time, directly from
the operational MongoDB backend.

Ditto enables offline data capture and peer-to-
peer sync, allowing mobile users to work even

without connectivity. Once the device is back
online, changes are reconciled automatically
with MongoDB, making it ideal for collaborative
or field apps.

Ably supports global real-time pub/sub
messaging, helping propagate MongoDB updates
to client devices at scale. A ride-sharing app,
for example, might use Ably to notify riders and
drivers of trip status changes instantaneously.

Together, these integrations allow MongoDB to
serve as a real-time backend for both cloud-
native and edge-native applications, providing
seamless data sync, high performance, and
resilient offline capabilities.

Access layer architecture
As discussed in the previous sections, once data
is unified and governed within the ODL, the
question becomes how to make it securely and
efficiently available to consumers—from internal
services and analytics engines to customer-
facing applications and AI models. This is where
the access layer comes into play.

The access layer is not a monolithic gateway
but a structured architectural tier responsible
for brokering data access across domains while
enforcing organizational policies. It acts as the
outer boundary of the ODL, shaping how internal
data surfaces to the outside world under strict
security controls, performance guarantees, and
multi-modal interface support.

A well-architected access layer must fulfill four
essential requirements. First, it must support
protocol agnosticism, enabling flexibility across
REST, GraphQL, gRPC, and WebSockets. Second,
security must be intrinsic: zero-trust principles,
identity-based policies, and cryptographic
safeguards must be enforced at every point of
entry and communication. Third, performance
isolation is crucial—operational and analytical
workloads must coexist without interference.
And finally, the system must be evolution-
proof, with versioned APIs and adaptable
schema management to avoid breaking
downstream integrations.

Layered architecture and
access routing
To meet these goals, the access layer is logically
composed of three integrated tiers: an API
gateway, a service mesh, and a data proxy layer.
Each tier plays a distinct role in brokering access
between data producers and consumers.

At the outermost boundary, the API gateway
serves as the primary enforcement point. It
handles authentication, rate limiting, routing, and
protocol translation. For ODL environments, both
Kong and Traefik are well suited options. Kong
offers dynamic plugin support and proven high
throughput, while Traefik provides a lightweight,
middleware-driven architecture with native
service discovery and seamless integration into
modern containerized environments. In either
case, the gateway inspects tokens, enforces per-
tenant quotas, and emits detailed telemetry to
observability platforms, all while shielding internal
systems from direct exposure.

Within the system boundary, the service mesh
ensures that microservices communicate
securely and reliably. It enforces mutual TLS
using SPIFFE identities, applies retry logic and
circuit breaking, and propagates tracing headers
consistently. Mesh frameworks such as Istio and
Linkerd allow administrators to apply fine-grained

https://www.mongodb.com/blog/post/mongodb-atlas-power-sync-future-offline-first-enterprise-apps
https://www.mongodb.com/blog/post/ditto-mongodb-connector-seamlessly-sync-edge-and-cloud-data
https://www.mongodb.com/blog/post/mongodb-atlas-integration-ably-unlocks-real-time-capabilities
https://docs.konghq.com/gateway/latest/
https://doc.traefik.io/traefik/
https://spiffe.io/docs/latest/spiffe-about/overview/
https://istio.io/
https://linkerd.io/

24

traffic policies and observability across every
service call, even in fast-moving environments.

The innermost data proxy layer mediates access
to the underlying databases. It implements
intelligent connection pooling, request caching,
and workload-aware routing. This is especially
important in hybrid environments where
OLTP, OLAP, and RAG-based workloads share
infrastructure but demand different response
times and consistency guarantees.

Access patterns by consumer type
OLTP applications, such as fraud detection or
customer portals, require single-digit millisecond
response times. Queries are routed to the primary
node of a MongoDB replica set for consistent
reads and writes, with optional caching at the
application layer or via mongos in sharded clusters.

OLAP and BI applications process large datasets
for aggregations and time-series analysis. Queries
are routed to read-only secondary nodes using
MongoDB’s secondaryPreferred read preference,

leveraging the aggregation framework for
complex analytics. Atlas Data Federation or
$out/$merge pipelines can integrate external
data sources, with proper indexing ensuring
performance without impacting OLTP workloads.

AI applications, including RAG and agentic
interfaces, rely on semantically enriched data.
Queries are routed to MongoDB Atlas Vector
Search indexes using $vectorSearch for semantic
scoring, with embeddings generated by external
models (e.g., OpenAI) or Voyage AI, included and
automatically managed in MongoDB Atlas since
Q3 2025. Hybrid search combines vector and
keyword queries for precision, while $lookup or
application-level merging integrates operational
metadata, with careful synchronization ensuring
near-real-time data consistency.

The following example code demonstrates role-
based query routing for OLTP, OLAP, and AI/
RAG workloads in MongoDB, using Flask and
JWT authentication to direct requests to primary
nodes, secondary nodes with aggregations, or
vector search indexes, respectively.

@app.route(‘/entities’, methods=[‘GET’])
@jwt_required()
def get_entities():
 role = get_jwt_identity().get(“role”, “default”)
 if role == “analyst”:
 data = list(db.documents.aggregate([...],
 read_preference=ReadPreference.SECONDARY_PREFERRED)) or [{}]
 return jsonify({“source”: “OLAP”, “data”: data})
 elif role == “ai-agent”:
 prompt = request.args.get(“prompt”, “...”)
 data = list(db.documents.aggregate([{“$vectorSearch”: {...}}])) or [{}]
 return jsonify({“source”: “AI”, “data”: data, “prompt”: prompt})
 else:
 data = db.documents.find_one({“status”: ...}) or {}
 return jsonify({“source”: “OLTP”, “data”: data})

Data change streams
MongoDB Change Streams enable event-driven
architectures by capturing real-time changes
to documents in collections (such as inserts,
updates, and deletes) without the need for

polling. This makes it easy for developers to
build responsive applications that can react to
data changes dynamically, such as triggering
workflows, updating caches, or detecting
anomalies. Here’s an example that listens for real-
time changes in a transactions collection:

https://www.mongodb.com/docs/manual/changeStreams/

25

Encryption and
certificate management
TLS must be enforced for all external access
points. Many organizations use Let’s Encrypt with
the ACME protocol to automatically provision
and renew certificates.

For regulated environments or where higher
assurance levels are required, DigiCert offers a
commercial alternative to Let’s Encrypt, providing
extended validation (EV) certificates, managed
PKI services, and detailed compliance reporting.
Organizations may adopt a hybrid strategy using
Let’s Encrypt for internal or non-critical services
and DigiCert for customer-facing or compliance-
sensitive APIs.

Security enforcement and
data trust
Large enterprises should implement a layered
approach to security in the access layer, extending
beyond TLS and authentication. Tools like Open
Policy Agent (OPA) can provide dynamic, policy-
based access control at the API level. Keycloak
offers a robust solution for managing identities,
issuing JWTs and embedding role-based claims.

HashiCorp Vault can securely manage secrets and
inject credentials into runtime environments.

For enhanced security, enterprises may consider
integrating Thales CipherTrust or Luna HSMs to
offload cryptographic operations and store root
keys in tamper-proof hardware. These tools can
support compliance with data sovereignty and
key management regulations, particularly in
finance, telecom, and public sector applications.
Together, such solutions help enforce least
privilege and enable auditable access, aligning
with regulatory standards.

A foundation for scalable,
secure access
When implemented correctly, the access layer
enables differentiated service levels across
consumer types without duplicating data or
increasing risk. It allows organizations to decouple
their backend systems from consumer-facing
APIs, introduce caching and query acceleration,
enforce compliance, and scale independently.

More than a routing layer, this architecture
becomes the execution surface for enterprise-
wide policy governing not just who accesses which
data but how, when, and under what guarantees.

const { MongoClient } = require(“mongodb”);
async function watchChanges() {
 const uri = “mongodb+srv://USERNAME:PASSWORD@CLUSTER_URL”;
 const client = await MongoClient.connect(uri);
 const collection = client.db(“banking”).collection(“transactions”);

 const changeStream = collection.watch();

 changeStream.on(“change”, (change) => {
 console.log(“Next Change:”, change);
 // Process real-time event (e.g., flag fraudulent activity)
 });
}
 watchChanges();

https://letsencrypt.org/
https://en.wikipedia.org/wiki/Automatic_Certificate_Management_Environment
https://www.digicert.com/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.keycloak.org/
https://en.wikipedia.org/wiki/JSON_Web_Token
https://www.hashicorp.com/en/products/vault
https://cpl.thalesgroup.com/encryption/data-security-platform
https://cpl.thalesgroup.com/encryption/hardware-security-modules/network-hsms

26

Business Domains
Everything discussed so far applies broadly across major industries. In the following
sections, we will shed light on the specific necessities, challenges, usage scenarios,
and benefits associated with implementing an Operational Data Layer. By examining
real-world demands and pain points, we aim to clarify how an ODL can unlock
value, streamline data access, and support modern digital initiatives across diverse
enterprise landscapes.

Financial services
The financial services industry is undergoing
rapid transformation, driven by regulatory
pressures, technological innovation, and
evolving customer expectations. From payments
modernization to AI-driven transformation,
financial institutions face diverse operational
challenges requiring agile, scalable, and
intelligent data infrastructure.

Payments modernization
Payments sit at the core of digital finance, yet
many institutions are constrained by fragmented
systems and outdated infrastructure. Integrating
modern payment rails—ACH, SEPA, RTP, SWIFT,
blockchain protocols—requires a unified, high-
performance data layer.

MongoDB serves as the operational data layer
for a “payments data hub,” enabling financial
institutions to consolidate data from various
payment rails into a unified, real-time store.
This payment ODL provides a platform for
critical workflows such as payment validations,
verification of payee (VoP), and reconciliation
across multiple systems—enhancing operational
efficiency and reducing error rates.

Key capabilities of MongoDB make it the perfect
fit for payments modernization:

• Search and matching: Advanced search
capabilities, including fuzzy, semantic, and
hybrid searches, help validate and verify payee
information, flag duplicate entries, and rapidly
match transaction details across datasets.

• Scalability: MongoDB scales effortlessly to
support high transaction volumes, ensuring
uninterrupted service even during peak payment
periods, such as holidays or promotional
campaigns.

• Multi-modal data handling: MongoDB’s
support for unstructured, semi-structured,
and structured data allows institutions to
manage diverse payment data formats without
transformation.

• Speed: Real-time performance ensures
payments are processed, validated, and
reconciled in milliseconds—ideal for enabling
frictionless user experiences.

In addition to streamlining payments
infrastructure, MongoDB provides critical security
features to protect sensitive payment data, such
as encryption at rest and in transit, tokenization
for sensitive fields, and fine-grained access
controls. By implementing MongoDB as the ODL,
financial institutions reposition themselves as
agile, payment-first innovators ready to meet
evolving consumer and regulatory demands.

27

AI-driven financial
services transformation
AI is reshaping financial services with
personalized banking, conversational agents,
dynamic portfolio optimization, and more.
Delivering these capabilities at scale requires a
data platform that’s fast, flexible, and built for
intelligent automation.

MongoDB underpins these AI-powered solutions
by providing the robust operational data layer
necessary to support high-speed data ingestion,
retrieval, and analysis. Key use cases include:

AI-personalized digital banking

MongoDB enables intelligent systems such
as virtual financial assistants, chatbots, and

recommendation engines that deliver hyper-
personalized customer experiences. Features like
Atlas Vector Search empower these systems to
decipher intent, retrieve relevant insights, and
provide actionable recommendations based on
real-time customer profiles.

• Retrieval-augmented generation (RAG): By
vectorizing and indexing financial data,
MongoDB powers RAG workflows that enable
generative AI systems to synthesize answers
based on meaning-driven (semantic) search
patterns. For example, RAG can assist
customers in understanding mortgage terms,
optimizing savings plans, or finding relevant
policy documents. See figure 9:

Private Data
(Text, PDF,
Logs, etc.)

Parent
1

STORAGE

Parent
N

Child1
Parent_id:1

Child2
Parent_id:1

Child3
Parent_id:1

VECTORIZATION

Embedding
Model

[0.1; 0.5; 0.7…]

[0.2; 0.36; 0.8…]

[0.1; 0.44; 0.7…]

Question:
“Can I overdraft

my account?”

Question Embedding
[0.1; 0.5; 0.7…]

contextual
data retrieval

MongoDB Atlas

Relevant
Documents

Augmented
answer:

“Yes, you can ….”

LLM InputEmbedding Model

Vector Search Collections

QUERYING

MongoDB as the ODL for RAG Workflows

Figure 9. MongoDB as the ODL for RAG Workflows.

https://www.mongodb.com/solutions/solutions-library/ai-driven-interactive-banking

28

• Agentic AI-powered investment portfolio
management: AI agents use MongoDB’s
scalable architecture for predictive modeling,
risk analysis, and investment strategy
optimization. With real-time data integration

and semantic search capabilities, portfolio
managers can adjust allocations dynamically
and respond to market changes with greater
precision. See figure 10:

MongoDB’s ability to integrate structured and
unstructured data gives AI applications access
to rich, contextualized datasets. That means

more accurate models, faster insights, and
better customer outcomes, all within a secure,
compliant environment.

Market
Indicators

Market Data

MongoDB

Investment
Portfolio Manager

Market News

Data Ingestion
Application

Market News
Agent

GraphLLM

Orchestration

Market
Assistant Agent

GraphLLM

Orchestration

Market
Analysis Agent

GraphLLM

Orchestration

Reports

Charts

Dashboards

Market Insight
Application

Vector Search

Prompt

MongoDB as the ODL for Agentic AI Solutions

Figure 10. MongoDB as the ODL for Agentic AI Solutions.

https://www.mongodb.com/docs/atlas/architecture/current/solutions-library/fin-services-agentic-portfolio/
https://www.mongodb.com/docs/atlas/architecture/current/solutions-library/fin-services-agentic-portfolio/

29

Open finance
Open finance is transforming the financial
landscape by creating opportunities for innovation
and competition. It allows third-party financial
service providers to access and use consumer
financial data from banks and other financial
institutions through APIs. This enables the delivery
of hyper-personalized experiences and advanced
services, such as personal finance management
(PFM) apps and account aggregation.
However, this also introduces new challenges in
security, compliance, and interoperability that
organizations need to address to stay ahead.

To overcome these challenges, MongoDB Atlas
functions as the operational data store (ODS)

for open finance, offering a flexible, scalable
and secure data platform. Its document model
allows the integration of diverse data types and
data sources, natively storing data in a binary
representation called BSON (binary JSON) that is
compatible with JSON, making it ideal for open
finance applications. MongoDB supports a wide
range of extensions and connectors to create
RESTful API development, empowering developers
with an easy-to-use and intuitive data platform
that boosts productivity and performance.
MongoDB Atlas also ensures enterprise-grade
security with built-in encryption, role-based
access controls, and auditing to comply with
regulations such as GDPR, PSD2 and FiDA.

External Institution
(e.g. Green Bank or

MongoDB Bank)

API

Leafy Bank

Expose Data

(e.g. Accounts,
Transactions, etc)

Microservices

MongoDB Atlas

MDB Database

Central
Storage

(For external
institutions

data)

Data Fetching

User
Authorization

Emulating OAuth 2.0
(Requests w/Bearer

Tokens)

User

Request to connect External
Accounts (Provide consent)

Response
(JSON format)

Business or application logic could be added here
(e.g. leveraging MDB Aggregation Pipelines for Global Positioning)

Response with External Data
Data Retrieval

Directly connect to the external data sources and push data into
MongoDB, possibly at scheduled intervals or on-demand.

1

5

4

2

6

3

MongoDB as the ODL for Open Finance

Figure 11. MongoDB as the ODL for Open Finance.

https://www.mongodb.com/blog/post/embracing-open-finance-innovation-with-mongodb

3030

Financial crime mitigation
and compliance
Fraud prevention and compliance are mission-
critical but increasingly difficult to manage as
transaction volumes rise and capabilities like
AML and KYC become more critical. Traditional
systems struggle to scale, adapt, and respond to
threats in real time.

MongoDB helps financial institutions modernize
their fraud and compliance operations with a
unified data architecture. Using MongoDB’s
flexible document model, teams can consolidate
customer profiles, transactions, and third-party
data into a single, queryable view, reducing blind
spots across detection workflows. Features like

change streams enable real-time monitoring,
allowing institutions to detect suspicious activity
as it happens and accelerate incident response.

Advanced workloads are also supported through
MongoDB Atlas Vector Search, which enhances
AI-powered detection models by surfacing subtle
anomalies and improving precision. Built-in
enterprise security, including encryption, role-
based access controls, and audit logging, ensures
alignment with standards like PCI DSS, GDPR,
CCPA, and PSD2.

With MongoDB as the ODL, financial organizations
can build adaptive fraud ecosystems that
minimize risk, reduce false positives, and support
regulatory compliance.

Retail
Retail is one of the fastest moving industries and a
fast adopter of new technology. Today’s retailers
are pushed to innovate in a competitive market
with slim margins to find new ways to attract
customers and keep their costs down. Fragmented
systems and data silos often prevent retailers from
reaching their full potential and understanding
their customers and their businesses.

An ODL is often implemented to turn these
challenges into opportunities by unlocking data
to be used across the organization and bridging
between disparate ecommerce and in-store
technology estates. Retailers look to combine
data to get the full view of their customers and
their businesses through customer 360 and unified
commerce transformations.

On the other side of the business, retailers struggle
to combine data across a disparate supply chain
and ERP estate. Traditional ERP technologies
were not designed for the complexity of modern
retail—for example omnichannel ordering or
buy online, pick up in store. They also weren’t
designed to handle the peak seasonal traffic as
the ecommerce world has expanded and cannot
keep up with the performance expectations
of the modern customer. Acting as a real-time
data engine, an ODL delivers agility for fast
development of new services while maintaining the
stability of core systems. By breaking down silos,
integrating speed-layer innovation, and ensuring
operational reliability, an ODL empowers retailers
to drive growth, enhance customer loyalty, and
stay agile in a rapidly evolving marketplace.

31

Unified commerce
Today’s shoppers demand fluid and connected
experiences. Retail success depends on delivering
frictionless, omnichannel journeys where every
customer interaction—whether online, in-store,
or mobile—is seamlessly integrated. Unified
commerce is a transformative business strategy
that centralizes sales channels, inventory,
customer data, and fulfillment systems into a
single platform. This integration unlocks real-
time visibility and enables fluid transitions across
touchpoints while delivering key benefits:

• Seamless customer experience: By connecting
all channels, businesses can offer consistent
and personalized shopping experiences.

• Improved efficiency: A centralized platform
streamlines operations, reduces errors, and
optimizes workflows.

• Better data insights: Unified commerce
provides comprehensive visibility into customer
behavior and business performance, supporting
data-driven decisions.

• Enhanced personalization: A unified view
of customer data allows businesses to tailor
marketing efforts, product recommendations,
and customer interactions with precision.

• Streamlined inventory management:
Accurate inventory tracking across channels
prevents stockouts and improves fulfillment
accuracy at scale.

Implementing unified commerce effectively
hinges on a robust operational data layer (ODL).
An ODL bridges fragmented systems and powers
the real-time capabilities retailers need, such
as dynamic pricing, live inventory tracking, and
intelligent order orchestration. It provides the
agility to modernize legacy architectures while
ensuring stability in core operations. By enabling
scalability, the ODL supports peak performance
during high-demand periods and accelerates
innovation, allowing retailers to swiftly adapt
to evolving customer expectations and market
conditions. Unified commerce, powered by an
ODL, is more than a strategy. It is the foundation
for delivering exceptional experiences, driving
growth, and achieving sustained success in the
modern retail landscape.

Credit check

Fraud Detection

Pymt Processing

Personalized
Promo

Supply Chain

Applications

ReplenishmentReplenishment

Domain Driven Design for Unified Commerce

A
P
I

● Customer Profile
● Unified Product Catalog
● Unified Inventory
● Multichannel Orders

ETL
CDC

CRM

Order Management

Marketing Campaigns

Product Catalog

Social Media

Customer

Third-Party APIs

Other Data sources

Supply Chain Mgmt

Returns

PIMS

Operational
Systems

Data Domains

Buy-Online-Pick-In
store(BOPIS)

Figure 12. Domain-driven design for unified commerce.

32

Customer data platform 360
(single) view
Unified commerce helps retailers connect systems
and channels, creating consistent experiences
across all customer touchpoints. But to deliver truly
meaningful and personalized interactions, retailers
need more than just connected systems. They
need a complete, real-time view of their customers.

This is where customer 360, or single view, comes in.
It unifies data from e-commerce purchases, in-store
sales, CRM platforms, and more into one accurate
and governed profile. Without this real-time,
complete understanding of customer behavior and
preferences, personalized marketing and strong
customer relationships are nearly impossible.

With a unified customer-360 profile, retailers can
offer personalized promotions based on the full

customer journey. Support teams gain visibility
into past interactions, helping them resolve issues
faster and improve satisfaction. This leads to higher
loyalty, retention, and better campaign results.

An operational data layer is essential to making
this happen. It consolidates data from multiple
sources—CRM, POS, marketing systems, and
external data—while handling identity matching,
deduplication, and compliance. The ODL delivers
a reliable, real-time single view that powers
smarter targeting, better decision-making, and
faster adaptation to changing customer needs.

By breaking down data silos and enabling
seamless access to unified data, the ODL drives
the personalized experiences and intelligent
operations retailers need to stay competitive. In
today’s market, Customer 360 isn’t just a goal—it’s
a critical foundation for growth and success.

Source
Systems

Web & Mobile
Applications

Customer
Interactions

In-store sales

CRM & Loyalty

BI & Reporting

Analytics Apps &
Services

AI & Machine
Learning

Microservice 1

Personalised
ECommerce

Microservice 2

Microservice 3

API Layer

Microservice N
Vector Indexing

Change
Data

Capture
(CDC)

Customer Single
View

Customer 360/ Single View

Figure 13. Customer data platform 360 (single) view diagram.

33

ODL speedlayer to innovate
over ERP
Modern retail moves at lightning speed, from
inventory shifts and pricing changes to order
fulfillment and fraud detection. Yet many retailers
are constrained by monolithic enterprise systems
such as an SAP ERP, which, while robust and
reliable, often hinder rapid development due to
their complexity, cost, and rigidity. To overcome
this, building an operational data layer—often
referred to as a speed layer—on MongoDB offers a
pragmatic and strategic solution.

An ODL complements ERP core services by acting
as a high-performance data intermediary that
interacts with SAP without disrupting its stability.
This approach allows the core ERP to remain the
system of record while the ODL becomes the
system of engagement where customer-facing
applications, digital services, and operational
dashboards can be developed and deployed
rapidly. By decoupling front-end innovation from
backend constraints, the speed layer allows
retailers to respond rapidly to changing customer

demands, whether it’s peak-season surges or real-
time restocking.

The speed layer enables low-latency access to
critical data aggregated from SAP and other
systems, reducing the need for costly and slow
queries directly on the ERP backend. This not only
enhances application responsiveness but also
shields the core from performance degradation
under load.

By centralizing operational data, retailers can also
enable advanced analytics, AI/ML initiatives, and
omnichannel experiences without overloading
SAP. In today’s modern retail world as AI and
generative AI need real-time access to data,
building an AI-capable layer to execute modern
workflows is a necessity.

With an ODL powering the speed layer, retailers
can accelerate innovation while maintaining
core system stability, delivering agility at the
edge without disrupting critical operations. This
balance positions retailers to scale efficiently,
stay competitive, and offer both operational
excellence and next-gen customer experiences.

ODL/ API Speedlayer

SAP

Finance/ HR

Supply Chain

Commerce

Marketing

FulfillmentGoods In/ Out

Invoicing

Accounting

Payroll

Suppliers

Orders

Pricing

Real Time
Inventory

OmniChannel
Order LookUp &

Management

Real Time
Loyalty &

Personalisation

Modern PoS &
Store

Engagement

Dynamic Pricing
Social Selling
Promotions

System of
Record

Systems of
Engagement

ODL Speedlayer over SAP

Figure 14. MongoDB as a speed layer to innovate over ERP systems diagram.

34

Telco
Telecom is no longer just about connectivity. It’s
about enabling intelligent, real-time services at
a massive scale. As networks modernize, telcos
must handle fast-changing data across billions
of endpoints, support radically distributed
architectures, and consistently deliver low-latency
responses. An operational data layer provides
the foundation for this shift, acting as a real-time,
governed data backbone that bridges legacy
complexity with next-generation demands.

5G and edge computing
5G brings the core capabilities for transforming
enhanced mobile broadband (eMBB) for
data-heavy apps, massive Machine-Type
Communication (mMTC) for dense IoT
deployments, and ultra-Reliable Low Latency
Communication (uRLLC) for mission-critical
interactions. But these require not just network
speed. They demand real-time access to the right
data. The ODL, powered by MongoDB, enables
this by centralizing operational data, decoupling
service logic from backend systems, and
supporting the dynamic, scalable access patterns
modern apps need. This architectural separation
allows telcos to launch and evolve services
faster while meeting strict SLAs for performance,
reliability, and resilience.

Edge computing extends that vision. Data from
connected devices is increasingly processed
at the edge, close to users, factories, vehicles,
or infrastructure where latency matters most.

The ODL acts as the control plane across this
distributed topology. It aggregates data locally,
syncing with core systems intelligently and
applying governance policies consistently.
This unlocks the full potential of telco-led IoT
ecosystems. From private 5G in smart factories,
to autonomous driving, smart cities, home
automation, and remote healthcare, telcos are
no longer just transport providers, but real-time
data platforms. With the ODL in place, IoT data
becomes accessible, actionable, and secure,
powering use cases that would be impossible with
rigid, centralized architectures.

Agentic AI for network assurance
and customer care
Another emerging application of the ODL in
telecommunications lies in supporting agentic
AI. By bringing together customer data across all
touchpoints—support interactions, complaints,
network usage, and retail activity such as
purchases or rate plan adjustments—the ODL
enables intelligent, context-aware querying.
Built on MongoDB, it allows AI agents to operate
on a unified, real-time view of the customer,
powered by advanced aggregations and flexible
pipelines. This not only enhances responsiveness
in customer-facing scenarios but also creates new
operational value. Customer data from business
support systems (BSS) can now be correlated
with operational support system (OSS) telemetry,
helping to identify root causes of network issues
with unprecedented clarity and speed.

35

This shift also opens the door to entirely new
monetization strategies. As telcos evolve into
data service platforms, the value isn’t just
in connectivity, it’s in enabling ecosystems.
The ODL makes it possible to expose curated,
policy-compliant data products to partners,
enterprises, and developers via secure, well-
governed APIs. Smart-city operators can access
real-time infrastructure data, automotive OEMs

can tap into anonymized mobility insights, and
industrial vendors can build on top of private
5G environments. With versioned APIs, usage
metering, and access controls, telcos can turn
their data assets into subscription-based offerings
without exposing internal systems or violating
sovereignty. The result is faster innovation,
shared value creation, and a clear path from
infrastructure investment to revenue growth.

Figure 15. MongoDB as the ODL component of a network chat application

36

Manufacturing
Unified namespace
A unified namespace (UNS) can streamline
operations by enabling seamless data flow between
operational technology (OT) and information
technology (IT) systems, supporting real-time
decision-making and process optimization.

A UNS acts as a centralized, contextualized
data repository, fostering communication
across industrial systems and eliminating the
inefficiencies of traditional point-to-point data
exchanges, such as data silos and integration
complexity. By incorporating MongoDB as
an operational data layer within a UNS,

manufacturers can aggregate structured and
unstructured data from diverse sources like
IoT devices, MES, SCADA, and ERP systems.
MongoDB’s flexible document model supports
real-time access, scalability, and robust analytics.
Features such as Atlas Stream Processing,
Change Streams, and the Aggregation Framework
enable event-driven architectures (see above),
enhancing responsiveness in industrial operations.
Additionally, MongoDB’s support for time series
data, metadata storage, and real-time querying
facilitates manufacturing intelligence, predictive
maintenance, and process optimization within a
unified, scalable data architecture.

Figure 16. Shop floor supervisor with central dashboard

Read further about why MongoDB is a perfect fit for a UNS and on how to build an industrial unified
namespace architecture with MongoDB and Arcstone on the MongoDB website.

Drivers, BI Connector, Compass

Kafka Connector MQTT

Shopfloor

Data
Acquisition

ERPMES

Production Order Database

Shop Floor Supervisor Warehouse Manager

Stock Lists

UNS
Database

Data
Warehouse

Raw
Data

Processed
Data

Business AnalystShop Floor Supervisor with Central Dashboard

Atlas ChartsTime Series
Collection

Aggregation
Pipeline

Atlas
Triggers

Change Data Capture (CDC) Change Data Capture (CDC)

Raw &
Processed
Data

Business
Systems

SPEED LAYER BATCH LAYER

Processed
Data

https://www.mongodb.com/blog/post/why-mongodb-is-perfect-fit-for-a-unified-namespace
https://www.mongodb.com/blog/post/building-industrial-unified-namespace-architecture-mongodb-arcstone
https://www.mongodb.com/blog/post/building-industrial-unified-namespace-architecture-mongodb-arcstone

37

Healthcare
Healthcare organizations worldwide face a
common and growing challenge: delivering real-
time, unified views of patient data across multiple,
fragmented systems while ensuring scalability,
security, and flexibility. Traditional relational
database architectures, often composed of
legacy systems accumulated over decades,
struggle to meet these modern requirements. The
resulting silos, performance bottlenecks, and data
management complexities hinder innovation and
negatively impact patient outcomes.

MongoDB uniquely addresses these challenges.
With its flexible document model, MongoDB
empowers healthcare providers to aggregate and
unify diverse datasets—clinical, administrative,
operational, and patient-generated—in real
time. Its schema-agnostic architecture simplifies
the integration of evolving data standards and
new data sources, reducing the complexity of
traditional data warehouses and accelerating
time-to-insight.

Real-time patient 360 view
Two critical use cases stand out for an
operational data layer in healthcare built on
MongoDB. First, the creation of a real-time
patient 360-view, enabling healthcare providers
to consolidate data from various healthcare
entities into a unified patient record accessible
instantly by clinicians, administrators, and
patients. This dramatically enhances clinical
decision-making, patient engagement, and
care coordination. Second, Fast Healthcare
Interoperability Resources (FHIR) integration
and data enrichment significantly boosts
interoperability by seamlessly incorporating
standard healthcare data (FHIR resources) with
additional enriched metadata, vectors, and
AI-generated insights. This integration not only
improves data exchange and collaboration but
also facilitates advanced clinical analytics and
AI-driven healthcare solutions.

Healthcare organizations leveraging MongoDB for
these ODL applications benefit from significant
improvements in patient care outcomes,
streamlined operational efficiency, real-time
analytics capabilities, enhanced data security,
and vastly improved data interoperability across
diverse systems and standards.

Customer examples
MongoDB’s impact can be seen with Osakidetza,
the Basque Country’s healthcare system.
Osakidetza needed a unified application
capable of delivering a real-time single view
of patient data sourced from diverse systems—
medical histories, hospitalizations, consultations,
laboratories, and more. Its existing systems,
burdened with data silos and slow batch
processes, were unable to provide real-time
insights necessary for timely care. MongoDB’s
document model provided the ideal platform,
offering scalability, speed, and advanced
security. As a result, Osakidetza now benefits
from real-time data loading, unified patient
views, improved diagnosis and care quality,
and enhanced patient service through faster
automated data integration.

Similarly, CatSalut, the Catalan Health Service,
adopted MongoDB to integrate data from SAP
Argos, dialysis equipment, and various clinical
applications into a high-performance central
repository. MongoDB’s scalability and real-time
capabilities dramatically reduced batch processing
times, enabling clinicians and health centers across
the region to benefit from a common, timely patient
view, thus significantly enhancing diagnostic
accuracy and patient care outcomes.

SATUSEHAT, managed by the Indonesian Ministry
of Health’s Digital Transformation Office (DTO), is
another example of the critical impact made by
MongoDB. This national digital health platform
faced challenges including rapid data growth,
query complexity, strict data residency regulations,

38

and diverse data types—from structured ICD-10
records to complex DICOM imaging. MongoDB’s
robust scalability, native support for heterogeneous
data, and advanced security features allowed
SATUSEHAT to unify and manage data from over
10,000 healthcare facilities, positioning Indonesia
as a global leader by incorporating WHO-standard
international patient summaries (IPS).

These cases highlight a broader industry trend.
Many healthcare customers worldwide initially
adopted MongoDB for its powerful operational

data layer capabilities. However, observing its
profound impact, these customers increasingly
position MongoDB as their foundational data
store. By consolidating their data strategies
around MongoDB, they streamline operations,
enhance agility, and significantly reduce, or
entirely eliminate, their reliance on costly, rigid
legacy systems. MongoDB has proven not only
to meet the immediate operational needs of
healthcare organizations but also pave the way
for future innovations and sustainable growth.

Insurance
Insurance companies are increasingly
leveraging MongoDB operational data layers
to transform their digital infrastructure and
enhance operational efficiency. These modern
data platforms serve as the connective tissue
between legacy systems and innovative
applications, enabling insurers to consolidate
fragmented domains of information across
policy administration, claims processing, and
underwriting systems into a unified, canonical
format and schema.

By implementing an ODL that takes advantage
of MongoDB’s document model, insurance
organizations can break down traditional data silos,
accelerate application development, and more
quickly respond to changing market conditions.
The flexibility of MongoDB’s schema design
allows insurers to adapt to evolving regulatory
requirements and rapidly introduce new products
while maintaining the high-performance, scalable

infrastructure necessary to process millions of
transactions daily. This technological foundation
empowers insurance companies to deliver more
personalized customer experiences, optimize risk
assessment, and gain competitive advantages in
an increasingly data-driven marketplace.

Customer example
Humana, the leading health insurance provider
in the U.S., leveraged MongoDB for healthcare
interoperability modernization. Rather
than attempting disruptive legacy system
replacements, Humana built a cloud-native
core data fabric using MongoDB Atlas. This ODL
approach facilitated rapid implementation of
FHIR standards, enabling real-time, bidirectional
data flows. This not only improved patient
experiences but aligned strategically with
Humana’s transition toward value-based,
personalized healthcare services.

39

Legal Notice
This document may include certain “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, or the Securities Act,

and Section 21E of the Securities Exchange Act of 1934, as amended, including statements concerning our future growth and the potential of MongoDB Atlas; and

our ability to transform the global database industry and to capitalize on our market opportunity. These forward-looking statements include, but are not limited to,

plans, objectives, expectations and intentions and other statements contained in this document that are not historical facts and statements identified by words such

as “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “project,” “will,” “would” or the negative or plural of these words or similar

expressions or variations. These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are

based on the information currently available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies and

prospects as reflected in or suggested by those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or

strategies will be attained or achieved. Furthermore, actual results may differ materially from those described in the forward-looking statements and are subject to a

variety of assumptions, uncertainties, risks and factors that are beyond our control including, without limitation: the effects of the ongoing military conflicts between

Russia and Ukraine and Israel and Hamas on our business and future operating results; economic downturns and/or the effects of rising interest rates, inflation and

volatility in the global economy and financial markets on our business and future operating results; our potential failure to meet publicly announced guidance or other

expectations about our business and future operating results; our limited operating history; our history of losses; failure of our platform to satisfy customer demands;

the effects of increased competition; our investments in new products and our ability to introduce new features, services or enhancements; social, ethical and security

issues relating to the use of new and evolving technologies, such as artificial intelligence, in our offerings or partnerships; our ability to effectively expand our sales and

marketing organization; our ability to continue to build and maintain credibility with the developer community; our ability to add new customers or increase sales to our

existing customers; our ability to maintain, protect, enforce and enhance our intellectual property; the effects of social, ethical and regulatory issues relating to the use

of new and evolving technologies, such as artificial intelligence, in our offerings or partnerships; the growth and expansion of the market for database products and

our ability to penetrate that market; our ability to integrate acquired businesses and technologies successfully or achieve the expected benefits of such acquisitions;

our ability to maintain the security of our software and adequately address privacy concerns; our ability to manage our growth effectively and successfully recruit and

retain additional highly-qualified personnel; and the price volatility of our common stock. These and other risks and uncertainties are more fully described in our filings

with the Securities and Exchange Commission (“SEC”), including under the caption “Risk Factors” in our Annual Report on Form 10-K for the year ended January 31, 2024,

filed with the SEC on March 15, 2024, and other filings and reports that we may file from time to time with the SEC. Except as required by law, we undertake no duty or

obligation to update any forward-looking statements contained in this release as a result of new information, future events, changes in expectations or otherwise.

Resources
For more information, please visit mongodb.com or contact us at
sales@mongodb.com.

Case Studies

Presentations

Free Online Training

Webinars and Events

Documentation

MongoDB Atlas database
as a service for MongoDB

MongoDB Enterprise
Download

http://mongodb.com
mailto:sales%40mongodb.com?subject=ODL
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
http://mongodb.com/download
http://mongodb.com/download

To learn more about MongoDB, visit MongoDB.com

© June 2025 MongoDB, Inc. All rights reserved.

About MongoDB
MongoDB enables innovators to unleash the power of software and data. Whether
deployed in the cloud or on-premises, organizations use MongoDB for trading
platforms, global payment data stores, digital end-to-end loan origination and
servicing solutions, general ledger system of record, regulatory risk, treasury, and
many other back-office processes. At the core of our modern data platform is the most
versatile cloud database service on the market, MongoDB Atlas, which can run in any
cloud or even across multiple clouds to get the best from each provider with no lock-in.

About the Authors
Benjamin Lorenz started his career with MongoDB in 2016. He has been
instrumental in growing the Central European sales region and was involved
in numerous strategic customer projects. In his current role as the Principal for
Telco, Media & Content, Benjamin supports customers worldwide in their digital
transformation projects and helps establish new, data-powered revenue streams.

He lives with his family in Frankfurt, Germany.

Andrea is a Senior Specialist on the Industry Solutions team at MongoDB. In her
current role, Andrea focuses on developing thought-leading financial services
applications and resources to educate and guide enterprises on their path to
modernization and innovation with MongoDB. She is passionate about delivering
impactful, data-driven solutions and advancing technological innovation.

http://mongodb.com
http://MongoDB.com

