
The 5 Phases of
Banking Modernization

Accelerate your digital transformation
while minimizing risk

JULY 2021

2

Modernizing Legacy Systems
It’s clear to banks and their customers that modern banking experiences need to
deliver greater convenience in real time without compromising security.

Banking consumers and financial services
companies have come to expect popular
features like mobile deposits, multi-factor
authentication, AI-enhanced services, chatbots,
speedy dispute resolution, instant money
transfers, and a range of other analytical and
business insights. For banks, these services
are a way to streamline operations, automate
services, and differentiate themselves from
competitors in a market where costs are high
and margins are slim.

Although both parties are clear on what they want
out of modern banking, successfully implementing
these services with existing technical
infrastructure is difficult and slow.

To innovate and give customers the modern
banking experiences they expect, banks must first
free themselves from the rigid data architectures
associated with legacy hardware and monolithic
enterprise banking applications.

Legacy systems like relational database
management systems (RDBMS) make change
harder than it needs to be, killing innovation
and entrenching a fear of failure. They also
complicate business requirements that didn’t

exist when RDBMS were invented, such as data
privacy compliance.

Because of the inflexible formats required by table
structures, data often becomes duplicated and
difficult to analyze.

Legacy modernization is frequently perceived to
be time-consuming, complex, and error-prone,
but the reality is that legacy modernization can
be straightforward, predictable, and successful,
allowing banks to accelerate their digital
transformation, deliver truly modern banking
experiences, and support compliance with
increasingly restrictive data privacy regulations,
all while minimizing risk.

Banks and other financial institutions that
have successfully modernized have seen
cost reductions, faster performance, simpler
compliance practices, and rapid development
cycles. New, flexible architectures have
accelerated the creation of value-added services
for consumers and corporate clients.

MongoDB’s approach to modernization enables
banks to modernize iteratively while balancing
performance and risk through five phases.

The 5 Phases of Banking Modernization
Banking systems face a key challenge: protecting existing assets and operations
while modernizing.

The best way to modernize is through an iterative
model that uses an operational data layer (ODL).
The ODL acts as a bridge between a bank’s
existing systems and its new ones.

This iterative approach can be broken into five
phases, allowing banks to see progress toward
modernization at each step along the way while
still protecting existing assets and business-
critical operations.

1. Simple ODL
In the first phase of legacy migration, reads
from the legacy mainframe are offloaded to the
ODL. This reduces read traffic to the mainframe.
The ODL provides high availability, improves
performance, and handles long-running analytics
queries. The ODL is interpreted directly by the
application. It has a modern interface, and you can
start building modern applications on the ODL.

3

2. Enriched ODL
In the second phase, the ODL acts as an
integration layer enriched with multiple data
sources and metadata. At this stage, you can
begin building microservices on top of your data.
The ODL also serves as an operational intelligence
platform for insights and analysis. The ODL
offloads more reads from the source systems and
enables more use cases than were previously
possible, including a single customer view.

3. Parallel write
In the third phase, reads and writes are performed
concurrently on the source system and the
ODL, either directly from application logic or
through a messaging system, API layer, or other
intermediary. This is also known as Y-loading or
Y-storing. This phase lays the foundation for a
more transformational shift of the ODL’s role in the

system architecture. In this phase, you can test
the ODL to ensure functionality before using it as
the primary system for writes.

4. System of transaction
In the fourth phase, transactions are written
first to the ODL, then passed on to the legacy
system if necessary. At this point, the ODL is
the single source of truth. The secondary write
to the legacy source can be accomplished
with a change data capture system listening to
the ODL or a similar system, such as MongoDB
Stitch Triggers.

5. System of record
In the fifth phase, the ODL becomes the system of
record for all consuming applications. The source
system can be decommissioned for cost savings
and architectural simplicity.

Figure 1: The five phases of banking modernization

System of Record

ODL First

Y-Loading

Enriched ODL

Simple ODL

Bu
si

ne
ss

 B
en

efi
ts

Scope

Offloading Reads

Offloading Reads and Writes

Transforming the role of enterprise data

The ODL serves as a system of record for
a multitude of applications, with deferred
writes to the mainframe if necessary.

Transactions are written first to
the ODL, which passes the data
on to the source systems of record.

Writes are performed concurrently
to source systems as well as
MongoDB (Y-loading).

ODL data is enriched with additional sources
to serve as an operational intelligence
platform for insights and analytics.

Records are copied from the source
systems into the operational data layer,
which serves reads.

4

Approaches to Modernization Planning
Before you begin migrating any data, the first step is planning your modernization. This
is where you determine whether to address the data architecture first, applications
first, or follow a blended approach. Each approach to legacy modernization carries its
own advantages and complexities.

1. Data-driven modernization
This approach begins by moving data from the
legacy system to the new environment before any
applications or microservices are provisioned
(Figure 2). Even in its earliest phases, data-driven
modernization is a big step forward over legacy
systems because once you’ve moved your first
data source into the new environment, you can
leverage it immediately and start building modern
applications on top of it. Applications can write

directly to the new environment without affecting
the existing one. Once more writes are executed
in the new environment than the old one, you can
begin to dramatically reduce the footprint of the
legacy system. By the time the last phases of data-
driven modernization are implemented — when the
new environment takes over the majority of the
work and becomes the system of record — you can
begin to retire legacy applications entirely.

Introducing ODL/ODS

Legacy Application

Legacy Database

Application
(New and Modernized)

Microservices
(Optional)

Read/(Write)
Write

Read

Read/Write

Read/(Write)

STEP 1

System of Record

Legacy Application

Microservices

Application
(New and Modernized)

Microservices
(Optional)

Read/Write

Read/Write

Read/Write

STEP 4

Y-Loading

Legacy Application

Legacy Database

Application
(New and Modernized)

Microservices
(Optional)

Read/Write

Write

Read

Read/Write

Read/Write

STEP 2

System of Transaction

Legacy Application

Legacy Database

Application
(New and Modernized)

Microservices
(Optional)

Read/Write

Update

Update

Read/Write

Read/Write

STEP 3

Figure 2: Data-driven modernization

5

2. Application-driven modernization
With application-driven modernization (Figure
3), all reads and writes from new applications
and microservices are executed in the new
data environment from the start. Existing
traffic continues to route to the existing data
store. The legacy system continues to operate

unchanged. This enables new functionality to be
introduced immediately, but it also introduces
more complexity. Because application-driven
modernization is an all-or-nothing approach,
banks must have a clear strategy for retiring the
legacy applications in due course.

Adding Innovation

Legacy Application

Legacy Database

Application
(New and Modernized)

Microservices
(Optional)

New MongoDB
Data Platform

Read/Write

Read

Read/Write

Read/(Write)

STEP 1

Switching Off Legacy Adding New Architecture

Legacy Application

Legacy Database

Application
(New and Modernized)

Application
(New and Modernized)

Microservices
(Optional)

Microservices
(Optional)

New MongoDB
Data Platform

New MongoDB
Data Platform

Read/Write
Write

STEP 2 STEP 3

Read/(Write) Read/(Write)

Read/(Write) Read/(Write)

Figure 3: Application-driven modernization

6

3. Iterative modernization
Iterative modernization enables organizations
to innovate while modernizing (Figure 4). This
approach — the one MongoDB recommends —
blends data- and application-driven approaches
for incremental enhancements, starting with
the least complex applications and objects and
slowly progressing to more complex ones. With this

approach, you can explore iteratively and at your
own pace. This one-step-at-a-time approach gives
you the best of both worlds: You see immediate
gains along the way but are not committing to
a newly refactored environment right away. This
minimizes risk while preserving data from the
legacy systems.

Service Layer

Data PlatformData Layer

Legacy

Prioritize Data Accessibility
Data-driven approach

Architectural Simplification Create Product-Oriented Developement Teams

D
at

a
A

cc
es

si
bi

lit
y

D

em
oc

ra
tiz

e
D

at
a

A
cc

es
s

Prioritize App Simplification
Application-driven approach

Explore Iteratively

Figure 4: Three approaches to modernization

7

Modernizing Iteratively
The iterative approach begins by identifying all objects in the application code and
any applications that connect to them.

Each of these objects constitutes a data domain,
which is a collection of values contained in an
element (Figure 5). For instance, “client profiles”
is a data domain that includes details about
clients expressed as values, such as how long
they’ve been a client, their transaction details,
and the type of account they have. Once you’ve
identified the objects you’re using, you can

assign a complexity score to each object based
on their properties, methods, collections, and
other attributes. You can then identify each
application that connects to a domain and rank
them based on variables such as how mission-
critical it is, how many users rely on it, how many
tasks it has to perform, and how complex those
tasks are.

A
pp

lic
at

io
n

1

A
pp

lic
at

io
n

2

A
pp

lic
at

io
n

3

A
pp

lic
at

io
n

4

A
pp

lic
at

io
n

5

A
pp

lic
at

io
n

6

A
pp

lic
at

io
n

7

A
pp

lic
at

io
n

8

A
pp

lic
at

io
n

9

A
pp

lic
at

io
n

10

A
pp

lic
at

io
n

11

A
pp

lic
at

io
n

12

A
pp

lic
at

io
n

13

C
om

pl
ex

it
y

Im
pa

ct
 S

co
re

Client Profiles 1 1 1 1 1 1 1 6

Contracts 2 2 2 2 2 2 2 12

Schedules 1 1 1 1 1 1 5

Syndication 5 5 5

Risk Profiles 2 2 2 4

Broker/Retailer 2 2 2 2 2 8

Financial Scoring 1 1 1 1 3

Application Score 1 4 4 10 3 1 1 3 4 3 2 4 3

Data
Domain

Subject
Area

Figure 5: Ranking data domains and applications

8

By ranking the data domains and applications
by complexity, you can create a plan for moving
each domain from the legacy system to the
new architecture and rerouting applications
to connect to the new domains, starting with
the least complex data sources and gradually
progressing to more complex ones.

In Figure 6, the data domains “client profiles” and
“schedules” each have a complexity score of
1 and are used by applications 1, 6, and 7, each
with a complexity score of 1. These are perfect
candidates to become the first sources of data

migrated to the new architecture and the first
applications refactored to connect to the new
data domains.

Once you have a clear picture of all the objects
and applications and have scored them based
on the number of dependencies and their
complexities, you’ll end up with a graph that
shows the potential sequence and timing for
moving objects and applications into the new data
architecture. This will be the basis for your iterative
modernization plan.

Application 4, 12, 13

Application 2, 9, 10 Syndication

Application 3, 11 Risk Profiles Risk Profiles

Application 5, 8 Broker/Retailer Broker/Retailer Broker/Retailer

Contracts Contracts Contracts Contracts

Application 1, 6, 7 Financial Scoring Financial Scoring Financial Scoring Financial Scoring

Client Profiles Client Profiles Client Profiles Client Profiles Client Profiles

Schedules Schedules Schedules Schedules Schedules

Figure 6: Potential sequence for modernization

9

Moving Data Between Systems
Before moving any data from the legacy RDBMS to the new environment, you’ll need to
build temporary scaffolding to transition from the legacy system to the new environment.

The first part of the scaffolding uses connection
services between the legacy RDBMS and the new
environment. Connection services are needed for
three different types of data sources:

1. Streaming interfaces. Real-time data,
generally measured in seconds, milliseconds,
or microseconds, that will be replicated
between the legacy RDBMS and the new
environment simultaneously.

2. Service interfaces. End-of-day and batch
processing actions that are common in
banking environments.

3. Specialty connectors. These connect to specific
workloads, like Hadoop or Spark.

Once you’ve established which connection
service you need for each data source, you can
begin building the intermediary layer that will
bridge the RDBMS to the new data architecture.
With the modernize-while-innovating approach,
the connection between the legacy RDBMS and
the new architecture is the operational data
layer (ODL).

10

The Operational Data Layer
The ODL is the on-ramp for data that’s being routed to the new environment. It
performs the following functions:

• Centrally integrates and organizes
siloed enterprise data

• Makes data available to
consuming applications

• Enables legacy modernization and
data-as-a-service

• Creates a single source of truth

• Enables real-time analytics and
mainframe offload

• Allows for gradual refactoring
(vs. rip and replace)

• Minimizes disruption when
deploying to the cloud

• Serves legacy data to new applications
without straining the legacy system

• Makes data immediately available for
analysis and business intelligence

Gradually, more reads and writes are routed
to the new environment as the legacy RDBMS
is retired one step at a time. By the final
phase, all applications are provisioned in the
new environment.

FHIR API

Other

Mobile

CMS

Web

B2C

CONSUMING SYSTEMS

OPERATIONAL DATA LAYER

LEGACY DATA SOURCES AND SYSTEMS

Figure 7: The Operational Data Layer (ODL)

11

Your Road Map to Digital Transformation
The key to legacy modernization is the bridge between the legacy mainframe and
the new architecture, the ODL. It enables banks to offload traffic away from costly
mainframe systems and, eventually, to rearchitect monolithic applications into a suite
of microservices.

Crucially, by deploying the ODL in a phased
approach, banks can embark on their digital
transformation journey iteratively, without
the risk of an all-or-nothing, rip-and-replace
approach. Once the new architecture is in place,
development teams can build new business
functionality faster and scale new services to
millions of users.

At MongoDB, we’ve seen clients save hundreds
of thousands of dollars in the first year after
modernizing and tens of thousands per month on
storage costs.

For years, banks and financial institutions
have wrestled with the question of whether to
modernize their legacy mainframe systems.
With the emergence of mobile banking, real-
time transactions, analytics, and agile product
development, legacy modernization has become
a business imperative. Now, with the advent
of a seamless, iterative, phased approach to
modernization, the case for modernization is as
compelling as it’s ever been.

Real-world advantages for
financial services firms

Saves tens of
thousands a month
on storage costs

>10x
STORAGE SAVINGS

Transaction history
expanded from 45
days to 30 months

14,105 servers
decommissioned

Development
efficiency increased
by one-third

Payment status
captured in 5 milliseconds
vs. 3 seconds

Response time latency
<400 milliseconds for queries
deep in transaction history

99.999% uptime enabled by five-node
replica sets across three data centers

$10M+ in cost avoidance, including licenses,
hardware, and operations

45
DAYS

14K+
SERVERS

34%
INCREASE

5
MILLISECONDS

<400
MILLISECONDS

99.999%
UPTIME

$10M+
IN COST AVOIDANCE

12

About the Author
Boris Bialek, Global Head of Industry Solutions, leads MongoDB’s industry practices,
with a focus on the modernization of finance solutions, including core banking,
payments and card transactions, trade and risk, and treasury. He is an industry
expert in data technologies and a recognized speaker and author. Before joining
MongoDB, he worked for many years with FIS, IBM, Dell, and Compaq Computers.
He has a Master of Science degree from the Karlsruhe Institute of Technology.
boris.bialek@mongodb.com

Learn More
Discover how companies are accelerating their modernization efforts with MongoDB.

© July 2021 MongoDB, Inc. All rights reserved.

mailto:boris.bialek%40mongodb.com?subject=
mailto:https://www.mongodb.com/modernize%3Futm_campaign%3Dexplainer%26utm_source%3Dcta_link_50%26utm_medium%3Dasset%26utm_term%3Dawareness%26utm_content%3Dbank_leg_mod_wp%250D?subject=

