
Event-Driven Applications

Paving the Path to a Responsive and Reactive

Real-Time Business

June 2023

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com.
2023 MongoDB, Inc. All rights reserved

mailto:info@mongodb.com


Table of Content

The rise of the humble event 3

How are event-driven applications di�erent? 3

The evolution of event-driven technology 5

Fragmentation + friction = frustration 7

A Developer’s Path to Productivity 8

Enabling Technology for Event-Driven Apps 9

Driving innovation with event-driven apps 13

1. Event-driven microservices 13

2. Event-driven streaming analytics 14

3. Event-driven Operational Data Layer (ODL) 15

4. Event-driven Extract Transform Load (ETL) 16

MongoDB in Event-Driven Apps Today 17

Getting started with event-driven apps 18

2



The rise of the humble event
The world moves in real time, and your apps need to do the same. Real-time
applications bring digital experiences to life for your customers and speed time to
insight for your business.

For customers, real-time apps stand out because they immediately react and respond
to the constantly changing world around them. Think:

● Receiving hyper-personalized o�ers on an ecommerce site tailored to intent,
channel, and location.

● Balance updates in a banking app as soon as debits and credits are processed.
● Instantly recalculating route plans to avoid tra�c delays caused by a sudden

breakdown on the road ahead.

At the same time, you need continuous and instant insights into your digital business.
With those insights your systems unlock higher e�ciency and profitability by taking
intelligent decisions and action on live data in real time, rather than on aged and stale
data. Think:

● Detecting and blocking fraudulent transactions during payment processing.
● Dynamically adjusting prices and inventory levels in response to volatile market

demand.
● Analyzing sensor telemetry to detect and remediate potential equipment

failures, avoiding costly outages.
● Extracting features from streaming data and feeding them into your machine

learning models to make better predictions by using fresher data.

The question is how you can do all of this ahead of your competitors? The answer is
what we call event-driven applications.

With an event-driven approach, the constant flows of data exchanged between your
business processes are continuously captured and actioned as events. This allows your
apps to react and respond to new events as soon as they happen, underpinning the
shift to a real-time business.

How are event-driven applications di�erent?
In traditional request/response systems, applications directly poll one another to
retrieve the latest data and events. This point-to-point design pattern creates tightly
coupled software architectures bound by complex interdependencies. The resulting
systems are brittle and hard to evolve as new business requirements emerge.

3



Lack of agility is further hampered by lack
of speed. Delays in being able to act on
new data are introduced. This is because a
consuming application has to poll a
producing system to retrieve the latest
events (data). Not only does this polling
add latency and overhead to each system,
it also means new data is consumed and
processed in batches, not as soon as it is
produced.

Figure 1: Limitations of request/response systems: hard to evolve, slow to react to new data

Event-driven applications are di�erent. They invert the request / response model with
upstream producer services immediately notifying downstream consuming services as
soon as new data (events) are generated. Streams of events are continuously
exchanged as messages between systems as they happen – and in the order they
occur – not later in batches. The exchange happens through a centralized event
streaming platform such as Apache Kafka.

This architectural approach creates an experience that is truly responsive and reactive,
while incurring lower system overhead and cost.

Figure 2: Data flows across the business are captured and processed as events as they happen

By design, event-driven applications are loosely coupled, providing your developers a
more responsive and agile foundation on which to drive innovation. This is because:

● Each service adapts and evolves independently as needed. They are owned by
autonomous teams that are free to work with their preferred technologies and
frameworks. Those teams have the flexibility to prioritize their own backlogs
based on the needs of the business, not dependencies with other teams.

4



● Further eliminating dependencies, each service can operate asynchronously
from others as needed, and can be deployed and scaled independently.

● Application resilience improves as the failure or maintenance of an individual
service does not result in a complete application outage.

Event-driven applications promise a lot. But how your developers work with events
across the application stack – in code, in the streams that connect the data flows
between your applications, and in storage – will dictate whether you succeed or fail.

The evolution of event-driven technology
Events are the foundation of event-driven applications. An event is an immutable piece
of data recording a fact or change in state in an application. For example, a customer
placing an order is an event. A connected vehicle transmitting its current geolocation is
an event. A successfully processed payment is an event. Some events can be
represented in a simple data structure. Many, however, are rich and complex objects
that need to be reliably transported, processed, and persisted in order to maintain full
fidelity and accuracy.

Applications have always relied on the exchange of events with one another in order to
serve business processes and users. With the arrival of microservices and cloud
computing, this was typically achieved with events packaged as messages and
exchanged via pub/sub (publish/subscribe) queues. In more recent years, the pub/sub
queue has largely been displaced by event streaming platforms such as Apache Kafka.
O�ering advances in message persistence, delivery and ordering guarantees, along
with improvements in scalability and resilience, more and more developers have
selected these stream messaging platforms.

We can think of the event streaming platform as providing the plumbing to
communicate and transport events between di�erent applications and microservices.
Events are persisted in a message log, while message brokers along with consumer
and producer APIs work in concert to reliably exchange events between independent
services.

For events to be useful, the consuming system needs to process and react to them.
Event processing can be something simple like counting the number of impressions an
online ad receives or recasting a data type in a message. It can also be way more
complex; for example detecting fraudulent payments, aggregating sensor events from
a production line to predict failures, or extracting and transforming features from
clickstream data to serve personalized o�ers to customers.

Developers have traditionally relied on one of two approaches to event processing:

5



1. In-app event processing. The developer writes all of the computational logic
needed to process events as part of their application code, along with
mechanisms to manage interim state. As processing becomes more
sophisticated, developers face massive increases in complexity. They have to
write highly intricate code that is hard to debug, optimize, and maintain.

2. In-database event processing. Rather than write app-side code, developers
land events directly in the database and use its native query capabilities to
process the data – assuming the database supports the query operators that
are needed. While simplifying app code, additional latency is incurred as each
event has to be ingested, indexed, and persisted before it is available for
processing. Databases are also optimized to work with bounded batches of
data at-rest in storage, not with boundless streams of data in-motion.

Another factor to consider is the ever increasing volumes of data and events
generated by modern applications – aka as “the firehose”. Even with backpressure
o�ered by the streaming platform, these volumes can still risk overwhelming the
ingestion and processing capabilities of even the most well written apps or fastest
databases.

To try and address some of these challenges, several stream messaging platforms
o�er basic transformation functions. These are typically limited to reshaping or
reformatting individual messages. Anything more advanced needs to be written by the
user as a custom function, incurring much of the same pain described for in-app event
processing.

Event stream processing was born to address the multi-faceted challenges described
above. Stream processors do this by continuously processing streams of events
consumed directly from streaming platforms such as Kafka. Processing can take the
form of filtering, querying, aggregating, transforming, alerting, and routing events.

Figure 3. Event streaming and processing data flow

6



Stream processing isn’t required by every event-driven application. But increasingly
users expect the applications they rely on to be fast, scalable, and responsive, making
stream processing an essential part of the stack. But stream processing is still a
relatively new technology domain that comes with some growing pains.

Fragmentation + friction = frustration
Today, developers can choose from a number of mature event streaming platforms
and databases to handle the transport and persistence of events. However, processing
high volume streams of events as they are in-motion is another matter, and one that
developers are struggling with.

They are struggling because processing data in-motion is di�erent from working with it
in the application and at-rest in the database. Developers have to contend with
di�erences in languages, APIs, drivers, and tools. All of these di�erences create a
fragmented experience which slows them down, adding time, cost, and complexity to
building and evolving the application.

Where do all of these di�erences come from?:
● The native programming APIs provided by today’s stream processors are

typically Java-based – so you are out of luck if your app is developed in
something else or your skillset is rooted in a di�erent language. And then the
API you use to persist and process data in the database is entirely di�erent
from the stream processor’s API.

● To try to reduce API fragmentation, some stream processors o�er a SQL
interface. But this forces developers to project a rigid, tabular data model
against the event’s rich and complex schema. Now it bears no resemblance to
the event object they work with back in application code, creating yet more
cognitive dissonance.

● A rigid schema also makes it much more di�cult to handle sparse data and
schema changes demanded by new application requirements. Schema changes
need to be coordinated across the app, ORM layer, stream processor, and
database – while trying not to disrupt high velocity streams of data flowing into
your systems. All of this increases the time, risk, and cost of rolling new features
to customers.

● Finally the stream processor is itself a separate technology that needs to be
bolted into the application stack. Now the developer has to contend with
another set of drivers and tools, along with a completely di�erent set of
operational and security concerns. Maintaining application state across the
stream processor and database becomes incredibly complex, especially in the
face of failures.

7



All of these issues add friction and frustration to the development of event-driven
apps. Each on their own consumes valuable cycles that would be better spent on
innovating for the business. Taken collectively, they risk inhibiting the wholesale
adoption of stream processing and event-driven applications.

MongoDB Atlas gives you a better way. That is because events map naturally to
flexible JSON-like document data structures and are best processed by an expressive
and composable query API. Both of these constructs are core to how developers work
with MongoDB, making it one of the most widely used data technologies on the planet
today.

A Developer’s Path to Productivity
The MongoDB Atlas database has long been used as a database foundation for
event-driven apps. With the introduction of Atlas Stream Processing, developers have –
for the first time – a completely unified experience working with data across the
application stack, spanning data in-motion and data at-rest.

MongoDB’s flexible document data model and expressive, developer-native query API
gives developers a consistent way of working with data in the stream and in the
database. Breaking down these barriers transforms the experience for developers
building new classes of real time, event-driven applications.

Figure 4: MongoDB Atlas transforms how developers build event-driven applications

By building on Atlas, developers have everything they need to create apps that
instantly react to live events. Those apps can deliver deep insights against a firehose
of streaming data, allowing you to immediately respond to opportunities and detect
threats. They can combine events with stored application data, searching and
enriching it to drive operational processes across the business. And then those events
can be archived out of live systems as they age. All on top of a foundation that is

8



fully-managed with built-in data security and redundancy defaults, along with deep
observability into operations.

Atlas Stream Processing is part of MongoDB Atlas, the multi-cloud developer data
platform. Atlas combines transactional processing, stream processing,
application-driven intelligence, relevance-based search, and mobile and device edge
computing with cloud sync. All delivered in an elegant and integrated data architecture
that powers almost any class of application.

Enabling Technology for Event-Driven Apps
Founded on flexible documents and an expressive query API, MongoDB Atlas o�ers
developers the key capabilities they need to build powerful and innovative event-driven
apps.

Document Data Model
Documents are the best way for developers to build event-driven apps. This is because
documents are:

1. Natural. Unlike traditional tabular data structures, documents map to event
objects in code and make it straightforward to represent complex event
structures in-motion in the stream and persisted to the database. This
consistency across the stack means documents are much more natural for
developers to work with and eliminate any opaque mapping layers that are
otherwise required to wrangle data structures between di�erent layers of the
stack.

2. Flexible and validated. Developers can easily handle sparse data inherent in
stream processing and modify document structures at any time as app
requirements evolve. This eliminates the delays and dependencies that come
from having to update rigid data models across ORM layers, schema registries,
and databases. Ensuring data integrity, MongoDB’s schema validation ensures
documents are properly formed before being processed by Atlas Stream
Processing or persisted into the Atlas database.

3. Versatile and extensible. Developers can model data and events in any
structure to support almost any application requirement - hierarchical objects
typical of JSON records, key-value pairs, geospatial coordinates, time-series
measurements, embedded relationships, the nodes and edges of a graph, and
more.

4. Blazing fast. Documents bring data together that is accessed together. This
reduces the need for complex joins, simplifies query logic and planning, and
ensures low latency reads and writes – essential for real-time apps.

9

https://www.mongodb.com/atlas
https://www.mongodb.com/document-databases


MongoDB Query API, Language Drivers, and Tools
In the same way documents provide a consistent way of representing data in the
stream and database, so the MongoDB Query API and tools provide a consistent way
of working with that data in-motion and at-rest.

The MongoDB Query API and its aggregation framework is implemented in the
methods and functions of native programming languages. For developers, this makes
the query API syntax feel like an extension of their chosen language, enabling them to
work productively with data as code. Whatever the preferred languages and
frameworks, there are three further design constructs that simplify event-driven app
creation for developers:

1. The MongoDB drivers are available with asynchronous programming support
for all of the leading development languages.

2. Implemented as a composable pipeline of processing stages, the aggregation
pipeline will immediately feel familiar to any developers with prior stream
processing experience.

3. Tools such as the MongoDB Shell and MongoDB Compass – the GUI for
MongoDB - make it straightforward to author and run stream processing
pipelines.

The aggregation framework is one of MongoDB’s most powerful capabilities - we
discuss more of what you can do with it in the Atlas Stream Processing section below.
In addition to product documentation, the Practical MongoDB Aggregations ebook is
a great resource to help developers get started.

MongoDB Atlas Stream Processing
Atlas Stream Processing enables developers to work with high-velocity streams of
complex event data using the same data model and query interface that’s used for
their database.

Atlas Stream Processing is part of the MongoDB developer data platform. With this
integration, developers can instantiate a stream processor, a database, and API
access layer in just a couple of API calls and lines of code. Along with the other data
services in MongoDB Atlas, developers will be able to use Infrastructure as Code tools
to provision, manage, and control Atlas Streams as part of their continuous delivery
workflows.

Atlas Stream Processing is built around three key capabilities that accelerate the
delivery of new event-driven apps:

1. Continuous Processing: Developers use MongoDB’s aggregation framework to
process rich and complex streams of data from event streaming platforms such as

10

https://www.mongodb.com/mongodb-query-api
https://www.mongodb.com/docs/drivers/
https://www.mongodb.com/products/shell
https://www.mongodb.com/products/compass
https://www.practical-mongodb-aggregations.com/
https://www.mongodb.com/products/platform/atlas-stream-processing


Apache Kafka. This unlocks powerful new ways to continuously query, analyze, and
react to streaming data without any of the delays inherent in batch processing.

With the aggregation framework you can filter and group data, aggregating high
velocity event streams into actionable insights over stateful time windows and
powering richer, real-time application experiences.

2. Continuous Validation: Atlas Stream Processing o�ers developers robust and
native mechanisms to handle incorrect data issues that can otherwise cause havoc in
applications. Potential issues include passing inaccurate results to the app, data loss,
and application downtime. Atlas Stream Processing defends against these issues to
ensure streaming data can be reliably processed and shared between event-driven
applications. Atlas Stream Processing provides:

● Schema validation to check that events are properly formed before processing
– for example rejecting events with missing fields or containing invalid value
ranges.

● Detects message corruption or late arriving data that has missed a processing
window.

Atlas Stream Processing pipelines can be configured with an integrated Dead Letter
Queue (DLQ) into which incorrect data is routed. This avoids developers having to build
and maintain their own custom mechanisms. Issues can be quickly debugged while the
risk of missing or corrupt data bringing down the entire application is minimized.

3. Continuous Merge: Processed data is continuously pushed into a materialized view
maintained in an Atlas database collection. We can think of this as a push query.
Applications can retrieve results (via pull queries) from the view using either the
MongoDB Query API or Atlas SQL interface.

Continuously merging updates to collections is a really e�cient way of maintaining
fresh analytical views of data supporting automated and human decision making and
action. We illustrate the power of Continuous Merge and materialized views in the
event-driven apps examples later in the paper.

In addition to materialized views, developers also have the flexibility to publish
processed events back into a topic in the event streaming platform for consumption by
downstream systems.

Atlas Stream Processing will shortly be available for preview. You can apply to be part
of the preview program here.

11

https://www.mongodb.com/products/platform/atlas-stream-processing


MongoDB Atlas Database
MongoDB has grown to become the world’s most popular modern database. The
document data model and query API are built on a transactional storage engine to
support almost any class of operational workload. These workloads can be augmented
with powerful database-native application-driven analytics to drive real-time actions
and insights from live data.

The MongoDB Atlas database runs on a distributed and elastic architecture providing
horizontal scale-out and built in redundancy. With Atlas, users can support the largest
workloads with a 99.995% uptime SLA.

Developers can run MongoDB anywhere, with Atlas available as a managed database
service across 100+ regions and multi-cloud deployments. It provides always-on
security with operational best practices and performance optimizations all baked in.

MongoDB Connector for Apache Kafka
Kafka Connect is a component of Apache Kafka that makes it easy to integrate data
sources such as MongoDB within the Kafka ecosystem. The MongoDB Kafka Connector
is an open sourced connector used by thousands of organizations today. It runs in the
Kafka Connect framework, enabling Atlas to be used both as a source and a sink. This
means events from Kafka topics can easily be consumed in Atlas and data from Atlas
can be written out to a Kafka topic for consumption by downstream systems. The
connector is developed and supported by MongoDB and verified by Confluent.

MongoDB Change Streams, Triggers, and Functions
Change Streams are a change data capture mechanism built into the MongoDB
database. Through change streams, applications can subscribe and react to real time
data changes in the database as they happen.

While applications can directly subscribe to change streams, Atlas Triggers provides a
serverless way of consuming change stream events. With Triggers, developers don’t
have to stand up their own application server to run the change data capture process.

Each Atlas Trigger is linked to an Atlas Function that invokes server-side logic in
reaction to relevant events. Like Atlas Triggers, Functions are serverless, so you only
pay for them when they are running. Atlas Functions make it easy to implement
application logic, securely integrate with cloud services and microservices, and build
APIs.

12

https://www.mongodb.com/use-cases/analytics
https://www.mongodb.com/kafka-connector
https://www.mongodb.com/docs/manual/changeStreams/
https://www.mongodb.com/docs/atlas/app-services/triggers/
https://www.mongodb.com/docs/atlas/app-services/functions/


Driving innovation with event-driven apps
With the enabling technologies described above, developers can build new classes of
event-driven applications. In this section of the paper we focus on 4 key use cases
enabled by MongoDB Atlas:

1. Event-driven microservices.
2. Event-driven streaming analytics.
3. Event-driven operational data layer.
4. Event-driven ETL.

1. Event-driven microservices
Integrating independent microservices to power a business application is one of the
most common use cases for an event-driven architecture.

Figure 5 below shows an ecommerce platform. A user placing an order generates an
event which is published to a Kafka topic. This makes it available for consumption by
the other microservices needed to process and fulfill the order – for example, payment
processing, inventory management, pick list generation, shipment, etc.

Figure 5: Processing and fulfilling orders through a suite of ecommerce microservices while
powering real time business visibility

Atlas Stream Processing continuously processes streams of events while they are
in-motion between microservices. In our example, the payment processing service
checks for potential fraud by using Atlas Stream Processing to query each order event
as soon as it is generated, providing a low latency check-out experience for the
customer.

13



Approved orders are inserted to the orders collection in the local Atlas database. On
insert of each order, a MongoDB change stream is fired that automatically triggers an
email acknowledgement to the customer. Approved orders are also enriched with
customer data retrieved from the Atlas database, and then published back to a Kafka
topic for consumption by the downstream order fulfillment services.

Atlas Stream Processing aggregates orders as they progress through the ecommerce
system, merging and materializing results into an Atlas database collection. Business
managers access these continuously updated materialized views to track sales and
inventory by product line and region. With this real-time visibility, the business can
dynamically adjust pricing, launch flash sales, and optimize their supply chains all in
response to real-time market demands.

Note that for readability, only one Atlas database is shown Figure 5 above. In a microservices architecture
it is common to segregate data per microservice or per domain. MongoDB provides engineering teams
with the flexibility to select the isolation model most suited for the needs of the application.

2. Event-driven streaming analytics
As noted in the introduction section, applications must increasingly be able to analyze
and react in real time to live events as they happen. We can no longer a�ord the delay
in first having to ETL events into a data warehouse or data lake before then being able
analyze them.

Figure 6: Application-driven streaming analytics enabled by Atlas

Figure 6 demonstrates a fleet management application powered by MongoDB Atlas.
Streams of sensor data generated by each vehicle are published into Kafka topics.
Atlas Stream Processing computes and transforms this raw sensor data, materializing

14



it in Atlas database collections for real time fleet monitoring and dashboarding. These
views enable fleet managers to track a variety of signals including vehicle locations
and route mapping, fuel consumption, driver behavior, vehicle utilization, and more.
Anomalous events such as geo-fencing and excess speed alarms can be instantly
alerted and actioned.

Aged events are automatically tiered into Atlas Online Archive, with the MongoDB
Spark Connector used to serve them into machine learning model training. Trained
models are exposed to the application via an API endpoint which is invoked by an
Atlas Trigger when potential service issues are detected from processed vehicle
telemetry.

3. Event-driven Operational Data Layer (ODL)

Figure 7: Liberating siloed enterprise data, making it accessible in real time to modern applications,
microservices, and analytics

ODL is a common pattern used by many organizations to make enterprise data
available to new applications and services. What is key to this pattern is that the ODL
exposes the data without disrupting the existing backend systems that generate it.
This approach o�ers a phased path to digital transformation and legacy
modernization.

With its flexible document data model and event-driven capabilities that instantly
react to new data in-motion or at-rest, MongoDB Atlas is often chosen as the real-time
data layer powering the ODL. Common examples include o�oading data from
mainframes into an ODL to power new digital services. Consolidating data from
multiple operational systems into a single, 360-degree view of the customer is also

15

https://www.mongodb.com/atlas/online-archive


common. The 360-degree single view is used to support customer service or power
predictive cross-sell and upsell ML models.

To enable the ODL architecture, an event producer is typically added to the source
system. The event producer often reuses log files that fire change data capture events
to the MongoDB Atlas-based ODL. When first connected to the backend systems, the
ODL is initially hydrated via an ETL batch data load. Keeping the systems in sync,
change events are then streamed as deltas to the ODL whenever data is written to the
source system.

When new data hits the ODL, Atlas Stream Processing and the Atlas database process
the data – often consolidating it into a single schema. Atlas will then generate
notifications to downstream services that need to consume the data.

4. Event-driven Extract Transform Load (ETL)
Event-driven ETL is a derivative of the ODL and event-driven analytics patterns
discussed above.

Live operational data is moved from the application stack into a backend centralized
analytics data warehouse or data lakehouse. Processed events are either published
directly by Atlas Stream Processing into a Kafka topic for consumption by the analytics
system, or triggered from the Atlas database by a change stream. Once the event data
from MongoDB has landed in the analytics system, it is combined with other
operational data sources for BI reporting and for machine learning.

The outputs of these analytics processes are often loaded back into MongoDB Atlas.
From here, intelligence and insight can be served at scale within the flow of the
application to its users.

All of Atlas’s cloud provider partners have tools and reference architectures helping
customers implement event-driven ETL today. To learn more about the current
reference architectures, refer to the links below:

● MongoDB Atlas and Amazon Redshift

● MongoDB Atlas and Azure Synapse Analytics

● MongoDB Atlas and Google BigQuery using Dataflow

16

https://aws.amazon.com/blogs/apn/operational-analytics-with-mongodb-atlas-and-amazon-redshift/
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/analytics/azure-synapse-analytics-integrate-mongodb-atlas
https://cloud.google.com/blog/products/data-analytics/mongodb-atlas-and-bigquery-dataflow-templates


MongoDB in Event-Driven Apps Today
MongoDB is already widely used for event-driven applications. A few examples follow.

Customer Use Case Results

7-Eleven Digital wallet and mobile
enabled inventory and
ecommerce

Enables new digital services for
customers, improves accuracy of
inventory data and raises
employee productivity

Keller Williams Property publishing pipelines,
search, and analytics

Sales volumes increased 40%
compared to 28% industry average

Rent the
Runway

Warehouse automation:
garments are x-rayed
triggering cleaning and repair
processing

Reduced warehouse processing
time by 67%

Bosch IoT: sensor data collection
and event-driven analytics

Bosch IoT Suite powers the gamut
of industrial, smart city, and smart
home applications

EnBW Management of both
charging points and customer
access with real time data
and alerts

Expanded to become one of
Europe’s largest EV charging point
networks

Humana Cloud-native ODL for FHIR
implementation

Enables data sharing with
providers and patients, along
delivery of new wellness services

Toyota
Financial
Services

Mainframe o�oad via ODL:
fraud detection, customer
onboarding

“MongoDB helps us make better
decisions and build better
products.”

Midland Credit
Management

Event-driven ODL to build a
single view of the customer

50x higher scalability, 120x lower
costs, zero data errors

Slice Event-driven ML feature store
for consumer credit
underwriting

Reduced credit application process
from 48-hours to 30-seconds

17

https://www.youtube.com/watch?v=HcmEFZukA-Y
https://www.mongodb.com/customers/keller-williams
https://www.mongodb.com/customers/rent-the-runway
https://www.mongodb.com/customers/rent-the-runway
https://www.mongodb.com/customers/bosch
https://www.mongodb.com/customers/enbw
https://www.mongodb.com/customers/humana
https://www.mongodb.com/customers/toyota-financial-services
https://www.mongodb.com/customers/toyota-financial-services
https://www.mongodb.com/customers/toyota-financial-services
https://aws.amazon.com/partners/success/midland-credit-management-mongodb/
https://aws.amazon.com/partners/success/midland-credit-management-mongodb/
https://www.mongodb.com/blog/post/how-slice-enables-credit-approval-less-than-minute-millions-indians


Getting started with event-driven apps
The best way for your developers to get started is to sign up for an account on
MongoDB Atlas. From there, they can create a free database cluster with change
streams and Atlas Triggers, load their own data or our sample data sets, and explore
what’s possible within the platform. Atlas Stream Processing is available to select
developers today via a Private Preview program.

The MongoDB Developer Center hosts an array of resources including tutorials, sample
code, videos, and documentation organized by programming language and product.
We also o�er self-paced training via the MongoDB University, along with instructor-led
training and consulting services delivered by MongoDB Professional Services.

Collectively, these resources help you get started on your event-driven, real-time
journey!

Safe Harbor
The development, release, and timing of any features or functionality described for our
products remains at our sole discretion. This information is merely intended to outline our
general product direction and it should not be relied on in making a purchasing decision nor is
this a commitment, promise or legal obligation to deliver any material, code, or functionality.

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com.
© 2023 MongoDB, Inc. MongoDB and the MongoDB leaf logo are registered trademarks of MongoDB, Inc.

18

https://www.mongodb.com/atlas
https://www.mongodb.com/developer/
https://learn.mongodb.com/
https://training.mongodb.com/
https://training.mongodb.com/
https://www.mongodb.com/products/consulting
mailto:info@mongodb.com

