
A Technical
Guide for RDBMS to
MongoDB Migration
Discover our proven application database
migration process and tools to successfully
migrate to MongoDB

2025

Table of Contents
Introduction 4

Choosing the Right Path 5

Application Database Migration Process With MongoDB 6

Getting Started: Concept Mapping 8

Flexible Architecture: From Rigid Tables to Flexible

and Dynamic Documents 9

Modeling Relationships With Embedding and Referencing 15

Schema Evolution and Its Impact on Schema Design

16

Application Integration 17

MongoDB Drivers and the API 17

Mapping SQL Database Objects to MongoDB Syntax 18

MongoDB Aggregation Framework 19

Indexing 20

Multidocument ACID Transactional Model 22

Maintaining Strong Consistency 22

Write Durability 23

Implementing Validation and Constraints 24

On-Demand Materialized Views 25

Operational Agility at Scale: MongoDB Atlas 26

Migrating RDBMS Data With Relational Migrator 28

 Migration Support: MongoDB Professional Services 29

Enabling Your Teams: MongoDB University and Training 30

Attend a .local MongoDB Event 30

Conclusion 30

2

What Is in This Guide?
While traditional relational databases have served enterprises for decades, their rigid
schemas, scaling limitations, and inability to handle diverse data types make them an
inflexible solution for modern applications. These limitations present significant challenges
for technology teams tasked with delivering on today's business goals.

MongoDB experts developed this guide to help application modernization teams, cloud
architects, and database engineers effectively use the document model to meet modern
application needs.

The guide details a step-by-step migration process centered on the MongoDB Relational
Migrator—a free developer tool that uses generative AI to automate the most complex
aspects of migration, which significantly reduces effort and minimizes risk.

Finally, for teams seeking additional assistance, this guide introduces the dedicated
professional services and training programs that can support your data migration journey.

3

4

The relational database has been the foundation of
enterprise data management for more than 50
years. However, the way we build and run
applications today, coupled with unrelenting growth
in new data sources and user loads, is pushing
relational databases beyond their limits. This can
inhibit business agility, limit scalability, and strain
budgets, compelling more and more organizations
to migrate to alternatives.

MongoDB is designed to meet the demands of
modern applications with a technology foundation
that enables you through:

Flexible architecture, suitable for AI applications:
MongoDB's document model offers a flexible way to
represent complex, hierarchical data structures,
while ensuring reliable and consistent database
transactions, unlike the rigid format of traditional
relational databases.

Faster innovation: Instead of scattering data
across multiple tables in a relational database,
MongoDB allows you to store data in a single
document. This powerful simplicity gives
organizations the flexibility to easily adapt data
models without application downtime, enabling
them to innovate quickly as new application
requirements and use cases emerge.

Freedom to run anywhere: MongoDB Atlas is a fully
managed cloud database that is available in more
than 125 regions across major cloud providers.
Organizations are not locked into a single cloud
provider and enjoy greater flexibility for data
residency and compliance requirements.

Integrated features: MongoDB Atlas unifies
powerful features into one platform, including vector
and full-text lexical search (Atlas Vector
Search/Atlas Search), data visualization (Atlas
Charts), data stream processing (Atlas Stream
Processing) for event-driven applications, and more.

Best-in-class retrieval to build trustworthy AI
applications: Leverage Atlas Vector Search with
advanced embedding and reranking models from
Voyage AI (now part of MongoDB) for semantic
search and retrieval-augmented generation (RAG).
This enables AI applications to access current,
relevant data and simplifies workflows for
developing intelligent agents and AI-powered
solutions—all within a unified platform. Use
MongoDB’s Model Context Protocol (MCP) Server to
connect AI agents and assistants directly to your
MongoDB instance.

Security and compliance: MongoDB Atlas offers
innovations like full-lifecycle data encryption: in
transit, at rest, and—with our industry-leading
Queryable Encryption technology—even while in use.

This guide is designed for project teams that want to
know how to migrate from a relational database
management system (RDBMS) to MongoDB.

This document also provides various links to help
users find appropriate online resources. For the most
current and detailed information on particular
topics, please see MongoDB’s documentation.

Introduction

http://docs.mongodb.com/manual/

5

MongoDB offers various solutions to help customers
transition from traditional relational databases to its
platform. One option is Relational Migrator, a free
self-service tool designed for customers with
in-house migration expertise. For larger and more
complex migrations, MongoDB's Professional
Services team is available to provide assistance
throughout the entire migration process.

Relational Migrator is a free developer tool that
leverages intelligent algorithms and generative AI to
automate the most complex aspects of migrating
from traditional relational databases to MongoDB.

It significantly reduces the time and effort required
for migration while minimizing associated risks.

If you have large-scale, complex migrations for
business-critical applications, our Professional
Services team can provide dedicated, end-to-end
migration support. Our experts work closely with you
to accelerate and de-risk your migration, providing
strategic and technical guidance and development
resources to execute your migration initiatives.

Multiple organizations from various industries have
successfully migrated from RDBMS to MongoDB for
a range of applications, including:

Choosing the Right Path

Organization Industry Migrated From (RDBMS) Application Migrated

Bendigo and Adelaide
Bank

Financial
Services

SQL Database
Application: Agent Delivery System
Function: A retail teller application for customer service
transactions

Nationwide Building
Society

Financial
Services SQL Server

Application: Overdraft database
Function: Manages customer overdraft information and
transactions

Powerledger Renewable
Energy SQL Database Application: Energy trading data platform

Function: Blockchain-based renewable energy trading platform

Toyota Connected
Services Automotive SQL Database

Application: Toyota Safety Connect
Function: Manages safety and emergency services for
connected vehicles

Lombard Odier Financial
Services SQL Database

Application: Portfolio management system
Function: Manages client assets and investment portfolios for
the bank

SEGA Gaming MySQL
Application: Customer portals
Function: Enhances gamer engagement with promotions,
forums, and stats

OXY Energy Microsoft SQL Server

Application: Automated land-lease agreement management
solution
Function: Automates classification and management of
land-lease documents

TELUS Health Healthcare
Services SQL Database

Application: TELUS Health One
Function: Provides holistic well-being support and Employee
Assistance Program services

Cathay Pacific Transportation
and Logistics Manual Documents

Application: Flight Folder
Function: Digitized flight operations for the crew, replacing
paper documents

Figure 1: Case studies.

See more examples of how MongoDB is helping
enterprises modernize legacy applications here.

https://www.mongodb.com/products/tools/relational-migrator
https://www.mongodb.com/services/consulting/relational-migration-methodology
https://www.mongodb.com/services/consulting/relational-migration-methodology
https://www.mongodb.com/solutions/customer-case-studies/bendigo-and-adelaide-bank?tck=customer
https://www.mongodb.com/solutions/customer-case-studies/bendigo-and-adelaide-bank?tck=customer
https://www.mongodb.com/solutions/customer-case-studies/nationwide
https://www.mongodb.com/solutions/customer-case-studies/nationwide
https://www.mongodb.com/solutions/customer-case-studies/powerledger
https://www.mongodb.com/solutions/customer-case-studies/toyota-connected
https://www.mongodb.com/solutions/customer-case-studies/toyota-connected
https://www.mongodb.com/solutions/customer-case-studies/lombard-odier
https://www.mongodb.com/solutions/customer-case-studies/sega
https://www.mongodb.com/solutions/customer-case-studies/occidental-petroleum
https://www.mongodb.com/solutions/customer-case-studies/telus-health?tck=customer
https://www.mongodb.com/solutions/customer-case-studies/cathay-pacific?tck=customer
https://www.mongodb.com/solutions/customer-case-studies?solutions=modernization#pf-content-section

MongoDB's application database migration process follows a structured, phased approach to migrating
applications running on relational databases to its document database. The six-phase framework—assess,
understand, design, implement, validate, and optimize—developed by MongoDB Professional Services enables
teams to prioritize high-impact applications that are ready for database migration, redesign schemas for
flexibility, validate performance, and optimize incrementally. This method balances risk management with agile
execution, using tools like MongoDB Relational Migrator to streamline migrations with minimal downtime. This
process ensures that customers can access the benefits of a modern database like MongoDB, rather than
simply replicating their relational data patterns in a document database.

Here are details of each step of the process:

● Assess application portfolio
Teams begin by assessing their current
applications in groups, scoring each based on
how well they align with MongoDB's document
model. This phase helps identify the
highest-priority applications for
migration—especially those that would gain the
most from the flexibility offered by the
document model, such as applications that
require dynamic schemas or global availability.

● Understand the application details
For shortlisted apps, teams analyze data
structures, dependencies, and infrastructure.
This step involves creating a high-level
MongoDB schema design and making a final
"go/no-go" decision based on technical
feasibility and business impact.

○ Bonus tip: MongoDB’s Relational Migrator
has a pre-migration analysis feature that
can automate this stage and help you save
valuable time and resources. It uses
advanced algorithms to analyze the source
schema, highlight potential data and
configuration risks, and provide tailored
recommendations to help you successfully
migrate to MongoDB. You can learn more
about this feature on our product page.

Application Database Migration Process With MongoDB

Figure 2: Application database migration process with MongoDB.

6

Application Details

https://learn.mongodb.com/courses/overview-of-mongodb-and-the-document-model
https://learn.mongodb.com/courses/overview-of-mongodb-and-the-document-model
https://www.mongodb.com/blog/post/product-release-announcements/introducing-automated-risk-analysis-in-relational-migrator

● Design for migration to MongoDB
Architects re-model relational tables into
MongoDB collections using document patterns
(like embedding vs. referencing) and create a
detailed execution plan to address schema
changes, data migration workflows, and
integration points.

○ Bonus tip: Relational Migrator offers a
user-friendly schema mapping feature for
architects to visualize, compare, and
model their relational schema to
MongoDB in an entity-relationship
diagram. You can learn more about this
feature in the data modeling section of
our documentation.

● Implement the migration
Migration teams initiate the migration process
using ETL tools or by writing custom scripts.

○ Bonus tip: Relational Migrator can help
you easily migrate to MongoDB Atlas or
Enterprise Advanced using a one-time
snapshot or continuous sync with change
data capture (CDC). Relational Migrator
can also integrate with Apache Kafka or
Confluent Cloud for large-scale extended
migrations.

● Validate application outputs
Teams test performance against SLAs (e.g.,
query latency) and verify data integrity
post-migration. Production validation ensures
the application behaves as expected in
real-world scenarios.

○ Bonus tip: Relational Migrator can assist
with this stage as well. You no longer need
manual code updates. You can quickly
generate MongoDB-compatible
application code using the code
generator feature. Additionally, you can
use the query converter feature and
leverage generative AI to convert SQL
queries, views, and stored procedures to
MongoDB query syntax and validate
them.

● Optimize application roadmap
Post-migration reviews identify optimization
opportunities, such as indexing adjustments. A
long-term roadmap is developed to govern
future enhancements and leverage
MongoDB-specific features like aggregation
pipelines.

The process is iterative, using lessons from previous
migrations to maintain continuity for current
systems. This phased approach balances the risks of
migration, allowing enterprises to transition at their
own pace.

7

https://www.mongodb.com/docs/relational-migrator/mapping-rules/schema-mapping/#schema-mapping
https://www.mongodb.com/docs/relational-migrator/mapping-rules/introduction/
https://www.mongodb.com/docs/relational-migrator/mapping-rules/introduction/

The most fundamental change in migrating from a relational database to MongoDB is the way in which the
data is modeled.

As with any data modeling exercise, each use case will be different, but there are some general considerations
that you can apply to most schema migration projects. Before exploring schema design, see Figure 3, which
provides a reference comparing terminology between relational databases and MongoDB.

Getting Started: Concept Mapping

Figure 3: SQL-to-MongoDB document model terminology translation.

8

SQL Terms / Concepts* MongoDB Terms / Concepts

Database Database

Table Collection

Row Document

Column Field

Index Index

Table Joins Embedded document, document references, or $lookup to
combine data from different collections

Primary Key:
Specify any unique column or column
combination as the primary key

Primary Key:
In MongoDB, the primary key is automatically set to
the _id field

Aggregation (e.g., GROUP BY) Aggregation pipeline

SELECT INTO NEW_TABLE $out

*For other SQL commands, see the SQL to Aggregation Mapping Chart

Schema design using documents involves a shift in perspective for data architects, developers, and DBAs.
Instead of relying on the traditional relational data model, which flattens data into rigid two-dimensional
tabular structures made up of rows and columns, MongoDB provides a more dynamic document data model.
This model allows for rich, hierarchical data structures, including embedded sub-documents and arrays. This
data modeling article highlights common patterns for MongoDB schema design.

https://www.mongodb.com/docs/manual/reference/operator/aggregation/out/#mongodb-pipeline-pipe.-out
https://www.mongodb.com/docs/manual/reference/sql-aggregation-comparison/
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

9

Much of the data we use today has complex
structures that can be modeled and represented
more efficiently using JSON (JavaScript Object
Notation) documents rather than tables.

MongoDB stores JSON documents in a binary
representation called BSON (Binary JSON). BSON
encoding extends the popular JSON representation
to include additional data types such as integer,
decimal, long integer, and floating point.

With sub-documents and arrays, documents also
align with the structure of objects at the application
level. This makes it easy for developers to map data
used in the application to its associated document in
the database.

By contrast, trying to map the data's object
representation to the tabular representation of
RDBMS slows down development. Adding object
relational mappers (ORMs) can create additional
complexity by reducing the flexibility to evolve
schemas and optimize queries to meet new
application requirements.

The project team should design the schema based
on application requirements, leveraging the

document model's flexibility to accommodate
changes in data access patterns patterns as needed
over time.

In schema migrations, it may be easy to mirror the
relational database’s flat schema to the document
model. However, this approach negates the
advantages enabled by the document model’s rich,
embedded data structures. For example, data that
belongs to a parent-child relationship in two RDBMS
tables (Figure 4), would commonly be an embedded
document in MongoDB.

The schema mapping feature in Relational Migrator
addresses this challenge with three flexible
approaches:

1. Recommended schema: The tool uses
intelligent algorithms to suggest a MongoDB
schema optimized for common patterns.
Users can start with this and then customize
it as needed.

2. Direct translation: Users start with a 1:1
relational-to-document mapping as their
baseline, and then refine it as needed.

3. Full customization: Users can build their
schema from scratch using the tool's visual
interface.

Flexible Architecture: From Rigid Tables to Flexible and Dynamic Documents

Pers_ID Surname First_Name City

0 Miller Paul London

1 Ortega Alvaro Valencia No Relation

2 Huber Urs Zurich

3 Blanc Gaston Paris

4 Bertolini Fabrizio Rome

Car_ID Model Year Value Pers_ID

101 Bentley 1973 100,000 0

102 Rolls Royce 1965 330,000 0

103 Peugeot 1993 500 3

104 Ferrari 2005 150,000 4

105 Renault 1998 2,000 3

106 Renault 2001 7,000 3

107 Smart 1999 2,000 2

Figure 4: The RDBMS uses the Pers_ID field to join the Person table with the Car table, enabling
the application to report each car’s owner.

10

The document model effectively consolidates related fields into a single data structure using embedded
sub-documents and arrays. This eliminates the need for JOIN operations, as all related information can be
stored together in one document, making it easier to retrieve complete records.

To further illustrate the differences between the relational and document models, consider a slightly more
complex example using a customer object, as shown in Figure 5. The customer data is normalized across
multiple tables, with the application relying on the RDBMS to join seven separate tables in order to build the
customer profile. With MongoDB, all of the customer data is contained within a single, rich document, collapsing
the child tables into embedded sub-documents and arrays.

Figure 5: Modeling customer information: Relational database vs. MongoDB.

MongoDB simplifies the data model by consolidating the
information from all seven tables into a single document. An
array of subdocuments for each car is embedded directly
within the customer document, eliminating the need for
complex joins.

In a relational database, modeling a customer's information
can be complex. The example above requires seven
separate tables—including customer, address, and
interests—that must be joined with common keys to create a
complete customer view.

11

Figure 5: Modeling customer information: Relational database vs. MongoDB.

MongoDB simplifies the data model by consolidating the
information from all seven tables into a single document. An
array of subdocuments for each car is embedded directly
within the customer document, eliminating the need for
complex joins.

In a relational database, modeling a customer's information
can be complex. The example above requires seven
separate tables—including customer, address, and
interests—that must be joined with common keys to create a
complete customer view.

12

What makes the document model better
for modern applications?

Data is the lifeblood of modern software
applications. For over 50 years, data has been
stored in RDBMS and used by developers to build
software applications using structured data,
organized in rigid schemas, i.e., table rows and
columns.

Documents naturally reflect the structure of objects
in programming languages. This simplifies data
modeling for developers, allowing them to quickly
map application data to the database. The result is
faster data retrieval and enhanced application
performance.

Modern software applications must have a few
foundational features to be successful:

Scalability: Applications should be able to handle
high traffic globally, large datasets, and expanded
services without compromising performance or user
experience.

Flexibility: Applications need to accommodate
diverse data types. Developers can quickly adopt
new technologies and respond to changing user
demands.

Agility: Agile applications can incorporate updates,
fixes, and new features quickly, ensuring that users
face minimum service disruptions.

Responsiveness: Users expect personalized,
real-time feedback from modern applications (e.g.,
personalized product recommendations in
e-commerce apps). Responsiveness is essential for
user satisfaction and engagement.

Intelligence: With the increasing volume of new
data formats (unstructured, semi-structured,
images, audio, geospatial, etc.), developers have
quickly realized that relational databases lack the
schema flexibility and scalability features needed to
build modern applications using these new data
formats.

This gap drove the invention of document-oriented
databases, which use flexible schemas and native
support for nested structures (like JSON) to
accommodate evolving data requirements. Unlike
rigid relational tables, document models enable
modern applications to efficiently store and query
semi-structured data types—including text, video,
and sensor feeds—while providing horizontal
scalability for distributed workloads.

13

The document model and AI applications

The document model allows you to store
embeddings alongside other document data (as just
another format supported by BSON), providing
greater flexibility for integrating LLM-based
workflows into existing or new AI applications.

MongoDB’s document model combines the
capabilities of a document database with a
specialized vector store, resulting in a simpler
architecture, less overhead, and a unified
experience.

Also, MongoDB’s advanced querying capabilities
allow developers to efficiently retrieve information
across entire documents, including vector search
with embeddings, full-text search across fields, and
hybrid search by combining both approaches,
offering faster querying and better accuracy.

Achieving the same functionality with a relational
database or point solution requires complex data
pipelines and synchronization that can introduce
technical debt and unintended errors while slowing
development teams.

As applications in the AI era generate larger
volumes and different types of data, there’s a
growing demand for databases that can handle
rapidly changing data models and scale
dynamically. This trend is heightened by the rise of
agentic workflows, which demand even greater
flexibility in data structures. Traditional relational
databases, with their rigid schemas, aren’t
well-suited to meet these new needs.

In contrast, document-model databases like
MongoDB offer flexible schemas that can easily
adapt to evolving data models. This adaptability
makes them ideal for applications utilizing
generative AI, LLMs, and agentic workflows, where
data structures can change quickly. The combination
of AI-driven development and document databases
is transforming how we build applications. Now,
flexibility is essential from the outset, not just an
afterthought.

Other advantages of the document model

The document model also provides performance and
scalability advantages:

1. A document is stored as a single object in
MongoDB, requiring only a single read from
memory or disk. On the other hand, RDBMS
JOINs require multiple reads from multiple
locations.

2. As documents are self-contained,
distributing the database across multiple
nodes (a process called sharding) becomes
simpler and makes it much easier to achieve
horizontal scalability on commodity
hardware. The DBA no longer needs to worry
about the performance penalty of executing
cross-node JOINs to collect data from
different tables.

Joining collections

Typically, it is best to take a denormalized data
modeling approach for operational databases—the
efficiency of reading or writing an entire record in a
single operation outweighs any modest increase in
storage requirements. However, there are examples
where normalizing data can be beneficial, especially
when data from multiple sources needs to be
blended for analysis. This can be done using the
$lookup stage in the MongoDB Aggregation
Framework.

The Aggregation Framework is a data aggregation
pipeline modeled on data processing pipelines.
documents enter a multi-stage pipeline that
transforms them into aggregated results. Each stage
transforms the documents as they pass through.

The $lookup aggregation pipeline stage provides
JOIN capabilities in MongoDB, supporting the
equivalent of SQL subqueries and NON-EQUI joins.

https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/master/reference/operator/aggregation/lookup/

14

For instance, in a shopping cart application, imagine
you have an orders collection and a products
collection. The $lookup operator can enrich your
order data by using the product_id in each order to
find the corresponding item in the products
collection and embed its full details into that order.

MongoDB also offers the $graphLookup
aggregation stage to recursively look up a set of

documents with a specific defined relationship to a
starting document. Developers can specify the
maximum depth for the recursion and apply
additional filters to only search nodes that meet
specific query predicates. $graphLookup can
recursively query within a single collection or across
multiple collections.

Application RDBMS Action MongoDB Action

Create Product Record
INSERT to (n) tables (product description,

price, manufacturer, etc.)
insert() into 1 document

Display Product Record SELECT and JOIN (n) product tables find() single document

Add Product Review
INSERT to “review” table, foreign key to

the product record
insert() to “review” collection,

reference to product document

Defining the document schema

An application’s data access patterns should drive
schema design, with a specific focus on:

● The read/write ratio of database operations
and whether it is more important to optimize
performance for one over the other.

● The types of queries and updates performed
by the database.

● The lifecycle of the data and the growth rate
of documents.

As a first step, the project team should document
the operations performed on the application’s data,
comparing:

1. How are these operations currently
implemented by the relational database?

2. How could these operations be implemented
in MongoDB?

Figure 6 (above) represents an example of this
exercise.

This analysis helps to identify the ideal document
schema and indexes for the application data and
workload based on the queries and operations to be
performed against it.

The project team can also analyze the RDBMS logs
to identify the existing application’s most common
queries. This analysis identifies the data that is most
frequently accessed together and can, therefore,
potentially be stored together within a single
MongoDB document.

Figure 6: Analyzing queries to design an optimum schema.

15

Deciding when to embed a document or create a
reference between separate documents in different
collections is an application-specific consideration.
However, some general considerations guide the
decision during schema design.

Embedding

Data with a 1:1 or 1:many relationship (where the
“many” objects always appear with or are
viewed in the context of their parent documents) are
natural candidates for embedding within a single
document. The concept of data ownership and
containment can also be modeled with embedding.
Using the product data example above in Figure 6,
product pricing—both current and historical—should
be embedded within the product document since it
is owned by and contained within that specific
product. If the product is deleted, the pricing
becomes irrelevant.

However, not all 1:1 and 1:many relationships are
suitable for embedding in a single document.
Referencing between documents in different
collections should be used when:

● A document is frequently read but contains
data that is rarely accessed. Embedding this
data only increases the in-memory
requirements (the working set) of the
collection.

● One part of a document is frequently
updated and constantly growing in size,
while the remainder is relatively static.

● The combined document size would exceed
MongoDB’s 16 MB document limit. For
example, consider a many:1 relationship, like
a single product that has thousands of
reviews. If you try to embed every review
into the main product document, its total
size could easily exceed MongoDB's 16 MB
limit.

Referencing

Referencing can help address the challenges
mentioned earlier and is commonly used when
modeling many-to-many relationships. However, the
application will need to perform follow-up queries to
resolve these references. This may require additional
round trips to the server or necessitate a "join"
operation using MongoDB’s $lookup aggregation
pipeline stage.

Different design goals

Comparing these two design options—embedding
sub-documents versus referencing between
documents—highlights a fundamental difference
between relational and document databases:

● The RDBMS optimizes data storage
efficiency (as it was conceived at a time
when storage was the most expensive
component of the system).

● MongoDB’s document model is optimized for
how the application accesses data (as
performance, developer time, and speed to
market are now more important than
storage volumes).

Modeling Relationships With Embedding and Referencing

https://docs.mongodb.com/master/reference/operator/aggregation/lookup/

16

MongoDB’s flexible schema provides a major
advantage over relational databases. Developers
can choose their desired level of schema structure
and validation, from lightweight, dynamic schemas
for rapid iteration to strict rules for governance as
applications scale.

By contrast, relational databases require a rigid,
predefined schema. Every column, data type, and
relationship must be declared upfront. This works
when requirements are static, but falls short in
modern development, where change is constant and
agility is critical.

Example: Enhancing a Restaurant Review
App

Imagine you’re building a reviews platform. Initially,
users leave text-based reviews. Later, you want to
support star ratings (e.g., 1-5 stars), especially for
mobile users who prefer quick interactions.

In a relational database, adding this feature
typically requires:

1. Creating a new ratings table.
2. Defining a foreign key relationship to reviews.
3. Updating your ORM mappings.
4. Writing data migration scripts (if necessary).
5. Coordinating a release with DBAs and DevOps.
6. Retesting impacted queries.
7. Carefully deploying the application and database
changes.

Even simple changes can trigger a long chain of
updates and coordination.

In MongoDB, you simply:
1. Add a rating field to new documents in the

reviews collection.
2. Adjust your application logic to read/write

the new field.
3. Deploy the app.

Older documents remain valid. No data migration or
schema lock-in. No downtime. No ALTER TABLE.

MongoDB’s document model aligns with how
developers build today—iteratively and rapidly.
Schema changes are driven by the application, not
blocked by the database. As projects mature, teams
can layer on schema validation to ensure structure
and consistency, without losing the flexibility that
accelerates development.

Schema Evolution and Its Impact on Schema Design

Adding a ‘rating’ to Reviews - RDBMS vs MongoDB

Relational Database
(RDBMS) MongoDB

Table: Reviews

Table: Ratings

id text placeId

id reviewId stars

Document:

{
 _id: ObjectId(“...”),
 placeID: “123”,
 Text: “Great coffee!”,
Rating: 5
}

17

After the schema is finalized, developers can easily connect their application to MongoDB using its rich
ecosystem of language drivers. Database administrators can further configure the deployment for specific data
consistency and durability requirements.

MongoDB Approach

Javascript

// Store everything in one document

db.orders.insertOne({

 order_id: 1,

customer: "Maria",

items: [

{ product: "Coffee Maker", quantity: 2 }]});

Application Integration

Ease of use and developer productivity are two of
MongoDB’s core design goals.

MongoDB prioritizes developer productivity through
an API that aligns with native programming
language constructs. Where relational systems force
data into rigid tables (creating an object-relational
impedance mismatch), MongoDB's BSON-based
document model maps directly to modern
languages' object-oriented structures. Developers
interact with data through native method calls (e.g.,
collection.insertOne() in JavaScript) that allow them
to access data stored together without having to
use JOINs. This coherence reduces cognitive load by
eliminating translation layers between application
code and database schema.

For example, an e-commerce "Order" with nested
line items persists as a single document rather than
fractured orders and order_items tables.

SQL Approach

-- Create tables for orders and items

CREATE TABLE orders (id INT, customer
VARCHAR);

CREATE TABLE order_items (order_id INT,
product VARCHAR, quantity INT);

-- Insert data into two tables

INSERT INTO orders VALUES (1, 'Maria');

INSERT INTO order_items VALUES (1, 'Coffee
Maker', 2);

MongoDB Drivers and the API

MongoDB has idiomatic drivers for the most popular
languages, including a dozen developed and
supported by MongoDB (e.g., Java, JavaScript,
Python, .NET, Go) and more than 30
community-supported drivers.

Developers can interact with MongoDB databases
directly using the idioms and data structures of their
chosen language.

With the MongoDB Atlas SQL Interface, you can
leverage existing SQL knowledge and familiar tools
to query and analyze Atlas data live. The Atlas SQL
Interface uses mongosql, a SQL-92 compatible
dialect that’s designed for the document model. It
also leverages Atlas Data Federation functionality
under the hood so you can query across Atlas
clusters and cloud storage, like S3 buckets.

https://www.mongodb.com/docs/drivers/
http://docs.mongodb.com/ecosystem/drivers/
http://docs.mongodb.com/ecosystem/drivers/
https://www.mongodb.com/en-us/products/platform/atlas-sql-interface

18

For developers familiar with SQL, it is useful to
understand how core SQL statements such as
CREATE, ALTER, INSERT, SELECT, UPDATE, and
DELETE map to similar statements for MongoDB.

The comparison table in Figure 7 illustrates the
difference between SQL and MongoDB concepts
and semantics. MongoDB also offers an extensive
array of advanced query operators.

Manually converting and validating SQL database
objects like queries, triggers, and stored procedures
is complex and time-consuming. MongoDB’s
Relational Migrator features a gen AI-powered
Query Converter (Figure 8) that helps you avoid
common pitfalls, like misusing $lookup. This feature
helps you quickly convert SQL database objects into
MongoDB equivalents, validate for compatibility,
and generate development-ready code, significantly
cutting migration and testing time. For example,
Bendigo and Adelaide Bank completed its migration
to MongoDB with 90% less human effort and at
one-tenth of the cost of a traditional legacy
migration using Relational Migrator and other
MongoDB tools.

Mapping SQL Database Objects to MongoDB Syntax

Figure 8: The Query Converter uses gen AI to convert SQL objects (queries, views, and stored procedures) to MongoDB syntax, simplifying
and accelerating the migration process.

Figure 7: Difference between SQL and MongoDB terms.

http://docs.mongodb.com/manual/reference/sql-comparison/
http://docs.mongodb.com/manual/reference/operator/
https://www.mongodb.com/solutions/customer-case-studies/bendigo-and-adelaide-bank#introduction

19

Aggregating data within any database is an
important capability and a strength of the RDBMS.
While many early NoSQL databases lacked robust
aggregation capabilities, this is not universally true
today. As a result, migrating to NoSQL databases
historically forced developers to create workarounds,
such as:

1. Building aggregations within their
application code, increasing complexity, and
compromising performance.

2. Exporting data to Hadoop or a data
warehouse to run complex queries against
the data. This also drastically increases
complexity, duplicates data across multiple
data stores, and does not allow for real-time
analytics.

3. If available, writing native MapReduce
operations within the NoSQL database itself.

MongoDB provides support for aggregation
pipelines natively within the database, which offers
functionality similar to SQL's GROUP BY, JOIN, and
materialized view.

When using an aggregation pipeline, documents in a
collection pass through a stepped process.
Expressions produce output documents based on
calculations performed on the input documents. The
accumulator expressions used in the $group stage
maintain state (e.g., totals, maximums, minimums,
averages, standard deviations, and related data) as
documents progress through the pipeline.

Additionally, an aggregation pipeline can
manipulate and combine documents using
projections, filters, redaction, lookups (‘$lookup’,
which acts as JOIN), and recursive graph lookups
(‘$graphLookup’). It is also possible to transform
data within the database—for example, using the
$convert operator to cleanse data types into
standardized formats.

The SQL to Aggregation Mapping Chart shows
several examples demonstrating how MongoDB’s
Aggregation Framework handles SQL queries.

MongoDB Aggregation Framework

Figure 9: MongoDB Compass Aggregation Pipeline Builder.

You can also use the Aggregation Pipeline Builder in
MongoDB Compass (Figure 9). You can write
aggregation pipelines that allow documents in a
collection or view to pass through multiple stages,
where they are processed into a set of aggregated
results.

Bonus tip: You can use the query bar in MongoDB
Compass to ask natural language questions about
your data.

https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/master/reference/operator/aggregation/convert/index.html
http://docs.mongodb.com/manual/reference/sql-aggregation-comparison/
https://www.mongodb.com/docs/compass/current/create-agg-pipeline/#create-an-aggregation-pipeline
https://www.mongodb.com/docs/compass/query-with-natural-language/#query-with-natural-language

20

In any database, indexes are the single biggest
tunable performance factor and are, therefore,
integral to schema design. Indexes support the
efficient execution of queries in MongoDB. If an
appropriate index exists for a query, MongoDB uses
the index to limit the number of documents it must
scan.

Indexes in MongoDB largely correspond to indexes
in a relational database. MongoDB uses B-tree
indexes and natively supports secondary indexes. As
such, the indexing paradigm will be immediately
familiar to those coming from a SQL background.

The type and frequency of the application’s queries
should inform index selection. As with all databases,
indexing does not come free: it imposes overhead on
writes and resources (disk and memory).

Index types

MongoDB's rich query paradigm provides flexibility
in accessing data. By default, MongoDB creates an
index on the document’s _id primary key field.

All user-defined indexes are secondary indexes.
Indexes can be created in any part of the JSON
document, including inside sub-documents and
array elements. This makes them much more
powerful than the indexes offered by relational
databases.

Index options for MongoDB include:

• Single field indexes
• Compound indexes
• Unique indexes
• Multikey indexes
• Vector indexes with Atlas Vector Search
• Geospatial indexes
• Wildcard indexes
• Partial indexes
• Hashed indexes
• Text search indexes

Indexing

ESR Rule

The ESR (Equality, Sort, Range) Rule in MongoDB is
a guideline for designing efficient compound
indexes. It improves MongoDB query performance
by optimizing how compound indexes are structured
to minimize data scanning, reduce memory usage,
and accelerate sorting or filtering.

The ESR rule prioritizes index fields in this order:
Equality → Sort → Range

This sequence allows MongoDB to quickly narrow
results with equality matches (e.g., status: "active").
Leverage the index for sorting without loading all
data into memory and efficiently filter range queries
(e.g., price > 100) on a reduced dataset.

Optimizing performance with indexes

MongoDB’s query planner selects the index
empirically by running alternate query plans and
selecting the plan with the best response time.

The explain() method enables you to test queries
from your application, showing information about
how a query will be, or was, resolved.

You can also use MongoDB Compass—the GUI tool
for MongoDB, to visualize the “explain” output,
making it even easier to identify and resolve
performance issues.

MongoDB offers a purpose-built tool to monitor
and optimize slow queries. Performance Advisor
monitors queries that MongoDB considers slow
and suggests new indexes to improve query
performance. The threshold for slow queries varies
based on the average time of operations on your
cluster to provide recommendations pertinent to
your workload.

https://www.mongodb.com/docs/php-library/current/indexes/single-field-index/
https://www.mongodb.com/docs/php-library/current/indexes/compound-index/
https://www.mongodb.com/docs/manual/core/index-unique/
https://www.mongodb.com/docs/php-library/current/indexes/multikey-index/
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-overview/?tck=docs_server_toc
https://www.mongodb.com/docs/manual/core/indexes/index-types/index-geospatial/
https://www.mongodb.com/docs/manual/core/indexes/index-types/index-wildcard/#wildcard-indexes
https://www.mongodb.com/docs/manual/core/index-partial/#partial-indexes
https://www.mongodb.com/docs/manual/core/indexes/index-types/index-hashed/#hashed-indexes
https://www.mongodb.com/docs/manual/core/indexes/index-types/index-text/#text-indexes-on-self-managed-deployments
https://www.mongodb.com/docs/manual/tutorial/equality-sort-range-guideline/#the-esr--equality--sort--range--guideline
https://www.mongodb.com/docs/manual/core/query-plans/
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/compass
https://www.mongodb.com/docs/atlas/performance-advisor/#std-label-performance-advisor

21

Queries are run against a sample collection to
demonstrate the benefits of a recommended index.
Each recommended index includes sample queries
that are grouped by query shape. Performance
Advisor doesn't negatively affect the performance of
your Atlas clusters.

The Atlas Query Profiler helps diagnose and monitor
slow-running queries using log data from your
cluster. It aggregates, filters, and visualizes
performance statistics in a scatter plot chart
through the Query Insights interface. It is only
available in M10+ and serverless. If you are running
MongoDB on-premises, Ops Manager—part of
MongoDB Enterprise Advanced—also includes a
query profiler.

Figure 10 provides a high-level view of the
information that makes it easy to quickly identify

outliers and general trends. The table below offers
operational statistics by namespace (database and
collection) and operation type. You can choose
which metric to filter and list operations. This
includes operation execution time, documents
scanned to returned ratio, whether an index was
used, whether an in-memory sort occurred, and
more. You can also select a specific time frame for
the operations displayed, from the past 15 minutes
up to the past 24 hours.

Once you have identified which operations are
potentially problematic, the Query Profiler allows you
to dig deeper into operation-level statistics to gain
more insight into what’s happening. You can view
granular information on a specific operation in the
context of similar operations, which can help you
identify what general optimizations need to be
made to improve performance.

Figure 10: MongoDB Atlas Query Profiler.

https://www.mongodb.com/docs/manual/administration/query/#atlas-query-profiler
https://www.mongodb.com/products/ops-manager

22

In MongoDB, related data is stored together in a
single document. This means you can safely update
multiple parts of that document in one atomic
(all-or-nothing) operation. For most applications,
this provides the same data integrity as a traditional
database transaction.

If an update fails for any reason, the entire
operation is rolled back, guaranteeing that your
application will only ever see the complete and
consistent version of the document.

MongoDB supports also multidocument ACID
transactions and distributed transactions that
operate across scaled-out, sharded clusters.

Multidocument ACID Transactional Model

Multidocument transactions make it even easier for
developers to address a complete range of use
cases with MongoDB. They feel just like the
transactions developers are familiar with from
relational databases—multistatement, similar
syntax, and easy to add to any application.

Through snapshot isolation, transactions provide a
consistent view of data, enforce all-or-nothing
execution, and do not impact performance for
workloads that do not require them. For those
operations that do require multidocument
transactions, there are several best practices that
developers should observe.

You can review all best practices in the
MongoDB documentation for multidocument
transactions.

Maintaining Strong Consistency

MongoDB provides tunable consistency to match
your application's exact needs. It can enforce the
strictest linearizable or causal consistency when
required. For more flexibility, you can configure it to
read data that has been committed to a majority of
nodes (which can't be rolled back after a primary
election) or even from just a single replica. This level
of control allows MongoDB to satisfy the full range
of consistency, performance, and geo-locality
requirements of modern applications.

As a distributed system, MongoDB handles the
complexity of maintaining multiple copies of data
via replication. Read and write operations are
directed to the primary replica by default for strong
consistency, but users can choose to read from
secondary replicas for reduced network latency,
especially when users are geographically dispersed,
or for isolating operational and analytical workloads
running in a single cluster.

https://docs.mongodb.com/manual/core/transactions/
https://docs.mongodb.com/manual/core/transactions/
https://docs.mongodb.com/manual/core/transactions/
https://docs.mongodb.com/manual/replication/

23

Write durability is crucial because it guarantees that
once a transaction is successfully completed
(committed), its changes are permanently stored
and will survive any system failures, such as crashes,
power outages, or hardware malfunctions.

Relational databases generally enforce strong write
durability by default, ensuring every committed
change is fully persistent and recoverable. However,
this commitment to durability often sacrifices
performance due to synchronous disk writes. While
relational databases do offer some configuration to
relax durability (e.g., per-transaction delayed
durability in SQL Server and session-level settings in
MySQL), they typically lack the per-operation
granular control seen in MongoDB.

MongoDB provides highly granular write concerns,
allowing you to fine-tune durability for each
operation. Options range from "fire and forget" for
maximum speed with minimal safety, to waiting for
acknowledgments from multiple replicas and on-disk
journaling for robust data persistence. This offers a
level of operational control over durability that
relational databases generally don't have.

If opting for the most relaxed write concern, the
application can send a write operation to MongoDB
and then continue processing additional requests
without waiting for a response from the database,
ensuring maximum performance. This option is
useful for applications like logging, where users are
typically analyzing trends in the data rather than
discrete events.

With the default stronger write concerns, write
operations wait until MongoDB applies and
acknowledges the operation. The behavior can be
further tightened by also opting to wait for
replication of the write to:

● A single secondary.
● A majority of secondaries.
● A specified number of secondaries.
● All of the secondaries—even if they are

deployed in different data centers (users
should evaluate the impacts of network
latency carefully in this scenario).

Write Durability

The write concern setting guarantees that a change
is persisted to disk before the operation is
acknowledged. It's configured through the driver
and offers granular control—you can set it for a
single operation, an entire collection, or the
database as a whole.

Users can learn more about write concerns in our
documentation.

 APPLICATION

MongoDB Primary

MongoDB Secondary

MongoDB Secondary

 MongoDB Secondary

Unacknowledged

Acknowledged by Primary

Acknowledged by Primary and 1 Secondary

Acknowledged by Replica Set Majority Acknowledged

by Replica Set Members

Figure 11: Configure durability per operation

MongoDB uses write-ahead logging to an on-disk
journal to guarantee write operation durability and
provide crash resilience. Before applying a change to
the database—whether it is a write operation or an
index modification—MongoDB writes the change
operation to the journal. If a server failure occurs or
MongoDB encounters an error before it can write
the changes from the journal to the database, the
journaled operation can be reapplied, thereby
maintaining a consistent state when the
server is recovered.

http://docs.mongodb.com/manual/core/write-concern/

24

Foreign keys

Foreign keys are necessary to maintain referential
integrity in relational schema models that split up
data and its relationships across different tables.

With the document model, referential integrity is
built into the rich, hierarchical structure of the data
model. When modeling a parent-child or 1:many
relationship with subdocuments or arrays, there is no
way you can have an orphan record—related data is
embedded inside a document, so you know the
parent exists.

Another use of foreign keys is to verify that the value
of a specific field conforms to a range of permissible
values (e.g., country names or user status). You can
do this with MongoDB’s schema validation as data is
written to the database, avoiding the need to
re-verify the data whenever you retrieve it.

Schema governance

While MongoDB’s flexible schema is a powerful
feature for many users, there are situations where
strict guarantees on data structure and content are
required. Using schema validation, developers and
DBAs can define a prescribed document structure
for each collection, which can reject any documents
that do not conform to it. With schema validation,
MongoDB enforces strict controls over JSON data:

● Complete schema governance: Administrators
can define when additional fields are allowed
to be added to a document, and specify a
schema on array elements, including nested
arrays.

● Tunable controls: Administrators have the
flexibility to tune schema validation according
to use case. For example, if a document fails to
comply with the defined structure, it can either
be rejected or still written to the collection while
logging a warning message. The structure can
be imposed on just a subset of fields (for
example, requiring a valid customer name and
address, while other fields can be freeform,

Implementing Validation and Constraints

such as social media handle and cell phone
number). And of course, validation can be
turned off entirely, allowing complete schema
flexibility, which is especially useful during the
development phase of the application.

● Queryable: The schema definition can be used
by any query to inspect document structure
and content. For example, DBAs can identify all
documents that do not conform to a
prescribed schema.

You can add a JSON schema to enforce these rules:
● Each document must contain a field named

lineItems.
● The document may optionally contain other

fields.
● lineItems must be an array where each

element:
○ Must contain a title (string) and price

(number no smaller than 0).
○ May optionally contain a boolean

named purchased.
○ Must contain no further fields.

Bonus tip: As a developer, you can use Relational
Migrator's Query Converter to learn MongoDB query
syntax. This tool allows you to convert complex SQL
queries into MongoDB Query API Syntax. Compare
the two and understand their differences.

https://docs.mongodb.com/master/core/document-validation/#json-schema
https://docs.mongodb.com/master/core/document-validation/#json-schema
https://www.mongodb.com/docs/relational-migrator/code-generation/query-converter/#query-converter
https://www.mongodb.com/docs/relational-migrator/code-generation/query-converter/#query-converter

25

On-Demand Materialized Views

Materialized views let you pre-compute and store
the results of common analytics queries—a valuable
feature found in both relational databases and
MongoDB. Typical use cases in MongoDB include:

● Rolling up a summary of sales data every 24
hours.

● Aggregating averages of sensor events every
hour in an IoT app.

● Merging new batches of cleansed market
trading data with a centralized
MongoDB-based data warehouse so traders
get refreshed market views across their
portfolios.

Using the $merge stage, outputs from aggregation
pipeline queries can be merged with existing stored
result sets whenever you run the pipeline, enabling
you to create materialized views that are refreshed
on demand. Rather than a full-stop replacement of
the existing collection’s content, you can increment
and enrich views of your result sets as new data is
processed by the aggregation pipeline.

With MongoDB’s materialized views, you have the
flexibility to output results to sharded collections,
enabling you to scale out your views as data
volumes grow. You can also write the output
to collections in different databases, further
isolating operational and analytical workloads from
one another. As the materialized views are stored in
a regular MongoDB collection, you can apply
indexes to each view, enabling you to optimize query
access patterns and run deeper analysis against
them using Atlas Charts or the BI and Apache Spark
connectors.

On-demand materialized views represent a powerful
addition to the analytics capabilities offered by
MongoDB. They enable users to get faster insights
from live, operational data without the expense and
complexity of moving data through fragile ETL
processes into dedicated data warehouses.

https://docs.mongodb.com/manual/core/materialized-views/
https://www.mongodb.com/products/platform/atlas-charts

26

MongoDB Atlas is a fully managed cloud database service that lets you deploy, run, and scale MongoDB
databases without managing the underlying infrastructure. It is available in more than 125 regions across major
cloud providers, including AWS, Azure, and Google Cloud.

Operational Agility at Scale: MongoDB Atlas

Most companies have already moved to the public
cloud to reduce the operational overhead of
managing infrastructure and provide their teams
with access to on-demand services that give them
the agility they need to meet faster application
development cycles. This move from building IT to
consuming IT as a service is well aligned with
parallel organizational shifts, including agile and
DevOps methodologies and microservices
architectures. Collectively, these seismic shifts in IT
help companies prioritize developer agility,
productivity, and time to market.

Getting started with MongoDB Atlas is simple. It
uses a pay-as-you-go model with hourly billing,
allowing you to deploy a cluster in minutes using the
intuitive GUI or the Atlas CLI. Just select your cloud
provider, region, and instance size, and Atlas handles
the rest—automatically applying operational best
practices so you can focus on your application
instead of backend database management.

Here are some key features of MongoDB Atlas:

● Automated database and infrastructure
provisioning, along with auto-scaling, so
teams can get the database resources they
need when they need them and scale
elastically in response to application
demands. Atlas is designed for distributed
deployments, fault tolerance, and workload
isolation.

● Native support for:

● Atlas Search: Embedded full-text
search in MongoDB Atlas that gives
you a seamless, scalable experience
for building relevance-based
application features. Built on Apache
Lucene, Atlas Search eliminates the
need to run a separate search
system alongside your database.

● Atlas Vector Search: Enables you to perform
searches on your data based on semantic
meaning rather than just keywords. This helps
you retrieve more relevant results and enables
your AI-powered applications to support use
cases such as semantic search, hybrid search,
and generative search, including
retrieval-augmented generation (RAG).

● Atlas Stream Processing: Lets you process
streams of complex data using the same
Query API used in Atlas databases. It
processes data instantly, checks for errors or
delays in incoming data streams, and
continuously publishes results to Atlas
collections or Apache Kafka clusters, ensuring
updated views and analysis of data at all
times.

● Industry-leading security features to protect
your data, with network isolation, fine-grained
access control, auditing, and full-lifecycle data
encryption: in transit, at rest, and—with our
industry-leading Queryable Encryption
technology—even while in use.

● Certifications against global standards,
including ISO 27001, SOC 2, and more to help
you achieve your compliance requirements.
Atlas can also be used for workloads subject to
regulatory standards such as HIPAA, PCI-DSS,
and GDPR.

● Fully managed backups with point-in-time
recovery to protect against data corruption
and the ability to query backups in place
without full restores.

● Fine-grained monitoring and customizable
alerts for comprehensive performance visibility
for developers and administrators.

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/products/tools/atlas-cli
https://www.mongodb.com/products/platform/atlas-search
https://www.mongodb.com/products/platform/atlas-vector-search
https://www.mongodb.com/products/platform/atlas-stream-processing

27

● Automated patching and single-click
upgrades for new major versions of the
database, enabling you to take advantage
of the latest MongoDB features.

● Integrated live migration tools to move your
self-managed MongoDB clusters into the
Atlas service or to move Atlas clusters
between cloud providers.

● Built-in tools, alerts, charts, integrations, and
logs to help you monitor your clusters.

MongoDB Atlas serves a wide range of workloads
for startups, Fortune 500 companies, and
government agencies, including mission-critical
applications handling highly sensitive data in
regulated industries. The developer experience
across MongoDB Atlas and self-managed MongoDB
is consistent, ensuring that you can easily move
from on-premises to the public cloud and between
providers as your needs evolve.

28

Data migration teams can use Relational Migrator, a free tool that leverages intelligent algorithms
and generative AI to automate the most complex aspects of migrating from traditional relational
databases to MongoDB. For large-scale and complex migrations, MongoDB's Professional Services
team offers dedicated migration and application modernization services.

Migrating RDBMS Data With Relational Migrator

Relational Migrator Feature Benefit

Identify potential data and configuration risks before
migrating to MongoDB

Pre-migration analysis automates the migration assessment process. It
uses advanced algorithms to analyze the source database’s schema,
highlights potential data and configuration risks, and provides tailored
recommendations to help you successfully migrate to MongoDB.

Easily map and customize your SQL schema to MongoDB Build your schema from scratch or customize a recommended schema to
meet your application requirements using the intuitive visual mapping
feature.

Seamlessly migrate data from SQL to MongoDB Migrate your mapped data to Atlas (cloud) or on-premises MongoDB using
flexible migration options—a snapshot migration or continuous sync.
Integrate Kafka for large-scale migrations.

The tool supports migrations from several SQL databases, including Oracle,
SQL Server, PostgreSQL, Sybase ASE, IBM Db2, CockroachDB, Yugabyte,
and more.

Instantly generate development-ready application code Generate development-ready code for entity classes, persistence layers,
and APIs in C#, Java, JavaScript, and JSON, eliminating the need for
manual code rewriting.

Convert SQL database objects with AI and validate them With generative AI, you can convert SQL queries, views, and stored
procedures to MongoDB code and validate them to ensure compatibility.
The converter supports C#, Java, and JavaScript.

Overview of Relational Migrator's Key Features

https://www.mongodb.com/products/tools/relational-migrator

29

Figure 12: The relational database migration process in Relational Migrator.

Bonus tip: Refer to this MySQL to MongoDB migration guide to see the step-by-step process of migrating MySQL
database to MongoDB Atlas using Relational Migrator.

Migration Support: MongoDB Professional Services

MongoDB’s global Professional Services team is here
to support you with your migration initiatives,
regardless of how far along you are in the process.
Whether you’re seeking expert advice on which
applications to migrate, need help creating a
migration plan and roadmap, want to collaborate
with specialists to oversee your migration, or require
a complete software development team to execute
the migration, our team is dedicated to ensuring
your successful transition to MongoDB.

Learn more about how to successfully migrate to
MongoDB with the help of our experts.

Visualize
existing and
target data

model

Review
application

usage
patterns

Review Data Model and
Application Usage

Create and
map table
columns to
document

fields

Review
documents

and API
calls

Update Data Model

Migrate
data to

MongoDB

Refactor
application
code, tests,

and
database
objects

Migrate and Refactor
Application Code

Review
refactored

code

Application Database Migration Process With Relational Migrator

https://www.mongodb.com/resources/solutions/use-cases/mysql-to-mongodb
https://www.mongodb.com/services/consulting/relational-migration-methodology

30

Regardless of how you migrate, making sure your teams are skilled in working with MongoDB is critical for
long-term success. Upskilling your development teams not only ensures a smooth transition but also fosters
ongoing innovation, allowing you to fully leverage the capabilities of MongoDB.

To help with this, MongoDB offers free self-paced courses and instructor-led training to boost technical
expertise.

● MongoDB University offers free on-demand online courses for all skill levels to help users learn
MongoDB.

● Instructor-led training provides hands-on, live training sessions for all skill levels, delivered in private or
public sessions.

Enabling Your Teams: MongoDB University and Training

MongoDB.local connects you to MongoDB experts and users in a city near you! Meet our experts building the
products and users shaking up their industries. Find a local event near you on our events page.

Attend a .local MongoDB Event

Following the best practices outlined in this guide can help project teams reduce the time and risk of database
migrations, while enabling you to take advantage of the benefits of MongoDB and the document model. In
doing so, you can quickly start to realize a more agile, scalable, and cost-effective infrastructure, innovating on
applications that were never before possible.

Conclusion

https://university.mongodb.com/
https://www.mongodb.com/services/training
https://www.mongodb.com/events/mongodb-local

We are the company that builds and runs MongoDB. Over 54,500 organizations rely on our commercial
products. We offer software and services to make your life easier:

We Can Help

● MongoDB Atlas is a fully-managed cloud
database service that lets you deploy and
scale MongoDB without managing
infrastructure. It offers features like
auto-scaling, backups, and performance
optimization, and is available in over 125
regions on AWS, Azure, and Google Cloud.

● MongoDB Enterprise Advanced is the best
way to run MongoDB on your own
infrastructure. It’s a finely-tuned package of
advanced software, support, certifications,
and other services designed for the way you
do business.

● MongoDB Compass is a free interactive GUI
tool for querying, optimizing, and analyzing
your MongoDB data. Get key insights, drag
and drop to build pipelines, and more.

● MongoDB Relational Migrator is a free tool that
leverages intelligent algorithms and generative AI
to automate the most complex aspects of
migrating from traditional relational databases to
MongoDB, significantly reducing the time and
effort required for migration while minimizing
associated risks.

● MongoDB Professional Services helps you
accelerate your most important modernization
initiatives. Arm your teams with the deepest bench
of MongoDB expertise, enabling them to drive
success and reduce risk at every stage of your
digital transformation and application
development journey.

● MongoDB University helps you become a
MongoDB expert, from design to operating
mission-critical systems at scale. Whether you’re a
developer, DBA, or architect, we can make you
better at MongoDB.

For more information, please visit mongodb.com or contact us

Case Studies

Free Online Training

Events and Webinars

Documentation

Resources

http://mongodb.com/atlas
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/tools/compass
https://www.mongodb.com/products/tools/relational-migrator
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/training/private
http://mongodb.com/
https://www.mongodb.com/company/contact
http://mongodb.com/customers
http://university.mongodb.com/
http://mongodb.com/events
http://docs.mongodb.com/

