
Transforming
Customer Experience With
MongoDB Atlas Search

2

Table of Contents

Introduction	 3

The Trouble with Search	 4

MongoDB Atlas Search:
A Better Approach to Building Search	 8

Use Cases for Atlas Search	 12

Is Atlas Search Always the Right Solution?	 18

Getting Started with Atlas Search	 18

Resources		 19

3

Introduction
The search bar is truly magical. Whether we are
shopping for groceries, buying a new home,
browsing the web to find answers to our burning
questions, servicing our customers, looking for
our next job, or seeking suggestions for our next
vacation, the search bar helps us navigate and
discover exactly what we are looking for — all just
a simple, natural language query away.

Conditioned by years of internet search engines,
our users expect the applications they rely on at
home and at work to provide search functionality.
But building full-text search into applications
is hard. Developers have had to turn to one of
two approaches, both of which come with major
downsides and trade-offs:

1. Use the search features built into your database
to directly query stored data. However, these
features are limited, failing to provide the rich
search functionality users have come to expect.

2. Bolt on a specialized search engine alongside
your database, synchronizing data between the
two. Now users get the rich search experience they
expect but the application stack has gotten much
more complex and unwieldy. All of this translates
to reduced developer velocity, compromised
customer experience, and escalating costs.

MongoDB Atlas Search gives you a much better
way. It combines the power of Apache Lucene —
the same technology underpinning the world’s
most popular search engines — with the developer
productivity, scale, and resilience of the MongoDB
Atlas database.

A couple of API calls or clicks in the Atlas UI and
you instantly expose your data to sophisticated,
relevance-based search experiences that
boost engagement and improve customer
satisfaction. Your data is immediately more
discoverable, usable, and valuable. And it’s all
fully managed for you in the cloud, removing
operational burden. Customers have reported
30% to 50% improvements in time to market for
new application functionality by adopting Atlas
Search.

In this white paper, we dig deeper into the
challenges of implementing search today and
how that’s transformed with Atlas Search. We
discuss the ideal use cases for Atlas Search, along
with those requirements where you may be better
served considering alternative approaches. And
we wrap up with how you can get started with
Atlas Search.

https://www.mongodb.com/atlas/search

4

The Trouble With Search
Although search is essential for every modern
application, building it isn’t easy. Application
owners need to consider how both the speed of
search and the relevance of search results will
evolve over time. The more demanding each
becomes, the more sophisticated their search
needs will be.

To address search requirements, developers
typically either try to contort their database to
handle search queries, or they turn to specialized
search engines, bolting them on to their
application’s database. Before choosing which
approach to take, it is important to recognize that
databases and search engines are fundamentally
different technologies, designed to do different
things.

Database Design Goals

Databases are very powerful when users know
upfront exactly what they want to query — for
example, returning the account balance for a
specific customer or booking a specific hotel in
a city. Databases provide indexes to make these
queries fast, but you need to know your users’
query patterns in advance so that the right indexes
can be defined on the underlying data.

Beyond retrieving data, databases must also
optimize for the demands of transactional and
analytical “systems of record” applications,
prioritizing data correctness and integrity,
concurrency, resilience, and scalability.

Search Engine Design Goals

Search engines are very powerful when users want
to retrieve information with natural language
search terms and are open to suggestions in the
results that are returned to them. In essence, a
search engine has to infer intent from a user’s
query, providing users with the ability to explore
related information.

For example, a search engine will improve
discoverability to users researching city vacations

in different destinations that meet their desired
criteria, such as cities that are situated on the
coast and less than three hours’ flight time away.
Alternatively, the user might want to find articles
with information related to a specific topic or get
recommendations for a movie to stream.

For these more open-ended questions, specialized
inverted indexes that contain the position of each
word in a document are required. Each piece of
content is extracted, analyzed, and converted to
a set of terms that are then scored and indexed.
The search engine follows the same process when
parsing a query to match the search term to the
most relevant top-k documents and then returns
them as a set of suggestions to the user.

A search engine should also enable the application
owner to customize how data is indexed, correct
user typos, surface related information, and tune
result sets to provide the most relevant, highly
scored results first.

Option 1: Using Database Search

Because the database stores the application
data that needs to be searched, using its built-in
query and indexing features would seem to be
a simple solution. There is no need to replicate
data out of the database into a separate system
which then has to be independently maintained.
Also, developers can continue to work with a
single query language and driver they are already
familiar with.

Many databases, including MongoDB Atlas, offer
built-in index and query features for text search or
more general regular expressions (regex operators),
which can be useful for simple search needs (e.g.,
where there is a limited set of matching documents
or infrequent exact matches).

However, as search requirements evolve,
developers may quickly encounter feature
limitations and compromised application
performance that impacts user experience.

https://docs.mongodb.com/manual/text-search/
https://docs.mongodb.com/manual/reference/operator/query/regex/

5

Limited Functionality, High
Complexity

Databases lack many of the features that are
expected for sophisticated search experiences.
Features that are either absent or limited in
functionality can include searching across
different data types, relevance tuning, fast
faceted navigation and counts, fuzzy search,
autocomplete, highlighting, and broad
international language support. The importance of
each of these features is discussed in more detail
in the “Key Atlas Search features” section of this
white paper.

It is also not uncommon to find that queries
needing to filter many database records are
composed of long chains of subqueries. These are
hard to write, test, debug, and maintain, adding
further friction to development.

Performance Overhead

As users’ search queries become broader and
more sophisticated, developers need to create
more indexes against the data. Failing to do so
means queries have to scan every record in the
database to find the required matches, crippling
performance.

Indexes don’t come for free, however. As data
is written to the database, the index has to be
maintained alongside the base data. Multiple
indexes cause more write amplification and
consume additional memory, CPU, and I/O, all
of which impose a performance overhead on the
database for regular operations as well as for
search queries.

Some databases do offer specialized inverted
indexes that can reduce the number of secondary
indexes that need to be created and maintained.
However, these also impose performance penalties
to the database, especially when indexed data
is being frequently updated. This is because the
index has to be rebuilt to merge new data, making
it inaccessible to queries until the process — which
itself is CPU and I/O intensive — is complete.

Beyond the performance overhead of index
maintenance, it is important for application owners
to consider the additional workload the database
now has to support. In addition to handling the
core data persistence and processing demands of
the application, the database also has to support
search operations. To avoid resource contention
between these two workloads, the database needs
to be carefully sized and closely monitored and
scaled, driving up operational overhead and cost.

Option 2: Bolting On a Specialized
Search Engine

If the database’s internal search features are not
adequate to satisfy the desired user experience,
then another option is to bolt on a dedicated
search engine alongside the database.

This will provide the more sophisticated search
features demanded by customers, but it will
impose additional constraints on developers and
ops teams while driving up data duplication and
technology sprawl (see Figure 1).

Impacts on Developer

It is critical in today’s digital economy for
developers to build and evolve applications at
speed. Introducing a search engine alongside
the database means developers now have two
separate systems they need to work with, which
slows them down.

With this approach, developers have to learn
how to work with two entirely different query
languages to access the database and the search
engine. This increases their learning curve and
means frequent context switching when building
application functionality, both of which impact
their productivity while complicating testing and
ongoing maintenance.

Because this approach requires two different
APIs/drivers, application dependencies become
much more complex, reducing the pace and
frequency of releasing applications to production.

6

DevOps Burden

Doubling up with a database and search
engine also adds time, cost, and complexity to
operations and site reliability engineering (SRE)
teams.

Now they have an additional system in their
technology stack that needs constant care
and feeding: It has to be provisioned, secured,
monitored, scaled, patched, and backed up with
its own tooling and APIs. It also means working
across multiple vendors, making issue resolution
more complex. Every new project means another
dataset living in its own silo, adding to data
sprawl and governance overhead.

Synchronization Overhead

To surface relevant and up-to-date search results,
the database and search engine need to be kept
synchronized, duplicating data between systems.

This means engineering teams need to create
a synchronization mechanism that replicates
data from the database to the search engine.
Typically they will create a data pipeline with
custom filtering and transformation logic built
on top of messaging systems such as Apache
Kafka, or using packaged connectors from
specialized providers. Whether building or buying,
the process takes time and adds ongoing costs.
The synchronization mechanism also has to be
deployed onto its own nodes, creating additional
hardware sprawl.

Once the synchronization mechanism has been
deployed, it needs to be monitored and managed,
adding more engineering overhead.

It is important that replication to the search
engine keeps pace with database writes so
that search results do not excessively lag the
database and break application SLAs. Monitoring
the replication process is necessary to identify
and remediate synchronization issues. This
becomes especially complex if the search index
falls so far behind the database that it has to
be resynced from scratch, causing potential
application downtime.

New application features that necessitate
changes to the database’s schema often need
both the synchronization logic and the search
engine schema to also be updated at the same
time. This creates more dependencies that
slow down the pace of rolling new features to
production.

Performance Overhead and Impact
to User Experience

Beyond the overhead of creating and managing
the synchronization mechanism, using two
systems can impact application performance.
Complex queries may need to return data from
both the search engine and the database,
requiring coordinated query routing and
additional network hops between the two
systems. Network round-trips add latency that
impacts user experience.

Figure 1 Database cluster, data sync, and search cluster create complexity and architectural sprawl, inhibiting developer
productivity and increasing operational load.

7

Why Not Just Use a Search Engine
as a Database?

With search engines storing and querying data,
some engineering teams may consider eliminating
the database altogether and just using the search
engine for data persistence. At first glance, this
would address many of the constraints discussed
above, presenting a single system to develop
against and to operationalize, while eliminating
the overhead of data synchronization.

But as noted earlier, databases and search
engines are different technologies designed
to do different things.

Beyond serving application queries, databases
are designed around a core set of data
persistence and processing capabilities. These
demand data integrity, consistency, and
durability; balanced performance across reads
and writes; concurrency; availability; security;
disaster recovery; and more.

With a specialized architecture and indexing
focused on fast, relevance-based information
retrieval, dedicated search engines have a
different set of design goals that compromise
many of the capabilities that make databases so
essential.

One of the industry’s largest search engine
vendors cautions against using a search engine
as a database both in press articles and in core
product documentation.

Customers
have reported

improved
development

velocity of 30%
to 50% after

adopting Atlas
Search.

https://www.zdnet.com/article/elasticsearch-6-0-not-that-new-but-quite-improved/
https://www.elastic.co/guide/en/elasticsearch/reference/current/general-recommendations.html#large-size
https://www.elastic.co/guide/en/elasticsearch/reference/current/general-recommendations.html#large-size

8

MongoDB Atlas Search:
A Better Approach to Building Search
MongoDB Atlas Search makes it easy to build
fast, relevant, full-text search on top of your data
in the cloud. A couple of API calls or clicks in the
Atlas UI and you instantly expose your data to
sophisticated search experiences that boost
engagement and improve satisfaction with your
applications. Your data is immediately more
discoverable, usable, and valuable.

By embedding an Apache Lucene search
index directly alongside the database, data
is automatically synchronized between the
two, developers work with a single API, there
is no separate system to run and pay for, and
everything is fully managed for you, relieving
operational burden. The MongoDB application
data platform radically simplifies your data

architecture, enabling you to gain a competitive
advantage by innovating faster while reducing
cost, risk, and complexity.

Atlas Vector Search expands the search paradigm
by letting you build intelligent applications
powered by semantic search and generative AI
over any type of data. Atlas Vector Search unlocks
the ability to search unstructured data that
wouldn’t be possible with traditional text search.
You can create vector embeddings with machine
learning models like OpenAI and Hugging
Face, and store and index them in Atlas for
retrieval augmented generation (RAG), semantic
search, recommendation engines, dynamic
personalization, and other use cases.

Figure 2 An integrated and unified platform for database and search improves developer productivity and operational efficiency.

https://www.mongodb.com/atlas/search
https://lucene.apache.org/
https://www.mongodb.com/products/platform/atlas-vector-search

9

How Does Atlas Search Work?

Index Creation and Data
Synchronization

As soon as you create a search index, an Apache
Lucene process is deployed alongside your
database on each node of the Atlas cluster.
Document fields that you want indexed are
automatically synced from the database to
Lucene. When the initial sync is complete,
Atlas Search opens a change stream against
the MongoDB database from which it receives
notifications of all relevant data changes as they
happen.

It then applies these changes to Atlas Search,
keeping the indexes fresh in close to real time,
using MongoDB’s native, event driven data
streaming pipeline (see Figure 3).

This process is fully automated and transparent,
so there is no need to write and maintain your own
custom data sync, and there are no additional
hardware or shadow copies of your data to
manage. Because the database and search index
processes are colocated on the same physical
node, network hops are eliminated. This minimizes
replication lag so you are serving fresher results
to your users. Additionally, query performance is
improved, returning results faster.

You can reconfigure or refine your search index
at any time — for example, by modifying the fields
you want to index or changing index analyzers.
Atlas Search makes this process transparent and
non disruptive to your users. With no-downtime
indexing, your applications can continue to read

and write to your database and search cluster
while the index is being rebuilt. Once Atlas Search
rebuilds the index, the old index is replaced in the
background without any further action from you.

Figure 3 MongoDB Atlas Search architecture.

https://docs.mongodb.com/manual/changeStreams/

10

Developer Experience

The advanced search features offered by Apache
Lucene are exposed to developers via regular
MongoDB Query API syntax, drivers, and tools.
Developers use a single, unified API and driver to
work across both database and search, reducing
context switching, simplifying their code, and
eliminating unnecessary dependencies. As a
result, they are building, testing, iterating, and
shipping applications and new features faster.

Operational Experience

Atlas Search is an integrated service within the
MongoDB Atlas application data platform. It
is fully managed for you, with Atlas handling
provisioning, replication, patching, upgrades,
scaling, security, backup, and disaster recovery.
Because Atlas Search sits right alongside your
database, operations teams use the same APIs
and UI, dramatically simplifying operational
processes.

Through the Atlas tooling, you are able to monitor
and visualize Atlas Search CPU, memory, and disk
consumption alongside database metrics. You can
also configure alerts to trigger when consumption
exceeds predefined thresholds and configure
auto-scaling so that your Atlas resources are
automatically scaled up and down in response to
application demand.

MongoDB Atlas is the most widely available
cloud-based developer data platform in the world,
available in more than 117 regions around the
world, so you get unmatched data distribution
across Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud, all in a single cluster.
You can take advantage of the best features of
each cloud; deliver low-latency, highly resilient
search to users in any country; and avoid lock-in to
any one single cloud provider.

Key Atlas Search Features

Having an integrated and fully managed platform
isn’t useful if it doesn’t provide the features you
need to build compelling search experiences for
your users.

Based on Apache Lucene — the same search
library underpinning Elasticsearch and Apache
Solr — Atlas Search provides the essential
capabilities required for building search across
multiple use cases, including those described
below.

User Experience

•	 Fuzzy search: Providing typo tolerance,
fuzzy search automatically surfaces relevant
results even if the user incorrectly spells the
search term or tries to use an inexact match.
This gives more precision (accuracy) to the
search results with lower user effort.
•	 Autocomplete: Also called type ahead,
autocomplete provides suggested search
terms. This is especially powerful in helping
users complete their search query faster with
less typing, or when a user is unsure of the
precise search term to use.
•	 Highlighting: By extracting snippets from
a document and displaying them with a
document’s title, highlighting is an effective
way of showing users why a result matched
their search term, making it faster for them to
identify the most relevant results.
•	 Geospatial-aware search: Accomplished
with Atlas Search’s geoShape and geoWithin
operators, geospatial-aware search supports
use cases that require distance based sort
orders in results sets.

Relevance

•	 Custom scoring: Enables developers and
search engineers to tune the relevance of
search results, either boosting or burying
specific documents from the results set. This
is useful when merchandizing specific offers
or surfacing promoted content to users.
•	 Synonyms: Provides context-sensitive
search by allowing alternative words to find
related content. For example, “bike” also
returns results for “bicycle” and “cycling”;
“NoSQL’’ also returns “non-relational.” This
can be very powerful at expanding the recall
(breadth) of relevant search results.
•	 Analyzers: Control how search terms are
indexed and queries are parsed, such as

https://www.mongodb.com/mongodb-query-api
https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/view-atlas-search-metrics/
https://docs.atlas.mongodb.com/view-atlas-search-metrics/
https://docs.atlas.mongodb.com/cluster-autoscaling/
https://docs.atlas.mongodb.com/cluster-autoscaling/

11

where to break up word groupings, whether
to consider punctuation and capitalization,
and how to handle special characters and
different languages. Atlas Search offers a
number of built-in analyzers, along with the
ability to create your own. Collectively, these
analyzers allow you to customize your search
experience for specific industries and locales.
•	 Rich query API: Combine search operators
with other MongoDB stages in aggregation
pipelines so you can build powerful
application functionality that blends,
transforms, and enables analytics against
your data.

Speed

•	 Facets: Simplifies information navigation
and discovery by grouping related search
results into categories — for example,
displaying vacation options by destination,
trip type, and price band. Faceting also
provides fast counts of all documents
matching each category, helping users
identify relevant results faster.
•	 Index intersection: Complementing
MongoDB’s powerful indexing and query
planner, Atlas Search’s index intersection
allows complex ad hoc queries to use multiple
term indexes in Lucene simultaneously to filter
query results, providing higher performance
when interrogating data using multiple
predicates.

Beyond the ubiquitous search bar, these
features also power many pieces of application
functionality that don’t require user input.
Examples include social media feeds, trending
topics, and content personalization and
recommendations. You can learn more about each
of these features and how to get started with them
from the Atlas Search documentation.

Beyond Search: A Complete
Application Data Platform

Atlas Search is built on top of MongoDB, the most
popular and widely used modern database in
the market. MongoDB has become so popular
because engineering teams can build and ship

applications faster than other data platforms.
You can get started with both MongoDB Atlas and
Atlas Search in minutes on a fully managed service
that handles operations for you — on any cloud
you choose. We’re also continually looking to the
future of where search is going, and releasing new
features and functionality that make search more
powerful.

What makes MongoDB Atlas database and Atlas
Search the right choice for you?

1.	 The document data model is intuitive
and flexible. Documents map directly to the
objects in your code so they are much easier
and more natural to work with. You can store,
index, and search data of any structure and
modify your schema at any time as you add
new features to your applications.
2.	 You work with data as code. The MongoDB
Query API and drivers are idiomatic to your
programming language. Ad hoc queries,
indexing, full-text search, and real-time
aggregations provide powerful ways for
accessing, grouping, transforming, searching,
and analyzing your data to support any class
of workload.
3.	 With a distributed architecture, your
database and search engine is resilient and
globally scalable. Replication with self-
healing recovery keeps your applications
highly available while giving you the ability
to isolate operational and search workloads
on separate nodes within a single cluster.
Native sharding provides elastic and
application transparent horizontal scale-out
to accommodate your workload’s growth,
along with geographic distribution for data
residency controls. These controls ensure that
data is kept close to users for low latency and
to comply with data sovereignty mandated by
modern privacy regulations.
4.	 Atlas Search Nodes provide dedicated
compute resources to isolate and scale
Atlas Search and Vector Search workloads
independent of database workloads for
superior performance and higher availability.
Incorporating Search Nodes into your Atlas
deployment allows for increased performance
at scale, and delivers workload isolation,

https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/manual/aggregation/
https://docs.atlas.mongodb.com/atlas-search/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.mongodb.com/resources/solutions/use-cases/generative-ai-shaping-the-future-of-search
https://www.mongodb.com/resources/solutions/use-cases/generative-ai-shaping-the-future-of-search
https://www.mongodb.com/document-databases
https://www.mongodb.com/blog/post/search-nodes-now-public-preview-performance-scale-dedicated-infrastructure

12

higher availability, and the ability to optimize
database and search resource usage
independently.

Database and search capabilities are the
foundation of the MongoDB application data
platform, providing a unified developer experience
for modern applications that span from cloud to
edge. You can easily extend the value of your data
by using additional services, including:

•	 MongoDB Charts. Create, share, and
embed visualizations of search results without
having to move data into separate analytics
or BI tools.
•	 Device Sync. Simplify code when building
offline-first applications that require data

synchronization with your Atlas cloud back
end.
•	 MongoDB Atlas Data Lake. Query and
combine MongoDB Atlas application data
with other data assets stored on Amazon S3.
With Atlas Online Archive, you can configure
custom retention policies to automatically
tier aged data out of hot MongoDB storage
onto low cost S3 object storage. Data remains
accessible with federated database queries
that span both hot and cold data tiers
using a single connection string from your
application.

Use Cases for Atlas Search
Atlas Search has been widely used by customers
of all sizes and across all industry sectors.

Customers can use Atlas Search at any stage of
their application lifecycle. Some are building new
applications that use Atlas Search from the start.
Some are extending existing MongoDB workloads
with new search functionality, while others are
replacing existing database-plus-search bolt-ons
with the unified Atlas platform.

There are three core use cases that Atlas Search
is powering today:

1.	 Product catalog and content search:
We define these as “search first” use cases
because the search bar is the primary
interface for users to interact with the service.
2.	 In-application search: These are business
applications supporting internal users or
customer self-service portals where search
is a supporting function used to enhance the
application experience.
3.	 Single view (i.e., customer 360): As with
application search, users interact with
the single view via search as a supporting
function. What’s different is that the single
view application itself relies on specific
Atlas Search capabilities that make it much
easier to unify disparate data ingested from
multiple sources. In the following section,

we provide a definition of each use case,
along with the required capabilities mapped
to Atlas Search features and examples of
customers using Atlas Search today.

Product Catalog and Content
Search

With online and mobile sales volumes growing
at around 50% every year — growth that has
been accelerated by the COVID-19 pandemic
— it is vital for companies to deliver the best
possible experience that drives conversions when
customers browse and search their ecommerce
product catalogs.

At the same time, the increasing ubiquity of high-
speed internet connectivity and smart mobile
devices is changing the content management
landscape. Sites have to create engaging,
relevant, and immersive experiences enlivened
with rich media assets and user-generated
content, all of which have to be discoverable
with low latency for any device, anywhere on
the planet. Content search use cases include
websites, digital and social media, online
publications, research and training materials,
documentation, user forums, and image
repositories.

https://www.mongodb.com/products/charts
https://www.mongodb.com/products/platform/atlas-app-services/device-sync
https://www.mongodb.com/atlas/data-lake
https://www.mongodb.com/atlas/online-archive

13

MongoDB is already widely used for both
product catalog and content management,
with application owners taking advantage of
MongoDB’s flexible document data model,
distributed architecture, and rich query API. The
relevance of each of these is summarized in the
following table. The addition of Atlas Search
means organizations can deliver rich and intuitive

search experiences without having to bolt on an
external search engine. As “search first” use cases,
product catalog and content search are the most
demanding of all search applications, relying on
all of the capabilities discussed in the earlier “Key
Atlas Search Features” section. Table 1 highlights
the most important requirements.

Table 1: Required capabilities for “search first” applications.

Required Capabilities Why MongoDB?

User search experience

1.	 Quickly find the most relevant matches to
products or content using flexible search terms in a
variety of languages.

2.	 Intuitively research and compare different
product and content categories.

3.	 Receive a concise summary of product or content
directly within the search results.

4.	 Perform geospatial-aware search (for use cases
requiring distance-based sort orders).

5.	 Boost preferred search results for merchandising
or content promotion.

Rich search capabilities

1.	 Fuzzy search, autocomplete, synonyms, and
analyzers help users get the right search results
faster.

2.	 Faceted search and counts help users efficiently
navigate categorized search results.

3.	 Highlighted extract snippets help users
understand a document’s relevance.

4.	 Geospatial search allows users to filter and return
results by location.

5.	 Custom scoring returns sponsored or preferred
documents higher up in the results set.

Store and query complex data

1.	 Handle massive variability in catalog and
content-management attributes, metadata, media
assets, and user-generated content.

2.	 Quickly update the schema as new products and
content are added.

Document data model

1.	 Store complex, multi-structured data in a
polymorphic and flexible schema with support for
rich data types.

2.	 Avoid disruptive schema migrations via
a dynamic schema that instantly adapts to
accommodate new data models.

User personalization and data insights

1.	 Serve personalized product or content
recommendations that improve sales conversions
and reduce bounce rates.

2.	 Monitor sales performance and content
consumption in real time.

Real-time analytics

1.	 Capture clickstreams and sales attributions in
MongoDB time series collections, exposing events
to data science tools using the MongoDB Spark
connector or R and Python drivers to tune scoring,
expand synonyms, etc.

2.	 Create and share dashboards for real-time
insights and reporting with MongoDB Charts.

Application resilience and performance

1.	 Benefit from always-on, low-latency search.

2.	 Never slow down under peak loads generated
by promotions, seasonal shopping events, or new
publications.

Distributed architecture

1.	 eplica sets for built-in redundancy and self-
healing recovery.

2.	 Deploy multi-region clusters for wider geo-
resilience and data colocation close to users.

3.	 System resources auto-scale up and down in
response to user demand; scale out as data volume
and customer base grows via native sharding.

https://www.mongodb.com/use-cases/content-management
https://www.mongodb.com/use-cases/content-management
https://www.mongodb.com/use-cases/catalog
https://www.mongodb.com/time-series
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/spark-connector

14

Atlas Search in Action

Keller Williams is one of the largest real estate
companies in the world. Employing 190,000
people, the company closed on 1.2 million homes
in 2020, representing sales volumes in excess of
$400 billion. The business relies on its web and
mobile sites, underpinned by two core MongoDB
Atlas databases to connect buyers with properties
and agents.

•	 The Fast Facets database supports
faceted search so customers and agents can
quickly browse information about multiple
properties for sale in a specific area.
•	 The Master Dataset database, or MDS,
contains all of the property details that
come into play once a prospective buyer is
interested in a particular property and wants
to drill down to learn more.

Atlas Search is a key part of the Keller Williams
platform, providing fast and intuitive geospatial-
aware search that matches properties to each
customer’s search criteria.

Atlas Search powers a diverse range of catalog
and content management use cases across many
industry sectors.

One of the world’s largest auto
manufacturers uses MongoDB Atlas to unify
its after-sales parts product catalog and the
content management system that stores manuals
and maintenance procedures. It replaced
Elasticsearch with MongoDB Atlas to reduce data
duplication and simplify its architecture, freeing
developers to build new applications faster and
cut operational overhead. Atlas Search is used
by its B2B marketplace that serves hundreds of
thousands of users across 160 countries and 30
languages. Autocomplete, synonyms, and fuzzy
search enable users to quickly find the parts and
manuals they are looking for. The scalability of
Atlas and the rich search functionality provided
by Atlas Search become even more valuable as
the company opens up its marketplace to B2C
channels and millions of new users.

Humanitix powers search across its events
catalog and content with Atlas Search. Donating

profits from ticket sales to educational projects
that help disadvantaged children around the
world, Humanitix always seeks to minimize costs.
Bringing database management and search
together in MongoDB Atlas creates a much
simpler, integrated architecture that scales as
the organization expands into new geographic
markets.

One of North America’s fastest-growing medicinal
supply companies uses MongoDB Atlas as the
back end to its ecommerce platform. Its product
catlaog runs on MongoDB and uses Atlas
Search and its geospatial operators to connect
customers with local dispensaries in their area.
The world’s leading 3D geometric deep learning
software company uses Atlas Search as part of
its digital twin platform used by manufacturers
in their engineering assemblies and designs. The
metadata for more than 30 billion 3D-rendered
components is stored in the MongoDB database
and indexed by Atlas Search, making it fast and
easy for engineers to find what they need with
exact search precision.

In-Application Search

Whether building applications to support internal
business users or portals for customer self-service,
the search bar has become an essential feature
of any UI, serving to enrich the overall application
experience. With the added power of search,
users and customers can quickly navigate order,
inventory, payments, claims, audit logs, employee
information, accounts data, and more.

If search isn’t available or isn’t implemented well,
internal users will waste a lot of time trying to find
the right information and customers will defect to
competitors who can better serve them.

Although search requirements for general purpose
in-app experiences are not as broad as they are
for product catalogs and content management,
there are still several critical capabilities you need
to provide alongside the database powering the
application (see Table 2)

https://www.mongodb.com/customers/keller-williams
https://www.mongodb.com/solutions/customer-case-studies/humanitix

15

Table 2: Required capabilities for application search.

Required Capabilities Why MongoDB?

User search experience

1.	 Quickly find relevant records, allowing for typos,
similar terms, and incomplete query criteria.

2.	 Locate the right record from a large corpus of
information using complex query criteria.

3.	 Expose high-performance search directly from
the application’s UI.

Rich search capabilities

1.	 Fuzzy search, synonyms, and autocomplete help
users get to the right results faster with less effort.

2.	 Index intersection evaluates multiple predicates
to efficiently return matching records.

Store and query complex data

1.	 Store records without lengthy upfront schema
design or complex object-relational mapping (ORM)
abstractions.

2.	 Quickly build and deploy new application
functionality.

3.	 Ensure data quality and accuracy for business-
critical applications.

Document data model

1.	 Use documents that match the objects
developers work with in code.

2.	 Dynamic schema instantly adapts to
accommodate new app features and data
structures, avoiding disruptive schema migrations.

3.	 Strong data consistency, backed by ACID
transaction guarantees. Schema validation provides
centralized governance over your data models.

User personalization and data insights

1.	 Enable everything from simple lookups through
to sophisticated data transformations and
aggregations via support for multiple access
patterns and query types.

2.	 Deliver insights to applications in real time.

3.	 Monitor business performance and automate
optimizations via dashboards, BI, and machine
learning.

4.	 Tier and query data anywhere.

Real-time analytics

1.	 Support multiple query types with the expressive
MongoDB query API and secondary indexing. Use
aggregation data pipelines for in-database data
preparation, readying data for analytics.

2.	 Group and count related data with Atlas Search
facets. Increase query speed by caching common
result sets with Materialized Views.

3.	 Create and embed data visualizations with
MongoDB Charts. SQL integration for BI tools with
the BI Connector. AI automation with the Spark
Connector and idiomatic R and Python drivers.

4.	 Tier aged business data to S3 by using Atlas
Online Archive, then federate queries across storage
tiers via Atlas Data Lake.

Application resilience and performance

1.	 Ensure always-on applications.

2.	 Scale to meet business growth.

3.	 Protect data security and preserve user privacy.

Distributed architecture

1.	 See capabilities list in Table 1.

2.	 See capabilities list in Table 1.

3.	 Complete security protection with fine-grained
data access controls; encryption of data in flight,
in use, and at rest; audit log for forensic analysis of
system activity; and data sovereignty policies to
meet modern privacy regulations.

https://www.mongodb.com/transactions
https://www.mongodb.com/transactions
https://docs.mongodb.com/manual/core/schema-validation/
https://docs.mongodb.com/manual/core/materialized-views/

16

Atlas Search in Action

Current is one of the United States’ fastest
growing challenger banks, serving several million
customers and doubling in size every six months.
Its core banking platform runs on MongoDB Atlas
and Google Cloud. Every transaction is stored
in the MongoDB database, with Atlas Search
enabling users to quickly browse each payment
and track rewards points. Atlas Search is also used
to connect account holders, providing faster and
easier access for peer-to-peer payments. Current
had initially considered using Elasticsearch, but
saw the opportunity to simplify its technology
stack and eliminate the overhead of data
synchronization between separate systems by
using Atlas Search.

One of the world’s largest home fitness companies
uses Atlas Search to help its course instructors and
in-store staff curate and construct playlists from
the company’s internal web portal. Fuzzy search
and faceted navigation help the organization
quickly find the right mix of tracks for each session
and log consumption in the database so it can pay
royalties to each artist.

A multinational convenience store chain with
more than 70,000 locations around the world
uses Atlas Search in its internal web portal. Store
managers use fuzzy search to quickly track
internal inventory and to browse internal reports
that track sales data. The company is also using
Atlas Search in a new self-checkout system
currently in trial in select stores. If the point-of-sale
system fails to capture the barcode, the system
scans the item’s shape and weight and passes the
results to Atlas Search, which returns a list of likely
options to the customer, making checkout even
more convenient.

One of the world’s largest stock exchanges is
using Atlas Search to power its internal credit risk
application, improving developer velocity by over
30% compared to its previous solution. Prior to the
addition of Atlas Search, market data feeds had to
be pre-processed in application code before being
loaded into MongoDB Atlas, where they could then
be exposed to users for basic regex search.

Atlas Search significantly reduced the complexity
of the data-ingestion pipeline by allowing raw

data to be loaded and indexed, using standard
features like fuzzy search and autocomplete
to help internal users quickly find top trending
articles for each company they are following.

Single View

A single view, sometimes called Customer 360,
aggregates data from multiple source systems
into a central repository to create a single view
of a customer. By creating this single, real-time
view, organizations enhance business visibility
and enable new classes of analytics to better
understand and serve their customers.

Even before the availability of Atlas Search,
MongoDB was well established for single view use
cases. LCL, a subsidiary of Crédit Agricole and one
of the major retail banks in France, uses MongoDB
to build a single view of its customers, cutting
development

time to market by 40%. Alight Solutions, formerly
a part of Aon Hewitt, migrated from its legacy
mainframes and built a single employee view on
MongoDB, improving application performance
and customer experience by 250x.

These and many other customers have been
able to take advantage of MongoDB’s flexible
document data model, rich query API, and
distributed systems architecture — all captured in
Table 2 above — to build their single customer view.

Atlas Search adds two critical new capabilities
to single view applications: fuzzy search and
autocomplete. One of the toughest challenges in
single view projects is data reconciliation — the
process of unifying the identity of a customer
ingested from multiple source systems. It is not
uncommon, for example, that in a CRM system
the customer has one identifier, in an after-
sales system they have another identifier, and
in a billing system, yet another. Fuzzy search
and autocomplete are incredibly powerful for
reconciling these disparate identities into a single
customer record for the application’s user.

One of the global top 10 insurers is using Atlas
Search on top of the single view built on the
MongoDB database to reconcile fragmented
customer records. Data is ingested from the

https://current.com/
https://www.mongodb.com/blog/post/next-generation-mobile-bank-current-using-mongodb-atlas-google-cloud-make-financial-services-accessible-affordable-all
https://www.mongodb.com/use-cases/single-view
https://www.mongodb.com/use-cases/single-view
https://www.mongodb.com/presentations/major-french-bank-lcl-modernises-with-mongodb-to-enhance-customer-experience-and-improve-time-to-market-by-40-percent?tck=financialservicespage
https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view
https://www.mongodb.com/blog/post/how-alight-solutions-aon-hewitt-improved-customer-experience-by-over-250x-with-mainframe-offload-and-single-view

17

company’s back-end databases and Master
Data Management (MDM) system, where it is
then exposed to 10 different applications — from
call center to internal business processes to its
customer self-service portal.

Fuzzy search enables disconnected customer
details and policy information to be unified within
the application’s UI. Without fuzzy search, the
insurer’s development team would have had
to write its own application-side logic to try to
match these records at runtime. With Atlas Search
handling this requirement, the insurer’s users and
customers get higher performance, and internal
development effort is reduced.

A major European energy provider is using Atlas
Search for a very similar use case. All customer
data from the company’s backend CRM and ERP
systems is ingested into the single view stored in
MongoDB. Atlas Search is used to expose this data
to internal business users and to customers via its
self-service web portal. As the company expands
into smart home solutions, the single view will
become even more critical for user experience,
enabling customers to track energy consumption
and cost down to the level of individual devices.

18

Is Atlas Search Always the Right Solution?
As the use cases above demonstrate, Atlas Search
is a highly capable solution for a broad spectrum
of search requirements.

Because Atlas Search is tightly integrated with
MongoDB Atlas, all data first has to be loaded to
MongoDB database collections in order to create
the required search indexes. There are some highly
specialized applications that need to aggregate
and search across multiple data repositories —
databases, data warehouses, object stores, file
systems, message queues, API gateways, and
so on. Examples include DevOps observability
platforms; security-event and threat-hunting

applications that are continuously ingesting and
searching log data from source systems; and
enterprise wide document management systems.

For these use cases, it is better to use MongoDB as
one of your data sources alongside a dedicated
search engine. In these scenarios, some dedicated
search engines provide a number of built-in
connectors and agents to extract data from
multiple source systems, index them (typically with
Lucene), and then make data searchable with
custom-built tools.

Getting Started With Atlas Search
Atlas Search is designed as a self-service
platform. You have to be running a MongoDB Atlas
database (version 4.2 and up). From there you can
use your own data or load one of our sample data
sets to try it out. Create a search index from the
Atlas UI, CLI, or API, and then start querying your
data.

Atlas Search is available with all Atlas clusters —
including free clusters — so you can evaluate it
at no cost. Our Getting Started tutorial steps you
through the process. Atlas Search documentation
provides a complete reference on how to
configure, manage, and query search indexes,
along with performance recommendations. The
MongoDB Developer Hub and MongoDB YouTube
channel provide a wealth of articles and tutorials
for beginners through to expert users.

Our professional services team can also support
you at any stage of your application lifecycle.
They can partner with you throughout a project to
implement sophisticated solutions, including Atlas

•	 The Design and Develop track helps you
apply best practices and patterns as you
start out. Our consultants work with you to
configure and tune your indexes, map fields,
choose the right analyzers, and use more
advanced Atlas Search features such as
synonyms, autocomplete, custom scoring,
and highlights, alongside Atlas Search
operators.

•	 The Migrate and Simplify track is designed
to move data into MongoDB Atlas from
existing databases and external search
engines.

•	 Optimize is useful for existing Atlas
Search deployments. It will help you find
opportunities to further improve search
performance, recall, and precision by
analyzing execution statistics and explain
plans, tuning index mappings, and optimizing
query design and system sizing, along
with advanced topics such as rightsizing
edgeGrams and nGrams for autocomplete.

Search and other components of the MongoDB
application data platform, as well as help drive
longer-term strategic initiatives.

With Flex Consulting, our consulting engineers
help teams address questions about Atlas Search
in short, technical sessions:

Whether you are building a new application,
extending an existing MongoDB workload, or
looking to simplify your application estate,
Atlas Search makes it easy to get started, and
makes your user experiences more engaging and
delightful. Try Atlas Search on a free cluster today
and see for yourself.

https://docs.atlas.mongodb.com/reference/atlas-search/tutorial/
https://docs.atlas.mongodb.com/atlas-search/
https://www.mongodb.com/developer/learn/?content=Articles&products=Atlas%20Search
https://www.youtube.com/user/mongodb
https://www.youtube.com/user/mongodb
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/consulting/flex-consulting
https://www.mongodb.com/atlas/search

19© August 2024 MongoDB, Inc. All rights reserved.

Safe Harbor
The development, release, and timing of any features or functionality described for our products
remains at our sole discretion. This information is merely intended to outline our general product
direction and it should not be relied on in making a purchasing decision nor is this a commitment,
promise or legal obligation to deliver any material, code, or functionality.

Resources
For more information, please visit mongodb.com or contact us at sales@mongodb.com.

CASE STUDIES
mongodb.com/customers

PRESENTATIONS
mongodb.com/presentations

FREE ONLINE TRAINING
university.mongodb.com

WEBINARS AND EVENTS
mongodb.com/events

DOCUMENTATION
docs.mongodb.com

MONGODB ATLAS DATABASE AS A SERVICE
FOR MONGODB
mongodb.com/cloud

MONGODB ENTERPRISE DOWNLOAD
mongodb.com/download

http://mongodb.com/
https://www.mongodb.com/solutions/customer-case-studies
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
https://www.mongodb.com/products/platform/cloud
http://mongodb.com/download

