
MongoDB Atlas
Security Controls

MARCH 2024

2

Table of Contents
Introduction 5

MongoDB Atlas Security Capabilities 6

Shared Responsibility Model 8

Authentication and Authorization 9

 Multi-factor Authentication 9

 x.509 Authentication 10

 AWS IAM Authentication 10

 LDAP Integration 10

 API Access 10

 HashiCorp Vault Integration 10

Auditing 11

 Control Plane Auditing 11

 Always-on Database Authentication Auditing 11

 Granular Database Auditing 11

Data Encryption 12

 Encryption in Transit 12

 Key Management procedures for encryption in transit 12

 Encryption at Rest 13

 Encryption at rest using Customer Key Management 13

 Encryption key concepts 14

 MongoDB Master Key 14

 Per Database Encryption Key in a MongoDB Cluster 14

 Data Encryption Key (in cloud provider terminology)
 or MongoDB Master Key 14

 Customer Master Key (CMK) 15

 Key Rotation 15

3

Table of Contents
 In-Use Encryption 15

 Client-Side Field Level Encryption 16

 CSFLE implementation 16

 Queryable Encryption 17

Data Sovereignty 20

Network Security 22

 Connectivity 22

 IP Access Lists 23

 Network Peering 23

 Private Endpoints 24

 AWS VPC Topology 24

 Google Cloud VPC Topology 25

	 Microsoft	Azure	VNET	Topology	 26

Compliance & Trust 27

	 MongoDB	Atlas	Compliance	and	Attestations	 27

 ISO 27001, ISO 27017, ISO 27018, SOC 2, PCI DSS, HIPAA 27

 HITRUST, GDPR, CSA STAR, VPAT, IRAP 28

 MongoDB Atlas for Government Compliance 28

 FedRAMP® Moderate Authorized 28

 Criminal Justice Information Solutions (CJIS) 28

Business Continuity and Disaster Recovery 29

 Atlas Control Plane 29

 Atlas Data Plane 29

 Infrastructure Service Recovery 30

4

Table of Contents
 Cloud Backup 30

 Incident Response 31

 Resiliency Plans 31

 Support Coverage 31

Platform – Infrastructure and Data Security 32

 Separation of Production and
 Non-Production Environments 32

 Firewalls and Bastion Hosts 32

 Logging and Alerting 32

 Log Retention 33

 Online Archive 33

 Secure Deletion of Data 34

 Input Validation 34

	 Protection	from	Ransomware	and	Malware	Attacks	 34

 MongoDB Personnel Access to MongoDB Atlas Clusters 35

 Privileged user access 35

 Restricting MongoDB personnel access 35

 Credential erquirements 35

 Access review and auditing 35

Dedicated Information Security Program 36

 Security Program 36

 Application Security 36

	 Security	Best	Practices	for	Software	Development	 37

	 Communication	and	Notifications	 37

 Patching and Change Management 37

Resources 38

5

Introduction
Building customer trust is a top priority at
MongoDB. We understand the responsibility we
have when you, our customers, entrust us with a
significant	variety	and	amount	of	sensitive	data.		
To	maintain	customer	confidence	in	our	security	
posture and in the security features we provide, we
work diligently to continuously improve security
processes and controls and provide our customers
with the right features to secure the data. We
take	security	seriously	—	from	continuously	fixing	
vulnerabilities and improving our security posture
to enabling you to do just the same by providing
various security features in our products. You will
also	find	that	we	maintain	and	improve	upon	a	
full	suite	of	security	compliance	certifications	
and	attestations	so	as	to	keep	up	with	the	ever-
changing threat and risk landscape.

At	MongoDB,	we	want	you	to	have	full	confidence	
in the security and resiliency of the systems and
technology that we maintain, and the products
that we provide to facilitate secure growth and
innovation in your company. We are hopeful
that this document conveys the depth of our
commitment to customer trust by providing a
detailed understanding of MongoDB Atlas security
controls and features.

In addition to this document, we encourage
you to review our Technical and Organizational
Security Measures. The security measures set out
the security features, processes, and controls
applicable to the cloud services, including
configurable	options	available	to	customers,	
which employ industry standard information
security best practices.

What is MongoDB Atlas?
MongoDB Atlas is a fully managed cloud
database with multi-cloud and multi-region
data distribution capability. With automated
infrastructure provisioning, database setup,
maintenance, and version upgrades, customers
can	shift	their	focus	to	what	really	matters:	

building applications with speed and success.
Atlas also comes with many drivers, tools, and a
full suite of services (Atlas Search, Atlas Online
Archive, Atlas Data Lake, and MongoDB App
Services) to help our customers build to new
heights securely.

MongoDB Atlas at a glance
Atlas provides a hierarchy based on organizations and projects to facilitate the management
of your Atlas clusters. Multiple projects can exist within an organization. Billing happens at the
organization level, though visibility into usage by the project is preserved.

By having multiple projects within an
organization,	you	can:

• Isolate	different	environments	from	
each other.

• Deploy	into	different	regions	or	
cloud platforms.

• Create	different	alert	settings.	For	
example,	configure	alerts	for	Production	
environments	differently	than	
Development environments.

• Maintain separate cluster security
configurations.	For	example:
-	Create/manage	different	sets	of	
 MongoDB user credentials for
 each project.
-	Isolate	networks	in	different	VPCs.

• Associate	different	users	or	teams	
with	different	environments,	or	give	
different	permissions	to	users	in	
different	environments.	

https://www.mongodb.com/cloud/trust
https://www.mongodb.com/cloud/trust
https://www.mongodb.com/technical-and-organizational-security-measures#:~:text=MongoDB%20Atlas%20offers%20granular%20auditing,and%20role%2Dbased%20access%20controls.
https://www.mongodb.com/technical-and-organizational-security-measures#:~:text=MongoDB%20Atlas%20offers%20granular%20auditing,and%20role%2Dbased%20access%20controls.
https://www.mongodb.com/atlas

6

MongoDB Atlas Security Capabilities

Figure 1. MongoDB Atlas Security Capabililities

7

MongoDB Atlas Security Capabilities at a glance

Federated
Authentication

Federated authentication using built-in integrations with Okta, Ping Identity,
Azure AD, and others

Database
Authentication

SCRAM,	x509	certificates,	AWS-IAM,	LDAP

Hashicorp Vault native integrations

Auditing

Always-on cloud user action and DB auth tracking

Granular system activity tracking including DDL, DML, and DCL (Data
Definition,	Data	Manipulation,	and	Data	Control	Language)	commands

Encryption

MongoDB Atlas integrates with your key management services of choice –
This includes integration with AWS KMS, Azure Key Vault, Google Cloud KMS
for at-rest and in-use encryption (CSFLE and Queryable Encryption).
Additionally, KMIP-enabled key providers can also be used with CSFLE and
Queryable Encryption.

Encryption in-use with Client-Side Field Level Encryption and
Queryable Encryption

Data Sovereignty
Control data residency via cloud provider and 90+ region selection across
AWS, Azure, & Google Cloud.

Network Security
IP Access lists, VPC Peering

Private Endpoint (AWS, Google Private Service Connect, Azure Private link)

Compliance and
Security Assurance

ISO 27001, 27017, 27018, CSA STAR II, SOC 2, HITRUST, PCI, VPAT, GDPR, IRAP

FedRAMP Moderate Authorized and CJIS (MongoDB Atlas for Government)

Before we jump into details on each of the security capabilities listed above, let us quickly go through
the Shared Responsibility Model.

8

Shared Responsibility Model

As with any cloud service, the provider and
customers share responsibility for securely
using the service. MongoDB Atlas has been
designed with strong security defaults in mind
so that the burden of securely using the service
is minimized for the customer. These defaults
include always-on authentication, authorization,
encryption in-transit, encryption at-rest, and no
database access from the internet by default.
MongoDB Atlas is architected to provide
automated database resilience and mitigate
the downtime risks associated with hardware
failures or unintended actions. For more in-

depth information, read the Resilience and High
Availability With MongoDB Atlas whitepaper

Customers are responsible for creating users and
roles to access their MongoDB Atlas databases,
selecting cloud provider(s) and region(s) in which to
create their clusters and the cluster type. They can
optionally	enable	backup,	configure	advanced	
auditing, bring their own keys for storage engine
encryption,	and	configure	in-use	encryption.	

For more details on the Shared Responsibility
Model refer to the datasheet and the whitepaper.

Figure 2. The MongoDB Shared Responsibility Model

Physical security by cloud providers (AWS, Google Cloud, Azure)

MongoDB Atlas

 Authentication
 (Always on)

 Data
 localization

Encryption
 (In transit, volume)

Network
isolation

 Granular
 auditing

Data
backup

 Platform security Auto-scaling Distributed architecture High availability

M
on

go
D

B
’s

Re

sp
on

si
bi

lit
y

Configure
Federation/LDAP/MFA

Data residency/
Data policies

Database encryption
(KMS, BYOK)

Network
connectivity

Auditing
filters

Backup
schedule

Manage: data, user accounts, roles, identity providers, and MFA

Configure: cloud providers, regions, and tiers

 Initial configuration/set-up by customers →

Continuous enforcement by MongoDB → Sh
ar

ed
Re

sp
on

si
bi

lit
ie

s
C

us
to

m
er

’s
 R

es
po

ns
ib

ili
ty

https://www.mongodb.com/collateral/resilience-and-high-availability-with-mongo-db-atlas
https://www.mongodb.com/collateral/resilience-and-high-availability-with-mongo-db-atlas
https://www.mongodb.com/docs/atlas/reference/user-roles/
https://www.mongodb.com/docs/atlas/reference/user-roles/
https://www.mongodb.com/collateral/mongodb-atlas-shared-responsibility-model
https://www.mongodb.com/collateral/who-owns-security-in-the-cloud

9

Authentication and Authorization
MongoDB Atlas supports multiple authentication
and authorization options and methods to
give	customers	the	flexibility	to	meet	their	
individualized requirements and needs. MongoDB
Atlas environment consists of a web application
administrative interface (MongoDB Atlas UI)
and any MongoDB Atlas Cluster you deploy.
MongoDB	Atlas	provides	you	with	configurable	
authentication and authorization options for
both the MongoDB Atlas UI and your MongoDB
Atlas Clusters.

The MongoDB Atlas Web UI/Control Plane is the
web application where your administrators can
manage Atlas clusters, including initial user and
permissions setup. The MongoDB Atlas UI/Control
Plane supports authentication via username/
password and multi-factor authentication.
Control plane user identities are managed in a
MongoDB-controlled instance, encrypted and
stored securely. Federated identity with SAML
identity providers such as Okta or Ping Identity
are supported. Users may also create and login
to an Atlas control plane account using a Google
Account. Authentication to the Atlas UI/Control
Plane	times	out	after	12	hours;	users	will	need	to	

re-authenticate	after	that	time.	For	the	MongoDB	
Atlas Cluster, authentication is automatically
enabled by default to help ensure a secure system
out of the box.

MongoDB	Atlas	allows	administrators	to	define	
permissions for a user or application, and what
data can be accessed when querying MongoDB.
MongoDB Atlas provides the ability to provision
users	with	roles	specific	to	a	project	or	database,	
making it possible to realize a separation of
duties	between	different	entities	accessing	and	
managing the data.

Administrators can also create temporary
MongoDB users;	Atlas	will	automatically	delete	
the	user	after	a	specified	period	of	time.	This	
capability is highly complementary to granular
database auditing (described in more detail
below). For example, when a user needs to
be granted temporary access to perform
maintenance, the assigned role and all of its
actions can be comprehensively audited. Once
Atlas deletes the user, any client or application
attempting	to	authenticate	with	the	user	will	lose	
access to the database.

Multi-factor Authentication
For the MongoDB Atlas Web UI, user credentials
are stored using industry-standard and audited
one-way hashing mechanisms. Additionally,
customers can choose to optionally utilize multi-
factor authentication, or require all of the users
in their Atlas Organization to use multi-factor

authentication. Multi-factor authentication options
include SMS, voice call, a multi-factor app, or a
multi-factor device (such as a YubiKey). Customer-
sensitive data provided within the GUI, such as
passwords, keys, and credentials that must be
used as part of the service are stored encrypted.

https://www.mongodb.com/docs/manual/core/authentication/
https://docs.atlas.mongodb.com/security-add-mongodb-users/#optional-specify-the-resources-in-the-project-that-the-user-can-access
https://docs.atlas.mongodb.com/security-add-mongodb-users/#optional-specify-the-resources-in-the-project-that-the-user-can-access

10

x.509 Authentication
Ensure tighter security controls and adhere
to existing security protocols by enabling
passwordless authentication to MongoDB Atlas
clusters	with	X.509	certificates.	Easily	configure	
the X.509 option that works for your standards.
X.509 is supported by two options “Easy” and
“Advanced.” Enable the “Easy” X.509 option in
MongoDB	Atlas	to	auto-generate	certificates	to	
authenticate your database users. If you have pre-

existing	certificate	management	infrastructure	
you have the ability to enable the “Advanced”
X.509	option	to	upload	your	CA	certificate	to	
MongoDB Atlas and continue to use your in-
house	X.509	certificates	for	authentication.	This	
option can be optionally combined with LDAPS
for authorization. Atlas automates alerts when a
certificate	issued	by	the	Atlas	CA	or	CRL	is	close	
to expiration.

AWS IAM Authentication
Further simplifying cloud-native security, your
applications, containers, and serverless functions
can authenticate to MongoDB Atlas clusters
reusing existing regular and temporary AWS IAM
credentials. Applications provisioned on EC2
instances, Docker containers managed by ECS,
or serverless functions running on AWS Lambda
can automatically obtain IAM credentials from
local metadata, using them to authenticate to

MongoDB Atlas, just as you can for any AWS-
native service. AWS IAM authentication is
available only on clusters that use MongoDB
version 4.4 and higher.

AWS IAM authentication is available on all Atlas
clusters, including those running on other cloud
providers (Google Cloud, Azure).

LDAP Integration
User authentication and authorization against
MongoDB Atlas clusters can be managed via
a customer’s Lightweight Directory Access
Protocol (LDAPS) server over TLS. A single LDAPS
configuration	applies	to	all	database	clusters	

within an Atlas project. For customers running
their LDAPS server in an AWS Virtual Private Cloud
(VPC), a peering connection is recommended
between that environment and the VPC containing
their Atlas databases.

API Access
For programmatic access to an organization or
project, administrators can create organization-
scoped API keys. As a prerequisite, you must turn
on	an	organization-level	setting	that	only	allows	

programmatic API keys to be used if there is at
least one API Access List entry. The creation
and deletion of keys will be logged in the Atlas
activity feed.

HashiCorp Vault Integration
You can use HashiCorp Vault to generate and
manage secrets for MongoDB Atlas database
users and programmatic APs, standardizing
and	controlling	workflows	with	other	tools	and	
services. Two Vault secrets engines manage

the life-cycle of Atlas credentials that contain
a	secret:	the	MongoDB Atlas Secrets Engine
manages secrets for API keys, while the MongoDB
Atlas Database Secrets Engine manages
database users.

https://docs.atlas.mongodb.com/security-add-mongodb-users/#database-user-authentication
https://docs.atlas.mongodb.com/security-add-mongodb-users/#database-user-authentication
https://www.mongodb.com/atlas/hashicorp-vault

11

Auditing

Control Plane Auditing
Atlas allows administrators to audit all events
triggered from the Atlas UI at the Project or

Organization level. The logs are available in the
Atlas UI or the API.

Always-On Database Authentication Auditing
For dedicated clusters (M10 and above), Atlas
provides an easy-to-read log of database
authentication events — including both successes

and failures — such as database user, source IP
address, and timestamp. This can be accessed
either within the Atlas UI or via the API.

Granular Database Auditing
Granular database auditing in MongoDB Atlas
allows administrators to answer detailed questions
about systems activity by tracking all DDL, DML,
and DCL commands against the database. All
DML commands can be audited, including reads
along with creations/updates/deletes. Admins
can select the actions that they want to audit,

as well as the MongoDB users, Atlas roles, and
LDAPS groups whose actions they wanted to be
audited, right from the Atlas UI. A single auditing
configuration	applies	to	all	database	clusters	
within an Atlas project. When needed, audit logs
can be downloaded in the UI or retrieved using the
MongoDB Atlas API.

12

Data Encryption
Data that is created, exchanged, and stored
in an organization is one of its most valuable
assets. Securing that data from compromise and
unauthorized access, especially when it comes to
personally	identifiable	information	(PII),	financial,	
health, or government information, should be at
the very top of your priorities.

Authentication	and	authorization	offer	one	level	
of security but your workloads which are critical to
your organization have to be encrypted. MongoDB
encryption	offers	robust	features,	some	coming	
out-of-the-box on the MongoDB modern, multi-
cloud database platform, which we will cover in
this article.

Encryption in Transit
All	MongoDB	Atlas	network	traffic	is	protected	by	
Transport Layer Security (TLS), which is enabled by
default and cannot be disabled. Customer data
that	is	transmitted	to	MongoDB	Atlas,	as	well	as	
customer	data	transmitted	between	nodes	of	your	
MongoDB Atlas Cluster, is encrypted in transit
using TLS. You can select which TLS version to use
for your MongoDB Atlas Clusters, with TLS 1.2 being
the recommended default and a minimum key
length of 128 bits.

Key management procedures for
encryption in transit
All encryption in transit is supported by the use
of OpenSSL FIPS Object Module. We maintain
documented cryptography and key management
guidelines for the secure transmission of customer
Data,	and	we	configure	our	TLS	encryption	key	
protocols and parameters accordingly. MongoDB’s
key	management	procedures	include:		

1. Generation of keys with approved key length

2. Secure distribution, activation and storage,
recovery and replacement, and update of keys

3. Recovery of keys that are lost, corrupted,
or expired

4. Backup/archive of keys

5. Maintenance of key history

6. Allocation	of	defined	key	activation	and
deactivation dates

7. Restriction of key access to authorized
individuals;	and

8. Compliance with legal and regulatory
requirements.

When a key is compromised, it is revoked, retired,
and replaced to prevent further use (except for
limited use of that compromised key to remove
or verify protections). Keys are protected in
storage by encryption and are stored separately
from	encrypted	data.	TLS	certificates	are	
obtained from a major, widely trusted third-party
public	certificate	authority.	In	the	course	of	
standard TLS key negotiation for active sessions,
ephemeral session keys are generated which are
never persisted to disk, as per the design of the
TLS protocol.

13

Encryption at Rest
Encryption at rest is a protection layer to
guarantee	that	the	written	files	or	storage	is	only	
visible once decrypted by an authorized process/
application. Upon creation of a MongoDB Atlas
Cluster, by default, customer data is encrypted at
rest using AES-256 to secure all volume (disk) data.
That process is automated by the transparent disk
encryption of your selected Cloud Provider, and
the Cloud Provider fully manages the encryption
keys. You may also choose to enable database-
level encryption via the WiredTiger Encrypted
Storage Engine (using AES-256), which allows you
to bring your own encryption key with AWS Key
Management Service (KMS), GCP KMS, or Azure
Key Vault.

• Amazon Web Services
Encryption-at-rest is automated using AWS’s
volume encryption, which uses industry standard
AES-256 encryption to secure all volume (disk)
data. All keys are fully managed by AWS.

Customers running MongoDB Atlas may also
choose to optionally enable database-level
encryption for sensitive workloads via the
WiredTiger Encrypted Storage Engine. This
option allows customers to use their own AWS
KMS, Azure Key Vault, or Google Cloud KMS keys
to control the keys used for encryption at rest.
This capability is described in more detail below.

• Microsoft Azure
Encryption for data at rest is automated using
Azure’s volume encryption, which uses industry
standard AES-256 encryption to secure all
volume (disk) data. All keys are fully managed
by Azure.

Customers running MongoDB Atlas may also
choose to optionally enable database-level
encryption for sensitive workloads via the
WiredTiger Encrypted Storage Engine. This
option allows customers to use their own AWS
KMS, Azure Key Vault or Google Cloud. KMS keys
to control the keys used for encryption at rest.
This capability is described in more detail below.

• Google Cloud
Encryption for data at rest is automated using
Google Cloud’s volume encryption, which
uses an Advanced Encryption Standard (AES)
algorithm with a 256-bit key length, in Galois/
Counter Mode (GCM). This is implemented in
the BoringSSL library that Google maintains. In
addition to the storage system level encryption,
data is also encrypted at the storage device
level with AES-256 on solid state drives (SSD),
using	a	separate	device-level	key	(a	different	
key than the storage level). All keys are fully
managed by Google Cloud.

Encryption at rest using Customer
Key Management
Customers running MongoDB Atlas may choose
to “bring their own key” and enable database-
level encryption for data via the WiredTiger
Encrypted Storage Engine. All Atlas databases
and snapshot backups use strong volume (disk)
encryption by default to protect data at rest. The
use of self-managed keys with the WiredTiger
Encrypted Storage Engine can help customers
achieve	additional	levels	of	confidentiality	and	
data segmentation.

Please review the Atlas documentation on
Encryption Key Management for the Encrypted
Storage Engine for a general overview. The
following describes how customers can delegate
the use of their keys.

Atlas uses a customer’s unique Master Key (AWS
KMS Customer Master Key, Azure Key Vault
Secret Key, or Google Cloud Service Account Key)
per project to generate, encrypt, and decrypt
its data master keys. Master keys are then used
to encrypt database keys. This process is called
envelope encryption.

https://www.mongodb.com/docs/atlas/setup-cluster-security/#encryption-at-rest
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_considerations
https://docs.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://cloud.google.com/security/encryption-at-rest/
https://docs.atlas.mongodb.com/security-kms-encryption/
https://docs.atlas.mongodb.com/security-kms-encryption/

14

Encryption key concepts

MongoDB Master Key

MongoDB Master Key is an encryption key
used by the MongoDB Server to encrypt the
WiredTiger Storage Engine. The key isn’t stored
in the MongoDB database, but it’s supplied
externally	through	KMIP	or	a	local	keyfile.	When	
the MongoDB server starts, it obtains the master
key	from	the	KMIP	or	local	file	and	then	stores	it	in	
memory. This key is then used to decrypt the data
stored in the WiredTiger storage engine.

Atlas maintains a layer that translates requests
between MongoDB Server and a CMK that you
created in AWS. To translate the requests, Atlas
uses the layer to request the CMK to create
an encrypted data encryption key (DEK). This
encrypted DEK is generated per Atlas deployment.

For example, for a three node M10+ replica set
as	shown	in	the	following	figure,	there	are	three	
unique encrypted DEKs, one per node. Atlas
stores the encrypted DEK on disk on each node in
the Atlas cluster. When the cluster starts up, the
Atlas layer decrypts the DEK using the customer
provided encryption key and supplies this to the
MongoDB Server.

Figure 3.

Key Vault Secret Key, or Google Cloud Service Account Key) per project to generate,
encrypt, and decrypt its data master keys. Master keys are then used to encrypt
database keys. This process is called envelope encryption.

Encryption key concepts

MongoDB Master Key

MongoDB Master Key is an encryption key used by the MongoDB Server to encrypt
the WiredTiger Storage Engine. The key isn't stored in the MongoDB database, but it's
supplied externally through KMIP or a local keyfile. When the MongoDB server starts,
it obtains the master key from the KMIP or local file and then stores it in memory.
This key is then used to decrypt the data stored in the WiredTiger storage engine.

Atlas maintains a layer that translates requests between MongoDB Server and a CMK
that you created in AWS. To translate the requests, Atlas uses the layer to request the
CMK to create an encrypted data encryption key (DEK). This encrypted DEK is
generated per Atlas deployment.

For example, for a three-node M10+ replica set as shown in the following figure, there
are three unique encrypted DEKs, one per node. Atlas stores the encrypted DEK on
disk on each node in the Atlas cluster. When the cluster starts up, the Atlas layer
decrypts the DEK using the customer-provided encryption key and supplies this to
the MongoDB Server.

Figure: Integrating with AWS KMS (Key Management System)

13

Per Database Encryption Key in a MongoDB
Cluster

MongoDB Server maintains a per database
encryption key in the MongoDB cluster. In the
preceding	figure,	there	are	three	databases	on	the	
MongoDB cluster, each of which is encrypted with a
unique database encryption key. Each of these keys
are then encrypted with the MongoDB Master Key.

Data Encryption Key (in cloud provider
terminology) or MongoDB Master Key

Atlas uses the customer provided encryption key
to create an encrypted DEK. Atlas also uses a
customer key management instance to decrypt
this encrypted DEK and supply the resulting
plaintext key to the MongoDB Server over the
wire using TLS. When MongoDB Server uses this
plaintext key, it refers to it as the MongoDB Master
Key, whereas a cloud provider’s customer key
management instance might refer to it as a DEK.
To learn more about DEKs, see Data Keys.

https://www.mongodb.com/docs/atlas/security-aws-kms/#mongodb-expression-exp.MongoDB-Master-Key
https://www.mongodb.com/docs/atlas/security-aws-kms/#mongodb-expression-exp.MongoDB-Master-Key
https://www.mongodb.com/docs/atlas/security-aws-kms/#mongodb-expression-exp.MongoDB-Master-Key
https://www.mongodb.com/docs/atlas/security-aws-kms/#mongodb-expression-exp.MongoDB-Master-Key
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

15

Customer Master Key (CMK)

Customer Master Key is a concept of a customer
key management instance. CMKs are used to
encrypt and decrypt a MongoDB Master Key (or
DEK). The CMK exists only on the customer key
management instance. To learn more about CMKs,
see Data Keys.

The Master Key in the context of a customer’s
cloud service – generates and decodes data keys.
When the Encrypted Storage Engine is enabled for
an Atlas project, customer databases can only be
started or backed up when the customer’s Master
Key is active and valid.

Refer to the documentation, on how to manage
the master key.

Key rotation

For Encryption at-rest using customer managed
keys, customers who require key rotation can
use Key Management Systems (KMS) and set the
master key rotation policy for automatic rotation
natively inside those systems. We recommend
that customers create purpose-generated IAM
(Identity	Access	Management)	profiles	for	access	
to those services, and make the scope very narrow
— only encrypt/decrypt operations on a single
project-specific	key	and	isolate	key	administration	
actions (generate, delete, etc) under a
management	IAM	profile	which	is	inaccessible	to	
the application.The secret keys/credentials to the
encrypt/decrypt	IAM	service	account	profile	itself	
(i.e., the authentication secrets to make an API call
to the KMS) should be rotated periodically as well.
Refer to the documentation for more details.

In-Use Encryption
MongoDB Atlas supports automatic encryption
of	individual	data	fields	of	Customer	Data	
before they are sent to MongoDB Atlas via in-use
encryption. If you enable either the Client-Side
Field Level Encryption or the Queryable Encryption
feature on selected data, an application-side
component built into the MongoDB drivers
encrypts	that	field	before	being	sent	to	MongoDB	
Atlas, and only decrypts it upon return to the
driver. Once encrypted, MongoDB Atlas never
sees your unencrypted data. Encryption keys are
managed by and only available to the application.

By securing data with in-use encryption you can
move to managed services in the cloud with
greater	confidence.	This	is	because	the	database	
only	works	with	encrypted	fields,	and	you	control	
the encryption keys, rather than having the
database provider manage the keys for you. This
additional	layer	of	security	enforces	an	even	finer-
grained separation of duties between those who
use the database and those who administer and
manage the database.

Data encryption keys are protected by strong
symmetric encryption with standard wrapping Key
Encryption Keys, which can be natively integrated
with external key management services backed by
FIPS 140-2 validated Hardware Security Modules
(HSMs). Supported key providers are Amazon
KMS, Azure Key Vault, Google Cloud KMS and any
KMIP-compliant key manager. As an example,
customers can use remote secure web services to
consume an external key or secrets manager such
as Hashicorp Vault.

MongoDB’s In-Use encryption features
complement existing network and storage
encryption	to	protect	the	most	highly	classified,	
sensitive	fields	of	your	records	without

• Developers needing to write additional, highly
complex encryption logic

• Significantly	impacting	database	performance

https://www.mongodb.com/docs/atlas/security-aws-kms/#mongodb-expression-exp.MongoDB-Master-Key
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt
https://www.mongodb.com/docs/manual/core/csfle/fundamentals/keys-key-vaults/
https://www.mongodb.com/docs/manual/tutorial/rotate-encryption-key/

16

Client-Side Field Level Encryption
Client-Side Field Level Encryption (CSFLE) provides among the strongest levels of
data privacy and security for regulated workloads. What makes Client-Side Field
Level	Encryption	different	from	other	database	encryption	approaches	is	that	the	
process is totally separate from the database server. Encryption and decryption are
instead handled exclusively within the MongoDB drivers in the client before sensitive
data leaves the application.

CSFLE implementation

CSFLE	is	highly	flexible.	You	can	selectively	encrypt	
individual	fields	within	a	document,	multiple	fields	
within the document, or the entire document. Each
field	can	be	optionally	secured	with	its	own	key	
and decrypted seamlessly on the client.

CSFLE	uses	AES-256	in	authenticated	CBC	mode:	
AEAD AES-256-CBC encryption algorithm with
HMAC-SHA-512 MAC.

To understand how FLE works in practice, let’s
take	a	look	at	the	flow	of	a	query	submitted	by	an	
authenticated client, as shown in Figure 4.

Figure 4. MongoDB Client-Side Field Level Encryption implementation

In this example we are retrieving a user’s medical
record	by	their	SSN	number:

1. When the application submits the query, the
MongoDB	driver	first	analyzes	it	to	determine	if	
any	encrypted	fields	are	involved	in	the	filter.

2. Recognizing that the query is against an
encrypted	field,	the	driver	requests	the	fields’	
encryption key from the external key manager.

3. The key manager returns the keys to the MongoDB
driver,	which	then	encrypts	the	ssn	field.

4. The driver submits the query to the MongoDB
server	with	the	encrypted	fields	rendered	as	
ciphertext.

5. The MongoDB server returns the encrypted
results of the query to the driver.

6. The query results are decrypted with the
keys held by the driver, and returned to the
authenticated client as readable plaintext.

Note	that	in	the	query	flow,	the	raw	key	material	
is never persisted to disk. Rather it resides only in

17

memory on the application server, never accessed
by	or	transmitted	to	the	database.

Since the database server has no access to the
encryption keys, certain query operations such
as sorts, regexes, and range-based queries on
encrypted	fields	are	not	possible	server-side.	With	
this in mind, CSFLE is best applied to selectively
protect	just	those	fields	containing	highly	sensitive	
PII such as email addresses, phone numbers,
credit card information or social security numbers.
Reads	against	fields	in	the	document	that	are	not	
encrypted client-side will evaluate as normal, as
part of any query or aggregation pipeline operation.

To learn more, download our guide to CSFLE, and
review	these	key	resources:

• The Client-Side Field Level Encryption
documentation provides more detail on the
implementation of FLE. It covers supported
encryption	methods	and	algorithms;	key	
management;	schema	enforcement,	driver	
compatibility;	and	more.	

• The Client-Side FLE tutorial provides worked
examples in multiple languages for full stack
developers using a healthcare application as
an example.

Queryable Encryption
Queryable Encryption enables an application to encrypt sensitive data from the client
side using a MongoDB driver, store the encrypted data in the MongoDB database, and
run expressive queries on the encrypted data using a fast state-of-the-art encrypted
search algorithm.

Queryable Encryption
Implementation
Queryable	Encryption	can	be	applied	at	the	field,	
subdocument or document level. Data encryption
is done using AES-256 in authenticated CBC
mode:	AEAD	AES-256-CBC	encryption	algorithm	

with HMAC-SHA-256. A unique key is used for
each	field.		

Queryable Encryption uses a deeply integrated
novel in-use Structured Encryption scheme called
OST and was developed by our Cryptography
Research Group, backed by 20 years of academic
research	in	the	field	of	encrypted	search.		

Figure 5. Queryable	Encryption	flow	of	operations

https://www.mongodb.com/collateral/field-level-encryption
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.mongodb.com/drivers/use-cases/client-side-field-level-encryption-guide

18

1. Authorized users run an equality query to get
specific	SSN	number	records

2. Recognizing the query is against an encrypted
field,	the	driver	requests	the	encryption	keys	
from the customer-provisioned key provider,
such as AWS Key Management Service (AWS
KMS), Google Cloud KMS, Azure Key Vault, or any
KMIP-enabled provider, such as HashiCorp Vault.

3. The MongoDB driver gets the encryption keys
from the key provider

4. The driver submits the encrypted query along with
a cryptographic token to the MongoDB server
with	the	encrypted	fields	rendered	as	ciphertext.

5. Queryable Encryption implements a fast
encrypted search algorithm that allows the server
to process queries on the encrypted data, without
knowing the data. The data and the query itself
remain encrypted at all times on the server.

6. The MongoDB server returns the encrypted
results of the query to the driver.

7. The query results are decrypted with the keys
held by the driver and returned to the client and
shown as plaintext.

Note	that	in	the	query	flow,	the	raw	key	material	
is never persisted to disk. Rather it resides only in
memory on the application server, never accessed
by	or	transmitted	to	the	database.

Currently equality query is supported (as of 7.0
release) and additional query types such as
range,	prefix,	suffix,	and	substring	will	be	added	
in future releases.

To	learn	more,	review	these	key	resources:

• The Queryable Encryption documentation
provides more detail on the implementation
of Queryable Encryption. It covers supported
encryption	methods	and	algorithms;	key	
management;	schema	enforcement,	driver	
compatibility;	and	more.	

• The Queryable Encryption tutorial provides
worked examples in multiple languages for full
stack developers using a healthcare application
as an example.

Both CSFLE and Queryable Encryption are
supported and will continue to be for the
foreseeable future. Client-Side Field Level
Encryption	provides	high	levels	of	confidentiality	
for sensitive data and is a strong solution for
most workloads, including the ability to run
equality queries on deterministically encrypted
data. Customer-controlled keys scoped at the
application ensure that only the application - not
a DBA, not a cloud provider, and not a 3rd party
service provider - has access to the data in its
unencrypted form. Queryable Encryption has
all of the security guarantees of CSFLE and adds
the ability to run equality queries on randomized
encrypted data with more query types to come.

19

Key Benefits
Queryable
Encryption

CSFLE

Faster application development cycle

Developers	don’t	have	to	figure	out	how	to	use	the	right	algorithms,	
encryption options, etc to implement their right encryption solution.
MongoDB has done all that complex work for them.

Strong technical controls for critical data privacy use cases

Help customers meet strict data privacy requirements such as HIPAA,
GDPR, CCPA, PCI, and more.

End–to–end encryption

Data is encrypted at the client-side, remains encrypted in-transit,
at rest, and in-use, and is only decrypted back at the client. Fully
randomized encryption means that a given value encrypts to a
different	ciphertext	every	time.	

*

Reduce operational risk

Eliminate common security concerns when moving database
workloads to the cloud. Customers can keep their data on any of the
cloud providers and be assured that their data is protected.

Robust key management

Rotate keys and migrate from one key provider to another seamlessly,
without impact to your application.

Groundbreaking query technology

Queryable Encryption introduces a fast state-of-the-art encrypted
search algorithm using NIST standards-based cryptographic
primitives such as AES-256, SHA2, and HMACs.

Rich querying capabilities on encrypted data

Data can be queried using equality matches (generally available) with
range,	prefix,	suffix,	and	substring	query	capabilities	planned. **

* Randomized encryption is only available with a non-searchable option.

** Currently equality query type is supported but in the future other query
types	like	range,	prefix,	suffix,	and	substring	will	be	added

This	table	compares	the	key	benefits	of	CSFLE	and	Queryable	Encryption.	

20

Data Sovereignty
Data Sovereignty is the idea that data are subject
to the laws and governance structures of the
region where they are collected. The concept
of data sovereignty is closely linked with data
residency, data security, cloud computing, network
security, and technical controls. For example, what
may be deemed as the acceptable use of personal
information in one geography would not be so
in some other region. To avoid data residency
compliance issues, users need to conduct data
mapping – that is, understanding what data you
have, where it’s located, and the data residency
policies for each respective location.

While data protection regulations such as GDPR,
CCPA, HIPAA, PCI-DSS, and others stipulate
requirements	that	are	unique	to	specific	regions,	
industries or applications, there are foundational
requirements common across all of the
directives,	including:

• Physical storage of data in a particular
geography or lack of explicit guidance

• Restricting processing of data stored in a
particular geography outside that geo

• Restricting data access, enforced via user
privileges and roles

• The separation of duties when accessing and
processing data.

• Recording	user,	administrative	staff,	and	
application activities with a database.

• Ability to remove personal data when requested.

• Measures to protect against accidental or
malicious disclosure, loss, destruction, or
damage of personal data

MongoDB provides two mechanisms to meet with
data	sovereignty	requirements:

1. Dedicated MongoDB clusters in a cloud
provider and region of customer’s choice

Ability to store data in any of the regions across
AWS, Google Cloud and Azure as per your data
locality requirements

Atlas databases are available in 90+ regions
across AWS, Google Cloud, and Azure. You can
even take advantage of multi-cloud and multi-
region deployments, allowing you to target
the providers and regions that best serve your
users. Best-in-class automation and proven
practices guarantee availability, scalability,
and compliance with the most demanding data
security and privacy standards. To support
the data sovereignty requirements of modern
privacy regulations, MongoDB zones allow
precise control over where personal data is
physically stored in a cluster. Zones can be
configured	to	automatically	“shard”	(partition)	
the data based on the user’s location — for
example enabling administrators to isolate
personal data to just countries in the EU. If a
company or regulatory policies towards storing
data	in	specific	regions	change,	updating	
the shard key range enables the database
to automatically migrate personal data to
alternative regions. With MongoDB Atlas, you
can control your data residency the way you
desire – Single	region	or	multi-regions	and	Single	
cloud or multi-cloud deployments.

21

2. Global clusters with zoned sharding

Zoned sharding is available to MongoDB Atlas
customers as part of the Global Clusters that are
fully-managed cloud service providing a highly
curated implementation of zoned sharding to
support location-aware storage and database
operations for globally distributed application
instances and clients. For more information on
global clusters refer to the documentation.

In	addition,	MongoDB	offers	strict	security	controls	
with features discussed above like authentication,
authorization, auditing, encryption, and network
security along with proactive monitoring of our
platform. All of this help to support customers’
data residency requirements.

MongoDB Atlas undergoes independent
verification	of	platform	security,	privacy,	and	
compliance controls. From the perspective of
the GDPR, MongoDB Atlas is GDPR compliant.
MongoDB	and	the	Atlas	service	is	classified	as	
data processor. MongoDB’s terms of service
reflect	the	GDPR’s	requirements,	whereby	
we implement the appropriate technical and
organizational measures in such a manner that
processing will meet Regulation requirements and
protect against destruction, loss, alteration, and
unauthorized disclosure or access to personal
data. You can learn more about MongoDB Atlas
GDPR compliance from the MongoDB trust center.

Figure 6. MongoDB Atlas Clusters can be spread across many regions

https://www.mongodb.com/docs/atlas/global-clusters/
https://www.mongodb.com/cloud/trust

22

Figure 7. MongoDB Atlas Global Clusters with Zoned Sharding

Network Security

Connectivity
MongoDB requires the following network ports for
Atlas. Network ports cannot be changed.

• 27017 for mongod (database server)

• 27016 for mongos (query router for sharded
clusters)

• 27015 for the BI connector

• If LDAPS is enabled, MongoDB requires LDAPS
network port 636 on the customer side open to
inbound	traffic	by	Atlas

For	detail	configuration	settings,	please	refer	to	
the network	and	firewall	settings.

You can connect to Atlas via either public IPs
(which are protected with IP Access Lists, discussed
below) or private IPs (via network peering or private
endpoints, discussed below). Connection method
for public vs. private IPs varies between cloud
providers, as discussed in the following sections.

Atlas cluster public IPs remain the same in the
majority	of	cases	of	cluster	changes:	vertical	
scaling, topology changes, maintenance events,
healing events, etc. However, certain topology
changes – such as a conversion from a replica set to
a sharded cluster, an addition of shards, or a region
change – will require new IP addresses to be used.

https://www.mongodb.com/docs/atlas/setup-cluster-security/#network-and-firewall-requirements
https://docs.atlas.mongodb.com/reference/faq/networking/#do-service-clusters-public-ips-ever-change
https://docs.atlas.mongodb.com/reference/faq/networking/#do-service-clusters-public-ips-ever-change

23

IP Access Lists
By default, your MongoDB Atlas cluster will have
no database access from the internet. Each Atlas
cluster	is	deployed	within	a	VPC	configured	to	
allow no inbound access by default.

Customers	can	configure	IP	Access	Lists	to	limit	
which	IP	addresses	can	attempt	to	authenticate	to	
their database. Application servers are prevented
from accessing the database unless their IP
addresses (or a CIDR covering their IP addresses)
have been added to the IP Access List for the
appropriate MongoDB Atlas project.

Atlas also supports creating temporary access list
entries that automatically expire within a user-
configurable	period.	This	can	be	useful	in	situations	
when a member of the team needs access to an
environment from a temporary work location.

As	a	general	best	practice	to	reduce	the	attack	
surface, MongoDB recommends customers only
permit IP access to the smallest network segments
possible (e.g., individual /32 address), and to avoid
overly large CIDR blocks.

Network Peering
Network peering allows you to connect your own
VPCs	with	an	Atlas	VPC,	routing	traffic	privately	
and remaining isolated from the public internet.
When you set up network peering, you can choose
to only enable access via private IP from the
peered network(s), or also allow access via public
IP (controlled by the IP Access List).

Atlas does not need access into peered VPCs
except when LDAPS is enabled. In that scenario,
Atlas clusters need to reach the customer’s
LDAPS directory inside their VPC using the
LDAPS protocol.

Customers worried about peering extending the
network trust boundary to their dedicated Atlas-
side VPCs can set up mitigating controls, including
security groups and network ACLs, to not allow
any inbound access to instances in their VPC from
the Atlas-side VPC.

Customers with legacy VPCs internally that contain
a large amount of infrastructure without isolation
may be particularly uncomfortable introducing
VPC peering and associated access governance.
These customers should deploy net new VPCs
for the applications requiring access to Atlas,
isolating resources from each other within their
own organizational network. These new VPCs can
in turn be peered with the legacy/central VPCs.

Applications inside of such a VPC can reach
both Atlas and other internal services but since
VPC peering is non-transitive, Atlas cannot reach
beyond the directly peered VPC — i.e., Atlas
cannot reach your central VPCs. AWS Transit
Gateway and AWS Direct Connect do provide
transitive connectivity, so customers using AWS
PrivateLink can use Transit Gateway or Direct
Connect with your VPC to connect to Atlas via
AWS PrivateLink (FAQ).

https://docs.atlas.mongodb.com/setup-cluster-security/#ip-access-list
https://docs.atlas.mongodb.com/security-vpc-peering/
https://www.mongodb.com/docs/atlas/reference/faq/networking/

24

Private Endpoints
This connection method uses a one-way
connection from your own VPC to the Atlas VPC.
Atlas VPCs can’t initiate connections back to your
VPCs, ensuring that your network trust boundary is
not extended.

Connections to private endpoints within your VPC
can be made transitively from

• Another VPC peered to the private endpoint-
connected VPC.

• An on-premises data center connected
with DirectConnect to the private endpoint-
connected VPC.

Private endpoints	are	available	on:

• AWS via AWS PrivateLink

• Azure via Azure Private Link,

• Google Cloud via Private Service Connect

AWS VPC Topology
This section helps you review common practices
to securely connect your individual clients to a
MongoDB Atlas service running in an Amazon Web
Services Virtual Private Cloud (VPC).

Atlas deploys a cluster in a dedicated AWS VPC
and then uses authentication and the IP Access
List to isolate the service. On AWS, a cross-region
cluster will span multiple VPCs and an Atlas
project	with	clusters	in	different	regions	will	be	
using a VPC per region.

If leveraging VPC peering, the AWS VPC resolves
hostnames in an Atlas cluster to their private IP

addresses when you enable DNS resolution.
You can use these DNS entries to connect to
hosts in your Atlas cluster from the peered
VPC since AWS handles resolving the peered
hostnames automatically.

Single-region VPC peering connections enable
Atlas to reference security groups in the peered
VPC by security group ID. Atlas also supports
leveraging cross-region VPC peering connections.
When doing so, it is not possible to reference
security groups in a peered VPC on the Atlas
Access List.

https://docs.atlas.mongodb.com/security-private-endpoint/
https://aws.amazon.com/privatelink/
https://azure.microsoft.com/en-us/services/private-link/
https://docs.atlas.mongodb.com/security-private-endpoint/

25

Customers leveraging custom DNS solutions that
cannot take advantage of built-in split-horizon
DNS	may	enable	a	project	setting	that	provides	
a connection string that will resolve only to
private IPs.

An additional networking option for AWS is AWS
PrivateLink. With PrivateLink, Atlas clusters cannot
initiate connections back to your application
VPC, preserving your network trust boundary

and reducing your security risk. AWS PrivateLink
simplifies	your	network	architecture	by	allowing	
you to use the same set of security controls across
your organization. It also provides transitive
connectivity from other peered and Direct
Connect contexts, allowing you to connect to
Atlas locally and from on-prem data centers
without using public IPs via the IP Access List.

Google Cloud VPC Topology
This section helps you review common practices
to securely connect your individual clients to a
MongoDB Atlas service running in a Google
Cloud VPC.

Atlas deploys a cluster in a dedicated global
Google Cloud VPC and then uses authentication
and the IP Access List to isolate the service.
A logical service in Google Cloud has its DNS
name registered upon creation. The DNS name
points to a gateway virtual IP (VIP) address in the
datacenter where the service was created. Your
individual application client needs a static IP

assigned, which gets added to the project access
list in Atlas.

VPC peering is available for MongoDB Atlas
deployments on Google Cloud. Once enabled,
users can choose to connect to their MongoDB
Atlas cluster either with public IPs added to the
Access List or VPC peering connections.

On Google Cloud, a cross-region cluster will use
a single VPC, and an Atlas project with clusters in
different	regions	will	also	use	a	single	VPC.	

26

Microsoft	Azure	VNET	Topology	
This section helps you review common practices
to securely connect your individual clients to a
MongoDB Atlas service running in an Azure Virtual
Network (VNet).

Atlas deploys a cluster in a dedicated Azure VNet
and then uses authentication and the IP Access
List to isolate the service. A logical service in
Microsoft	Azure	has	its	DNS	name	registered	upon	

creation. The DNS name points to a gateway
virtual IP (VIP) address in the datacenter where the
service was created. Your individual application
client needs a static IP assigned, which gets
added to the project access list in Atlas.

On Azure, a cross-region cluster will span multiple
VNets and an Atlas project with clusters in
different	regions	will	be	using	a	VNet	per	region.

VNet peering is available for MongoDB Atlas
deployments on Azure, for both the single region
and multi-region clusters. Once enabled, users
can choose to connect to their cluster either
with public IPs via the Access List or VNet
peering connections.

An additional networking option for Azure is
Azure Private Link. With Private Link, Atlas
clusters cannot initiate connections back to your

application VNet, preserving your network trust
boundary and reducing your security risk. Azure
Private	Link	simplifies	your	network	architecture	
by allowing you to use the same set of security
controls across your organization. It also provides
transitive connectivity from other peered and
ExpressRoute contexts, allowing you to connect
to Atlas locally and from on-prem data centers
without using public IPs via the IP Access List.

27

Compliance & Trust
MongoDB has a comprehensive compliance &
trust	program	for	its	cloud	offerings.		MongoDB	
is	committed	to	delivering	the	highest	levels	
of standards conformance and regulatory

compliance as part of our ongoing mission to
address the most demanding security and privacy
requirements of our customers.

MongoDB	Atlas	Compliance	and	Attestations	
The scope of services under compliance and trust
includes Atlas Database, Atlas Search, Atlas Data
Lake, Charts, MongoDB Realm, Cloud Manager,
and MongoDB Serverless.

ISO 27001
The ISO/IEC 27001 family of standards is designed
to help manage the global security of assets such
as	financial	information,	intellectual	property,	
employee details or information entrusted
to a service provider. Today there are more
than a dozen 27000 family standards. 27001
sets requirements for an information security
management system (ISMS). MongoDB cloud
services	has	achieved	ISO/IEC	27001:2013	
certification.	Learn More.

ISO 27017
ISO/IEC	27017:2015	provides	guidance	and	
recommendations	of	implementing	cloud-specific	
information security controls that supplement the
ISO/IEC 27001 standards, to ensure continuous
management of security in a comprehensive
manner. Learn More.

ISO 27018
ISO/IEC	27018:2019	is	one	of	the	critical	
components of cloud security – protecting data.
There is sensitive data on the cloud, especially
personally	identifiable	information	(PII),	company	
proprietary, and other sensitive data which is
important to protect for organizations. ISO 27018
standard focuses on security controls that are
built upon existing ISO/IEC 27002 security controls
and provides new controls for personal data
protection. Learn More.

SOC 2
Service Organization Controls (SOC) framework
establishes a standard for controls that safeguard
the	confidentiality	and	privacy	of	information	
stored and processed in the cloud. MongoDB
Atlas is audited at least annually against the
SOC reporting framework by independent third-
party auditors. The audit covers controls for data
security;	the	report	is	available	to	customers	
who’ve signed an NDA with MongoDB, Inc.
Learn More.

PCI DSS
The Payment Card Industry Data Security
Standard (PCI DSS) applies to all entities that
store, process, and/or transmit cardholder data.
MongoDB Atlas has been validated as a PCI DSS
v4 compliant service provider by an independent
Qualified	Security	Assessor	(QSA).	Customers	are	
still responsible for managing the security of their
own	PCI	DSS	certification	as	well	as	configuring	
their MongoDB Atlas deployments to comply with
their PCI DSS requirements. Learn More.

HIPAA
For customers who are subject to the requirements
of the Health Insurance Portability and
Accountability Act of 1996, MongoDB Atlas
supports HIPAA compliance and enables covered
entities and their business associates to use a
secure MongoDB Atlas environment to process,
maintain, and store protected health information.
MongoDB, Inc. will enter into Business Associate
Agreements covering MongoDB Atlas with
customers as necessary under HIPAA. Learn More.

https://www.mongodb.com/cloud/trust/compliance/iso
https://www.mongodb.com/cloud/trust/compliance/iso-27017
https://www.mongodb.com/cloud/trust/compliance/iso-27018
https://www.mongodb.com/cloud/trust/compliance/soc
https://www.mongodb.com/cloud/trust/compliance/pci-dss
https://www.mongodb.com/cloud/trust/compliance/hipaa

28

HITRUST
MongoDB maintains a SOC 2 + HITRUST
certification	report,	mapping	MongoDB’s	SOC	2	
Type II controls to the 75 required HITRUST controls
for	certification.	Mapping	requirements	between	
SOC 2 and HITRUST is an approach recommended
by both AICPA (SOC) and HITRUST. Learn More.

GDPR
The General Data Protection Regulation (GDPR)
standardizes data protection law across all 28
EU countries and imposes strict new rules on
controlling	and	processing	personally	identifiable	
information. The terms of service applicable
to MongoDB Atlas automatically include
data processing protections that satisfy the
requirements that the GDPR imposes on data
controllers’ relationships to data processors.
Learn More.

CSA STAR
MongoDB has achieved CSA STAR Level 2, via
a third-party audit of Atlas’s security. The CSA
Security, Trust, Assurance, and Risk (STAR) Registry

is a publicly accessible registry that documents
the security and privacy controls provided
by	popular	cloud	computing	offerings.	STAR	
encompasses the key principles of transparency,
rigorous auditing, and harmonization of standards
outlined in the CSA’s Cloud Controls Matrix (CCM).
Learn More.

VPAT
MongoDB has issued Accessibility Conformance
Reports based on VPAT for MongoDB Atlas,
MongoDB Atlas for Government, and the
MongoDB	database	software.	Download
MongoDB’s VPAT reports. Learn More.

IRAP
IRAP assessment is a comprehensive cybersecurity
assessment framework of the security capabilities
of cloud service providers, ensuring adherence
to the highest security standards in order to
assist Australian government agencies and
departments in protecting their information and
communications technology (ICT) systems from
potential cyber threats. Learn More.

MongoDB Atlas for Government Compliance
MongoDB Atlas for Government (US) is
a FedRAMP® authorized and dedicated
environment of MongoDB Atlas for the US public
sector	as	well	as	ISVs	looking	to	build	offerings	for	
the US public sector.

FedRAMP® Moderate Authorized
FedRAMP® is a government-wide program that
provides a standardized approach to security
assessment, authorization, and continuous
monitoring for cloud products and services.
MongoDB Atlas for Government is FedRAMP
Moderate Authorized. Atlas for Government is an
independent, dedicated environment for the US
public sector, as well as ISVs looking to build US
public	sector	offerings.	This	platform	is	operated	
by MongoDB employees who are U.S persons
on U.S soil – is an integrated set of data and
application	services	that	share	a	unified	developer	

experience – supports a wide range of use cases
including transactional workloads, time series
data, search, and petabyte data storage. Learn
More. Documentation.

Criminal Justice Information
Solutions (CJIS)
There is no standardized accreditation or
assessment for CJIS compliance. There are set
security standards and controls laid out in the
CJIS	Security	Policy	and	MongoDB	is	committed	
to helping customers meet those requirements.
Additionally, MongoDB engaged an independent
auditor to evaluate how MongoDB Atlas for
Government (US) aligns with CJIS requirements.
This	attestation	letter	is	available	to	customers	
subject to CJIS requirements by request.
Learn More.

https://www.mongodb.com/cloud/trust/compliance/hitrust
https://www.mongodb.com/cloud/trust/compliance/gdpr
https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/research/cloud-controls-matrix/
https://www.mongodb.com/cloud/trust/compliance/csa-star
https://www.mongodb.com/collateral/vpat
https://www.mongodb.com/collateral/vpat
https://www.mongodb.com/cloud/trust/compliance/vpat
https://mongodb.com/products/platform/trust/irap
https://www.mongodb.com/cloud/atlas/government
https://marketplace.fedramp.gov/#!/product/mongodb-atlas-for-government?sort=productName
https://marketplace.fedramp.gov/#!/product/mongodb-atlas-for-government?sort=productName
https://www.mongodb.com/cloud/atlas/government
https://www.mongodb.com/cloud/trust/compliance/fedramp
https://www.mongodb.com/cloud/trust/compliance/fedramp
https://www.mongodb.com/docs/atlas/government/
https://www.mongodb.com/cloud/atlas/government
https://www.mongodb.com/cloud/atlas/government
https://www.mongodb.com/cloud/trust/compliance/cjis

29

Business Continuity and Disaster Recovery
MongoDB maintains a formal business continuity
and disaster recovery process which covers its RTO1
and RPO2 with regard to its Atlas control plane, and
the supporting infrastructure of customer clusters
in Atlas including VMs, DNS, and logs.

The Atlas control plane is the controller that
provisions MongoDB clusters in one or more
regions as requested by the customers. Once the

Atlas control plane creates MongoDB database
clusters, these clusters can continue to operate
even	if	the	control	plane	infrastructure	is	offline.	If	
the supporting infrastructure of customer clusters
is unavailable, customer connectivity to Atlas
clusters may be impaired (e.g., due to DNS name
resolution failure), or certain functionality may be
impaired (e.g., storing and downloading logs).

Atlas Control Plane
The Atlas Control Plane is the controller accessible
via MongoDB Cloud Services that provisions
MongoDB clusters in one or more cloud provider
regions as requested by the customer. The
Atlas Control Plane is deployed in AWS in North
America. Once the Atlas Control Plane creates
MongoDB database clusters, these clusters can
continue to operate and are accessible even if the
control plane is not accessible.

Consequences of downtime for the
Atlas Control Plane
If the Atlas Control Plane becomes completely
inaccessible, i.e., a customer cannot login into
the Atlas Control Plane UI and API, the following
functionalities are unavailable.

1. Configuration
• Provisioning new deployments or modifying

existing deployments

• Changing	Project	configuration,	i.e.,	BYOK,	
auditing, creating dataplane users

• Changing	backup	configuration

2. Non-deployment Access
• Scheduling of automated backups

• Data Explorer, Performance Advisor, Schema
Advisor

• Download of deployment logs and audit logs

• Access to Activity Feed

3. Alerting
• Alerts	would	not	fire	if	the	Atlas	Control	Plane	

was unavailable.

Even if the Atlas control plane is fully available, the
provisioning	of	new	deployments	or	modification	
of existing deployments depends on the underlying
capacity in the Atlas Data Plane regions.

Atlas Data Plane
The Atlas data plane refers to the MongoDB
clusters provisioned by Atlas on behalf of
customers. The clusters running on tier M10 or
above	are	deployed	in	a	three	node	configuration	
in three availability zones (if available) within
a cloud provider region. Availability zones are
geographically distributed datacenters located
far enough apart to protect each datacenter from

regional disturbances.The SLA of the deployed
clusters	is	defined	here.

Each node in the deployment has a hostname.
Atlas uses Route53 for the deployment hostnames.
Route53 is a global AWS Service that has both
control and data plane. The data plane is
available in over 200 locations. Please refer to this
AWS link for more information.

https://cloud.mongodb.com
https://www.mongodb.com/cloud/atlas/sla
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route-53-concepts.html#route-53-concepts-control-and-data-plane

30

How can you achieve your own business
continuity objectives with MongoDB Atlas?

Customers have a responsibility to maintain their
own business continuity/disaster recovery and
define	their	own	RTO1/RPO2 values according to
their acceptable criteria (e.g., RTO/RPO of 0-4
hours), which can be achieved independently of
the MongoDB Atlas control plane RTO/RPO, via
the	use	of	specific	product	features	available	to	
customers.	These	features	include:

• Selection of the underlying cloud provider(s)
— 	AWS,	Google	Cloud,	Azure	—	for	deploying	

MongoDB clusters, in order to mitigate the risk of
a cloud provider failure.

• Selection of one or more cloud provider(s)
regions, in order to mitigate the risk of a
region failure.

• Selection of a clustered tier — shared or
dedicated, sharded or unsharded — to mitigate
the impact of workload spikes.

• Selection of network connectivity options to
Atlas for high availability (learn	more	→)

• Selection of backup & restore options and the
backup schedule.

Infrastructure Service Recovery
MongoDB	Atlas	creates	and	configures	dedicated	
clusters on infrastructure provided by AWS, Azure
and/or Google Cloud. Data availability also is
subject to the infrastructure provider service
Business Continuity Plans (BCP) and Disaster
Recovery (DR) processes. Our infrastructure
service	providers	hold	a	number	of	certifications	

and audit reports for these controls. For more
information,	please	see	below:	

• Amazon Web Services Compliance

• Microsoft	Azure	Compliance	

• Google Cloud Compliance

Cloud Backup
Available for Atlas clusters deployed in Amazon
Web	Services,	Microsoft	Azure,	and	Google	Cloud,	
cloud provider snapshots use the native snapshot
capabilities of the underlying cloud provider.

Backups are stored in the same cloud region
as the corresponding cluster. For multi-region
clusters, snapshots are stored in the cluster’s
preferred region. All managed snapshots and
images are automatically encrypted. If the
encryption key management integration with AWS
KMS, Azure Key Vault, or Google Cloud KMS is
enabled, your AWS Customer Master Key (CMK)

/Azure Key Vault Secret Key / Google Cloud
Service Account Key and IAM credentials are
required to perform restores of backup snapshots.
Cloud Backup enables you to customize the
snapshot schedule and retention policies, with
support for multi-year retention, making it easier
for you to adhere to compliance obligations.
An optional add-on, Continuous Cloud Backup,
records	the	oplog	for	a	configured	window,	
permitting	a	restore	to	any	point	in	time	within	
that window and satisfying Recovery Point
Objectives (RPOs) as low as 1 minute.

1	RTO:	Recovery	Time	Objective—describes	how	long	it	will	take	to	get	an	application	back	online

2	RPO:	A	Recovery	Point	Objective—is	the	maximum	amount	of	data	that	can	be	lost	before	causing	detrimental	harm	to	the	organization

https://docs.atlas.mongodb.com/security-private-endpoint/#high-availability
https://aws.amazon.com/compliance/
https://www.microsoft.com/en-us/trust-center/compliance/compliance-overview
https://cloud.google.com/security/compliance/#/

31

Incident Response
The Corporate Security team employs industry-
standard diagnostic procedures to drive resolution
during	business-impacting	events.	Staff	operators	

provide 24x7x365 coverage to detect incidents
and manage the impact and resolution.

Resiliency Plans
MongoDB’s Corporate Security group has
reviewed the MongoDB resiliency plans, which

are also periodically reviewed by members of the
Senior Executive management team.

Support Coverage
For customers who have purchased an Atlas
support plan, the MongoDB Technical Services
Engineering team provides support for the GA
releases	of	the	following	software:	

• MongoDB Server

• MongoDB Cloud Manager

• MongoDB Atlas

• MongoDB Atlas Search

• MongoDB Atlas Data Lake

• MongoDB Compass

• MongoDB Charts

• MongoDB Realm

Support is also provided to the tools and
integrations pertaining to usage of the Atlas
products	including:	

• MongoDB Drivers

• MongoDB Connectors, including BI and Spark

• Authentication/access controls to the
Atlas clusters

• AWS, Azure, and Google Cloud integration
related questions

• Performance

• Data Migrations

Refer to these support policies for more
information:	

• MongoDB Atlas for Government Support Policy

• MongoDB Cloud Services Support Policy

https://www.mongodb.com/support-policy/gov
https://www.mongodb.com/support-policy/cloud

32

Platform – Infrastructure and Data Security
MongoDB Atlas’s infrastructure is designed to
be	fully	automated	via	modern	configuration	
management systems. Reducing human elements
increases a security posture by reducing the
chance for human error and making audit and
alerting standardized. MongoDB Atlas provisions

Virtual Machines with hardened machine images
built in-house, and all of our virtual servers are
configuration-managed	using	Chef,	which	
includes hardening steps. All systems run with
a known set of running processes/components,
which in turn is utilized for update/patching.

Separation of Production and Non-Production
Environments
MongoDB Atlas has a strict separation between
production and non-production environments.
Production and Customer data is never utilized
for non-production purposes. Non-production
environments are utilized for development, testing,
and staging.

MongoDB Policies require the principle of least
privilege and separation of duties. As a result,
developers are provided access to developer
environments only and production environments
are limited to personnel who have an operational
need and appropriate authorizations.

Firewalls and Bastion Hosts
MongoDB Atlas infrastructure is only accessible
via	bastion	hosts.	Bastion	hosts	are	configured	to	
require SSH keys (not passwords). Bastion hosts

also require multi-factor authentication, and
users must additionally be approved by senior
management for backend access.

Logging and Alerting
MongoDB maintains a centralized log
management system for the collection,
storage, and analysis of log data for production
environments. This information is used for

health monitoring, troubleshooting, and security
purposes.	Alerts	are	configured	on	systems	in	
order to notify SREs of any operational concerns.

33

Log Retention
It is the policy of MongoDB to retain its logs within
its own infrastructure based on an Atlas Log
Retention schedule. When the retention period
is complete, logs may be destroyed. Except as
otherwise indicated, logs shall be retained for the
number of months or years indicated.

MongoDB is to maintain complete, accurate, and
high-quality logs in storage for the duration of the

time periods provided in this document. The head
of Atlas engineering is responsible for authorizing,
overseeing, and ensuring that logs are maintained
pursuant to this document.

No logs will be destroyed if they are relevant to a
pending	or	threatened	investigation	of	any	matter	
within the jurisdiction of a federal department or
agency,	or	any	other	official	investigation.

Retention Schedule
(minimum life)

Log Source

Six years

• Web Tier

• Backup Tier

• Splunk Audit/Query

• AWS CloudTrail

• OS /var/log/secure

• DB events collection audit history

One year

• UI app

• Backup app

• Restore app

• Backup service app

One month

• Customer’s MongoDB (mongod) and audit logs

• Server Automation Agent

• Server Backup Agent

• Server Monitoring Agent

• Data “mirror” app

It is a crime for anyone to knowingly destroy
logs with the intent to obstruct the proper
administration of any investigation or proceeding
under the jurisdiction of a federal department
or agency. No logs will be destroyed if they are

relevant to pending or threatened litigation
matters	when	MongoDB	is	a	party	in	the	case	or	
expected to become a party or when MongoDB
has received a subpoena.

Online Archive
Online Archive is MongoDB managed object
storage enabled to move your infrequently
accessed data from your Atlas cluster to a
MongoDB-managed cloud object storage
where data can be accessed through a read-

only Federated Database Instance. Access and
storage to Online Archive are managed in a
MongoDB-controlled instance to ensure that data
is encrypted and stored securely.

34

Secure Deletion of Data
If a customer terminates an Atlas cluster, the
following	happens:	it	will	become	unavailable	
immediately;	MongoDB,	Inc.	may	retain	a	copy	of	
the	data	for	up	to	5	days;	the	backup	associated	

with the managed cluster is also terminated. If a
customer terminates the backup, all snapshots
become unavailable immediately. It may take up
to 24 hours for all copies of the data to be deleted.

Input Validation
Input	validation	is	done	for	data	submitted	to	web	
applications,	and	verified	with	manual	source	
code checks and peer reviews, as well as internal

and external security team tests. Fuzz testing is
also used for core product assessments.

Protection	from	Ransomware	and	Malware	Attacks
One of the major concerns for enterprises today
is the risk of data breaches and unauthorized
exposure from ransomware. Primary vectors for
malware/ransomware include malicious email,
Windows AD networks, and compromised desktop
browsers via infected websites. There are lot of
mitigation strategies MongoDB security features
offer.	First,	there	is	a	true	end-to-end	encryption	
– sensitive data is protected as the data remains
encrypted from the client, during transport,
while at rest in the database, and while being
processed in memory. With elevated features
like Client Side Field Level Encryption, there is
never any cleartext available in the database
for sensitive workloads, even to the highest
privileged administrators or sysadmins or cloud
infrastructure	staff	and	even	if	the	database	were	
to somehow get compromised by improperly
secured credentials or some other exploit,
hardened encryption technologies in use ensures
that	there	is	no	data	for	an	attacker	to	dump.

As part of the disaster recovery, by default
MongoDB	Atlas	offer	an	option	to	enable	backups	
and customers can take backups as frequently as
needed. In addition, by design all Atlas clusters
are highly available, multi-node replica sets
spanning multiple VMs, distributed regionally,
globally, or even across multiple cloud providers.
These backups can be targeted to multiple media

target destinations and pulled to customer remote
storage via automation or manually in the Atlas
console at any time to authorized users.

MongoDB	Atlas	offers	additional	safeguards	
depending on your business requirements
and concerns.

Customers can enable Termination Protection
for clusters in Atlas, to ensure the prevention of
accidental deletion of your production clusters
and irretrievable loss of data by enabling cluster
termination protection.

• Customers can also protect all of their backups
as well. The Backup Compliance Policy enables
organizations to further secure business-critical
data by preventing all snapshots and oplogs
stored	in	Atlas	from	being	modified	or	deleted	
for	a	predefined	retention	period	by	any	user,	
regardless of Atlas role, guaranteeing that
backups are fully WORM compliant.

• With test failover in Atlas, you will be able to
test the failure of a single node up to a regional
failure	at	the	click	of	a	button	to	ensure	you’re	
ready for a real-life disaster event. Testing and
ensuring your cluster’s resiliency is working as
you expect is no longer a one-time-a-year test
but now just like your CI/CD process where you
can continuously test your disaster recovery
throughout the year at any time.

https://www.mongodb.com/docs/atlas/cluster-additional-settings/#termination-protection
https://www.mongodb.com/docs/atlas/backup-restore-cluster/
https://www.mongodb.com/docs/atlas/tutorial/test-failover-or-outage/test-failover/

35

MongoDB Personnel Access to MongoDB Atlas Clusters.
Privileged user access
As	a	general	matter,	MongoDB	personnel	do	not	
have authorization to access your MongoDB Atlas
Clusters. Only a small group of Privileged Users are
authorized to access your MongoDB Atlas Clusters
in rare cases where required to investigate and
restore critical services. MongoDB adheres to the
principle of “least privilege” with respect to those
Privileged Users, and any access is limited to the
minimum time and extent necessary to repair the
critical issue. Privileged Users may only access your
MongoDB Atlas Clusters via a gated process that
uses a bastion host, requires MFA both to log in to
our MongoDB Systems and to establish a Secure
Shell connection (SSH) via the bastion host, and
requires approval by MongoDB senior management.

Restricting MongoDB
personnel access
MongoDB Atlas provides you with the option to
entirely restrict access by all MongoDB personnel,
including Privileged Users, to your MongoDB Atlas
Clusters. If you choose to restrict such access and
MongoDB determines that access is necessary to
resolve a particular support issue, MongoDB must
first	request	your	permission	and	you	may	then	
decide whether to temporarily restore Privileged
User access for up to 24 hours. You can revoke
the temporary 24-hour access grant at any time.
Enabling this restriction may result in increased

time for the response and resolution of support
issues and, as a result, may negatively impact
the availability of your MongoDB Atlas Clusters. If
you	enable	client-side	field	level	encryption,	even	
Privileged Users will be unable to access Customer
Data within your MongoDB Atlas Clusters in
the clear unless you provide MongoDB with the
encryption keys.

Credential requirements
Privileged User accounts may only be used for
privileged activities, and Privileged Users must
use a separate account to perform non-privileged
activities. Privileged User accounts may not use
shared credentials. The password requirements
described in Section 4.3.3 also apply to Privileged
User accounts.

Access review and auditing
MongoDB reviews Privileged User access
authorization on a quarterly basis. Additionally,
we revoke a Privileged User’s access when it is
no longer needed, including within 24 hours of
that Privileged User changing roles or leaving the
company. We also log any access by MongoDB
personnel to your MongoDB Atlas Clusters. Audit
logs are retained for at least six years, and include
a timestamp, actor, action, and output. MongoDB
utilizes a combination of automated and human
reviews to scan those audit logs.

36

Dedicated Information Security Program

Security Program
MongoDB	maintains	a	comprehensive	written	
Information Security Program to establish
effective	administrative,	technical,	and	physical	
safeguards for Customer Data, and to identify,
detect, protect against, respond to, and recover
from security incidents. MongoDB’s Information
Security Program complies with applicable Data
Protection Laws and is aligned with the NIST
Cyber Security Framework (NIST). Additionally,
MongoDB	Atlas	is	certified	against	ISO	27001:2013,	
ISO	27017:2015,	ISO	27018:2019,	SOC	2	Type	II,	
Payment Card Industry Data Security Standard
v.3.2.1, and Cloud Security Alliance (CSA)
Security, Trust, Assurance, and Risk (STAR) Level
2. MongoDB Atlas has also undergone a HIPAA
examination	validated	by	a	qualified	third-party	
assessor	and	can	be	configured	to	build	HIPAA	
compliant applications.

MongoDB employees are required to take and
attest	to	periodic	security	training.	Additionally,	
the Security Team employs a number of education

outreach	efforts,	such	as	internal	security	reading	
groups, Capture-the-Flag / Hacking Contests to
teach developers security issues, hackathons, and
more.	Internal	policies	include	data	classification	
and	handling	and	specific	information	regarding	
handling customer data.

MongoDB has a vulnerability enumeration and
management	program;	this	program	identifies	
internet-accessible company assets, scans for
known vulnerabilities, evaluates risk, and tracks
issue remediation. Vulnerability scans occur at
least daily, with results reporting to a centralized
security dashboard. A central company-wide
ticketing system is used to track all security issues
until remediation.

Human Resources performs multi-residence
criminal background checks on all prospective
employees.	The	HR	employee	off-boarding	
processes	includes	verification	of	account	
access termination.

Application Security
MongoDB Atlas undergoes regular reviews
from both internal and external security teams.
Internally, MongoDB Atlas undergoes periodic
risk assessments, including technical vulnerability
discovery and business risks and concerns.

Additionally, the MongoDB Security Team
is routinely involved in source code review,
architecture review, code commit/peer review,
and in security decision-making.

Application-level security testing uses a standard
application assessment methodology (e.g.,
OWASP). Additionally, external engagements
with security consults include social engineering
and phishing testing. A summary of our most
recent third-party penetration test is available
for customers to review. Systems are patched as
needed;	security-related	patches	are	applied	
commensurate to their severity.

37

Security	Best	Practices	for	Software	Development
MongoDB product security teams work
collaboratively on security initiatives in the SDLC.
Team	members	are	tasked	with	finding	and	
preventing security issues in our products. Their
responsibilities include building new security
features, reviewing source code, tracking and
remediating security issues, and engaging with
third parties for security reviews. All customer-
facing	software	is	in	a	continuous	integration/

delivery (CI/CD) pipeline and subjected to a peer-
review process. We perform hundreds of hours of
automated testing to ensure correctness on every
source code commit. When code commit triggers
(or “hooks”) are called, unit tests and library
integration links are automatically run, with a
pass/fail log and real-time CI dashboard update.
For more information on how we follow security
best practices refer to the whitepaper.

Communication	and	Notifications
MongoDB has an established Incident Response
and Critical Communications Policy and
associated processes. In the event that a security
alert/event, or other signal results in MongoDB
declaring a security incident, MongoDB will follow

its internal incident response protocols and inform
affected	customers	as	soon	as	practicable.	If	your	
organization	has	very	specific	breach	notification	
or communications requirements, please contact
us directly.

Patching and Change Management
Patching of operating systems and applications
are performed on a need-to-update basis.
MongoDB, Inc. employees utilize automated
tooling in conjunction with monitoring security
bulletins	for	relevant	software	and	implement	
patches if security issues are discovered. The
MongoDB	server	software	itself	is	continuously	
updated as new versions are released.

With respect to change management,
development	tasks	are	defined	as	issues	for	
specific	target	releases.	A	release	is	deployed	to	
production	after	it	has	transitioned	through	the	
requisite checkpoints, including testing, staged
deployment, and management review. All internal
release notes include a QA test plan.

https://webassets.mongodb.com/MongoDB_Supply_Chain_Security_whitepaper_Jun.pdf

Atlas Documentation

MongoDB Atlas
download

Case studies

MongoDB Resource
center

MongoDB University
(Free online training)

MongoDB App Services

MongoDB Atlas
database as a service

MongoDB Trust Center

MongoDB Security Hub

MongoDB Data
Encryption

Technical and Security
Control Measures

MongoDB Atlas for
Government

FedRAMP Moderate
Authorization (MongoDB
Atlas for Government)

Criminal Justice
Information Solutions

Cloud Shared
Responsibility Model
(Datasheet, Whitepaper)

Resources
We are MongoDB, database experts with over 43K+ customers relying on our commercial and
cloud products/services. For more information, please visit mongodb.com or contact us at
sales@mongodb.com.

© October 2024 MongoDB, Inc. All rights reserved.

http://docs.mongodb.com
http://mongodb.com/download
http://mongodb.com/download
http://mongodb.com/customers
http://mongodb.com/resource-center
http://mongodb.com/resource-center
http://university.mongodb.com
http://mongodb.com/atlas/app-services
http://mongodb.com/atlas
http://mongodb.com/atlas
https://www.mongodb.com/products/platform/trust
https://www.mongodb.com/products/capabilities/security
https://www.mongodb.com/products/capabilities/security/encryption
https://www.mongodb.com/products/capabilities/security/encryption
https://www.mongodb.com/technical-and-organizational-security-measures
https://www.mongodb.com/technical-and-organizational-security-measures
http://mongodb.com/cloud/atlas/government
http://mongodb.com/cloud/atlas/government
https://marketplace.fedramp.gov/#!/product/mongodb-atlas-for-government)
https://marketplace.fedramp.gov/#!/product/mongodb-atlas-for-government)
https://marketplace.fedramp.gov/#!/product/mongodb-atlas-for-government)
http://mongodb.com/cloud/trust/compliance/cjis
http://mongodb.com/cloud/trust/compliance/cjis
https://www.mongodb.com/collateral/mongodb-atlas-shared-responsibility-model
https://www.mongodb.com/collateral/who-owns-security-in-the-cloud
https://www.mongodb.com/
mailto:sales%40mongodb.com?subject=

