
© 2023 MongoDB, Inc. All rights reserved.

Application Modernization:
Migrating Stored Procedures
Companies need agile data exploration, flexibility in storing diverse data, and
reduced complexity for modern applications. Migrating stored procedures into
MongoDB enables this transformation, replacing outdated relational schemas with
aggregation pipelines for enhanced performance, streamlined management, and
modern development practices.

A relic of the past

Stored procedures were crucial in relational
databases. However, as the digital landscape
evolves, stored procedures present limitations in
flexibility, maintainability, and role separation that
hinder application modernization.

Need to streamline data management

Modern applications demand a complete
reimagining of traditional data models, focusing on
efficiency, streamlined management, and diverse
data handling.

Multi-phase approach

A successful migration of stored procedures requires
refactoring, platform modernization, and performance
tuning to support modern database technology.

App Modernization Factory

The App Modernization Factory from MongoDB
provides a detailed roadmap for migrating stored
procedures and adopting modern development
practices.

Efficient processing and analysis

Aggregation pipelines offer a flexible and
high-performance alternative to stored procedures.

Drawbacks of Stored Procedures

● Stored procedures are difficult to debug, test,
version, and maintain, hindering continuous
integration and delivery.

● They create obstacles for database migration and
optimization due to their lack of portability.

● The use of stored procedures complicates role
management and access rights between
developers and DBAs.

● They may suffer from suboptimal execution plans,
negatively impacting performance under certain
conditions.

● Stored procedures limit the ability to adapt to
changing data models and business requirements.

Modernizing with MongoDB

● Aggregation pipelines: Efficient data processing,
analysis, and transformation as an alternative to
stored procedures.

● Atlas Functions: Server-side JavaScript for app
behavior definition and service integration.

● Atlas Triggers: Event-driven or scheduled app and
database logic execution on a scalable, serverless
layer.

● Change streams: Real-time data change
monitoring, with optional aggregation pipeline use
for filtering or transforming notifications.

● Atlas HTTPS endpoints: Customizable API routes or
webhooks for app-specific integration using
serverless functions.

https://www.mongodb.com/modernize
https://www.mongodb.com/modernize
https://www.mongodb.com/collateral/application-modernization-factory-datasheet
https://docs.mongodb.com/manual/aggregation/
https://docs.mongodb.com/realm/functions/
https://docs.mongodb.com/realm/triggers/overview/
https://www.mongodb.com/docs/v6.0/changeStreams/
https://docs.mongodb.com/realm/endpoints/

US 866-237-8815 | INTL +1-650-440-4474 | info@mongodb.com | © 2023 MongoDB, Inc. All rights reserved.

Implementing a stored procedure with an Aggregation Pipeline

Based on the following relational schema, here’s how a non-trivial stored procedure can be easily
migrated into MongoDB using the Aggregation Framework.

Stored procedures execute complex logic for different scenarios using conditions, loops, clauses, and
transformations. Our example retrieves information for the top 10 customers using dynamic WHERE
clause based on input parameters to include the entire dataset or a filtered subset.

Resources
Note: Customer and Customer Transaction
Summary tables are modeled within the same
collection on MongoDB. If the aggregation
pipeline is being frequently executed, it can be
transformed into views. By doing so, we can utilize
find queries on these views to efficiently access
and analyze the data.

For more information:

● Deep-dive Technical Guide

● Comprehensive Modernization Guide

● Contact us at sales@mongodb.com

● Documentation Aggregation Framework

● Developer Hub mongodb.com/developer

Stored Procedure MongoDB Aggregation
CREATE PROCEDURE TOPCUSTOMERS

 @ZipCode varchar(50) = null,

 @Occupation varchar(50) = null

AS

BEGIN

 IF (@ZipCode IS NOT NULL AND @Occupation IS NOT NULL)

 BEGIN

 SELECT TOP 10 C.Name, C.PhoneNumber,

 REPLACE(LEFT(T.CardNumber, 12), SUBSTRING(T.CardNumber, 1, 4), '****') + RIGHT(T.CardNumber, 4) AS MaskedCardNumber

 FROM Customer C

 INNER JOIN (

 SELECT *

 FROM CustomerTransactionSummary

 WHERE CustomerID IN (

 SELECT ID

 FROM Customer

 WHERE ZipCode = @ZipCode AND Occupation = @Occupation

)

) T ON C.ID = T.CustomerID

 ORDER BY C.Name

 END

 ELSE

 BEGIN

 SELECT TOP 10 C.Name, C.PhoneNumber,

 REPLACE(LEFT(T.CardNumber, 12), SUBSTRING(T.CardNumber, 1, 4), '****') + RIGHT(T.CardNumber, 4) AS MaskedCardNumber

 FROM Customer C

 INNER JOIN CustomerTransactionSummary T ON C.ID = T.CustomerID

 ORDER BY C.Name

 END

END

db.customer.aggregate([

 {

 $match: { Occupation: "Employed",

 ZipCode: "75019"}

 },

 {

 $project: {

 _id: 0,

 Name: 1,

 PhoneNumber: 1,

 CardNumber: {

 $concat: ["************",

 {$substr: ["$CardNumber", 12, 4] }]

 }

 }

 },

 {

 $sort: { Name: 1 }

 },

 {

 $limit: 10

 }

])

mailto:info@mongodb.com
https://www.mongodb.com/docs/manual/core/views/
https://www.mongodb.com/collateral/technical-guide-migrating-stored-procedures-to-mongodb
https://www.mongodb.com/modernize
mailto:sales@mongodb.com
https://www.mongodb.com/docs/manual/core/aggregation-pipeline-optimization
https://www.mongodb.com/developer/

