
Design and Analysis of a Stateless
Document Database Encryption Scheme

Seny Kamara
MongoDB

Tarik Moataz
MongoDB

August 10, 2023

Abstract

The problem of designing end-to-end encrypted databases has received a lot of attention
in large part because having commercially-available encrypted databases would decrease
the impact and occurrence of data breaches. Most of the research on encrypted database
systems has focused on relational databases but over the last ten years NoSQL and, in
particular, document databases have gained a great deal of popularity in Industry.

In this work, we design the first encrypted document database scheme. A key focus of our
work is in designing a scheme that is practical not only in terms of asymptotic and concrete
efficiency but also with respect to real-world constraints that emerge when trying to build
and deploy real database systems at scale for commercial use. These constraints present
many new technical challenges that have not been considered in the research literature
before.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4

2 Related Work 8

3 Preliminaries 9

4 Definitions 11
4.1 Structured Encryption . 11
4.2 Adversarial Models . 13
4.3 Leakage Profiles & Patterns . 13
4.4 Security Definitions . 17

5 Addressable Multi-Maps 18
5.1 Construction . 20
5.2 Security Against Snapshot Adversaries . 21

6 Immutable Dictionaries 25
6.1 Construction . 28
6.2 Security Against Snapshot Adversaries . 30

7 Enumerable Sets 35
7.1 Security Against Snapshot Adversaries . 37

8 Testable Multi-Maps 37
8.1 Construction . 38
8.2 Security Against Snapshot Adversaries . 39

9 A Stateless Multi-Map Encryption Scheme 41
9.1 Construction . 42
9.2 Security Against Snapshot Adversaries . 49

10 The OST Database Encryption Scheme 51
10.1 Security against Snapshot Adversaries . 53

2

1 Introduction

The problem of searching on encrypted data has been studied for the last twenty years. The
initial motivation was to design searchable symmetric encryption (SSE) schemes to encrypt
unstructured document collections while supporting keyword search [54]. Since, the field of
encrypted search has expanded beyond SSE to consider more complex problems like the design
of encrypted databases. This shift was motivated in large part by the realization that having
commercially-available end-to-end encrypted databases would have a tremendous impact on data
privacy since databases are where most data is stored and processed.

Encrypted relational databases. The first encrypted database schemes focused on relational
databases and used a quantization-based approach [37] and property-preserving encryption [1]
(PPE), which leaked approximations of the data items and frequency and order information, re-
spectively. In both of these approaches, leakage was available from one database-level snapshot;
that is, with access to one encryption of the database and no additional information like tran-
scripts of operations or auxiliary knowledge of the database and/or queries. Motivated by this, a
new generation of encrypted relational databases were designed based on structured encryption
(STE) that provided improved leakage profiles in stronger adversarial models [19,40,43].

Document databases. While relational databases are an important class of database sys-
tems, NoSQL and, in particular, document databases have gained a great deal of popularity in
industry over the last decade. Roughly speaking, a document database stores data as a collection
of structured documents each of which can be viewed as a set of field/value pairs. Document
databases are queried using an expressive query language based on matching field values. Some
examples, include “find all documents with field f = v” or “find all documents with field f1 = v1
and f2 = v2”. The most well-known document databases include MongoDB, Amazon’s Docu-
mentDB, Microsoft’s CosmosDB, Couchbase and CouchDB.

Designing a real-world encrypted document database. Perhaps surprisingly, as far as we
know, the problem of designing an encrypted document database has not been considered in the
past. We note that this problem is very different from the problem of designing an SSE scheme.
SSE encrypts document collections and supports keyword search; specifically, the documents are
unstructured in the sense that they are simply set of keywords and keyword search queries only
need to return documents that contain the queried keyword. In this work, we propose the first
STE-based encrypted document database scheme. Unlike SSE, an encrypted document database
encrypts a collection of structured documents each of which is a set of keyword/value pairs and
has to support more complex queries. An additional and important goal of our work, however,
is to design a practical solution in several respects including asymptotic and concrete efficiency,
scalability, concurrency and other real-world considerations we will discuss below. These practical
considerations present many technical challenges but need to be solved to make a solution usable
in practice.

Statelesness. One of the real-world constraints that our solution addresses is support for
multiple clients. In practice, databases are accessed by many clients so any practical encrypted

3

database solution must work in the multi-writer multi-reader (MWMR) setting. Designing for
the multi-writer setting is much more challenging than the standard single-writer single-reader
setting considered in previous work [19,40,43]. One of the biggest challenges in designing MWMR
schemes is dealing with state. All modern dynamic STE schemes require the client to keep state
which becomes difficult to manage in a multi-client setting because clients need to maintain a
consistent view of it. Another important consideration in our setting is that that clients can
crash at unexpected time which would cause state information to be lost. For these reasons, one
of our main technical goals will be to design schemes that are stateless.

Concurrency. Another challenge of the MWMR setting is that clients can issue update oper-
ations at the same time which can cause contention and reduce update throughput. A naive way
of handling this would be to use a multi-threaded implementation of a SWSR construction where
the update operations are protected by locks or wrapped in transactions. This would guarantee
that updates are executed “safely” since they are executed sequentially but would lead to very
poor throughput. Instead, our constructions will address this challenge in a way that supports
high throughput at the cost of a slight decrease in query efficiency.

Interaction. Interaction is known to provide several advantages in STE but in practical set-
tings it can lead to very expensive operations since a single round trip over the Internet can cost
50 to 100ms. For comparison, plaintext transactional database queries typically run in a few
milliseconds.

Client-side filtering. When designing encrypted search solutions, it can be useful to filter
results at the client. One example is to support conjunctive queries for, say, f1 = v1 and f2 = v2.
Here, one could execute a query for f1 = v1 on the server and filter out the subset of documents
in the result set that match f2 = v2. Client-side filtering, however, is highly non-trivial to
implement in a database setting because it requires implementing a module that is capable of
parsing and interpreting documents at the client.

Snapshot security. There are two adversarial models usually considered in the encrypted
search literature: (1) the persistent model, where the adversary corrupts the server; and (2) the
snapshot model, where the adversary is only given access to the the encrypted database. Clearly,
security against persistent adversary is preferred over snapshot security but here we focus on
snapshot security for two reasons: (1) it is not clear that designing an efficient, non-interactive
dynamic scheme that is secure against a persistent adversary and stateless is possible given
that all known STE dynamic STE schemes require state; (2) snapshot adversaries capture real-
world security concerns of some database users; and (3) the state of the art solutions available
in industry are based on deterministic encryption and leak frequency information even against
snapshot adversaries.

1.1 Our Contributions

In this work, we design a document database encryption scheme OST that is efficient, stateless,
concurrent and non-interactive. We make the following contributions.

4

Security definitions. We formalize security against snapshot adversaries in the ideal/real-
world paradigm typically used to capture the security of secure multi-party computation proto-
cols. Our definitions are similar in spirit to the more standard definitions of [23] but the use of
ideal functionalities allows us to capture the security of different STE schemes more concisely,
i.e., without needing a separate definition for each data structure we consider in this work.

A new way to model leakage. The standard way to model leakage is to use functions that
map data and/or operations to some observed leakage. Typically, each operation is associated
with a set of leakage functions, called patterns, and the collection of these leakage patterns is a
leakage profile. This approach, proposed in [21,23], works well for leakage that is relatively simple
and only a function of a single type of operation. Our construction, however, is complex as it
makes use of a multi-map encryption that itself is based on two multi-map encryption schemes,
a dictionary encryption scheme and a set encryption schemes. Furthermore, some of the leakage
we need to reason about spans across operations. Because of this, analyzing the leakage of our
construction using the standard functional model of leakage quickly became unmanageable. To
address this, we propose a new way to model and analyze leakage. In our approach, a leakage
profile is represented as a function L that takes as input the data structure and a sequence
of operations (op1, . . . , opn) and outputs a leakage graph G = (V,E) that captures the entire
leakage of the scheme as follows. Each operation opi is associated with a vertex vxi composed
of a public component and a private component. The public component holds information that
is visible to the adversary whereas the secret component holds information that is not visible
to the adversary and that the leakage function can use to establish adversarially-visible edges
between vertices. The edges in the graph capture correlations between operations and the secret
component makes it possible to formally and concisely describe these correlations when describing
leakage and writing proofs.

We acknowledge that our new graph-based approach to modeling leakage may seem unnec-
essary and complex at first glance compared to the more traditional functional approach. We
stress, however, that we introduced this model out of necessity as the proofs using the functional
approach became unwieldly and too difficult to manage.

A stateless concurrent encrypted multi-map. Our main construction OST relies heavily
on a new multi-map encryption scheme Ω that is stateless, non-interactive and concurrent. The
scheme itself makes use of four encrypted structures as building blocks; each one with different
characteristics and used for a different purpose. The first structure EMMM stores the input multi-
map but achieves statelessness by allowing for overwrites. The second structure EDXC , however,
is used to store metadata about EMMM needed to avoid overwriting items in EMMM . ESETS

is used to store information needed to compact EDXC ; that is, to reduce its space consumption.
Finally, EMMR is used to store information that enables efficient conjunctive search and helps
us deal with limitations of the underlying database management system which we discuss below.
The most complex of our building blocks is EMMC so we provide an overview of its underlying
techniques.

More precisely, EMMM is a dictionary-based multi-map encryption scheme but without any
client state. Recall that in these constructions, the state stores counters for every label. These
counters are used to generate unique tags that are then used as labels in an underlying (unen-

5

crypted) dictionary. Omitting the state obviously makes the EMM stateless but it introduces a
new problem which is that pairs can now be overwritten since no counter information is available.
To address this, we store and manage the counters in an auxiliary encrypted structure EDXC

that maps the labels in EMMM to their latest counters. The idea is that, when querying EMMM ,
clients can first query EDXC so that the server can recover the latest counter needed to query
EMMM . And after updating EMMM , clients can edit EDXC so that the counter associated with
the label is updated to the new counter. Unfortunately, this high-level idea does not work as-is.
In particular, there is a subtle security problem that must be overcome: if edits to EDXC are
done “in-place” then a modification at the same location of EDXC reveals to a multi-snapshot
adversary that the same label was updated. To address this, EDXC must be immutable and han-
dle updates “out of place”. We achieve this by instantiating EDXC with a specially-constructed
encrypted multi-map that is stateless, append-only and handles get operations in logarithmic
time.

Conjunction and lookup limitations. With the above structures, OST can already support
conjunctive queries but it comes at the cost of a higher computational complexity. Specifically,
it would cost m times the cost of a standard query, where m is the number of clauses in the
conjunction. This overhead can be prohibitive and particularly wasteful when a conjunction
is composed of clauses with values that have both very small and high frequencies. Instead,
we leverage an idea first introduced in [18]. The idea consists of first performing a query on
the conjunctive term with the smallest frequency and then only executing membership test
operations on the remaining values. To implement this idea we introduce a fourth structure
EMMR that serves as an encrypted set structure and allows us to significantly reduce query
overhead in the conjunctive case. But EMMR has an additional and a more fundamental use in
OST. The underlying database system OST was designed for can only support a fixed number
of standard lookup operations which means that the number of addresses we can read from in
EMMM is upper-bounded by a value limit. To handle this limitation, whenever the frequency
of the query term is higher than limit, we use a form of linear scan where EMMR is used to test
whether a document exists or not. Note that limit is very high so the likelihood of using the
scan-like approach in practice is very unlikely.

Compaction of Ω. The design described so far achieves statelessness, correctness and query
efficiency but has one major limitation: it is not space efficient. In fact, the space complexity of
the structures described so far is

O

(∑
ℓ∈LMM

#MM[ℓ] + #LMM +#puts

)
,

where MM is the input multi-map and #puts are the total number of puts. Note that this
depends on the total number of puts ever made and not on the size of the input multi-map. To
address this, we use a process called compaction to remove stale data from EDXC and bring the
size down to

O

(∑
ℓ∈LMM

#MM[ℓ] + c ·#LMM +#putsc

)
,

6

where c is the number of compactions and #puts are the total number of puts performed since
the last compaction (or initialization if no compaction has occurred). The compaction process
is executed by the server which means it needs access to information stored in EDXC . More
precisely, it needs the ability to query these structures, to delete certain pairs and to add new
ones. To enable this, the client generates get and put tokens for EDXC whenever it executes a
put for EMMM and stores these tokens in an auxiliary encrypted set structure ESETS that is
used at compaction time.

Security. Our scheme is designed to achieve database-level multi-snapshot security [3]. As we
show in Section 10, it leaks the number and time of insert, update and delete operations, the size
of the database and which document was updated or deleted. After compaction, OST also reveals
the number of unique values inserted since the last compaction. We note that this is considerably
less leakage in a stronger adversarial model than previous work on encrypted database systems.

Efficiency. OST achieves O(r) query communication complexity which is optimal and

O

(
p · log

(∑
f∈F

(
c · pf ·#Sf +#insUpc,f

))
+ r +#delUp

)

query computational complexity, where r is the number of documents that match the query,
F are the fields in the document database, c is the number of compactions executed, Sf is the
support (or value space) of field f , pf is the contention factor of f which is a parameter that
can be tuned to tradeoff the throughput of concurrent insert and update operations, #insUpc,f
is the number of inserts and updates made on field f since the last compaction, and #delUp is
the number of deletes and updates made on the field/value being queried. After a compaction
operation and assuming that the number of updates and deletes #delUp is dominated by the
response r, then the computation complexity can be simplified to

O

(
p · log

(∑
f∈F

c · pf ·#Sf

)
+ r

)
.

For more details on the asymptotics, we refer the reader to Section 10. Note that OST’s queries
are almost optimal except for an additive sub-linear term in the size of the database and the
number of updates made to a specific field/value pair. Insert complexity is

O

(
#F · log

(∑
f∈F

(
c · pf ·#Sf +#insUpc,f

)))
,

which shows that inserts require only a logarithmic factor per field in the inserted document.

Remarks on implementation and locality. Though the construction we present in this
work has been implemented in a real-world commercial database we chose not to discuss imple-
mentation in this work. There are two reasons for this: (1) the architecture and implementation
is non-trivial and needs to be discussed on its own as it would considerably lengthen and compli-
cate the current work; and (2) our focus here is on the security of the underling scheme OST and

7

extending the scope to include how the system is architected and built would be a distraction.
Also, we note that we plan on publishing work focused on the system’s architecture, design and
performance in future work. For the purposes of this work, we can report that the implementa-
tion is highly efficient and, in the worst case, was 8× the performance of the DBMS on plaintext
data.1

An interesting point about the implementation is that, contrary to what has been stated
in many previous works, the lack of locality did not impact the performance of the system in
any meaningful way. What we mean by this is that, while locality could potentially improve
performance, the efficiency of our scheme was high enough that it was decided that the design
and engineering challenges associated with local schemes were not worth pursuing at the moment
(though this may change in the future).

2 Related Work

Encrypted search is the area in cryptography that focuses on the design, cryptanalysis and
implementation of protocols and systems that support search on encrypted data. Encrypted
search was first considered explicitly by Song, Wagner and Perrig in [54] which introduced the
notion of searchable symmetric encryption (SSE). Curtmola, Garay, Kamara and Ostrovsky later
introduced and formulated the notion of adaptive semantic security for SSE together with the first
sub-linear and optimal-time SSE constructions [23]. Chase and Kamara introduced the notion
of structured encryption [21] which generalizes index-based SSE schemes [23] to arbitrary data
structures. The most common and important type of STE schemes are multi-map encryption
schemes which are a basic building block in the design of sub-linear SSE schemes [17, 23, 47],
expressive SSE schemes [18, 25, 28, 42, 53] and STE-based encrypted databases [19, 40, 43, 45].
STE and encrypted multi-maps have been studied in the context of SSE along several dimensions
including dynamism [13, 14, 17, 30, 38, 46, 47, 53] and I/O efficiency [5, 6, 17, 20, 24, 26, 51]. In this
work, we consider snapshot security which was introduced by [3] in the context of structured
encryption.

Other approaches for encrypted search include oblivious RAMs (ORAM) [33], secure multi-
party computation [8], functional encryption [12] and fully-homomorphic encryption [31] as well
as solutions based on deterministic encryption [7] and order-preserving encryption (OPE) [11].

Encrypted relational databases. As far as we know the first encrypted relational DB solu-
tion was proposed by Hacigümüs et al. [37] and was based on quantization. Roughly speaking, the
attribute space of each column is partitioned into bins and each element in the column is replaced
with its bin number. Popa et al. proposed CryptDB [1] which was the first non-quantization-
based solution and can handle a large subset of SQL. Instead of quantization, CryptDB relies
on property-preserving encryption schemes like deterministic [7] and order-preserving [2, 11] en-
cryption. The CryptDB design influenced the Cipherbase system from Arasu et al. [4] and the

1In terms of absolute numbers, the worst-case we saw in our experiments was 38ms which was to insert
documents with 20 fields, 3 of them being encrypted. While this might seem like a small number of encrypted
fields, this particular workload was designed based on a survey of large real-world customer needs. Finds ranged
from 3ms to 26ms depending on the workload.

8

SEEED system from Grofig et al. [34]. The security of these PPE-based solutions was later
studied in [9, 27,52].

Cryptanalysis. In addition to the design of encrypted algorithms, encrypted search also fo-
cuses on leakage attacks. The first such attack was proposed by Islam, Kuzu and Kantar-
cioglu and was a known-data query-recovery attack that exploited the co-occurrence pattern and
knowledge of a (large) fraction of the dataset. This was followed up by several works includ-
ing [10,16,30,35,49,50,55]. For a sumamry of leakage attacks and their practical evaluations we
refer the reader to [41]. We stress that none of these attacks apply to our work since they exploit
leakage patterns that our constructions do not reveal.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all
finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}. a := b means that a is set to

b and a
◦
= expr means that a is defined to be the expression expr. The output y of a probabilistic

algorithm A on input x is denoted by y ← A(x). The output y of a deterministic algorithm A
on input x is denoted by y := A(x). If S is a set then x

$← S denotes sampling from S uniformly
at random. Given a sequence s of n elements, we refer to its ith element as si and to si’s rank
in s as ranks(si). If S is a set then #S refers to its cardinality. Throughout, k will denote the
security parameter.

Graphs. A graph G = (V,E) consists of a set of vertices V and a set of edges E over V.

The sum of two graphs G1 and G2 is defined as the graph G1 +G2
◦
=
(
V1 ∪V2,E1 ∪ E2). We

sometimes also write this as G1 + (V2,E2). Given a vertex vx ∈ V and a subset of vertices
V′ ⊆ V − {vx}, we denote the set of edges

{
(vx, vx′)

}
vx′∈V′ by vx×V′.

Dictionaries & multi-maps. A dictionary DX : L→ V over a label space L and value space
V is a collection of label/value pairs {(ℓi, vi)}i≤n, where ℓi ∈ L and vi ∈ V. Dictionaries typically
support Get and Put operations. We write vi := DX[ℓi] to denote getting the value associated
with label ℓi and DX[ℓi] := vi to denote the operation of putting the value vi in DX with label ℓi.
The removal of a pair (ℓ, v) from DX is written as DX− (ℓ, v) or sometimes DX− ℓ. We denote
by DX−1[v] the set of labels in DX that are associated with v.

A multi-map MM : L → V over a label space L and a value space V is a collection of
label/tuple pairs {(ℓi,vi)i}i≤n where ℓi ∈ L and each v ∈ Vn. Multi-maps typically support Get
and Put operations. We write vi := MM[ℓi] to denote getting the tuple associated with label ℓi
and MM[ℓi] := vi to denote operation of putting the tuple vi to label ℓi. If a multi-map supports

appends we denote by MM[ℓ]
+
:= v the operation that consists of appending the value v to ℓ’s

tuple. Multi-maps are the abstract data type instantiated by an inverted index. The removal of
a pair (ℓ, v) from MM is written as MM− (ℓ, v) or sometimes MM− ℓ and the removal of a value
v from a label ℓ’ s tuple is written MM[ℓ] − v. We denote by MM−1[v] the set of labels in MM
whose tuples include v.

9

Priority queues. One of our constructions makes use of a priority queue which is a data
structure PQ that stores label/value pairs where the labels are from an ordered set and that
supports the following three operations: enqueue which takes as input a label/value pair (ℓ, v)
and stores it; dequeue which returns the value v associated to the smallest label ℓ and removes
the pair (ℓ, v) from the queue; and peek which returns the value associated with the smallest
label but does not remove the pair. For our purposes we will only use priority queues to store
single elements which can be trivially implemented by storing pairs of the form (e, e), where e is
the element being stored and retrieved.

Document databases. A document database of size n holds n documents {D1, . . . ,Dn} each
of which is a set of field/value pairs. For ease of exposition and without loss of generality, we
will assume throughout that all documents in a database have the same number of field/value
pairs. More precisely, for all 1 ≤ i ≤ n, we have Di =

{
(f1, v1), . . . , (fm, vm)

}
. Here, we consider

document databases ∆ = (Insert,Find,DeleteOne,UpdateOne) that work as follows:

• Insert(D): takes as input a document D and inserts it into the database. We write this
DDB∪D. We require that every document in the database have a id field set to a unique
value id.

• Find(filter): takes as input a filter filter which is either: (1) an exact filter of the form f = v;
or (2) a conjunctive filter of the form f1 = v1

∧
· · ·
∧
fm = vm. The Find operation returns

all the documents that match the filter. In the case of an exact filter this includes the
documents with field f set to v and in the case of a conjunctive filter this includes the
documents such that, for all 1 ≤ i ≤ m, field fi is set to vi. We sometimes write finds with
exact filters as R := DDB[f = v] and with conjunctive filters as R := DDB[

∧
i∈[m] fi = vi].

• DeleteOne(filter): takes as input a filter filter and deletes one of the documents, chosen
uniformly at random, that match filter. We sometimes write DDB − id as shorthand for
executing the Delete operation on filter ≡ id = id.

• UpdateOne(filter, action): takes as input a filter filter and an action action which, in this
work, is a field/value pair (f, v). The UpdateOne operation updates the field f of one
document, chosen uniformly at random, that matches filter to the value v.

Symmetric encryption. A symmetric encryption scheme is a set of three polynomial-time
algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security
parameter k and returns a secret key K; Enc is a probabilistic algorithm that takes a key K and a
message m and returns a ciphertext ct; Dec is a deterministic algorithm that takes a key K and a
ciphertext ct and returnsm ifK was the key under which ct was produced. We denote by γ(·), the
ciphertext expansion of the scheme, i.e., the size of ciphertexts is γ(|m|). Informally, a symmetric
encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs
do not reveal any partial information about the plaintext even to an adversary that can adaptively
query an encryption oracle. We say that a scheme is random-ciphertext-secure against chosen-
plaintext attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable
from random even to an adversary that can adaptively query an encryption oracle. Note that
RCPA-security implies CPA-security and key-privacy, the latter of which guarantees that given

10

two ciphertexts one cannot distinguish whether they were generated under the same key or not.
We refer the reader to [39] for formal definitions of these notions.

Pseudo-random functions. In addition to encryption schemes, we also make use of pseudo-
random functions (PRF), which are polynomial-time computable functions that cannot be dis-
tinguished from random functions by any probabilistic polynomial-time adversary. We usually
denote the evaluation of a pseudo-random function F with a key K on an input x as FK(x)
but sometimes as F (K, x) for visual clarity. We refer the reader to [48] for standard notions of
security for PRFs.

4 Definitions

Encrypted sub-linear search on encrypted data is formally captured by the notion of structured
encryption (STE) which we define below. Informally, a STE scheme encrypts a data structure
in such a way that it can be queried without revealing any useful information about the data or
the query.

4.1 Structured Encryption

STE was introduced in [21] as a generalization of index-based 2 SSE schemes [23]. The notion
of SSE was introduced in [54] and formalized in [23]. There are several forms of structured
encryption. The original definition of [21] considered schemes that encrypt both a structure and
a set of associated data items (e.g., documents, emails, user profiles etc.). In [22], the authors
also describe structure-only schemes which only encrypt structures. One can also distinguish be-
tween response-hiding and response-revealing schemes: the former reveal the response to queries
whereas the latter do not. Many of the STE schemes in this work will also support a compaction
operation which can be used to shrink the size of the encrypted structures.

Definition 4.1 (Structured encryption). A response-hiding, dynamic structured encryption scheme
ΣDS = (Init,Add,Query,Delete) consists of two-party protocols that work as follows:

• (K, st;EDS)← InitC,S(1
k; 1k): is a probabilistic algorithm that takes as input from the client

and server a security parameter 1k. It outputs to the client a key K and a state st and to
the server an encrypted structure EDS;

• (st′;EDS′)← AddC,S(K, st, a;EDS): takes as input from the client a key K, a state st and
an update a; and from the server an encrypted structure EDS. It outputs to the client an
updated state st′ and to the server an updated encrypted structure EDS′;

• (st′, r;⊥) ← QueryC,S(K, st, q;EDS): takes as input from the client a key K, a state st
and a query q; and from the server an encrypted structure EDS. It outputs to the client a
(possibly) updated state st′ and a response r and to the server ⊥;

2In the literature structure-based schemes are also called index-based schemes.

11

• (st′;EDS′) ← DeleteC,S(K, st, d;EDS): takes as input from the client a key K, a state st
and an item to delete d; and from the server an encrypted structure EDS. It and outputs
to the client an updated state st′ and to the server an updated encrypted structure EDS′;

• (st′;EDS′) ← CompactionC,S(K, st;EDS): takes as input from the client a key K and a
state st and from the server an encrypted structure EDS. It outputs an encrypted structure
EDS′;

If the scheme does not support delete operations (i.e., it has no Delete protocol), we say that ΣDS

is semi-dynamic. A scheme is stateless if none of its protocols take as input or output a state
st.

Single-round schemes. A single-round STE scheme has operation protocols that require
only one round which consists of the client sending a token to the server and the server returning
a message. For example, single-round (response-hiding) query protocols consists of the client
sending a query token and the server returning an encrypted data item which the client then
decrypts. All the constructions proposed in [21] are single round and many SSE constructions are
as well. There are, however, several constructions that are multi-round including [29, 32, 44, 53].
All the constructions in this work are single round.

Protocol decomposition. Given a structured encryption scheme ΣDS = (InitC,S,AddC,S,
QueryC,S,DeleteC,S) it will sometimes be useful for us to refer to the different phases of its proto-
cols. For example, assuming the client sends the first message of the query protocol, we will denote
by QueryC1

(K, st, q) the execution of Query’s first phase which includes the steps needed for the
client to generate and send the first message. Similarly we will denote by QueryS2

(EDS, qtk) the
execution of the second phase which includes the steps needed for the server to compute and
send the second message and so on.

Two-Party structured encryption In a standard STE scheme there is only one party (the
client) that can insert data items into the encrypted structure. In this work, we introduce a
new form of STE we refer to as multi-party STE that allows multiple parties to contribute to
a data item. For example, in the case of a dictionary, a two-party encrypted dictionary allows
the client to insert the label of a label/value pair and the server to insert the value of that pair.
Note that multi-party STE is fundamentally different than multi-client STE which focuses on
supporting queries made by multiple clients efficiently (i.e., with high concurrent throughput).
We now describe the syntax of a two-party STE scheme.

Definition 4.2 (Two-party STE). A response-hiding, dynamic two-party structured encryption
scheme ΣDS = (InitC,S,AddC,S,QueryC,S,DeleteC,S) consists of four polynomial-time algorithms
where InitC,S, QueryC,S, DeleteC,S are as in Definition 4.1 and AddC,S works as follows:

• (st′;EDS′)← Add(K, st, a1;EDS, a2): takes as input from the client a key K, a state st and
partial update a1; and from the server an encrypted structure EDS and a partial update a2.
It outputs to the client an updated state st′ and to the server an updated encrypted structure
EDS.

12

4.2 Adversarial Models

The security of an encrypted database can be analyzed using a variety of adversarial models
which can be categorized along two dimensions: (1) the adversary’s view, e.g., the database, the
disk, certain logs, the memory or even the entire server; and (2) a schedule that determines when
and for how long it has access to this view, e.g., a snapshot in time, multiple snapshots in time
or continuously.

Adversarial models in the literature. The adversarial models considered in the literature
include persistent adversaries and snapshot adversaries. Roughly speaking, persistent adversaries
have access to the entire database server whereas snapshot adversaries only receive the encrypted
database. These two models have been useful in research but as first pointed out by [36] they
do not necessarily capture real-world implementations of encrypted database systems. Indeed,
database management systems (DBMS) are very complex systems that satisfy many important
requirements that are sometimes in conflict with security. To address this and to better capture
the security guarantees of real-world encrypted database systems, we extend and increase the
number of adversarial models for encrypted databases. In the following, we briefly and informally
describe these new models.

Snapshot views and schedules. A disk-level snapshot includes the server’s disk. This in-
cludes the database or collection, its indexes, various logs and virtual memory swap space. This
captures data breaches that occur due to disk theft in data centers or to lost or stolen laptops.
Disk-level snapshots are easy to protect against using disk encryption since they only contain
data at rest. A database-level snapshot includes the database in memory and on disk. This
captures database exfiltration attacks due to, e.g., misconfigured access control settings.

The time and cadence of snapshots is described by a schedule. A single-snapshot schedule
provides the adversary with a single snapshot in time. A multi-snapshot schedule is one that
provides multiple snapshots at different points in time. An atomic multi snapshot schedule is
one that provides snapshots only after an operation terminates but never during the execution
of an operation. A periodic and atomic multi-snapshot schedule provides a snapshot after every
operation. In the literature, the latter is usually just referred to as a snapshot.

Persistent view. Unlike snapshot views, a persistent view includes all the information on the
entire server on a continuous basis. This means that it includes memory, disk, the network,
registers and trusted execution environments. This means that, in addition to the contents of
memory, they also have access to all the queries ever made to the database. This captures
settings where the entire server has been compromised for a long period of time.

4.3 Leakage Profiles & Patterns

Intuitively, we would like an STE scheme to guarantee that

the encrypted structure reveals no useful information about the underlying structure
and that the tokens reveal no useful information about the underlying query.

13

Four our purposes, we will consider “non-useful” any information that can be derived from the
security parameter k. For example, this would include information about the structure space or
query space. Unfortunately, such a security notion seems hard to achieve efficiently so we would
like to weaken it to allow for trade-offs.

Leakage patterns. To capture the leakage of a scheme, we will associate every operation the
STE scheme supports with a set of leakage patterns and the collection of all of these leakage
patterns is the scheme’s leakage profile. Leakage patterns are (families of) functions over the
various spaces associated with the underlying structure. We refer to leakage patterns that reveal
an item completely as identity patterns, leakage patterns that reveal whether two items are equal
as equality patterns, leakage patterns that reveal the size of a set as size patterns and leakage
patterns that reveal the length of an item as length patterns. We recall some common leakage
patterns as defined in [44]:

• the query equality pattern qeq (also known as the search pattern) reveals if and when
queries are the same: qeq(DS, q1, . . . , qt) = M , where M is a binary t× t matrix with rows
and columns indexed by (q1, . . . , qt) and such that M [qi, qj] = 1 if qi = qj and M [qi, qj] = 0
if qi ̸= qj.

• the response identity pattern rid (also known as the access pattern) reveals the responses
to queries: rid(DS, q1, . . . , qt) =

(
r1, . . . , rt

)
;

• the response length pattern rlen leaks the number of matching entries: rlen (DS, q1, . . . , qt) =
(|r1|, . . . , |rt)|);

• the data size pattern dsize reveals the size of the structure: dsize(DS) = |DS|;

We say that a leakage profile is zero-leakage (ZL) if it depends only on the security parameter
and other public parameters. Note that this does not imply that no leakage occurred but rather
that whatever leakage did occur is not useful since it could have been derived solely from the
public parameters.

Leakage graphs. Our OST construction is complex and makes use of several lower-level STE
schemes which are themselves non-trivial. The complexity of the scheme translates to a complex
leakage analysis (though not necessarily complex leakage profile). This complexity motivated us
to create a new framework to formalize leakage profiles. Our framework differs considerably from
the more traditional “functional” framework introduced in [21] and expanded in [44]. Instead of
formalizing leakage profiles as a collection of functions associated to each operation, we represent
a leakage profile as a function L that takes as input the data structure and a sequence of
operations and outputs a graph G = (V,E) that captures all the leakage of the scheme.

More precisely, consider a data structure DS and a sequence of operations op = (init, op1,
. . . , opn). L is defined as a stateful function that: (1) given init as input returns G0 = (V0,E0),
where V0 :=

〈
0, init | ⊥

〉
and E0 = ∅; and (2) given opt, for 1 ≤ t ≤ n, outputs a set of vertices

and edges (Vt,Et), where Et is over
⋃t

i=1Vt. When t = 0, the leakage graph of the sequence is
G0 but when t ≥ 1 it is defined as Gt = Gt−1 + (Vt,Et). Intuitively, one can view (Vt,Et) as
the leakage of operation opt.

14

Public/private vertices. Vertices in leakage graphs have a special structure which consists
of a public component and of a secret component. Given a leakage graph, the public component
of a vertex is visible to the adversary/simulator but the secret component is not. Intuitively
speaking, the public component of a vertex vxt ∈ V is a set that stores information about opt
that is leaked. The secret component, on the other hand, is a set used by the leakage profile
to store information about the operation that will help it define/construct adversarially-visible
edges between vertices. Intuitively, these edges capture correlations between different operations.
We note that correlations between vertices/operations can exist due to elements of the public
component but, by definition, these correlations are public so they are not explicitly modeled by
edges; though they can be recovered by just observing the public components of vertices. The
purpose of the edges is to capture correlations about secret information.

In a leakage graph, we describe a vertex vx with the notation
〈
P | S

〉
, where P is the public

component and S is the secret component. Given a vertex vx we sometimes write pub(vx) to refer
to its public component and sec(vx) to refer to its secret component. And given a leakage graph
G = (V,E), we write V(p | ·) ⊆ V to denote the set of vertices in V whose public component
includes p,

V(p | ·) ◦
=
{
vx ∈ V : p ∈ pub(vx)

}
.

On the other hand, we write V(· | s) ⊆ V to denote the set of vertices in V whose secret
component includes s,

V(· | s) ◦
=
{
vx ∈ V : s ∈ sec(vx)

}
.

We also sometimes write V(· | s1, . . . , sn) to denote the set of vertices in V whose secret com-
ponent includes all of s1, . . . , sn. To denote the set of vertices in V whose public component
includes p and secret component includes s we then write

V(p | s) =
{
vx ∈ V : p ∈ pub(vx)

∧
s ∈ sec(vx)

}
.

Similarly, we write G(p | ·), G(· | s) and G(p | s) to denote the subgraphs of G induced by
the vertices in V(p | ·), V(· | s) and V(p | s), respectively.

Operation sequences. Given a sequence of operations op = (init, op1, . . . , opn), the rank of
init is 0 and the rank of opi is i. If the public components of the vertices include the rank of the
corresponding operation, then we denote the set of vertices with rank at least a and at most b
by V[a, b]. More precisely, we have

V[a, b]
◦
=
{
vx ∈ V : a ≤ rankop(vx) ≤ b

}
.

We sometimes need to refer to the latest operation in a particular subset of vertices V† of V.
We denote this as

maxrank
(
V†) ◦

= max
vx∈V†

rank(v),

with maxrank(V†)
◦
= 0 whenever V† = ∅.

15

Examples. As a concrete example, recall the query equality which reveals if and when a query
is repeated and consider a dynamic multi-map MM and the following sequence of operations

op =

(
init,

(
put, ℓ3,v2

)
,
(
get, ℓ3

)
,
(
put, ℓ4,v9

)
,
(
get, ℓ3

)
,
(
get, ℓ3

))
.

The leakage graph G of the query equality of op has vertices

V =

{
vx1

◦
=
〈
0, init | ⊥

〉
, vx2

◦
=
〈
1, get | ℓ3

〉
, vx3

◦
=
〈
2, get | ℓ3

〉
, vx4

◦
=
〈
3, get | ℓ3

〉}
and edges E = {(vx2, vx3), (vx2, vx4), (vx3, vx4)} which can also be described as the set of edges
between all get vertices/operations in V with ℓ3 in their secret component. The query equality
leakage subgraph can be described succinctly as the cliqueK(get | ℓ3); that is, the clique over the
vertex set V(get | ℓ3). Note that the ranks in K(get | ℓ3) are with respect to the subsequence
op′ ⊂ op which only consists of the get operations in op. Also, since every sequence must start
with an initialization operation, by convention, we always include the vertex

〈
0, init | ⊥

〉
.

As another example, consider the same sequence of operations but the leakage profile that
includes the operation equality, the rank identity and the operation identity. The resulting
leakage graph has vertices

V =

{
vx1

◦
=
〈
0, init | ⊥

〉
, vx2

◦
=
〈
1, put | ℓ3

〉
, vx3

◦
=
〈
2, get | ℓ3

〉
,

vx4
◦
=
〈
3, put | ℓ4

〉
, vx5

◦
=
〈
4, get | ℓ3

〉
, vx6

◦
=
〈
4, get | ℓ3

〉}
and edges

E =

{(
vx2, vx3

)
,
(
vx2, vx5

)
,
(
vx2, vx6

)
,
(
vx3, vx5

)
,
(
vx3, vx6

)
,
(
vx5, vx6

)}
.

Modularity. Our main document database encryption scheme OSTmakes calls to our stateless
and concurrent multi-map encryption scheme Ω which itself makes calls to lower-level multi-map,
dictionary and set encryption schemes ΣM , ΣR, ΣC and ΣS. As such, the leakage profile of OST
is a function of the leakage profile of Ω which itself a function of the leakage profiles of ΣM , ΣC ,
ΣS and ΣR. In our proofs we choose to write the leakage concretely so, for example, the leakage
profiles of OST is described in terms of the concrete leakage of its lowest-level building blocks,
i.e., ΣM , ΣC , ΣS and ΣR. Note, however, that when an OST-level operation is executed and
itself executes an Ω-level operation that itself executes, say, three ΣM operations, the adversary
will know the relationship between all these operations. That is, it knows that the three ΣM

operations were executed as part of a higher-level Ω operation that itself was executed as part
of an even higher-level OST operation.

We capture this information in our model by adding “meta-data” to the public components
of the vertices that describes the schemes that lead to its creation. So, for example, an OST-level

16

compaction operation might create a vertex

Vt :=

{〈
OST, t,Ω, tΩ,f ,ΣS, tS,f , init | ⊥

〉
,

〈
OST, t,Ω, tΩ,f ,ΣC , tC,f , comp, pcount | ⊥

〉}
f∈F

which means that the OST-level compaction generates a vertex composed two sub-vertices for
every field f ∈ F. The first sub-vertex describes the leakage that results from initializing an
ESETS structure as part of an Ω-level compaction and the second sub-vertex describes the leakage
that results from compacting an EDXC structure as part of the same Ω-level compaction. The
value t denotes the OST-level rank of the operation, the value tΩ,f denotes the Ω-level rank of the
operation, the value tS,f denotes the ΣS-level rank of the operation and the value tC,f denotes
the ΣC-level rank of the operation. Note that for visual clarity we do not include the exact OST
and Ω operations because those are usually self-evident and can be found from the pseudo-code
of the schemes.

4.4 Security Definitions

Here, we formalize the security of STE in the ideal/real-world paradigm [15] typically used to
capture the security of secure multi-party computation protocols. The definition guarantees
security against static and semi-honest corruptions and is essentially the same as the standard
definition of security for STE proposed in [21,23] but expressed in the ideal/real-world paradigm
for convenience. Roughly speaking, we require that an execution of the scheme in the real-world
is indistinguishable from an execution of an ideal data structure in the presence of a semi-honest
adversary that receives atomic database-level multi-snapshots.

Parties. The two executions take place between an environment Z, an adversary which we
denote by A in the real-world execution and by S in the ideal-world execution, a set of clients
(C0,C1, . . . ,Cn) and a server S.

Corruptions. One can define various kinds of corruptions based on the adversarial model under
consideration. The first is semi-honest persistent corruptions in which the adversary is provided
with the party’ s input, output, incoming and outgoing messages and coins. Another kind, which
is our focus in this work, are semi-honest database-level multi-snapshot corruptions where the
adversary is provided with the encrypted structure after every operation but not the transcript
of the operations or the server’s coins. Here, we refer to this kind of corruption as atomic to
emphasize the fact that the snapshots are provided to the adversary after each operation has
completed and not during an operation.

Real-world execution. In the real-world execution, the environment Z takes as input a
string z ∈ {0, 1}∗. Given z, the adversary A corrupts the server. The client C0 executes
ΣDS.InitC0,S(1

k) with S. Z then adaptively chooses and sends a polynomial number of commands
(comm1, . . . , commm) of the form commi = (Ci, opi), where Ci ∈ {C0, . . . ,Cn} and opi is an
operation supported by ΣDS. For each of these operations: the parties execute the appropriate

17

Functionality FL
2D-AMM

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a server
S and an ideal adversary S. It stores and manages two-dimensional addressable multi-map MM using the
following operations:

• upon receiving (cid, init) from a client, initialize and store an addressable multi-map MM and send(
cid, init,L

(
init
))

to S;

• upon receiving (cid,write, ℓ) from a client and (write,v,a) from S, set MM[ℓx, ℓy]
a
:= v and send(

cid,write,v,a,L
(
write,MM, ℓ,v,a

))
to S;

• upon receiving (cid, read, ℓ) from a client and (read,a) from S, return v
a
:= MM[ℓx, ℓy] to the client;

• upon receiving (cid, hyperread, ℓx) from a client and (hyperread,Ly,A) from S, parseA as {aℓy}ℓy∈Ly ,

compute and return, for all ℓy ∈ Ly, vy

aℓy

:= MM[ℓx, ℓy];

• upon receiving (cid, ers, v) from a client, for all ℓ ∈ MM−1[v], compute MM[ℓ] − v. Send(
cid, ers, a,L

(
erase,MM, v

))
to S.

Figure 1: The ideal 2-dimensional addressable multi-map functionality for snapshot.

protocol and the honest parties and the adversary A send their outputs and a message to Z,
respectively. At the end of this process, Z outputs a bit b. We denote the random variable
corresponding to this bit RealZ,A(k).

Ideal-world execution. In the ideal-world execution, every party has access to an ideal func-
tionality FL

DS that is parameterized with a leakage profile L. The environment Z takes as input
a string z ∈ {0, 1}∗. Given z, the simulator S corrupts the server. Z then adaptively chooses
a polynomial number of commands (comm1, . . . , commm) of the above form. For each of these
operations: the corresponding party sends the operation to the functionality FLDS ; the party and
the adversary S then return the ouptut and a message to Z, respectively. At the end of this
process, Z outputs a bit b. We denote the random variable corresponding to this bit IdealLZ,S(k).

Definition 4.3 (Adaptive security). We say that ΣDS is L-secure if there exists a ppt sim-
ulator S such that for all ppt semi-honest adversaries A making ideal atomic multi-snapshot
corruptions, for all ppt standalone environments Z, for all z ∈ {0, 1}∗,∣∣Pr [RealZ,A(k) = 1]− Pr

[
IdealLZ,S(k) = 1

]∣∣ ≤ negl(k).

5 Addressable Multi-Maps

Our first building block ΣM works as follows. First, it is what we refer to as a two-dimensional
multi-map encryption scheme which we will explain in more detail below. Second, it achieves
statelessness at the cost of correctness in the sense that the values associated to a label can be
overwritten. To better capture this behavior, ΣM is defined as supporting read, write and erase
operations instead of get, put and delete operations. We refer to this kind of multi-map as an
addressable multi-map and define the operations it supports below.

18

Concurrency via two-dimensionality. The encrypted multi-map EMMM will be used by Ω
to store the tuple associated with a label ℓ. The way we use this structure, however, will result
in contention when multiple clients are writing to the same label which will, in turn, slow down
Ω’s write throughput under parallel put operations.

We address this in the following way. Instead of using a standard encrypted multi-map,
EMMM will be a 2-dimensional encrypted multi-map by which we mean that it holds label/tuple
pairs with labels of the form ℓ = (ℓx, ℓy) with ℓx ∈ Lx and ℓy ∈ Ly. Given a high-contention label
ℓ, Ω will treat it as a two-dimensional label ℓ = (ℓ, u), where u is a value sampled uniformly at
random from {0, . . . , p}, with p ≥ 1, and store the pair (ℓ,v) in EMMM . The high-level idea is
that if n clients try to write to the same high-contention label ℓ then, in expectation, only n/p
writes will be executed on the same two-dimensional label ℓ = (ℓ, u) in EMMM . Note that a
possible optimization here would be to use two-choice allocation instead of just sampling u at
random.

To make this idea work in practice, we will need the two-dimensional encrypted multi-map to
support—in addition to read, write and erase operations–read operations on a single dimension.
To see why, note that under our approach, write operations for the following n label/tuple
pairs (ℓ,v1), . . . , (ℓ,vn) for EMMM will be transformed to n writes of the form ((ℓ, u),vi) for
0 ≤ u ≤ p and 1 ≤ i ≤ n. This does not cause any issues during write operations but it does
create a problem for reads since a read for ℓ now needs to return the values associated with every
two-dimensional label (ℓ, 0), . . . , (ℓ, p). Handling this in the naive way would require the client
to compute and send p read tokens to the server; one for each u ∈ {0, . . . , p}.

Hyperreads. Instead, we will design our scheme to support two read operations, a standard
Read operation and a HyperRead operation, that work as follows. Read allows the client to retrieve
the subset of values associated to a two-dimensional label ℓ

◦
= (ℓx, ℓy) indexed by a server-provided

sequence a. One can think of it essentially as a normal read (as described above) for a label ℓ
defined as ℓx∥ℓy. HyperRead allows the client to retrieve the subset of values associated to a set
of labels with x-coordinate ℓx indexed by server-provided sequences {ay}y∈Y .

In our case, the HyperRead protocol will be a single-round protocol where the client message is
O(1). Returning to our concurrency problem, when querying for a label ℓ, instead of executing p
Read operations, the client and server will execute one HyperRead operation with client-provided
input ℓ and server-provided input

(
{0, . . . , p}, {a1, . . . , ap}

)
.

A note on revealing values in plaintext. Contrary to standard multi-map encryption
schemes, ΣM explicitly reveals the values during Write operations. While this might seem odd at
first, the reason we do this will become clearer after describing our database encryption scheme
OST. At a high level, the values here will be server-provided document identifiers that are
sampled uniformly at random by OST during document insertions. As such, these values will
not reveal any information about the database being encrypted.

The plaintext data structure. We are now ready to describe the multi-map structure that
ΣM encrypts. We refer to it as a 2-dimensional addressable multi-map. Its ideal functionality is
given in Figure 1 and it supports the following operations:

19

• write: takes as input a 2-dimensional label ℓ, a tuple v and a sequence of unique addresses
a and stores the pair (ℓ,v′) such that for all 1 ≤ i ≤ #v, vi is stored at index ai of v

′.

Note that #v′ ≥ #v. We sometimes write this as MM[ℓ]
a
:= v.

• read: takes as input a 2-dimensional label ℓ and a sequence of addresses a and returns the

values in (ℓx, ℓy)’s tuple v′ indexed by a. We sometimes write this as v
a
:= MM[ℓ].

• hyperread: takes as input an x-coordinate ℓx, a set of y-coordinates Ly = {ℓy,1, . . . , ℓy,n} and
a set of addresses A = {aℓy}ℓy∈Ly and returns, for all ℓy ∈ Ly, the values associated with

the two-dimensional label ℓ indexed by ay. We sometimes write this as V
A
:= MM[ℓx,Ly].

• erase: takes as input a value v and removes v from the tuples in which it appears.

Two-party functionality. We note that our 2-dimensional addressable multi-map will be
instantiated as a two-party protocol where the addresses in the protocol instantiations of the
read, write and hyperread operations will be provided by the server.

5.1 Construction

We now describe ΣM , our structured encryption scheme for 2-dimensional addressable multi-
maps. The construction is described in detail in Figures 2 and 3 and works as follows. It makes
use of a pseudo-random function F and of a symmetric encryption scheme SKE. Note that ΣM

is defined as having a Gen algorithm in addition to an Init algorithm. This is for practicality
reasons we can avoid storing multiple keys in our OST scheme. Without a separate Gen protocol,
OST’s Init algorithm would have to make multiple calls to Ω’s Init which in turn would make
multiple calls to ΣM ’s Init and this would mean the client would have to manage a non-trivial
number of keys.

Gen. The client samples and outputs a key K
$← {0, 1}k.

Init. To initialize the structure, Init initializes a dictionary DX and a multi-map MM and
generates two keys Kt := FK(1) and Ke := FK(2). It then outputs a key K = (Kt, Ke) and
sends the empty encrypted multi-map EMM := (DX,MM) to the server.

Write. To write a client-provided label ℓ with server-provided values v at server-provided
addresses a, the client sends to the server a write token wtk := (FKt [ℓx, ℓy] , FKe [ℓx, ℓy]) . The
server parses wtk as (Kℓ,t, Kℓ,e) and for all 1 ≤ i ≤ #v, stores: (1) a pair (tagai , cti) in DX, where
tagai := FKℓ,t

(ai) and cti is an encryption of vi under key Kℓ,e; and (2) a pair (vi, tagai) in MM.

Read. To read the values associated to a client-provided label ℓ = (ℓx, ℓy) and indexed by
server-provided addresses a, the client sends to the server a read token rtk := (FKt [ℓx, ℓy] , FKe [ℓx, ℓy]) .
The server parses rtk as (Kℓ,t, Kℓ,e) and for all 1 ≤ i ≤ #a, recovers the value vai by retrieving
and decrypting the ciphertext cti := DX[tagai] using Kℓ,e, where tagai := FKt(ai). Finally, it
outputs the values (va1 , . . . , van).

20

HyperRead. To hyperread the values associated with all 2-dimensional labels with a client-
provided x-coordinate ℓx and indexed with server-provided addresses {aℓy}, the client sends to the
server a hyperread token hrtk := (FKt(ℓx), FKe(ℓx)) . The server parses hrtk as (Kx,t, Kx,e) and for
all ℓy ∈ Ly, computes two keys Kℓ,t := FKx,t(ℓy) and Kℓ,e := FKx,e(ℓy) and, for all 1 ≤ i ≤ #aℓy ,
recovers the value vℓy ,ai by retrieving and decrypting the ciphertext cti := DX[tagℓ,t,i] using key
Kℓ,e, where tagℓ,t,i := FKℓ,t

(aℓy [i]). Finally, it outputs the values (vℓy ,ai)ℓy∈Ly ,i∈[#aℓy]
.

Erase. To erase a value v from the multi-map, the client sends an erase token etk := v to the
server. The server computes (tag1, . . . , tagn) := MM[v] and deletes all the pairs associated with
tags (tag1, . . . , tagn) from DX. Finally, it deletes the label/tuple pair associated with v from MM.

Remark on correctness. Note that since the scheme is addressable, it does not inherently
guarantee correctness since tuple values can be overwritten if writes for two different values are
made to the same address. In the next section, we will see how to use another scheme to encrypt
an auxiliary structure that will provide “overwrite protection” for EMMM .

Efficiency. ΣM is optimal with respect to communication complexity: write tokens are O(#v),
read and erase tokens are O(1) and read responses are O(#a). The scheme is also opti-
mal with respect to server-side computation since writes and reads are O(#a), hyperreads are
O(
∑

ℓy∈Ly
#aℓy) and erase operations are O(#MM−1[v]). Finally, client-side operations are also

optimal since computing write tokens is O(#a), computing read, hyperread and erase tokens is
O(1).

5.2 Security Against Snapshot Adversaries

We now analyze the security of ΣM in the database-level snapshot model. The multi-snapshot
leakage profile of ΣM is described in Figure 4 and its security is analyzed in the following Theorem.

Theorem 1. If F is pseudo-random and SKE is RCPA-secure, then ΣM as described in Figures
2 and 3 is LM -secure with respect to atomic database-level multi-snapshots.

Proof. Consider the simulator S that simulates A’s view as follows:

(simulating after initialization) given leakage G0 := LM(init, θ) set G := G0 and parse G0 =
(V0,E0) as

V0 :=
〈
0, init, θ | ⊥

〉
and E0 := ∅.

Initialize two empty dictionaries DXsim and DX : {0, 1}k → {0, 1}θ, a multi-map MM :
{0, 1}θ → {0, 1}k×∗ and output (DX,MM). DXsim will be used by S to stay consistent.

(simulating the EMM after writes) given Gt := LM(write, ℓ,v, a) set G := G +Gt, and parse
Gt = (Vt,Et) as

Vt =

{
vxi

◦
=
〈
t,write, vi | ℓ, ai

〉}
i∈[m]

and Et =

{
vxi ×V(· | ℓ, ai)

}
i∈[m]

.

21

Let k, θ ∈ N≥1 and F : {0, 1}k × {0, 1}∗ → {0, 1}k be a pseudo-random function, SKE = (Gen,Enc,Dec)
be a symmetric encryption scheme. Consider the response-revealing stateless addressable two-dimensional
multi-map encryption scheme ΣM = (GenC,S, InitC,S,WriteC,S,ReadC,S,HyperReadC,S,EraseC,S) with label

space L = Lx × Ly and value space V = {0, 1}θ defined as follows:

• GenC
(
1k
)
:

Client:

1. sample and output K
$← {0, 1}k;

• InitC,S

(
K, θ

)
:

Client:

1. initialize an empty dictionary DX : {0, 1}k → {0, 1}θ;
2. initialize an empty multi-map MM : {0, 1}θ → {0, 1}k×∗;
3. compute Kt := FK(1) and Ke := FK(2);
4. output K := (Kt,Ke) and send EMM := (DX,MM) to the server;

• WriteC,S

(
K, ℓ;EMM,v,a

)
:

Client:

1. parse K as (Kt,Ke) and ℓ as (ℓx, ℓy);
2. compute Kℓ,t := FKt

[ℓx, ℓy];
3. compute Kℓ,e := FKe

[ℓx, ℓy];
4. send wtk := (Kℓ,t,Kℓ,e) to the server;

Server:

1. parse EMM as (DX,MM) and wtk as (Kℓ,t,Kℓ,e);
2. for all 1 ≤ i ≤ #v,

(a) compute cti := SKE.Enc(Kℓ,e, vi);
(b) compute tagai

:= FKℓ,t
(ai);

(c) set DX[tagai
] := cti and MM[vi]

+
:= tagai

;
3. output EMM := (DX,MM);

• ReadC,S

(
K, ℓ;EMM,a

)
:

Client:

1. parse K as (Kt,Ke) and ℓ as (ℓx, ℓy);
2. compute Kℓ,t := FKt

[ℓx, ℓy];
3. compute Kℓ,e := FKe

[ℓx, ℓy];
4. send rtk := (Kℓ,t,Kℓ,e) to the server;

Server:

1. parse EMM as (DX,MM) and rtk as (Kℓ,t,Kℓ,e);
2. initialize an empty sequence v;
3. for all 1 ≤ i ≤ #a,

(a) compute tagai
:= FKℓ,t

(ai);
(b) compute cti := DX[tagai

];
(c) compute vi := SKE.Dec(Kℓ,e, cti)
(d) set v := (v, vi);

4. output v;

Figure 2: ΣM : a 2-dimensional addressable multi-map encryption scheme (part 1).

22

• HyperReadC,S

(
K, ℓx;EMM,Ly,A

)
:

Client:

1. parse K as (Kt,Ke);
2. send hrtk := (FKt

(ℓx), FKe
(ℓx)) to the server;

Server:

1. parse hrtk as (Kx,t,Kx,e), A as {aℓy}ℓy∈Ly
and EMM as (DX,MM);

2. initialize an empty sequence v;
3. for all ℓy ∈ Ly,

(a) compute Kℓ,t := FKx,t
(ℓy) and compute Kℓ,e := FKx,e

(ℓy);
(b) for all 1 ≤ i ≤ #aℓy ,

i. compute tagℓ,t,i := FKℓ,t
(aℓy [i]);

ii. compute cti := DX
[
tagℓ,t,i

]
;

iii. compute Kℓ,e,i := FKℓ,e
(aℓy [i]);

iv. compute vi := SKE.Dec(Kℓ,e,i, cti);
v. set v := (v, vi);

4. output v;

• EraseC,S

(
v;EMM

)
:

Client:

1. send etk := v to the server;

Server:

1. parse EMM as (DX,MM);
2. compute (tag1, . . . , tagn) := MM[v]
3. for all 1 ≤ i ≤ n, compute DX− tagi;
4. compute MM− v;
5. output EMM := (DX,MM);

Figure 3: ΣM : a 2-dimensional addressable multi-map encryption scheme (part 2).

23

Leakage profile LM

The leakage profile LM is a stateful functionality that constructs a leakage graph G from any sequence of
init, write and erase operations. Given the tth operation op of a sequence, it outputs a leakage sub-graph
Gt ⊆ G that captures the leakage of op:

• LM (op):

1. if op = (init, θ),
(a) set t := 0 and G := (∅, ∅);
(b) set Vt :=

〈
0, init, θ | ⊥

〉
and Et := ∅;

2. else if op = (write, ℓ,v,a)
(a) compute t++;
(b) set m := #v;
(c) for all 1 ≤ i ≤ m,

i. set vxi :=
〈
t,write, vi | ℓ, ai

〉
ii. set Ei := vxi ×V(· | ℓ, ai)

(d) set Vt := {vx1, . . . , vxm} and Et := {E1, . . . ,Em};
3. else if op = (erase, v)

(a) set Vt :=
〈
t++, erase, v | ⊥

〉
;

(b) set Et := ∅
4. set G := G+ (Vt,Et)
5. output (Vt,Et);

Figure 4: The leakage profile LM .

Notice that the only modification to DX and MM made by the WriteS2 algorithm are that:
(1) #a tag/ciphertext pairs of the form (tagℓ,ai , cti) are added to DX; and (2) (vi, tagai) is
added to MM. Since the values vi are given and the ciphertexts cti are randomized (see
Step 3 of WriteC1), they are straightforward to simulate. The tags, on the other hand, are
not given and are deterministic so they could have appeared in previous Write or Erase
executions. These correlations, however, are captured by the leakage graph which will help
with the simulation.

We consider two cases. The first is when vxi is a “stale” operation in the sense that its
label and address ai have appeared in a previous write or erase. In this case, vxi will have
incident edges to all the previous operations 3 that wrote to or erased the same label and
address. 4 We can use this information to add a tag/ciphertext pair to DX and a value/tag
pair to MM with the previously-used tag and a newly simulated ciphertext. More precisely,
for all vxi ∈ Vt with degree at least 1, let vx×i be the vertex in NG(vxi) with the highest

rank; compute (tag×i , ct
×
i) := DXsim[vx×i],

5 cti
$← {0, 1}γ(θ)) and set DXsim[vxi] := (tag×i , cti),

DX[tag×i] := cti and MM[vi]
+
:= tag×i .

The second case is when vxi is “fresh” in the sense that one of ℓ or ai have never appeared
in a previous write or erase operation. In this case, we simulate a new tag/ciphertext pair

3Since all vertices have a public rank t, we can order them acoording to when they occurred.
4Note that here the leakage is slightly more than what is actually leaked. To see why, consider a sequence of

operations where we have two erases in a row, e.g., a write, an erase, an erase and then a write. The second erase
vertex would have degree 0.

5Note that ct×i = ⊥ if vx×i was an erase operation.

24

Functionality FL
2D-IDX

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a server
S and an ideal adversary S. It stores and manages a two-dimensional dictionary DX using the following
operations:

• upon receiving (init, cid) from a client, initialize and store a dictionary DX and send
(
cid, init,L

(
init
))

to S;

• upon receiving (put, cid, ℓ) from a client and (put, v) from S, set DX[ℓ] := v and send(
cid, put, v,L

(
put,DX, ℓ, v

))
to S;

• upon receiving (cid, get, ℓ) from a client return v := DX[ℓ];

• upon receiving (cid, hyperget, ℓx) from a client and (hyperget,Ly) from S, for all ℓy ∈ Ly, return
vy := DX[ℓ];

• upon receiving (cid, comp) from a client send
(
cid, comp,L

(
comp,DX

))
to S;

Figure 5: The ideal 2-dimensional immutable dictionary functionality.

and add it to DX. More precisely, for all vxi ∈ Vt with degree 0, compute tagi
$← {0, 1}k

and cti
$← {0, 1}γ(θ)), set DXsim[vxi] := (tagi, cti) and DX[tagi] := cti, and return DX.

Notice that the pseudo-randomness of F and the RCPA-security of SKE guarantee that the
simulated EMM is computationally indistinguishable from a real EMM.

(simulating the EMM after reads and hyperreads) since these operations cause no modifications
to the underlying structures, return DX and MM;

(simulating the EMM after erasures) given the leakage Gt := LM(erase, ℓ, a) set G := G +Gt

and parse Gt = (Vt,Et) as

Vt =
〈
t, erase, v | ⊥

〉
and Et = ∅

The only modification to DXmade by the EraseS2 algorithm is the deletion of tag/ciphertext
pairs (taga1 , ct1), . . . , (tagan , ctn) from DX, where (a1, . . . , an) are the addresses that store
v (for any ℓ). The only modification to MM made by EraseS2 is the deletion of v from
MM. Note that the tag is deterministic and could have appeared in previous Write or Erase
executions. These correlations, however, are captured by the leakage graph.

We first compute (taga1 , . . . , tagan) := MM[v] and, for all 1 ≤ i ≤ n, compute DX − tagai .
Finally, we compute MM− v.

Notice that the simulated EMM is perfectly indistinguishable from a real EMM.

6 Immutable Dictionaries

Our second building block ΣC is a stateless 2-dimensional immutable dictionary encryption
scheme that achieves correctness at the cost of limited query functionality and (in some cases) a

25

slight decrease in query efficiency. It is the most complex of our building blocks because it needs
to satisfy several non-standard properties which we discuss further.

Overwrite protection. As explained in the Introduction, ΣM achieves statelessness by giving
up on correctness and, specifically, by not providing overwrite protection. To address this limi-
tation Ω will use an auxiliary encrypted structure EDXC produced with ΣC to store information
that helps prevent overwrites in EMMM . ΣC , however, has to be designed in such a way that it
is both stateless and correct.

The simplest way to achieve this is to associate a counter countℓ with every label ℓ in the
main encrypted multi-map EMMM , store the pairs (ℓ, countℓ) in a dictionary DX, encrypt DX
using a response-revealing dictionary encryption scheme and store the resulting encrypted dic-
tionary, EDXC , with the main encrypted multi-map EMMM . To add a label/tuple pair (ℓ,v)
to EMMM , the client sends encryptions of v and a ΣC get token, gtkC , for ℓ so that the
server can query EDXC , recover countℓ and store the ciphertexts ct in EMMM at addresses
a = (countℓ + 1, . . . , countℓ + #ct). The server then edits the pair (ℓ, countℓ) in EDXC to
(ℓ, countℓ +#ct).

Snapshot security via immutability. While this approach may seem reasonable, it has a
subtle security flaw if implemented naively. The problem is with the last step where the server
updates EDXC with the new counter value. If this is done in-place, then a snapshot adversary
will be able to correlate EDXC put operations—and therefore EMMM write operations—since
every put for a label ℓ results in changes at a specific location of EDX.6 To handle this, we
design ΣC so that edits are not in place so that, in turn, correlations are not revealed. One
way to do this is to implement the encrypted dictionary using an encrypted multi-map and to
implement dictionary-level edit operations with multi-map-level append operations; for example,
changing a pair (ℓ, v) stored in the encrypted dictionary to (ℓ, v′) is implemented by appending
the new value, v′, to ℓ’s tuple in the underlying encrypted multi-map. A dictionary-level get
operation for ℓ can then be implemented by returning the last value of ℓ’s tuple in the encrypted
underlying multi-map. We refer to this value as ℓ’s tail. Note that because an dictionary-level
edit is implemented as a multi-map-level append, a snapshot adversary cannot correlate between
edit operations. Note that in our instantiation of this approach, the encrypted multi-map is built
using an underlying plaintext dictionary so, in summary, we build an encrypted dictionary EDXC

using an encrypted multi-map EMMC which, in turn, uses a plaintext dictionary DXC . In the
following, it will be useful to keep in mind the different layers of this construction.

Efficient immutability via completeness. Recall that any STE scheme we use as a building
block for Ω must be stateless; including the encrypted dictionary EDXC and its underlying
encrypted multi-map. This may seem contradictory, however, since the problem we are trying
to solve in the first place is to design a stateless encrypted multi-map. Fortunately, the way we
use EDXC ’s underlying EMM guarantees that the EMM has a special property which allows us
to design a stateless scheme that is correct. Specifically, the underlying multi-map will always

6Even if the location of the pairs in EDXC ’s underlying structures are randomized, there would still be a
consistent string associated to the pair that could be used to correlate.

26

be complete, in the sense that for all labels ℓ, if ℓ’s tuple v includes m values then there does
not exist an index 1 ≤ i ≤ m such that vi = ⊥.

This guarantee of completeness will allow us to support gettail operations on the underlying
encrypted multi-map efficiently, where the tail of a label/tuple pair is the last element of the
label’s tuple. More precisely, we do this using the following variant of binary search. Consider
a sequence S = (v1, . . . , vn,⊥n+1, . . . ,⊥N). Given S, we would like to find the address a such
that va ̸= ⊥ but va+1 = ⊥. This problem can be solved in O(N) time with linear scanning
but also in O(logN) time as follows: given S, check if the element at address N/2 is ⊥; if so
recur on the “left half” of S otherwise recur on the “right half” of S. The base case occurs
when the set holds a single element. Note that this algorithm can only work if S is complete.
We describe in Section 6.1 below how to execute this algorithm over the scheme’s underlying
encrypted multi-map EMMC .

Compaction. Because EDXC-level edits are implemented using EMMC-level appends, the struc-
ture will grow with every edit. Specifically, it will have size O(Σℓ∈DX#putsℓ), where ℓ

◦
= (ℓx, ℓy)

and #putsℓ is the number of put operations for ℓ since initialization (note that here put oper-
ations overwrite a pair with an existing label so can also be used to edit). To address this, ΣC

includes a compaction operation that works as follows. For every label ℓ in the dictionary, it
removes the old versions of ℓ’s value which, at the EMMC level, translates to deleting all the
elements of ℓ’s tuple except for its tail. This decreases the size of the structure to O(#LDX) but
introduce a new challenge; specifically with respect to the gettail operation described above. If
no compaction has ever occurred, then the binary search occurs over a sequence that starts at a
known address start := 0. But if a compaction has occurred, then the binary search needs to start
at an unknown address start := a+1, where a is the address of ℓ’s tail pre-compaction. To handle
this problem, the compaction operation will store an anchor pair of the form (anchorflag∥α, a) in
EDXC , where anchorflag is a flag used to differentiate anchor pairs from value pairs and α is the
address of this particular anchor pair. Note that, at every compaction, α will be incremented by
1. Post-compaction a gettail operation will then need to: (1) retrieve the label’s latest anchor
pair; (2) retrieve the label’s tail a from the anchor pair; and (3) set start to that address. To
retrieve the label’s latest anchor pair, we will perform a binary search similar to the one described
above for gettail.

The plaintext data structure. We are now ready to describe the dictionary structure that
ΣC will encrypt. We refer to it as a 2-dimensional immutable dictionary. Its ideal functionality
is given in Figure 5 and it supports the following operations:

• put: takes as input a 2-dimensional label ℓ and a value v, and stores the pair (ℓ, v); even
if a pair with label ℓ already exists.7 We sometimes write this as DX[ℓ] := v.

• get: takes as input a 2-dimensional label ℓ and returns the value associated with ℓ or ⊥ if
a pair with label ℓ is not stored. We sometimes write this as v := DX[ℓ].

7This guarantees that the put operation can also be used to edit pre-existing pairs which is a slight deviation
from the traditional put operation.

27

• hyperget: takes as input an x-coordinate ℓx, a set of y-coordinates Ly = {ℓy,1, . . . , ℓy,n}
and returns, for all ℓy ∈ Ly, the values associated with the two dimensional label ℓ. We
sometimes write this as V := DX[ℓx,Ly].

• comp: takes as input a set of two-dimensional labels L and reduces the size of the dictionary.

6.1 Construction

The scheme is described in detail in Figures 6 and 7 and works as follows. It makes use of a
pseudo-random function F and of a symmetric encryption scheme SKE.

Gen. The client samples and outputs a key K
$← {0, 1}k.

Init. To initialize the structure, Init initializes an empty dictionary DX that will represent the
encrypted multi-map which, in turn, represents the (append-only) encrypted dictionary. The
encrypted dictionary EDX := DX is then sent to the server.

Put. To put a client-provided two-dimensional label ℓ = (ℓx, ℓy) with a server-provided value v,
the client sends to the server a put token ptk := FK [ℓx, ℓy]. The server parses ptk as Kℓ and uses
it to derive two additional keys Kℓ,t := FKℓ

(1) and Kℓ,e := FKℓ
(2) that it will use to generate

tags and encrypt v, respectively. More precisely, the server stores the pair (tagℓ,a+1, ct) in DX,
where tagℓ,a+1 := FKℓ,t

(valueflag∥(a+ 1)) and a is the address of ℓ’s tail and ct is an encryption
of 0k∥v. To generate tagℓ,a+1, the server uses a subroutine GetValueAddres(Kℓ,t, Kℓ,e,DX) which
returns the address a of ℓ’s tail and sets tagℓ,a+1 := FKℓ,t

(valueflag∥(a+ 1)).

Get. To get a client-provided label ℓ = (ℓx, ℓy), the client sends to the server a get token
gtk = FK [ℓx, ℓy]. The server parses gtk as Kℓ and uses this key to derive two additional keys
Kℓ,t := FKℓ

(1) and Kℓ,e := FKℓ
(2) which it will use as follows. It then uses a subroutine

GetValue(Kℓ,t, Kℓ,e,DX) which returns ℓ’s tail.

HyperGet. To hyperget the values associated with a client-provided x-coordinate ℓx and a set
of server-provided y-coordinates Ly = {ℓy,1, . . . , ℓy,n}, the client sends to the server a hyperget
token hgtk := FK(ℓx). The server parses hgtk as Kx and, for all ℓy,i ∈ Ly, generates two keys
Kℓi,t := FKx [ℓy,i, 1] and Kℓi,e := FKx [ℓy,i, 2] which it uses to retrieve a value vi as in a get
operation. Finally, it returns the set of values v := (v1, . . . , vn).

Compaction. To compact a set of two-dimensional labels LDX, the client sends to the server a
compaction token ctk := (ctkℓ)ℓ∈LDX

where ctkℓ := FK [ℓx, ℓy]. Each label ℓ is compacted in three
phases: (1) the server prepares a new anchor for ℓ; (2) it finds the tags of ℓ’s values and inserts
them in a priority queue PQ; and (3) it dequeues the tags from PQ and deletes the associated
pairs from DX.

28

Note that the server doesn’t actually “see” the labels ℓ, it only receives compaction tokens
for these labels which are pseudo-random strings. For notational convenience and ease of under-
standing we will describe the server’s steps using ℓ and LDX to denote that it is a “hidden” label
in the sense that the server never actually sees the label in plaintext.

To begin, the server parses ctk as (Kℓ)ℓ∈LDX
. Then, for all ℓ ∈ LDX, it generates two keys

Kℓ,t := FKℓ
(1) and Kℓ,e := FKℓ

(2) and does the following. It uses the keys to find ℓ’s tail
and address by using the GetValue and GetValueAddres subroutines. At this stage, the server
constructs a new anchor as follows: (1) it first finds the latest anchor’s address by computing
α := BinarySearch(Kℓ,t, Kℓ,e,DX, anchorflag, 0, 2) which is a subroutine that is described in more
detail below; (2) it prepares a new anchor ciphertext ctℓ := SKE.Enc(Kℓ,e, aℓ∥vℓ) and stores the
pair (tagℓ,α+1, ctℓ) in DX, where tagℓ,α+1 := FKℓ,t

(anchorflag∥(α+ 1)). For the second phase, the

server will compute tagaℓ and test if DX[tagaℓ] exists. If this is the case, it enqueues tagaℓ to PQ,

decrements aℓ and iterates until either DX[tagaℓ] = ⊥ or a = 0. In the third phase, the server
simply dequeues each tag from PQ and deletes its associated pair from DX. The purpose of the
priority queue PQ is to insure that that the deletion of pairs in DX is done in a random order in
case the underlying dictionary is not history independent.

BinarySearch. The purpose of the BinarySearch subroutine is to retrieve the address of a label’
s last anchor or of its tail. More precisely, BinarySearch takes as input the keys Kℓ,t and Kℓ,e,
as well as the dictionary DX, a flag that can be set to either anchorflag or valueflag and two
values start and size. The algorithm executes a form of binary search as described above but in
order to do so it needs a start address start and an end address end. If we have access to DX’s
size, we could set end := start+ size(DX) but, unfortunately, we only have its approximate size.8

Nevertheless, we can set end as follows. We first set size to be the approximate size of DX and
end := start + size and check if DX[tagend] ̸= ⊥, where tagend := FKℓ,t

(end). If this is the case,
then we double size by settings size := 2 · size, set end := start+ size and check if DX[tagend] ̸= ⊥
and so on until the DX[tagend] = ⊥. At this stage, size is guaranteed to be an upper bound
on DX’s real size so we can proceed with a binary search between start and end. The core of
the algorithm is to compute tagpivot := FKℓ,t

(flag∥(start+median)), where start+median halfway
between start and end, and test if DX[tagpivot] ̸= ⊥. If so then it iterates on the “second half” of
the address space; otherwise on the “first half”. Notice that prepending the flag to the address
when computing the tags allows us to have separate address spaces for anchors and values.

GetValueAddress & GetValue. The purpose of GetValueAddres and GetValue are to retrieve
a label’s tail and the address of the tail, respectively. GetValueAddres takes as input Kℓ,t, Kℓ,e

and DX and works by using the BinarySearch subroutine to find the address of ℓ’s tail. To do
this, BinarySearch needs to be executed with the two keys Kℓ,t and Kℓ,e, the dictionary DX, the
flag valueflag, a start address start and an estimated size size. The main challenge here is for
GetValue to determine the appropriate start address for the binary search because, as discussed
above, start has to be set to a value other than 0 if a compaction occurred. This is handled as
follows. The algorithm first computes w := GetAnchor(Kℓ,t, Kℓ,e,DX). If w = ⊥ then no anchor
exists which means that no compaction has occurred and start can be set to 0. If, on the other

8While this might be surprising, in the commercial database system our scheme was designed for, it is impos-
sible to efficiently retrieve the precise size of a database.

29

hand, w ̸= ⊥, then a compaction has occurred and start should be set to the value s stored
in w. Next, the algorithm sets size to the maximum of 2 and approx size(DX). The maximum
guarantees that the log computation in BinarySearch will never be computed on 0. Given these
values, the algorithm runs the BinarySearch subroutine to recover the tail’s address a. Now there
are three cases: (1) if a = 0 and w = ⊥, then the label ℓ was never stored in the dictionary
so the algorithm returns ⊥; (2) if a = 0 and w ̸= ⊥, then ℓ is in the dictionary, a compaction
occurred but no put was executed after the compaction in which case the algorithm returns the
address a it recovered from the anchor; (3) if a ̸= 0, then a is returned. The subroutine GetValue
is very similar to GetValueAddres except that, in addition to finding the tail’s address, the tail
value itself is returned.

GetAnchor. The purpose of the GetAnchor subroutine is to retrieve the contents of the latest
anchor. To do this, the algorithm makes a call to the BinarySearch subroutine with flag anchorflag,
a start address of 0 and a size of 2. The start address is always 0 because anchors are never
deleted and the size is set to 2 as an optimization since the number of anchors is relatively small.

Efficiency. ΣC is optimal with respect to communication complexity: all tokens are O(1). All
its algorithms are also O(1) with the exception of Put and Get which are

O
(
log
(
c ·#LDX +#putsc

))
,

where c is the number of previous compactions and #putsc is the number of the puts since the
last compaction (or initialization if no compaction has occurred), and compaction which is

O (#putsc +#LDX · log (c ·#LDX +#putsc)) .

The storage overhead of ΣC is O (c ·#LDX +#putsc).

6.2 Security Against Snapshot Adversaries

We now analyze the security of ΣC in the database-level snapshot model. The leakage profile of
ΣC is described in Figure 9 and its security is analyzed in the following Theorem.

Theorem 2. If F is pseudo-random and SKE is RCPA-secure, then ΣC as described in Figures
6 and 7 is LC-secure with respect to atomic database-level multi-snapshots.

Proof. Consider the simulator S that simulates A’s view as follows:

(simulating after initialization) given leakage G0 := LC(init, θ) set G := G0 and parse G0 =
(V0,E0) as

V0 :=
〈
0, init, θ | ⊥

〉
and E0 := ∅.

Initialize an empty multi-map MMsim and an empty dictionary DX : {0, 1}k → {0, 1}γ(k+θ)

and output DX; 9

9Recall that our scheme produces encrypted dictionaries that are represented as encrypted multi-maps built
on top of an underlying dictionary.

30

Let k, θ ∈ N≥1 and F : {0, 1}k × {0, 1}∗ → {0, 1}k be a pseudo-random function, SKE = (Gen,Enc,Dec)
be a symmetric encryption scheme. Consider the stateless response-revealing two-dimensional dictionary
encryption scheme ΣC = (GenC,S, InitC,S,PutC,S,GetC,S,HyperGetC,S,CompactionC,S) with label space

L = Lx × Ly and value space V = {0, 1}θ defined as follows:

• GenC,S

(
1k,
)
:

Client:

1. sample a key K
$← {0, 1}k;

2. output K;

• InitC,S

(
1k, θ

)
:

Client:

1. initialize a dictionary DX : {0, 1}k → {0, 1}γ(k+θ);
2. send EDX := DX to the server;

• PutC,S

(
K, ℓ;EDX, v

)
:

Client:

1. send ptk := FK [ℓx, ℓy] to the server;

Server:

1. parse EDX as DX and ptk as Kℓ;
2. compute Kℓ,t := FKℓ

(1) and Kℓ,e := FKℓ
(2);

3. compute ct := SKE.Enc(Kℓ,e,0
k∥v);

4. compute a := GetValueAddres(Kℓ,t,Kℓ,e,DX);
5. compute tagℓ,a+1 := FKℓ,t

(valueflag∥(a+ 1));
6. set DX[tagℓ,a+1] := ct;
7. output EDX := DX;

• GetC,S

(
K, ℓ;EDX

)
:

Client:

1. send gtk := FK [ℓx, ℓy] to the server;

Server:

1. parse EDX as DX and gtk as Kℓ;
2. compute Kℓ,t := FKℓ

(1) and Kℓ,e := FKℓ
(2);

3. compute v := GetValue(Kℓ,t,Kℓ,e,DX);
4. output v;

Figure 6: ΣC : a 2-dimensional immutable dictionary encryption scheme (part 1).

31

• HyperGetC,S

(
K, ℓx;EDX,Ly

)
:

Client:

1. send hgtk = FK(ℓx) to the server;

Server:

1. parse EDX as DX and hgtk as Kx;
2. parse Ly as {ℓy,1, . . . , ℓy,n};
3. for all 1 ≤ i ≤ n,

(a) compute Kℓi,t := FKx
[ℓy,i, 1] and Kℓi,e := FKx

[ℓy,i, 2];
(b) compute v := GetValue(Kℓi,t,Kℓi,e,DX);
(c) set v := (v, v);

4. output v;

• CompactionC,S

(
K,LDX;EDX

)
:

Client:

1. for all ℓ ∈ LDX,
(a) parse ℓ as (ℓx, ℓy);
(b) set ctkℓ := FK [ℓx, ℓy];

2. send ctk := (ctkℓ)ℓ∈LDX
to the server;

Server:

1. parse EDX as DX and ctk as (Kℓ)ℓ∈LDX
;

2. initialize a priority queue PQ;
3. for all ℓ ∈ LDX,

(a) compute Kℓ,t := FKℓ
(1) and Kℓ,e := FKℓ

(2);
(b) compute vℓ := GetValue(Kℓ,t,Kℓ,e,DX);
(c) compute aℓ := GetValueAddres(Kℓ,t,Kℓ,e,DX);
(d) compute αℓ := BinarySearch(Kℓ,t,Kℓ,e,DX, anchorflag, 0, 2);
(e) compute ctℓ := SKE.Enc(Kℓ,e, aℓ∥vℓ);
(f) compute tagℓ,α+1 := FKℓ,t

(
anchorflag∥(αℓ + 1)

)
;

(g) set DX[tagℓ,α+1] := ctℓ;
(h) while aℓ > 0,

i. compute tagaℓ
:= FKℓ,t

(valueflag∥aℓ);
ii. if DX[tagaℓ

] ̸= ⊥, compute PQ.enqueue(tagaℓ
);

iii. else exit;
iv. set aℓ := aℓ − 1;

4. while PQ.peek ̸= ⊥,
(a) compute tag := PQ.dequeue;
(b) compute DX− tag;

5. output EDX := DX.

Figure 7: ΣC : a 2-dimensional immutable dictionary encryption scheme (part 2).

32

• GetValue(Kℓ,t,Kℓ,e,DX):

1. compute w := GetAnchor(Kℓ,t,Kℓ,e,DX);
2. if w = ⊥, set start := 0;
3. else, parse w as as∥s and set start := as;
4. set size := max(2, approx size(DX));
5. compute a := BinarySearch(Kℓ,t,Kℓ,e,DX, valueflag, start, size);
6. if a = 0 and w = ⊥, set out := ⊥;
7. else if a = 0 and w ̸= ⊥, set out := s;
8. else,

(a) compute tagℓ,a := FKℓ,t
(valueflag∥a);

(b) compute cta := DX[tagℓ,a];

(c) compute 0k∥v := SKE.Dec(Kℓ,e, cta) and set out := v;
9. output out

• GetValueAddres(Kℓ,t,Kℓ,e,DX):

1. compute w := GetAnchor(Kℓ,t,Kℓ,e,DX);
2. if w = ⊥, set start := 0;
3. else, parse w as as∥s and set start := as;
4. set size := max(2, approx size(DX));
5. compute a := BinarySearch(Kℓ,t,Kℓ,e,DX, valueflag, start, size);
6. if a = 0 and w = ⊥, set out := 0;
7. else if a = 0 and w ̸= ⊥, set out := as;
8. else set out := a;
9. output out;

• GetAnchor(Kℓ,t,Kℓ,e,DX):

1. set start := 0 and size := 2;
2. compute α := BinarySearch(Kℓ,t,Kℓ,e,DX, anchorflag, start, size);
3. if α ̸= 0,

(a) compute tagα := FKℓ,t
(anchorflag∥α);

(b) compute ctα := DX[tagα];
(c) compute as∥v := SKE.Dec(Kℓ,e, ctα);
(d) set out := as∥v;

4. else set out := ⊥;
5. output out;

• BinarySearch(Kℓ,t,Kℓ,e,DX, flag, start, size):

1. set end := start+ size;
2. compute tagend := FKℓ,t

(flag∥end);
3. while DX[tagend] ̸= ⊥,

(a) set size := 2 · size;
(b) set end := start+ size;
(c) compute tagend := FKℓ,t

(flag∥end);
4. set min := 1 and max := size;
5. for 1 ≤ i ≤ ⌈log size⌉,

(a) set median := min+ ⌈(max−min)/2⌉;
(b) compute tagpivot := FKℓ,t

(flag∥(start+median));
(c) if DX[tagpivot] ̸= ⊥,

i. set min := median;
ii. if i = ⌈logmax⌉, set addr := start+median;

(d) else,
i. set max := median;
ii. if i = ⌈log size⌉ and min = 1,

A. if DX[FKℓ,t
(flag∥(start+ 1))] ̸= ⊥, set addr := start+ 1;

iii. else if i := ⌈log(size)⌉ and min ̸= 1, set addr := start+min;
6. output addr;

Figure 8: The ΣC subroutines.

33

Leakage profile LC

The leakage profile LC is a stateful functionality that constructs a leakage graph G from any sequence of
init, put and comp operations. Given the tth operation op of a sequence, it outputs a leakage sub-graph
Gt ⊆ G that captures the leakage of op:

LC(op):

1. if op = (init, θ),
(a) set t := 0 and G := (∅, ∅);
(b) initialize an empty set S;
(c) set Vt :=

〈
0, init, θ | ⊥

〉
;

(d) set Et := ∅;
2. else if op = (put, ℓ, v)

(a) set L := L ∪ ℓ;
(b) set Vt :=

〈
t++, put | ⊥

〉
and Et := ∅;

3. else if op =
(
comp,LDX

)
,

(a) set Vt :=
〈
t++, comp,#L | ⊥

〉
and Et := ∅;

(b) set L := ∅;
4. set G := G+ (Vt,Et)
5. output (Vt,Et);

Figure 9: The leakage profile LC .

(simulating EDX after puts) given Gt := LC(put, ℓ, v) set G := G+Gt and parse Gt = (Vt,Et)
as

Vt =
〈
t, put | ⊥

〉
and Et = ∅.

The only modification to DXmade by the PutS2 algorithm is the addition of a tag/ciphertext
pair of the form (taga+1, ct). Notice that this change occurs with certainty in the snap-
shot model since snapshots are only provided after operations—including compactions—
complete. The ciphertext ct is randomized (see Step 3 of PutS2) and therefore straightfor-
ward to simulate. While the tag is deterministic, it is computed by evaluating the PRF on
an increasing sequence so tags will never appear more than once in a Put execution.

To simulate, we compute tag
$← {0, 1}k and ct

$← {0, 1}γ(k+θ)), set MMsim[vx] := (tag, ct)
and DX[tag] := ct and return DX.

Notice that the pseudo-randomness of F and the RCPA-security of SKE guarantee that the
simulated EDX is computationally indistinguishable from a real EDX.

(simulating EDX after gets and hypergets) since these operations cause no modifications to the
underlying dictionary, return DX;

(simulating the EDX after compactions) given Gt := LC(comp,LDX) set G := G+Gt and parse
Gt = (Vt,Et) as

Vt =
〈
t, comp,#L | ⊥

〉
and Et = ∅.

CompactionS2
makes the following modifications to DX. First, for all ℓ ∈ LDX, it adds

an anchor pair of the form (tagℓ,α+1, ct). The ciphertext is randomized and therefore
straightforward to simulate. While the tag is deterministic, it is computed by evaluating

34

Functionality FL
SET

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a server
S and an ideal adversary S. It stores and manages a set SET using the following operations:

• upon receiving (cid, init) from a client, initialize and store a set SET and send
(
cid, init,L

(
init
))

to
S;

• upon receiving (cid, ins, v) from a client set SET = SET ∪ v and send (cid, ins,L(ins,SET, v));

• upon receiving (cid, enum) from a client return {v}v∈SET;

Figure 10: The ideal enumerable set functionality.

a PRF on an increasing sequence so tags will never appear more than once. The second
modification is that it deletes all pairs with tags in PQ. Note, however, that PQ stores the
tags of the values added since the last compaction and this information is provided in the
vertices V of the leakage graph G.

To simulate, for all 1 ≤ i ≤ #L, compute tagi
$← {0, 1}k and cti

$← {0, 1}γ(k+θ)) and set
DX[tagi] := cti. Finally, for all vx ∈ V(put | ·)

⋂
V[r+1, t], compute (tag, ct) := MMsim[vx]

and DX− (tag, ct), where r is the rank of the latest compaction.

Notice that the pseudo-randomness of F and the RCPA-security of SKE guarantee that the
simulated EDX is computationally indistinguishable from a real EDX.

7 Enumerable Sets

ΣS is a set encryption scheme whose ideal functionality is given in Figure 10. It encrypts sets
that support the following operations:

• insert: takes as input an element and stores it in the set;

• enum: enumerates all the elements in the set.

Construction. The scheme ΣS is simple and described in detail in Figure 11. An encrypted
set consists of symmetrically-encrypted elements, an insert token consists of the encryption of
the inserted element and enumeration consists of decrypting all the ciphertexts in the encrypted
set and listing the plaintexts.

Efficiency. ΣS is optimal with respect to communication complexity: insert and enumeration
tokens are O(1). The scheme is also optimal with respect to server-side computation since inserts
are O(1) and enumeration is O(#SET). Client-side operations are also optimal since computing
insert and enumeration tokens are O(1). Finally, the scheme is also optimal with respect to
storage complexity since the size of ESET is O(#SET).

35

Let SKE = (Gen,Enc,Dec) be a symmetric-key encryption scheme. Consider the stateless response-revealing
set encryption scheme ΣS = (GenC,S, InitC,S, InsertC,S,EnumC,S) defined as follows:

• GenC,S

(
1k
)
:

Client:

1. sample a key K
$← {0, 1}k;

2. output K.

• InitC,S

(
1k
)
:

Client:

1. initialize an empty set SET;
2. output ESET := SET;

• InsertC,S

(
K, v;ESET

)
:

Client

1. compute ct := Enc(K, v);
2. send itk := ct to the server;

Server:

1. parse ESET as SET and itk as ct;
2. set SET := SET ∪ ct;
3. output ESET := SET.

• EnumC,S

(
K;ESET

)
:

Client:

1. send etk := K to the server;

Server:

1. parse ESET as SET;
2. initialize a set R;
3. for all ct ∈ SET,

(a) compute v := SKE.Dec(K, ct);
(b) set R := R ∪ v;

4. output R.

Figure 11: ΣS: a stateless enumerable encrypted set scheme.

36

Leakage profile LS

The leakage profile LS is a stateful functionality that constructs a leakage graph G from any sequence of
init and ins operations. Given the tth operation op of a sequence, it outputs a leakage sub-graph Gt ⊆ G
that captures the leakage of op:

• LS(op):

1. if op = init,
(a) set t := 0 and G := (∅, ∅);
(b) set Vt :=

〈
0, init | ⊥

〉
and Et := ∅;

2. else if op = (ins, v),
(a) set Vt :=

〈
t++, ins, |v| | ⊥

〉
and Et := ∅;

3. set G := G+ (Vt,Et);
4. output (Vt,Et);

Figure 12: The leakage profile LS .

7.1 Security Against Snapshot Adversaries

We now analyze the security of ΣS. The leakage profile of ΣP is described in Figure 12 and its
security is analyzed in the following Theorem.

Theorem 3. If SKE is RCPA-secure, then ΣS as described in Figure 11 is LS-secure with respect
to atomic database-level multi-snapshots.

Proof. Consider the simulator S that simulates A’s view as follows:

(simulating after initialization) given leakage G0 := LS(init) set G := G0. Initialize an empty
dictionary DXst and an empty set SET and output SET.

(simulating the ESET after insert) given Gt := LS

(
ins, v

)
set G = G + Gt and parse G =

(Vt,Et) as
Vt =

〈
t, ins, |v| | ⊥

〉
and Et = ∅.

The only modification to SET made by the InsertS2 algorithm is the insertion of a ciphertext

ct. To simulate, we compute ct
$← {0, 1}γ(|v|) and set and return SET := SET ∪ ct.

Notice that the RCPA-security of SKE guarantees that the simulated ESET is computa-
tionally indistinguishable from a real ESET.

(simulating the ESET after enums) since this operation causes no modifications to the under-
lying dictionary, return SET.

8 Testable Multi-Maps

ΣR is a multi-map encryption scheme whose ideal functionality is given in Figure 13. It encrypts
multi-maps that support the following operations:

37

Functionality FL
TMM

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a server
S and an ideal adversary S. It stores and manages a multi-map MM using the following operations:

• upon receiving (cid, init) from a client, initialize and store a multi-mapMM and send
(
cid, init,L

(
init
))

to S;

• upon receiving (cid, app, ℓ) from a client, and (app, v) from S, set MM[ℓ]
+
:= v and send(

cid, ins, v,L(ins, ℓ, v)
)
to S;

• upon receiving (cid, tst, ℓ) from a client, and (tst, v) from S, return true if v ∈ MM[ℓ] and false
otherwise;

• upon receiving (cid,Get, ℓ) from a client, return MM[ℓ];

• upon receiving (cid, ers, v) from a client, remove v from all tuples in MM−1[v] and send(
cid, ers,L(ers, v)

)
to S;

Figure 13: The ideal testable multi-map functionality.

• append: takes as input a label/value pair (ℓ, v) and adds the value v to ℓ’s tuple. If ℓ does
not exist in the structure it adds the label/tuple pair (ℓ, v).

• test: takes as input a label ℓ and a value v and outputs true if ℓ is in the structure and if
v is in ℓ’s tuple. It outputs false otherwise.

• get: takes as input a label ℓ and returns its tuple.

• erase: takes as input an element v and removes v from all the tuples in which it is held.

8.1 Construction

The scheme is described in detail in Figures 14 and 15 and works as follows. It makes use of a
pseudo-random function F and of a symmetric encryption scheme SKE.

Gen. The client samples and outputs a key K
$← {0, 1}k.

Init. To initialize the structure, Init initializes an empty set SET that will represent the en-
crypted set. The encrypted set EMM := SET is then sent to the server.

Append. To append a server-provided value v to a client-provided label ℓ, the client computes
a key Kℓ := FK(ℓ) that it uses to encrypt a k-bit zero string. More precisely, it computes
ct := SKE.Enc(Kℓ,0

k). The client then sends an append token atk := ct to the server who adds
the pair (ct, v) to SET.

Test. To test if a server-provided value v is in the tuple of a client-provided label ℓ, the client
sends a test token ttk := FK(ℓ) to the server. The server parses EMM as SET and ttk as a key
Kℓ. If there exists a pair (ct, v′) ∈ SET such that v′ = v and that ct decrypts to 0k using key
Kℓ, it outputs true. Otherwise it outputs false.

38

Get. To retrieve the tuple associated to a client-provided label ℓ, the client sends a get token
gtk := FK(ℓ) to the server. The server parses EMM as SET and ttk as a key Kℓ and instantiates
an empty result set R. For all pairs (ct, v′) ∈ SET, the server adds v′ to R if ct decrypts to 0k

under key Kℓ. Finally it returns R to the client.

Erase To erase client-prpvided value v, the client sends an erase token etk := v to the server.
The server removes any pair of the form (·, v) from SET.

Efficiency. ΣR is optimal with respect to communication complexity: append, test, get and
erase tokens are O(1). The server-side computation is O(1) for append and O(#MM) for test,
get and erase. Client-side operations are also optimal since computing append, test, get and
erase tokens is O(1). Finally, the scheme is also optimal with respect to storage complexity since
the size of EMM is O(#MM).

8.2 Security Against Snapshot Adversaries

We now analyze the security of ΣR. The leakage profile of ΣR is described in Figure 16 and its
security is analyzed in the following Theorem.

Theorem 4. If SKE is RCPA-secure, then ΣS as described in Figure 11 is LR-secure with respect
to atomic database-level multi-snapshots.

Proof. Consider the simulator S that simulates A’s view as follows:

(simulating after initialization) given leakage G0 := LR(init) set G := G0. Initialize an empty
set SET and output SET.

(simulating the EMM after appends) given Gt := LR

(
app, ℓ, v

)
set G = G + Gt and parse

G = (Vt,Et) as
Vt =

〈
t, app, v | ⊥

〉
and Et = ∅.

The only modification to SET made by the AppendS2
algorithm is the insertion of a pair

(ct, v) where v is provided by the leakage. To simulate, compute ct
$← {0, 1}γ(k) and set

and return SET := SET ∪ {(ct, v)}.
The RCPA-security of SKE guarantees that the simulated EMM is computationally indis-
tinguishable from a real EMM.

(simulating the EMM after tests) since this operation causes no modifications to the underlying
set, return SET.

(simulating the EMM after gets) since this operation causes no modifications to the underlying
set, return SET.

(simulating the EMM after erasures) given the leakage Gt := LR(erase, v) set G := G+Gt and
parse Gt = (Vt,Et) as

Vt =
〈
t, erase, v | ⊥

〉
and Et = ∅.

39

Let F : {0, 1}k × {0, 1}∗ → {0, 1}k be a pseudo-random function, SKE = (Gen,Enc,Dec)
be a symmetric-key encryption scheme. Consider the multi-map encryption scheme ΣR =
(GenC,S, InitC,S,AppendC,S,TestC,S,GetC,S,EraseC,S) defined as follows:

• GenC,S

(
1k
)
:

Client:

1. sample K
$← {0, 1}k;

2. output K;

• InitC,S

(
1k
)
:

Client:

1. initialize an empty set SET;
2. output EMM := SET;

• AppendC,S

(
K, ℓ;EMM, v

)
:

Client

1. compute Kℓ := FK(ℓ);
2. compute ct := Enc(Kℓ,0

k)
3. send atk := ct to the server;

Server:

1. parse EMM as SET and atk as ct;
2. set SET := SET ∪ (ct, y);
3. output EMM := SET.

• TestC,S

(
K, ℓ;EMM, v

)
:

Client:

1. compute Kℓ := FK(ℓ);
2. send ttk := Kℓ to the server;

Server:

1. parse EMM as SET and ttk as Kℓ;
2. for all (ct, v′) ∈ SET,

(a) compute m := SKE.Dec(Kℓ, ct);
(b) if v′ = v and m = 0k, output true;

3. output false;

Figure 14: ΣR: a stateless encrypted set scheme (part 1).

40

• GetC,S

(
K, ℓ;EMM

)
:

Client:

1. compute Kℓ := FK(ℓ);
2. send gtk := Kℓ to server;

Server:

1. parse EMM as SET and gtk as Kℓ;
2. initialize a set R;
3. for all (ct, v′) ∈ SET,

(a) compute m := SKE.Dec(Kℓ, ct);
(b) if m = 0k, set R := R ∪ v′;

4. output R;

• EraseC,S

(
v;EMM

)
:

Client:

1. send etk := v to the server;

Server:

1. parse EMM as SET and etk as v;
2. for all (ct, v′) ∈ SET,

(a) if v′ = v, set R := R \ (ct, v′);
3. output EMM := SET.

Figure 15: ΣR: a stateless encrypted set scheme (part 2).

The only modification to SET made by the EraseS2 algorithm is the deletion of all pairs of
the form (·, v). The value v is provided as part of the leakage so, to simulate, remove all
pairs of the form (·, v) from SET.

Notice that the simulated EMM is perfectly indistinguishable from a real EMM.

9 A Stateless Multi-Map Encryption Scheme

Ω is our main stateless and concurrent multi-map encryption scheme. Its ideal functionality is
described in Figure 17 and its high-level structure was already described in Section 1. It supports
the following operations:

• put: takes as input a label ℓ and a tuple v and adds the pair (ℓ,v) to the multi-map if ℓ is
not in the multi-map or appends v to ℓ’s existing tuple if ℓ is already in the multi-map;

• get: takes as input a label ℓ and returns the tuple associated with ℓ or ⊥ if no such label
exists;

• count: takes as input a label ℓ and returns the size of the tuple associated with ℓ or 0 if no
such label exists;

• test: takes as input a label ℓ and a value v and returns true if v belongs to the tuple
associated with ℓ or false otherwise;

41

Leakage profile LR

The leakage profile LR is a stateful functionality that constructs a leakage graph G from any sequence of
init, ins and erase operations. Given the tth operation op of a sequence, it outputs a leakage sub-graph
Gt ⊆ G that captures the leakage of op:

• LR(op):

1. if op = init,
(a) set t := 0 and G := (∅, ∅);
(b) set Vt :=

〈
0, init | ⊥

〉
and Et := ∅;

2. else if op = (app, ℓ, v),
(a) set Vt :=

〈
t++, app, v | ⊥

〉
and Et := ∅;

3. else if op = (erase, v)
(a) set Vt :=

〈
t++, erase, v | ⊥

〉
;

(b) set Et := ∅
4. set G := G+ (Vt,Et);
5. output (Vt,Et);

Figure 16: The leakage profile LR.

• erase: takes as input a value v and removes all tuples that contain the value v from the
multi-map;

• compaction: reduces the size of the multi-map.

9.1 Construction

Recall that the scheme makes use of an addressable two-dimensional multi-map encryption
scheme ΣM , an immutable two-dimensional dictionary encryption scheme ΣC , an enumerable
set encryption scheme ΣS, and a membership set encryption scheme ΣR. It consists of eight pro-
tocols Ω = (Gen, Init,Put,Get,Count,Test,Erase,Compaction) which are all described in Figures
18, 19 and 20 and works as follows.

Gen. The client samples and outputs a key K
$← {0, 1}k.

Init. To initialize the structure, Init first computes four keys KM , KC , KS and KR such that

KM := FK [1, 1] KC := FK [1, 2] KS := FK [1, 3] and KR := FK [1, 4]

which it then gives as input to the Init protocols of ΣM , ΣC , ΣS and ΣR, respectively. In
particular, the Init protocol of ΣM and ΣC takes an additional input θ and k, respectively,
where θ = log#V and k is the security parameter. The output of the init protocols are various
encrypted data structures that together compose the encrypted multi-map EMM. More precisely,
the Init protocol outputs to the client the set of keys K :=

(
KM , KC , KS, KR

)
and the server

receives the encrypted multi-map EMM :=
(
EMMM ,EDXC ,ESETS,EMMR

)
.

42

Functionality FL
MM

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a server
S and an ideal adversary S. It stores and manages a multi-map MM using the following operations:

• upon receiving (cid, init) from a client, initialize and store a multi-mapMM and send
(
cid, init,L

(
init
))

to S;

• upon receiving (cid, put, ℓ) from a client, and (put,v) from S, set MM[ℓ] := v and send(
cid, put,v,L

(
put,MM, ℓ,v

))
to S;

• upon receiving (cid, get, ℓ) from a client, return v := MM[ℓ] to the client;

• upon receiving (cid, count, ℓ) from a client, return count := #MM[ℓ] to the client;

• upon receiving (cid, tst, ℓ) from a client, and (tst, v) from S, return to the client true if v ∈ MM[ℓ]
and false otherwise;

• upon receiving (cid, ers, v) from a client, set MM − (ℓ, v) for all ℓ ∈ LMM and send(
cid, ers,L

(
erase,MM, v

))
to S;

• upon receiving (cid, comp) from a client send
(
cid, comp,L

(
comp,MM

))
to S;

Figure 17: The ideal multi-map functionality.

Put. To put a client-provided label ℓ with contention factor p and a server-provided tuple v,

the client first samples a partition number u
$← {0, · · · , p}. The label ℓ along with the partition

number u constitute a two-dimensional label ℓ := (ℓ, u). The client then computes several tokens
as follows. First, it computes a ΣM write token

wtkM ← ΣM .WriteC1(KM , ℓ).

It then generates ΣC get, put and compaction tokens

gtkC ← ΣC .GetC1(KC , ℓ) ptkC ← ΣC .PutC1(KC , ℓ) and ctkC ← ΣC .CompactionC1
(KC , ℓ).

It then computes two insertion tokens

atkR ← ΣR.AppendC1
(KR, ℓ) and itkS ← ΣS.InsertC1(KS, gtkC∥ctkC).

The client finally sends to the server a put token ptk := (wtkM , gtkC , ptkC , itkS, atkR). Given the
put token ptk, the server does the following. First, it retrieves the current counter value count
associated with ℓ by computing c← ΣC .GetS2(EDXC , gtkC) and setting count := c if c ̸= ⊥ and
setting count := 1 otherwise. Note that the counter value corresponds to the number of values
associated with ℓ that have ever been added to the encrypted multi-map. Given count and the
ΣM write token wtkM , the server writes the tuple v at the addresses {count, · · · , count+#v−1}
such that

EMMM ← ΣM .WriteS2(EMMM ,wtkM ,v, {count, . . . , count+#v − 1}).

Given that the server made use of #v new addresses, it puts an updated counter in EDXC by com-
puting EDXC ← ΣC .PutS2(EDXC , ptkC , count+#v). The server then updates the encrypted set
structures by computing ESETS ← ΣS.InsertS2(ESETS, itkS) and EMMR ← ΣR.AppendS2

(EMMR, atkR, v),
for every value v ∈ v. Finally, it outputs the updated encrypted multi-map EMM :=

(
EMMM ,EDXC ,

ESETS,EMMR

)
.

43

Let ΣM = (GenC,S, InitC,S,WriteC,S,ReadC,S,HyperReadC,S),ΣC = (GenC,S, InitC,S,PutC,S,GetC,S,
HyperGetC,S,CompactionC,S), ΣS = (GenC,S, InitC,S, InsertC,S,EnumC,S) and ΣR = (GenC,S,
InitC,S,AppendC,S,TestC,S,GetC,S) be the schemes described in Figures 2, 3 and 6, 7 and 11 and 14 and 15
respectively. Let p ∈ N be the maximum number of partitions. Consider the stateless response-hiding multi-
map encryption scheme Ω = (InitC,S,PutC,S,GetC,S,EraseC,S,CountC,S,TestC,S,EraseC,S,CompactionC,S)

with label space L = {0, 1}⋆ and value space V = {0, 1}θ defined as follows:

• GenC,S

(
1k
)
:

Client:

1. sample K
$← {0, 1}k;

2. output K;

• InitC,S

(
K,λ, θ

)
:

Client:

1. compute
KM := FK [1, 1] KC := FK [1, 2] KS := FK [1, 3] and KR := FK [1, 4]

2. compute EMMM ← ΣM .InitC1
(KM , θ);

3. compute EDXC ← ΣC .InitC1(KC , θ);
4. compute ESETS ← ΣS .InitC1(KS);
5. compute EMMR ← ΣR.InitC1

(KR);
6. output K := (KM ,KC ,KS ,KR) and EMM = (EMMM ,EDXC ,ESETS ,EMMR);

• PutC,S

(
K, p, ℓ;v,EMM

)
:

Client:

1. parse K as (KM ,KC ,KD,KS);

2. sample u
$← {0, · · · , p};

3. set ℓ
◦
= (ℓ, u);

4. compute wtkM ← ΣM .WriteC1
(KM , ℓ);

5. compute gtkC ← ΣC .GetC1(KC , ℓ);
6. compute ptkC ← ΣC .PutC1(KC , ℓ);
7. compute ctkC ← ΣC .CompactionC1

(KC , ℓ);
8. compute atkR ← ΣR.AppendC1

(KR, ℓ);
9. compute itkS ← ΣS .InsertC1

(KS , gtkC∥ctkC);
10. send ptk := (wtkM , gtkC , ptkC , itkS , atkR) to the server;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR);
2. parse ptk as (wtkM , gtkC , ptkC , itkS , atkR);
3. compute c← ΣC .GetS2(EDXC , gtkC);
4. if c ̸= ⊥ set count := c else set count := 1;
5. compute EDXC ← ΣC .PutS2

(EDXC , ptkC , count+#v);
6. compute EMMM ← ΣM .WriteS2

(EMMM ,wtkM ,v, {count, . . . , count+#v − 1});
7. for all 0 ≤ i ≤ #v − 1, set EMMR ← ΣR.AppendS2

(EMMR, atkR, vi);
8. compute ESETS ← ΣS .InsertS2(ESETS , itkS);
9. output EMM := (EMMM ,EDXC ,ESETS ,EMMR).

Figure 18: Ω: a stateless multi-map encryption scheme (part 1).

44

• GetC,S

(
K, p, ℓ;EMM

)
:

Client:

1. parse K as (KM ,KC ,KD,KS ,KR);
2. compute hrtkM ← ΣM .HyperReadC1

(KM , ℓ);
3. compute hgtkC ← ΣC .HyperGetC1

(KC , ℓ);
4. compute gtkR ← ΣR.GetC1

(KR, ℓ);
5. output gtk =

(
hrtkM , hgtkC , gtkR, p

)
;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR) and gtk as (hrtkM , hgtkC , gtkR, p);
2. compute (count0, . . . , countp)← ΣC .HyperGetS2

(EDXC , hgtkC , {0, . . . , p});
3. let A

◦
=
{{

1, . . . , countu
}}

u∈{0,··· ,p} and count :=
∑p

i=0 counti;

4. if count > limit, compute v← ΣR.GetS2

(
EMMR, gtkR);

5. else, compute v← ΣM .HyperReadS2

(
EMMM , hrtkM , {0, . . . , p},A

)
;

6. output v;

• CountC,S

(
K, p, ℓ;EMM

)
:

Client:

1. parse K as (KM ,KC ,KS ,KR);
2. compute hgtkC ← ΣC .HyperGetC1

(KC , ℓ);
3. output ctk =

(
hgtkC , p

)
;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR) and gtk as (hgtkC , p);
2. compute (count0, . . . , countp)← ΣC .HyperGetS2

(EDXC , hgtkC , {0, . . . , p});
3. compute count :=

∑p
i=0 counti;

4. output count;

• TestC,S

(
K, ℓ;EMM, v

)
:

Client:

1. parse K as (KM ,KC ,KS ,KR);
2. compute ttkR ← ΣR.TestC1

(KR, ℓ);
3. send ttk := ttkR to the server;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR) and ttk as ttkR;
2. compute b← ΣR.TestS2

(EMMR, v, ttkR);
3. output b;

Figure 19: Ω: a stateless multi-map encryption scheme (part 2).

45

• EraseC,S

(
v;EMM

)
:

Client:

1. compute etkM ← ΣM .EraseC1
(v);

2. compute etkR ← ΣR.EraseC1
(v);

3. send etk := (etkM , etkR) to the server;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR) and etk as (etkM , etkR);
2. compute EMMM ← ΣM .EraseS2

(EMMM , etkM);
3. compute EMMR ← ΣR.EraseS2

(EMMR, etkR);
4. output EMM := (EMMM ,EDXC ,ESETS ,EMMR).

• CompactionC,S

(
K;EMM

)
:

Client:

1. parse K as (KM ,KC ,KS ,KR);
2. compute K ′

S ← ΣS .Gen(1
k);

3. compute ESET′
S ← ΣS .Init(1

k);
4. compute etk← ΣS .EnumC1

(KS);
5. set K := (KM ,KC ,K

′
S ,KR);

6. send ctk := (etk,ESET′
S) to the server;

Server:

1. parse EMM as (EMMM ,EDXC ,ESETS ,EMMR);
2. parse ctk as (etk,ESET′

S) and etk as KS ;
3. compute P ← ΣS .Enum(KS ,ESETS);
4. parse P as

(
gtkC,i∥ctkC,i

)
1≤i≤n

;

5. set ctkC := (ctkC,i)1≤i≤n;
6. compute EDXC ← ΣC .CompactionS2

(EDXC , ctkC);
7. output EMM := (EMMM ,EDXC ,ESET

′
S ,EMMR).

Figure 20: Ω: a stateless multi-map encryption scheme (part 3).

46

Get. To get the tuple associated with label ℓ the client does the following. It computes a ΣM

hyperread token hrtkM ← ΣM .HyperReadC1
(KM , ℓ), a ΣC hyperget token and a ΣR get token

gtkR ← ΣR.GetC1(KR, ℓ) and sends to the server a get token gtk :=
(
hrtkM , hgtkC , gtkR, p

)
where

p is the maximum number of partitions. Given gtk, the server first retrieves the counter values
counti from EMMC associated with the labels ℓi := (ℓ, i), for 0 ≤ i ≤ p. It computes count :=∑p

i=0 counti and if count ≤ limit, it uses the hyperread token hrtkM to retrieve the values v
at addresses A from EMMM by computing v ← ΣM .HyperReadS2

(
EMMM , hrtkM , {0, . . . , p},A

)
,

where
A

◦
=
{{

1, . . . , countu
}}

u∈{0,··· ,p}.

However, if count > limit, then the server performs a linear membership test over all the
values that were ever stored in EMM. In particular, it executes the ΣR get algorithm v ←
ΣR.GetS2

(
EMMR, ttkR).

Notice that the Get protocol retrieves the values v differently depending on whether count ≤
limit or not. The reason for this is to get around a limitation of the underlying DBMS. More
precisely, in our implementation of OST the dictionary DX that underlies the encrypted multi-
map EMMM is built on top of a document database management system (DBMS). How exactly
this is done is outside the scope of this work but what is important to note is that the underlying
DBMS will return an error if a query response includes more than limit items. To get around
this, Get operates in two modes: if count ≤ limit it retrieves v directly from EMMM ; otherwise
it retrieves v from EMMR. Note that EMMR’s Get algorithm is linear but limit is very high in
practice so the likelihood of doing linear work is low. Furthermore, if count is larger than limit

then it is likely that the optimal get time is close to linear.

Count. To get the count associated with a label ℓ, the client first computes a hyperget token
hgtkC ← ΣC .HyperGetC1

(KC , ℓ) and then sends to the server a count token ctk =
(
hgtkC , p

)
where

p is the contention factor. Given ctk, the server executes the ΣC get algorithm to retrieve all
the counter values {count0, · · · , countp} associated with the labels ℓi := (ℓ, i) for i ∈ {0, · · · , p}.
Finally it returns the sum of all counter values, count, such that count :=

∑p
i=0 counti.

Test. To test if the pair composed of a client-provided label ℓ and a server-provided value v ex-
ists in the multi-map, the client computes a ΣR test token ttkR ← ΣR.TestC1(KR, ℓ) which it then
sends to the server. Given the test token, the server computes and returns b ← ΣR.TestS2(EMMR, v, ttkR).

Erase. To erase a value from the multi-map, the client computes a ΣM erase token etkM ←
ΣM .EraseC1(v) and a ΣR erase token etkR ← ΣR.EraseC1(v). The client then sends to the
server an erase token etk := (etkM , etkR). Given etk, the server updates EMMM and EMMR by
computing the ΣM and ΣR erase protocols EMMM ← ΣM .EraseS2(EMMM , etkM) and EMMR ←
ΣR.EraseS2(EMMR, etkR). The server finally outputs the updated encrypted multi-map EMM :=
(EMMM ,EDXC ,ESETS,EMMR).

Compaction. To compact the encrypted multi-map EMM, the client first generates a new key
KS and a new encrypted set ESET′

S by running Σ’s Gen and Init protocols, respectively. It also
computes a ΣS enumeration token etk← ΣS.EnumC1(KS) which it then sends to the server along

47

with ESET′
S. The server first parses the enumeration token etk asKS and executes the ΣS enumer-

ation algorithm P ← ΣS.Enum(KS,ESETS). The set P is composed of all the ΣC get and com-
paction tokens that were inserted for every put operation performed against the encrypted multi-
map. The server parses P as

(
gtkC,i∥ctkC,i

)
1≤i≤n

and compacts the encrypted dictionary EDXC

by computing EDXC ← ΣC .CompactionS2
(EDXC , ctkC) where ctkC := (ctkC,i)1≤i≤n. Finally, the

server outputs the updated encrypted multi-map EMM := (EMMM ,EDXC ,ESET
′
S,EMMR).

Efficiency. Ω is optimal with respect to communication complexity: the get, count, test, erase
and compaction tokens are O(1) whereas the put token is in O(#v). With respect to server-side
computation, the Put protocol is

O

(
log
(
c · p ·#LMM +#putsc

)
+#v

)
,

where c is the number of previous compactions and #putsc is the number of the puts since the last
compaction (or initialization if no compaction has occurred). The Get protocol’s computation
complexity depends on the frequency of the label ℓ, i.e., the number of values associated with ℓ.
If the frequency of label ℓ is below limit, then the complexity is

O

(
p · log

(
c · p ·#LMM +#putsc

)
+#MM[ℓ] + #delℓ

)
,

where #delℓ is the number of values associated to ℓ that were deleted; otherwise it is

O

(
p · log

(
c · p ·#LMM +#putsc

)
+
∑

ℓ∈LMM

#MM[ℓ]

)
.

Recall that we are concerned with snapshot security so the fact that the running time is a function
of frequency is not a concern. The count complexity is

O

(
p · log

(
c · p ·#LMM +#putsc

))
.

The test and erase complexity is O(
∑

ℓ∈LMM
#MM[ℓ]). Finally, the compaction complexity is

O

(
#putsc + p ·#LMM · log

(
c · p ·#LMM +#putsc

))
.

The storage overhead of Ω is

O

(
c · p ·#LMM +#putsc +

∑
ℓ∈LMM

#MM[ℓ]

)
.

The round of all protocols is 1.

48

9.2 Security Against Snapshot Adversaries

We now analyze the security of Ω. The leakage profile of Ω is described in Figure 21 and its
security is analyzed in the following Theorem.

Theorem 5. If ΣM is LM -secure, ΣC is LC-secure, ΣS is LS-secure and ΣR is LR-secure, then
Ω as described in Figures 18, 19 and 20 is LΩ-secure with respect to atomic database-level multi-
snapshots.

Proof. Let SM , SC , SS and SR be the simulators guaranteed to exist by the adaptive security of
ΣM , ΣC , ΣS and ΣR, respectively. Consider the simulator S that simulates A’s view as follows:

(simulating after initialization) given leakage G0 := LΩ(init, θ) set G := G0 and parse G0 =
(V0,E0) as

V0 :=

{〈
Ω, 0,ΣM , 0, init, θ | ⊥

〉
,〈

Ω, 0,ΣC , 0, init, k | ⊥
〉
,〈

Ω, 0,ΣS, 0, init | ⊥
〉
,〈

Ω, 0,ΣR, 0, init | ⊥
〉}

and E0 = ∅. Compute

1. EMMM ← SM
(〈

ΣM , 0, init, θ | ⊥
〉
, ∅
)
,

2. EDXC ← SC
(〈

ΣC , 0, init, k | ⊥
〉
, ∅
)
,

3. ESETS ← SS
(〈

ΣS, 0, init | ⊥
〉
, ∅
)
,

4. EMMR ← SR
(〈

ΣR, 0, init | ⊥
〉
, ∅
)
,

and output EMM = (EMMM ,EDXC ,ESETS,EMMR).

The computational indistinguishability of the simulated EMM from a real EMM follows
from a standard hybrid argument and the adaptive security of ΣM , ΣC , ΣS and ΣR.

(simulating the EMM after puts) given Gt := LΩ(put, p, ℓ,v), parse Gt = (Vt,Et) as

Vt :=

{〈
Ω, t,ΣC , tC , put | ℓ, count+m

〉
,〈

Ω, t,ΣM , tM ,write, vi | ℓ, count+ i
〉
i∈[m]

,〈
Ω, t,ΣS, tS, ins, 2k | ⊥

〉
,〈

Ω, t,ΣR, tR,i, app, vi | ⊥
〉
i∈[m]

}
and Et := ∅. Compute

1. EDXC ← SC
(〈

ΣC , tC , put | ℓ, count+m
〉
, ∅
)
,

2. EMMM ← SM
(〈

ΣM , tM , t,write, vi | ℓ, count+ i
〉
i∈[m]

, ∅
)
,

3. ESETS ← SS
(〈

ΣS, tS, ins, 2k | ⊥
〉
, ∅
)
,

49

4. EMMR ← SS
(〈

ΣR, tR, t, app, vi | ⊥
〉
i∈[m]

, ∅
)

and output EMM = (EMMM ,EDXC ,ESETS,EMMR).

The computational indistinguishability of the simulated EMM from a real EMM follows
from a standard hybrid argument and the adaptive security of ΣM , ΣC , ΣS and ΣR.

(simulating the EMM after gets) since this operation causes no modifications to the underlying
multi-map, return EMM.

(simulating the EMM after counts) since this operation causes no modifications to the under-
lying multi-map, return EMM.

(simulating the EMM after tests) since this operation causes no modifications to the underlying
multi-map, return EMM.

(simulating the EMM after erasures) given leakage Gt := LΩ(erase, v), parse Gt = (Vt,Et) as

Vt :=

{〈
Ω, t,ΣM , tM , erase, v | ⊥

〉
,
〈
Ω, t,ΣR, tR, erase, v | ⊥

〉}
and Et := ∅.
Compute

1. EMMM ← SM
(〈

ΣM , tM , erase, v | ⊥
〉
, ∅
)
;

2. EMMR ← SR
(〈

ΣR, tR, erase, v | ⊥
〉
, ∅
)
;

and output EMM := (EMMM ,EDXC ,ESETS,EMMR).

The computational indistinguishability of the simulated EMM from a real EMM follows
from a standard hybrid argument and the adaptive security of ΣM , ΣC , ΣS and ΣR.

(simulating the EMM after compactions) given leakage Gt := LΩ(comp), parse Gt = (Vt,Et)
as

Vt :=

{〈
Ω, t,ΣS, 0, init | ⊥

〉
,
〈
Ω, t,ΣC , tC , comp,#P | ⊥

〉}
and Et := ∅.
Compute

1. EDXC ← SC
(〈

ΣC , tC , comp,#P | ⊥
〉
, ∅
)
;

2. ESETS ← SS
(〈

ΣS, 0, init | ⊥
〉
, ∅
)
;

and output EMM := (EMMM ,EDXC ,ESETS,EMMR).

The computational indistinguishability of the simulated EMM from a real EMM follows
from a standard hybrid argument and the adaptive security of ΣM , ΣC , ΣS and ΣR.

50

10 The OST Database Encryption Scheme

We can now describe our final construction, OST which is a stateless document database en-
cryption scheme that makes use of Ω as a building block. Its ideal functionality is described in
Figure 22 and we describe it in detail in Figures 23, 24 and 25. In our description of OST below
we assume that the set of fields F contained in the database is fixed and that each field f ∈ F
has a contention factor pf ∈ N≥0.

Init. To initialize an encrypted document database Init starts by computing two keys Kf :=
FKM

[f, 1] and K ′
f := FKM

[f, 2] for all fields f ∈ F. It then initializes an encrypted multi-map for
every field f ∈ F by computing EMMf ← Ω.InitC1(Kf , θ). It then initializes an empty document
database DDB with fields F and sets the key K := (Kf , K

′
f)f∈F, a state st := (pf)f∈F and the

encrypted database EDB := (DDB, (EMMf)f∈F).

Insert. To insert a document D = (f, v)f∈F, the server will sample a document identifier id
uniformly at random and, for all fields f ∈ F, add id to v’s tuple in EMMf and set ED.f to an
encryption of f ’s value v, where ED is an encrypted version of D prepared and sent by the client.
To enable this, the client sends ED := (f, ctf)f∈F, where ctf is an encryption of f ’s value and an
insert token itk := (ptkf)f∈F, where ptkf is an Ω put token computed using Ω.PutC1(Kf , pf , v).
The server uses ptkf to add id to v’s tuple in EMMf and updates the encrypted document ED by
setting the id field to id. Finally, the server outputs the updated encrypted document database
EDB.

Find. To find the documents that match filter, the client does the following. If filter is an exact
match filter, i.e., has the form f = v, it computes an Ω get token gtk ← Ω.GetC1(Kf , pf , v)
and sends a find token ftk := (exactflag, gtk) to the server. If, on the other hand, filter is a
conjunctive filter, i.e., has the form f1 = v1

∧
· · ·
∧
fm = vm, it computes, for each clause fi = vi,

three tokens gtki ← Ω.GetC1(Kfi), vi), ttki ← Ω.TestC1(Kf , vi) and cttki ← Ω.countC1(Kfi , vi)
and sends ftk := (conjflag, cjtk), where cjtk := (fi, gtki, ttki, cttki)1≤i≤m to the server.

Given ftk, the server parses it as (flag, tk). If the find query is for an exact filter, i.e., if
flag = exactflag, the server parses tk as gtk and recovers the IDs of the documents that match
the filter by computing ids← Ω.GetS2(EMMf , gtk). It then retrieves these documents from DDB
and returns them to the client. If, on the other hand, filter = conjfilter the server parses tk as
(fi, gtki, ttki, cttki)1≤i≤m and, for all 1 ≤ i ≤ m, computes the frequencies of each field fi by
computing counti ← Ω.CountS2(EMMfi , cttki). If some counti = 0, then returns ∅, otherwise it
finds the field f ⋆ with the smallest frequency and recovers the IDs of the documents that match
f ⋆’s clause by computing ids ← Ω.GetS2(EMMf⋆ , gtkf⋆). Then, for all id ∈ ids, it tests if id is
in the result set of the non-f ⋆ clauses by computing b← Ω.TestS2(EMMf , ttkf , id). If this is not
the case, i.e., if b = 0, then id is removed from ids. The documents with document IDs in ids
are then retrieved from DDB and returned to the client who decrypts the ciphertexts associated
to each field f using the key K ′

f .

DeleteOne. To delete one document that matches a filter filter, the client sends an Ω find
token gtk ← Ω.FindC1(K, filter) to the server who uses it to recover the IDs of the documents

51

that match the filter by computing ids← Ω.FindS2(EDB, ftk). The server then selects a document

ID uniformly at random from ids such that id
$← ids. Finally, the server erases id from all the

encrypted multi-maps; that is, for all f ∈ F, it computes EMMf ← Ω.EraseS2(EMMf , id).

UpdateOne. To update one document that matches a filter filter with an action action = (f, v),
the server will need to: (1) pick a document uniformly at random from the set of documents
that match the filter; (2) replace the content of field f with an encryption of the new value v;
(3) remove id from EMMf ; and (4) put id in v’s tuple in EMMf . To enable this, the client sends
to the server an update token

utk := (ftk, f, ctf , ptkf),

where ftk ← OST.FindSs(EDB, filter) is an OST find token for filter, ctf := SKE.Enc(K ′
f , v) is

an encryption of v, and ptk ← Ω.PutC1(Kf , pf , v) is an Ω put token for v. The server uses
the find token ftk to recover the IDs of the documents that match the filter by computing
ids ← Ω.FindS2(EDB, ftk). The server then selects a document ID uniformly at random from

ids such that id
$← ids, and it performs the following. It updates the content of the field

f of document DDB[id = id] with the new encrypted value ctf ; it erases id from the EMMf

by computing EMMf ← Ω.EraseS2(EMMf , id); and puts the new value in EMMf by computing
EMMf ← Ω.PutS2(EMMf , ptkf , id). Finally, the server outputs the updated encrypted document
database EDB.

Compaction. To compact, the client sends an Ω compaction token for every field f ∈ F. That
is, it sends ctk := (ctkf)f∈F, where ctkf ← Ω.CompactionC1

(Kf). Given ctk, the server simply
compacts the encrypted multi-map EMMf of every field.

Efficiency. In the following efficiency analysis, we will make the simplification assumption
that all operations performed against the underlying document database are constant time. In
particular, the operations include: (1) updating the value of a field, (2) inserting a document into
the database, (3) retrieving one document using the document ID, and (4) deleting a document
based on its document ID.10

All the protocols of OST are non-interactive and therefore have constant round complexity. In
terms of communication complexity, OST is optimal as the Insert is O(#D), Find is O(#filter +
#DDB[filter]), UpdateOne is O(1), DeleteOne is O(1), and Compaction is O(1). The storage
overhead of OST is equal to O

(
#DDB+ aux

)
where

aux :=
∑
f∈F

(
c · pf ·#Sf +#InsUpc,f

)
,

and Sf is the support of field f and InsUpc,f is the number of inserts and updates since the last
compaction (or initialization if no compaction has occurred).In terms of server-side computation,

10Note that in practice, these operations are not constant time as they depend on the underlying plaintext data
structure. The plaintext database we are considering makes use of B-trees as the underlying data structure and
all of these operations will take a logarithmic time in the size of the structure. The reason of removing this cost
is to better focus on the overhead incurred by OST only.

52

the Insert protocol takes

O

(
#F · log(aux)

)
,

The Find, DeleteOne and UpdateOne have the same computation complexity so we only describe
the cost of finds. In the case of an exact search, i.e., filter ≡ f = v, and when the frequency of
the value v is smaller than limit, then the computation complexity of a Find is equal to

O

(
p · log(aux) + #DDB[f = v] + #delUpf,v

)
,

where #delUpf,v is the number of times the field/value (f, v) has been deleted or updated;
otherwise it is equal to

O

(
p · log(aux) + #DDB

)
.

In the case of a conjunction, i.e., filter ≡ f1 = v1
∧
· · ·
∧
fm = vm, and when the smallest

frequency is smaller then limit, then the computation complexity is equal to

O

(
m ·#DDB[f ⋆ = v] + #delUpf⋆,v +

m∑
i=1

pfi · log(aux)
)
,

where f ⋆ is the field in the conjunction filter with the smallest frequency; otherwise it is equal to

O

(
m ·#DDB+

m∑
i=1

pfi · log(aux)
)
.

10.1 Security against Snapshot Adversaries

We now analyze the security of OST. The leakage profile of OST is described in Figure 26 adn
its security is analyzed in the following Theorem.

Theorem 6. If Ω is LΩ-secure and SKE is CPA-secure, then OST as described in Figures 23,
24 and 25 is LOST-secure with respect to atomic database-level multi-snapshots.

Proof. Let SΩ and SSKE be the simulators guaranteed to exist by the LΩ-security of Ω and the
CPA-security of SKE. Consider the simulator SOST that simualtes A’s view as follows:

(simulating after initialization) given leakage G0 := LOST(init, θ,F,P) set G := G0 and parse
G0 = (V0,E0) as

V0 =

{{〈
OST, 0,Ω, 0,ΣM , 0, init, θ, f | ⊥

〉
,〈

OST, 0,Ω, 0,ΣC , 0, init, θ, f | ⊥
〉
,〈

OST, 0,Ω, 0,ΣS, 0, init, f | ⊥
〉
,〈

OST, 0,Ω, 0,ΣR, 0, init, f | ⊥
〉}

f∈F
,

〈
OST, 0,Ω, 0,∆, 0, init,F,P | ⊥

〉}

53

and E0 := ∅;
For all f ∈ F, compute

EMMf ← SΩ
({〈

Ω, 0,ΣM , 0, init, θ, f | ⊥
〉
,〈

Ω, 0,ΣC , 0, init, θ, f | ⊥
〉
,〈

Ω, 0,ΣS, 0, init, f | ⊥
〉
,〈

Ω, 0,ΣR, 0, init, f | ⊥
〉}

, ∅
)
.

Initialize an empty document database DDB with fields F and output EDB :=
(
DDB, (EMMf)f

)
.

The computational indistinguishability of the simulated EMMf from a real EMMf , for all
f ∈ F, follows from a standard hybrid argument and the adaptive security of Ω.

(simulating after inserts) given Gt := LOST(insert,D), set G := G+Gt and parse Gt = (Vt,Et)
as

Vt :=

{{〈
OST, t,Ω, tΩ,f ,ΣC , tC,f , put, f | ⊥

〉
,〈

OST, t,Ω, tΩ,f ,ΣM , tM,f ,write, id, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣS, tS,f , ins, 2k, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣR, tR,f , app, id, f | ⊥
〉}

f∈F
,

〈
OST, t,∆, t∆, insert, |vf |, f | ⊥

〉
f∈F

}
and Et = ∅.
For all f ∈ F, compute

EMMf ← SΩ
({〈

Ω, tΩ,f ,ΣC , tC,f , put, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣM , tM,f ,write, id, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣS, tS,f , ins, 2k, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣR, tR,f , app, id, f | ⊥
〉}

, ∅
)
.

To simulate an encrypted document, we perform the following steps. First, initialize an
empty document D and sample uniformly at random a document ID, id, from {0, 1}k. For
every f ∈ F, compute ctf ← SSKE(1k, |vf |) and set D.f := ctf . Finally, add D to DDB and
output EDB :=

(
DDB, (EMMf)f

)
.

The computational indistinguishability of the simulated EMMf from a real EMMf , for all
f ∈ F, follows from a standard hybrid argument and the adaptive security of Ω. Moreover,
the computational indistinguishability of the simulated document D from a real document,
follows from a standard hybrid argument and the CPA-security of SKE.

54

(simulating after finds) since this operation causes no modifications to the underlying database,
return EDB.

(simulating after deleteOnes) given leakage Gt := LOST(deleteOne, filter), set G := G+Gt and
parse Gt = (Vt,Et) as

Vt :=

{〈
OST, t,Ω, tΩ,f ,ΣR, tR,f , erase, id | ⊥

〉
,
〈
OST, t,Ω, tΩ,f ,ΣM , tM,f , erase, id | ⊥

〉}
f∈F

and Et := ∅;
For all f ∈ F, compute

EMMf ← SΩ
({〈

Ω, tΩ,f ,ΣR, tR,f , erase, id | ⊥
〉
,
〈
Ω, tΩ,f ,ΣM , tM,f , erase, id | ⊥

〉}
, ∅
)
,

and set DDB− id. Output the updated EDB.

The computational indistinguishability of the simulated EMMf from a real EMMf , for all
f ∈ F, follows from a standard hybrid argument and the adaptive security of Ω.

(simulating after updateOnes) given leakage Gt := LOST(updateOne, filter, action), set G :=
G+Gt and parse Gt = (Vt,Et) as

Vt :=

{{〈
OST, t,Ω, tΩ,f ,ΣR, tR,f , erase, id | ⊥

〉
,〈

OST, t,Ω, tΩ,f ,ΣM , tM,f , erase, id | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣC , tC,f , put, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣM , tM,f ,write, id, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣS, tS,f , ins, 2k, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣR, tR,f , app, id, f | ⊥
〉}

f∈F
,

〈
OST, t,∆, t∆, updateOne, |v|, f | ⊥

〉}
and Et := ∅;
For all f ∈ F, compute

EMMf ← SΩ
({〈

Ω, tΩ,f ,ΣR, tR,f , erase, id | ⊥
〉
,
〈
Ω, tΩ,f ,ΣM , tM,f , erase, id | ⊥

〉}
, ∅
)
.

and

EMMf ← SΩ
(〈

Ω, tΩ,f ,ΣC , tC,f , put, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣM , tM,f ,write, id, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣS, tS,f , ins, 2k, f | ⊥
〉
,〈

Ω, tΩ,f ,ΣR, tR,f , app, id, f | ⊥
〉
, ∅
)
;

55

Let D := DDB[id = id], compute ct ← SSKE(1k, |v|) and set D.f := ct. Output the
updated EDB.

The computational indistinguishability of the simulated EMMf from a real EMMf , for all
f ∈ F, follows from a standard hybrid argument and the adaptive security of Ω. Moreover,
the computational indistinguishability of the simulated ciphertext for field f in D from a
real document, follows from a standard hybrid argument and the CPA-security of SKE.

(simulating after compactions) given leakage Gt := LOST(comp), set G := G + Gt and parse
Gt = (Vt,Et) as

Vt :=

{〈
OST, t,Ω, tΩ,f ,ΣS, tS,f , Init | ⊥

〉
,
〈
OST, t,Ω, tΩ,f ,ΣC , tC,f , comp, pcount | ⊥

〉}
f∈F

and Et := ∅.
For all f ∈ F, compute

EMMf ← SΩ
({〈

Ω, tΩ,f ,ΣS, tS,f , Init | ⊥
〉
,
〈
Ω, tΩ,f ,ΣC , tC,f , comp, pcount | ⊥

〉}
, ∅
)
.

Output the updated EDB.

The computational indistinguishability of the simulated EMMf from a real EMMf , for all
f ∈ F, follows from a standard hybrid argument and the adaptive security of Ω.

Acknowledgements

The authors would like thank Mark Benvenuto, Spencer Jackson, Shreyas Kalyan, Erwin Pe,
Judah Schvimer and Andy Schwerin for critical feedback throughout the design stages of this
work. The authors would also like to thank Archita Agarwal, David Cash, Zach Espiritu and
Marilyn George for their helpful comments on the design and analysis of OST.

56

Leakage profile LΩ

• LΩ(op):

1. if op = (init, θ),
(a) set t := 0, tM := 0, tC := 0, tR := 0 and tS := 0;
(b) initialize an empty set P ;
(c) set

Vt :=

{〈
Ω, 0,ΣM , 0, init, θ | ⊥

〉
,〈

Ω, 0,ΣC , 0, init, k | ⊥
〉
,〈

Ω, 0,ΣR, tR, init | ⊥
〉
,〈

Ω, 0,ΣS , 0, init | ⊥
〉}

and Et := ∅;
2. else if op = (put, p, ℓ,v)

(a) compute t++ and tM++;

(b) set m
◦
= #v;

(c) sample u
$← {0, . . . , p};

(d) let ℓ
◦
= (ℓ, u);

(e) set P := P ∪ ℓ;
(f) set count := #V(ΣM ,write | ℓ);
(g) set

Vt :=

{〈
Ω, t,ΣC , tC++, put | ⊥

〉
,〈

Ω, t,ΣM , tM ,write, vi | ℓ, count+ i
〉
i∈[m]

,〈
Ω, t,ΣS , tS++, ins, 2k | ⊥

〉
,〈

Ω, t,ΣR, tR++, app, vi | ⊥
〉
i∈[m]

}
and Et := ∅;

3. else if op = (erase, v)
(a) compute t++;
(b) set

Vt :=

{〈
Ω, t,ΣM , tM++, erase, v | ⊥

〉
,
〈
Ω, t,ΣR, tR++, erase, v | ⊥

〉}
and Et := ∅;

4. else if op = comp,
(a) compute t++;
(b) set

Vt :=

{〈
Ω, t,ΣS , 0, init | ⊥

〉
,
〈
Ω, t,ΣC , tC++, comp,#P | ⊥

〉}
and Et := ∅;

(c) set tS := 0 and P := ∅;
5. output (Vt,Et);

Figure 21: The leakage profile LΩ.

57

Functionality FL
DDB

The functionality is parameterized with a leakage profile L and interacts with n clients C1, . . . ,Cn, a
server S and an ideal adversary S. It stores and manages a document database DDB using the following
operations:

• upon receiving (cid, init) from a client, initialize and store a document database DDB and send(
cid, init,L

(
init
))

to S;

• upon receiving (cid, insert,D) from a client, set DDB := DDB∪D and send
(
cid, insert,L

(
insert,D

))
to S;

• upon receiving (cid, find, filter) from a client, return R := DDB[filter] to the client and send
(cid, find,L(find, filter)) to S;

• upon receiving (cid, deleteOne, filter) from a client, compute R := DDB[filter] and DDB −D where

D
$← R. Send (cid, deleteOne,L(deleteOne, filter)) to S;

• upon receiving (cid, updateOne, filter, action) from a client, computeR := DDB[filter] and setD.f := v

where D
$← R. Send (cid, updateOne,L(updateOne, filter, action)) to S.

• upon receiving (cid, compaction) from a client, send (cid, compaction,L(compaction)) to S;

Figure 22: The ideal document database functionality.

58

Let Ω = (InitC,S,PutC,S,GetC,S,CountC,S,TestC,S,EraseC,S,CompactionC,S) be a stateless, response-
revealing dynamic multi-map encryption scheme. Let F be the set of fields in the database and P
be the contention factors of each field. Consider the stateless document database encryption scheme
OST = (GenC,S, InitC,S, InsertC,S,FindC,S,DeleteC,S,UpdateC,S,CompactionC,S) defined as follows:

• GenC,S

(
1k
)
:

Client:

1. sample KM
$← {0, 1}k;

2. output K := KM ;

• InitC,S

(
K, θ,F,P

)
:

Client:

1. parse P as (pf)f∈F;
2. for all f ∈ F,

(a) compute Kf := FKM
[f, 1] and K ′

f := FKM
[f, 2];

(b) compute EMMf ← Ω.InitC1
(Kf , λ, θ);

3. initialize an empty document database DDB with fields F;
4. output K := (Kf ,K

′
f)f∈F and st := (pf)f∈F

5. send EDB :=
(
DDB,

(
EMMf

)
f∈F

)
to the server;

• InsertC,S

(
K, st,D;EDB

)
:

Client:

1. parse K as (Kf ,K
′
f)f∈F and st as (pf)f∈F;

2. parse D as (f, v)f∈F;
3. for all f ∈ F,

(a) compute ptkf ← Ω.PutC1
(Kf , pf , v);

(b) compute ctf := SKE.Enc(K ′
f , v);

4. send ED := (f, ctf)f∈F and itk := (ptkf)f∈F to the server;

Server:

1. parse EDB as
(
DDB,

(
EMMf

)
f∈F

)
;

2. for all f ∈ F,
(a) compute EMMf ← Ω.PutS2

(EMMf , ptkf , id);

3. sample id
$← {0, 1}k;

4. set ED to
(
(id, id), (f, ctf)f∈F

)
;

5. set DDB := DDB ∪ED;
6. output EDB :=

(
DDB,

(
EMMf

)
f∈F

)
;

Figure 23: OST: a stateless database encryption scheme (part 1).

59

• FindC,S

(
K, st, filter;EDB

)
:

Client:

1. parse K as (Kf ,K
′
f)f∈F;

2. if filter ≡ f = v,
(a) compute gtk← Ω.GetC1(Kf , pf , v);
(b) set ftk := (exactflag, gtk) to the server;

3. if filter ≡ f1 = v1
∧
· · ·
∧
fm = vm,

(a) for all 1 ≤ i ≤ m,
i. compute gtki ← Ω.GetC1

(Kfi , vi);
ii. compute ttki ← Ω.TestC1(Kfi , vi);
iii. compute cttki ← Ω.CountC1(Kfi , vi);

(b) set cjtk := (fi, gtki, ttki, cttki)1≤i≤m to the server;
(c) set ftk := (conjflag, cjtk) to the server;

4. send ftk to the server;

Server:

1. parse EDB as
(
DDB,

(
EMMf

)
f∈F

)
;

2. parse ftk as (flag, tk);
3. if flag = exactflag,

(a) parse tk as gtk;
(b) initialize an empty set R;
(c) compute ids← Ω.GetS2

(EMMf , gtk);
(d) compute R := DDB

[∧
id∈ids id = id

]
;

(e) send R to client;
4. else if flag = conjflag,

(a) parse tk as (fi, gtki, ttki, cttki)1≤i≤m;
(b) initialize an empty set R;
(c) for all 1 ≤ i ≤ m,

i. compute countfi ← Ω.CountS2
(EMMfi , cttki);

ii. if countfi = 0, then output R := ∅;
(d) set f⋆ := argmini∈[m](countfi);
(e) compute ids← Ω.GetS2(EMMf⋆ , gtkf⋆);
(f) for all id ∈ ids,

i. for all f ∈ {f1, . . . , fm} \ {f⋆},
A. compute b← Ω.TestS2

(EMMf , ttkf , id);
B. if b = false, set ids := ids \ {id} and exit loop;

(g) compute R := DDB
[∧

id∈ids id = id
]
;

(h) send R to the client;

Client:

1. initialize an empty set R′;
2. for every ED ∈ R,

(a) parse ED as ((id, id), (f, ctf)f∈F);
(b) for all f ∈ F,

i. compute v := SKE.Dec(K ′
f , ctf);

(c) set D as ((id, id), (f, v)f∈F) and add D to R′;
3. output R′;

Figure 24: OST: a stateless database encryption scheme (part 2).

60

• DeleteOneC,S

(
K, st, filter;EDB

)
:

Client:

1. compute ftk← Ω.FindC1
(K, filter);

2. send dtk := ftk to the server;

Server:

1. parse EDB as
(
DDB,

(
EMMf

)
f∈EF

)
and dtk as ftk;

2. compute ids← OST.FindS2
(EDB, ftk);

3. set id
$← ids;

4. compute DDB− id;
5. for all f ∈ F, compute EMMf ← Ω.EraseS2(EMMf , id);
6. output EDB.

• UpdateOneC,S

(
K, st, filter, action;EDB

)
:

Client:

1. parse K as (Kf ,K
′
f)f∈F and st as (pf)f∈F;

2. parse action as (f, v);
3. compute ptkf ← Ω.PutC1(Kf , pf , v);
4. compute ctf := SKE.Enc(K ′

f , v);
5. compute ftk← OST.FindC1

(K, filter);
6. set utk := (ftk, f, ctf , ptkf);
7. send utk to the server;

Server:

1. parse EDB as
(
DDB,

(
EMMf

)
f∈EF

)
;

2. parse utk as (ftk, f, ctf , ptkf);
3. compute ids← OST.FindS2(EDB, ftk);

4. set id
$← ids;

5. compute D := DDB[id = id];
6. set D.f := ctf ;
7. compute EMMf ← Ω.EraseS2

(EMMf , id);
8. compute EMMf ← Ω.PutS2

(EMMf , ptkf , id);

9. output EDB =
(
DDB,

(
EMMf

)
f∈F

)
.

• CompactionC,S

(
K;EDB

)
:

Client:

1. parse K as (Kf ,K
′
f)f∈F;

2. for all f ∈ F, compute ctkf ← Ω.CompactionC1
(Kf);

3. output ctk :=
(
ctkf

)
f∈F

;

Server

1. parse EDB as
(
DDB,

(
EMMf

)
f∈F

)
;

2. for all f ∈ F, compute EMM′
f ← Ω.CompactionS2

(EMMf , ctkf);
3. output the updated EDB;

Figure 25: OST: a stateless database encryption scheme (part 3).

61

Leakage profile LOST

• LOST(op):

1. if op = (init, θ,F,P),
(a) set t := 0 and tDDB := 0;
(b) for all f ∈ F, set tΩ,f := 0, tM,f := 0, tC,f := 0, tS,f := 0, tR,f := 0 and pcountf := 0;
(c) initialize an empty database DDB;
(d) set

Vt :=

{{〈
OST, 0,Ω, 0,ΣM , 0, init, θ, f | ⊥

〉
,〈

OST, 0,Ω, 0,ΣC , 0, init, θ, f | ⊥
〉
,〈

OST, 0,Ω, 0,ΣS , 0, init, f | ⊥
〉
,〈

OST, 0,Ω, 0,ΣR, 0, init, f | ⊥
〉}

f∈F

,

〈
OST, 0,Ω, 0,∆, 0, init,F,P | ⊥

〉}
and Et := ∅;

2. else if op = (insert,D)
(a) compute t++ and for all f ∈ F, compute tΩ,f++ and pcount++;
(b) parse D as (f, vf)f∈F and add D to DDB;

(c) compute id
$← {0, 1}k;

(d) set

Vt :=

{{〈
OST, t,Ω, tΩ,f ,ΣC , tC,f++, put, f | ⊥

〉
,〈

OST, t,Ω, tΩ,f ,ΣM , tM,f++,write, id, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣS , tS,f++, ins, 2k, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣR, tR,f++, app, id, f | ⊥
〉}

f∈F

,

〈
OST, t,∆, t∆++, insert, |vf |, f | ⊥

〉
f∈F

}
and Et := ∅;

3. else if op = (deleteOne, filter)
(a) compute t++ and for all f ∈ F, tΩ,f++;

(b) compute id
$← DDB[filter];

(c) set

Vt :=

{〈
OST, t,Ω, tΩ,f ,ΣR, tR,f++, erase, id | ⊥

〉
,
〈
OST, t,Ω, tΩ,f ,ΣM , tM,f++, erase, id | ⊥

〉}
f∈F

and Et := ∅;

Figure 26: The leakage profile LOST.

62

Leakage profile LOST (cont.)

4. else if op = (updateOne, filter, action)

(a) compute t++ and for all f ∈ F, compute tΩ,f++ and pcount++;

(b) compute id
$← DDB[filter] and parse action as (f, v);

(c) set

Vt :=

{{〈
OST, t,Ω, tΩ,f ,ΣR, tR,f++, erase, id | ⊥

〉
〈
OST, t,Ω, tΩ,f ,ΣM , tM,f++, erase, id | ⊥

〉
,〈

OST, t,Ω, tΩ,f ,ΣC , tC,f++, put, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣM , tM,f++,write, id, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣS , tS,f++, ins, 2k, f | ⊥
〉
,〈

OST, t,Ω, tΩ,f ,ΣR, tR,f++, app, id, f | ⊥
〉}

f∈F

,

〈
OST, t,∆, t∆++, updateOne, |v|, f | ⊥

〉}
and Et := ∅;

5. else if op = comp,

(a) compute t++ and for all f ∈ F, tΩ,f++;
(b) set

Vt :=

{〈
OST, t,Ω, tΩ,f ,ΣS , tS,f++, Init | ⊥

〉
,
〈
OST, t,Ω, tΩ,f ,ΣC , tC,f++, comp, pcount | ⊥

〉}
f∈F

and Et := ∅;
1. for all f ∈ F, set pcountf := 0;

6. output (Vt,Et);

Figure 27: The leakage profile LOST.

63

References

[1] R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting con-
fidentiality with encrypted query processing. In ACM Symposium on Operating Systems
Principles (SOSP), pages 85–100, 2011.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric
data. In ACM SIGMOD International Conference on Management of Data, pages 563–574,
2004.

[3] G. Amjad, S. Kamara, and T. Moataz. Breach-resistant structured encryption. In Proceed-
ings on Privacy Enhancing Technologies (Po/PETS ’19), 2019.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and R. Venkate-
san. Orthogonal security with cipherbase. In CIDR, 2013.

[5] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Optimal
locality in linear space via two-dimensional balanced allocations. In ACM Symposium on
Theory of Computing (STOC ’16), STOC ’16, pages 1101–1114, New York, NY, USA, 2016.
ACM.

[6] G. Asharov, G. Segev, and I. Shahaf. Tight tradeoffs in searchable symmetric encryption.
In Annual International Cryptology Conference, pages 407–436. Springer, 2018.

[7] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryp-
tion. In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07, Lecture Notes in
Computer Science, pages 535–552. Springer, 2007.

[8] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-party
computation. In ACM Conference on Computer and Communications Security (CCS 2008),
pages 257–266. ACM, 2008.

[9] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov. The tao of inference
in privacy-protected databases. Proceedings of the VLDB Endowment, 11(11):1715–1728,
2018.

[10] L. Blackstone, S. Kamara, and T. Moataz. Revisiting leakage abuse attacks. In Network
and Distributed System Security Symposium (NDSS ’20), 2020.

[11] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption.
In Advances in Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

[12] D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Advances in Cryptology – EUROCRYPT ’04, volume 3027 of Lecture
Notes in Computer Science, pages 506–522. Springer, 2004.

[13] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

64

[14] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable en-
cryption from constrained cryptographic primitives. In ACM Conference on Computer and
Communications Security (CCS ’17), 2017.

[15] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal of
Cryptology, 13(1), 2000.

[16] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable
encryption. In ACM Conference on Communications and Computer Security (CCS ’15),
pages 668–679. ACM, 2015.

[17] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data structures and implementation. In
Network and Distributed System Security Symposium (NDSS ’14), 2014.

[18] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In Advances in Cryptology -
CRYPTO ’13. Springer, 2013.

[19] D. Cash, R. Ng, and A. Rivkin. Improved structured encryption for sql databases via hybrid
indexing. In Applied Cryptography and Network Security: 19th International Conference,
ACNS 2021, Kamakura, Japan, June 21–24, 2021, Proceedings, Part II, pages 480–510.
Springer, 2021.

[20] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2014, 2014.

[21] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[22] M. Chase and S. Kamara. Structured encryption and controlled disclosure. Technical Report
2011/010.pdf, IACR Cryptology ePrint Archive, 2010.

[23] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and
Communications Security (CCS ’06), pages 79–88. ACM, 2006.

[24] I. Demertzis, D. Papadopoulos, and C. Papamanthou. Searchable encryption with optimal
locality: Achieving sublogarithmic read efficiency. In Advances in Cryptology - CRYPTO
’18, pages 371–406. Springer, 2018.

[25] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garofalakis. Prac-
tical private range search revisited. In Proceedings of the 2016 International Conference on
Management of Data, pages 185–198. ACM, 2016.

[26] I. Demertzis and C. Papamanthou. Fast searchable encryption with tunable locality. In
ACM International Conference on Management of Data (SIGMOD ’17), SIGMOD ’17,
pages 1053–1067, New York, NY, USA, 2017. ACM.

65

[27] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by order-revealing
encryption? In ACM Conference on Computer and Communications Security (CCS ’16),
2016.

[28] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich queries on
encrypted data: Beyond exact matches. In European Symposium on Research in Computer
Security (ESORICS ’15). Lecture Notes in Computer Science, volume 9327, pages 123–145,
2015.

[29] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M.
Bellovin. Malicious-client security in blind seer: a scalable private dbms. In IEEE Sympo-
sium on Security and Privacy, pages 395–410. IEEE, 2015.

[30] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two
rounds with applications to searchable encryption. In Advances in Cryptology - CRYPTO
2016, pages 563–592, 2016.

[31] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[32] M. George, S. Kamra, and T. Moataz. Structured encryption and dynamic leakage suppres-
sion. In Advances in Cryptology - EUROCRYPT 2021, 2021.

[33] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996.

[34] P. Grofig, I. Hang, M. Härterich, F. Kerschbaum, M. Kohler, A. Schaad, A. Schröpfer, and
W. Tighzert. Privacy by encrypted databases. In Privacy Technologies and Policy: Second
Annual Privacy Forum, APF 2014, Athens, Greece, May 20-21, 2014. Proceedings 2, pages
56–69. Springer, 2014.

[35] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. Pump up the volume: Practical
database reconstruction from volume leakage on range queries. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pages 315–331. ACM, 2018.

[36] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your encrypted database is not secure.
In Workshop on Hot Topics in Operating Systems (HotOS ’17), pages 162–168, New York,
NY, USA, 2017. ACM.

[37] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the
database-service-provider model. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 216–227, 2002.

[38] F. Hahn and F. Kerschbaum. Searchable encryption with secure and efficient updates. In
ACM Conference on Computer and Communications Security (CCS ’14), CCS ’14, pages
310–320, New York, NY, USA, 2014. ACM.

66

[39] J. Jaeger and N. Tyagi. Handling adaptive compromise for practical encryption schemes.
In Advances in Cryptology - CRYPTO ’20, pages 3–32. Springer, 2020.

[40] C. Jutla and S. Patranabis. Efficient searchable symmetric encryption for join queries. In
Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part III, pages 304–333. Springer, 2023.

[41] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber, and M. Yonli. Sok: Cryptanalysis
of encrypted search with leaker – a framework for leakage attack evaluation on real-world
data. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages
90–108, 2022.

[42] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-
linear complexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

[43] S. Kamara and T. Moataz. SQL on Structurally-Encrypted Data. In Asiacrypt, 2018.

[44] S. Kamara, T. Moataz, and O. Ohrimenko. Structured encryption and leakae suppression.
In Advances in Cryptology - CRYPTO ’18, 2018.

[45] S. Kamara, T. Moataz, S. Zdonik, and Z. Zhao. Opx: An optimal relational database
encryption scheme. Technical report, IACR ePrint Cryptography Archive, 2020.

[46] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption.
In Financial Cryptography and Data Security (FC ’13), 2013.

[47] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption.
In ACM Conference on Computer and Communications Security (CCS ’12). ACM Press,
2012.

[48] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.

[49] G. Kellaris, G. Kollios, K. Nissim, and A. O. Neill. Generic attacks on secure outsourced
databases. In ACM Conference on Computer and Communications Security (CCS ’16),
2016.

[50] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. The state of the uniform: Attacks
on encrypted databases beyond the uniform query distribution. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1223–1240. IEEE, 2020.

[51] I. Miers and P. Mohassel. Io-dsse: Scaling dynamic searchable encryption to millions of
indexes by improving locality. Cryptology ePrint Archive, Report 2016/830, 2016. http:

//eprint.iacr.org/2016/830.

[52] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving en-
crypted databases. In ACM Conference on Computer and Communications Security (CCS),
CCS ’15, pages 644–655. ACM, 2015.

67

http://eprint.iacr.org/2016/830
http://eprint.iacr.org/2016/830

[53] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 359–374. IEEE, 2014.

[54] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data.
In IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE Computer
Society, 2000.

[55] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX Security Symposium, 2016.

68

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Definitions
	Structured Encryption
	Adversarial Models
	Leakage Profiles & Patterns
	Security Definitions

	Addressable Multi-Maps
	Construction
	Security Against Snapshot Adversaries

	Immutable Dictionaries
	Construction
	Security Against Snapshot Adversaries

	Enumerable Sets
	Security Against Snapshot Adversaries

	Testable Multi-Maps
	Construction
	Security Against Snapshot Adversaries

	A Stateless Multi-Map Encryption Scheme
	Construction
	Security Against Snapshot Adversaries

	The OST Database Encryption Scheme
	Security against Snapshot Adversaries

