
JANUARY 2024

Driving Forward:
Best Practices for Frequent
Over-The-Air Vehicle Updates

2

Table of Contents
Introduction 3

Typical OTA Update Flow and Challenges 4

Requirements of a Robust Frequent OTA System 5

Logical Concepts for a Robust Frequent OTA System 6

How MongoDB Atlas Device Sync Facilitates
Frequent OTA Updates 10

 MongoDB Atlas 11

 Atlas Device SDK 11

 Atlas Device Sync 12

Summary 13

 About Capgemini Invent 14

About the Authors 14

3

Introduction
Modern automobiles contain complex computing networks of up to 100 controllers
running millions of lines of code. Automotive manufacturers strive to gain significant
advantages from the ability to efficiently update this software. These updates help
avoid costly fleet recalls by solving software and even hardware issues, opening
new business models, and extending the general life of a vehicle by upgrading
functionalities over time.

Traditionally, the process of updating the car software has been time consuming and
frustrating for the vehicle owners who are forced to visit a dealership to receive new
software installations.

This manual process is inconvenient for both the
owner and the manufacturer for several reasons:

• It takes time and resources to disseminate
software updates across a widespread dealer
network, especially for OEMs with global
operations.

• Dealers maintain a library of multiple software
versions, which introduces the potential for
errors and complexities.

• Relying on snail mail to notify vehicle owners
about critical software updates is never an
accurate method. It can result in missed
notifications and overlooked updates, especially
in the case of resale and change of ownership.

• Customer satisfaction suffers when the owner
has to bring the car in every time.

Over-the-air (OTA) updates offer a promising
solution to these issues. It also offers the potential
for enhanced revenue streams as the OEM can
offer add-on services through an OTA update.
In fact, the majority of automotive OEMs regard
OTA as the most impactful trend that will become
a standard requirement, because it is the most
visible and beneficial feature for end customers.

However, performing a reliable OTA process has its
own unique set of challenges including:

• Reducing the update package size to transmit
only essential modifications

• Safeguarding against unauthorized software
and firmware changes

• Preventing vehicle owners from compromising
security through unauthorized customizations

• Ensuring safe execution of updates in
uncontrolled environments

• Preventing misprogramming of controllers for
driver safety

• Ensuring consistent internet connectivity and
power supply during updates

• Directing specific updates to various vehicle
models based on their purchased options or
aftermarket equipment installations

In this paper, we look at the requirements for
a secure, efficient, and reliable OTA update
mechanism and propose an architecture that
would speed up the development process for
efficient and stable OTA updates for the OEMs, all
while increasing customer satisfaction.

4

Typical OTA Update Flow and Challenges
The traditional methodology for software updates can be represented by the flowchart
below.

Figure 1. Typical software update flow for vehicles

Even though OTA updates can present many
benefits, they also come with their own set of
challenges:

• High network costs: Data transfer over the
network can become extremely expensive at
scale. As an example, an OEM selling 2 million
cars per year will have 20 million cars on the
road in 10 years. For a 10MB software update,
there will be 200,000 TB of data transfer, not
counting retries. Assuming a preferred network
cost of $10 per GB, that amounts to $2 billion for
a software update.

• Bandwidth limitations may affect updates:
Some bigger updates may require a few GBs.

With slow network connectivity, vehicles could
stay blocked for many hours, resulting in a poor
user experience.

• Resource intensive backend infrastructure:
In terms of operational costs, it takes lots of
resources to manage retries, connectivity,
encryption, conflict resolution mechanisms,
authentication, filtering, scalability, and high
availability.

• Heterogeneous vehicle systems: Different
configurations and update plans mean that
updates are not just one-to-one. Sometimes one
ECU has to update, then that triggers another
update in another ECU and so on. There is no
one-size-fits-all update methodology.

5

As you can see, although OTA updates offer immense benefits in terms of keeping vehicles up-to-
date and enhancing features post-sale, they bring significant challenges in terms of network costs,
system heterogeneity, infrastructure demands, bandwidth limitations, data reliability, and security
requirements.

Requirements of a Robust Frequent OTA System
In order to overcome these challenges, a robust OTA system requires several key
capabilities and features:

• Compressed and efficient data transfer: The
amount of data transferred over the telco
network must be reduced as much as possible
by compressing the data, only syncing the
necessary data, and avoiding complete re-
starts when there’s a failure (pick up update
where it left off).

• Offline-first paradigm and user notifications:
Notify users reliably via smartphone
applications, or the vehicle infotainment system,
and decrease retries as much as possible.

• Reliable, robust communication protocol: There
should be conflict resolution, automatic retry
mechanisms, and real-time monitoring of the
update from the cloud.

• Flexible data model: Keep a library of current
updates for all models, years, packages, and
configurations and also keep track of historical
updates, which typically requires more than one
database in the cloud: one for current versions
and another for historical versions. (We will cover
this topic in further detail later.)

• Flexible system, easy to develop and maintain:
Reduce as much as possible data piping
work for engineers while ensuring efficient
development processes. Otherwise, fast, error-
free deployments aren’t possible.

• Encrypted and secured system: A robust
and resilient system requires authentication,
authorization, encryption at rest and in flight.

• Data transmission reliability: In case of
connection loss, retry and fail-back mechanisms
are needed, which means the car has to
redownload data packages from the start to the
detriment of the user experience.

• Comprehensive security measures: Investment
in end-to-end encryption, secure authentication,
and continuous monitoring for threats is crucial.
This includes protecting the data in transit
and at rest, as well as safeguarding against
unauthorized access and tampering.

6

Logical Concepts for a Robust Frequent OTA System
Let’s break down and explain the logical concepts or building blocks for a robust
frequent OTA system shown in Figure 2.

Figure 2. Building blocks for a robust frequent OTA process

Creating a reliable OTA update system for
vehicles starts with a detailed plan that aligns
with global standards, such as those outlined by
the United Nations Economic Commission for
Europe (UNECE). UNECE standards are essential
for consistency and regulatory adherence in the
automotive sector. Additionally, the OEMs have
to take into account the principles of Software
Update Management Systems (SUMS), which also
includes variants management and handling.
The OEMs must demonstrate that the SUMS is
managed along the entire value chain.

The SUMS framework plays a crucial role in
facilitating secure and well-controlled software
updates. Due to diverse configurations in different
car models, an effective variant management
is necessary. Incorporating version control
and rollback mechanisms ensures a seamless
transition back to the previous software version
in case of unexpected complications. Rigorous
testing, encompassing both virtual and real-world
scenarios, needs to be integrated into the `update
process to validate compatibility and functionality
across various vehicle variants.

https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll

7

Vehicle
A traditional vehicle can have anywhere from 30
to 100 ECUs, and in more modern architectures,
vehicles can have 100+ components across High-
Performance Computing Units (HCPs), Domain
Control Units (DCUs), and Zonal ECUs. A subset of
these units need to be synchronized and updated.
On each domain (Telematics Unit, Main HPC,
Update manager, Gateway, etc.), there’s the need
to store the software versions and metadata of all
the units belonging to that domain. Additionally,
the data generated by these computing units can
be stored and processed locally for analysis.

Such a database should follow an object-oriented
paradigm so that the data can be modeled
according to the Vehicle Signal Specification
(VSS). VSS is an initiative by Connected Vehicle
Systems Alliance (COVESA) to define a syntax
and a catalog for vehicle signals. It can be used

as a standard in automotive applications to
communicate information around the vehicle,
which is semantically well defined. It focuses
on vehicle signals, sensors, and actuators with
the raw data communicated over vehicle buses,
and also focuses on data commonly associated
with the infotainment systems. VSS includes
standardized data definitions for vehicle signals
while ensuring the same semantic understanding
across different domains and also includes basic
definitions for interfaces working on vehicle data
(w3c, etc.). Figure 3 shows how example vehicle
signals can be modeled via VSS. If we look at
the VSS taxonomy in Figure 3, it has a vehicle as
the root node whereas all the subsystems in the
vehicle are represented by various branches. We
also can see attributes such as VIN, model, and
brand represented as leaf nodes.

Figure 3. Example snapshot of a VSS tree

https://covesa.github.io/vehicle_signal_specification/
https://covesa.global/

8

The local storage should also contain information
about the vehicle’s capabilities and applicable
configurations, which can be identified and
maintained in the cloud backend. This will help
with management of vehicle diversity and makes
it easy to remove, add, or update configurations
directly from the cloud.

Finally there is a need to have a data
synchronization mechanism between the vehicle
databases on the different domain units and the
cloud so that the OTA process can be initiated and
monitored in real time. This data sync mechanism
needs to take into account resolution of data

conflicts, because vehicles could lose connectivity
while being updated, creating a discrepancy
between what’s stored in the vehicle and what’s
stored in the cloud. Secondly, the data has to be
synchronized with the backend in an efficient and
compressed manner — as in the case of a large
fleet of cars, the OEMs require to keep the mobile
network operations costs low.

A simplified config file synchronization mechanism
is represented in Figure 4. Note that the same
sequence can be adapted for actual software
download to the car.

Figure 4. Configuration file synchronization sequence between cloud and vehicle

9

Cloud
There are a number of requirements for the cloud
backend. There is a need for cloud object storage
to efficiently store the vastly heterogeneous data
(different models, years, packages, configurations,
etc). These updates can be configuration files or
actual software binaries that need to be pushed
to the vehicle in the context of any vehicle feature
update, activation, or deactivation. Additionally,
the cloud needs to capture the software version
history and other metadata associated with the
OTA process. There can be millions of cars on the

road and to be able to accurately track different
software versions running on each car is extremely
important for the OEMs. For storing metadata
surrounding the actual update packages and
handling synchronization with the vehicle, a fast,
scalable, distributed, and highly available data
platform is required. Finally, robust authorization
and authentication protocols must be
implemented to safeguard sensitive information
and maintain the integrity of the update process.

Client Applications
Taking vehicle mobile applications as an
example, key requirements for such applications
include implementing robust security measures
to authenticate users and protect sensitive
information. Once authenticated and logged in,
real-time communication channels need to be
established between mobile app, vehicle, and the
cloud, enabling the app to monitor vehicle status,
receive alerts, and access diagnostic information.
The incorporation of remote control functionality
in the app empowers the users to manage crucial
vehicle functions remotely. Similar to the vehicle
database requirements, there is a need for an

offline-first, embedded mobile database that
stores user actions within the app and then pushes
these changes to the cloud and the vehicle itself.
When a new update is available for the vehicle,
both the vehicle and mobile app get a notification
instantly and once the update package is
downloaded and applied on the vehicle, the
mobile app gets another success notification.
These requirements collectively contribute to
a mobile app for vehicles that not only meets
user expectations but also aligns with regulatory
standards, fostering a secure and efficient
connection between drivers and their vehicles.

10

Let us reproduce Figure 2 with MongoDB components (Figure 5) and get a closer look at the three
building blocks:

Figure 5. MongoDB-enabled building blocks for a robust frequent OTA process

How MongoDB Atlas Device Sync Facilitates
Frequent OTA Updates
A vehicle is a resource-constrained embedded environment that is capable of
generating an estimated 25 GB of data per day. For automotive OEMs, there is always
a strong focus on resource management and efficiency. Every single MB of memory
use has to be multiplied by millions of vehicles on the road to calculate the full impact
of vehicle software updates and telemetry collection.

The MongoDB Atlas product portfolio provides OEMs three building blocks for building
a reliable, robust and flexible OTA synchronizer:

• MongoDB Atlas: The fully managed, modern,
multi-cloud database that provides MongoDB
database as a service and enables Atlas
Device SDK and Device Sync.

• Atlas Device SDK: A hugely popular object-
oriented and embedded persistence layer or
SDK for a wide variety of environments such as
C++, Swift, Kotlin, Flutter, and more.

• Atlas Device Sync: A fully managed
bidirectional data synchronization mechanism,
connecting the offline-first Atlas Device SDK
with the powerful cloud backend through a
bi-directional data synchronization that is
optimized for unreliable connectivity, with low
bandwidth through transparent change set
compression, and delta data synchronization
including deterministic conflict resolution.
Additionally, offline-first data sets can
dynamically set filters for data sets to be
synchronized, further increasing the efficiency
of data transmission.

https://www.covesa.global/sites/default/files/COVESA%20Vehicle%20Signal%20Specification_060122.pdf

11

MongoDB Atlas Device SDKs (previously known
as Realm), a fast, scalable, and object-oriented
alternative to SQLite is already utilized in
millions of mobile applications, IoT devices,
and infotainment systems. It was designed
with resource constraints in mind. Atlas Device
SDK runs right on client devices such as mobile
apps or vehicle ECUs. Apps can access data as
objects using the native query language for each
platform. Storing, accessing, and updating data is
simple and lightweight. The open-source SDKs are
available for most popular languages, frameworks,
and platforms (C++, Swift, Node.js, etc.). Each
SDK is language-idiomatic to the development
environment and includes the core database
APIs for creating and working with on-device
databases.

Atlas Device SDK follows an offline-first
paradigm, persisting local changes before
synchronizing them with MongoDB Atlas as
soon as connectivity is established. The SDKs
intelligently handle sudden network interruptions
without compromising device battery life. To
optimize for low bandwidth and reduce data
transfer costs, the synchronization mechanism
sends only the changes on a field level over the
network, compressing these changesets before
transmission. The distributed architecture and
offline-first approach include built-in deterministic
conflict resolution within the Atlas Device Sync
protocol, freeing developers from the intricacies of
conflict resolution and enabling them to focus on
feature development.

MongoDB Atlas
Since vehicles produced by a single OEM can be distributed all over the globe, it is
important for the cloud backend to be globally accessible. Multi-cloud clusters in
MongoDB Atlas enables a single application to use multiple clouds simultaneously.
With multi-cloud clusters, data is easily distributed across different public clouds,
like Amazon Web Services (AWS), Google Cloud, and Microsoft Azure, enabling data
mobility and resilience without the complexity of manual data replication.

Additionally, not only will the amount of data produced per car increase exponentially
in the future, the structures and data models will also evolve. In anticipation of the
exponential growth in data produced per vehicle, MongoDB Atlas, the modern, multi-
cloud database built on the document model, provides the flexibility and horizontal
scalability required to handle data coming in from millions and millions of connected
vehicles.

Atlas Device SDK

https://www.mongodb.com/basics/sharding

12

Atlas Device Sync
MongoDB provides out-of-the-box bidirectional data synchronization through Atlas
Device Sync between different Device SDKs (Realms), in client applications such as
vehicle ECUs or mobile apps, and MongoDB Atlas on the cloud running on the OEM’s
choice of cloud.

Putting together these components, OEMs can
enable frequent, reliable OTA pipelines with
vehicles on the road. Figure 6 illustrates the whole
process step by step. The vehicle VSS model
is stored in Atlas Device SDK (1), which helps
consolidate data across different ECUs and
apps in the vehicle. When a new configuration
or software update is available, Atlas Device
Sync sends a notification to the vehicle (2) and
the notification is synchronized with the user
phone as well (3). Atlas Device SDK sends back
an acknowledgment to MongoDB Atlas that the
vehicle is ready for the update (4). The file is then
downloaded (5) and upon successful installation,
an acknowledgement is sent back to the cloud

backend (6) and the user is notified via the mobile
app (7). On the cloud backend side, as data grows
over time, Atlas Online Archive is triggered to
move the historical data into a cloud-managed
object storage for cost efficiency (8). The data
in operational and analytical data planes can
be brought together for trend analytics using a
unified API via Atlas Data Federation (9). Using
Atlas Device Sync, OEMs get the necessary tools
for monitoring the status and performance of the
OTA update process. The same data pipeline can
be leveraged to keep track of all the software
versions running in various applications and ECUs
in the car.

Figure 6. OTA Update process synchronized and monitored via Atlas Device Sync

https://www.mongodb.com/atlas/online-archive

13

Summary
This white paper addresses the challenges
faced by automotive manufacturers
in updating the intricate software
systems embedded in modern vehicles.
It emphasizes the inefficiencies of
traditional manual update processes,
highlighting the associated costs and
inconveniences for both manufacturers
and vehicle owners. The adoption of
over-the-air (OTA) updates is a promising
solution to streamline the update process
and increase customer satisfaction.
However, the unique challenges of
implementing a reliable OTA process, such
as data transfer costs, heterogeneous
vehicle systems, and security concerns
have to be addressed.

The proposed architecture for a
robust frequent OTA (FOTA) system is
outlined, encompassing compressed
and efficient data transfer, an offline-
first paradigm, reliable communication
protocols, a flexible data model, and a
scalable cloud backend database. The
role of MongoDB’s Atlas Device Sync
in facilitating frequent OTA updates is
highlighted, emphasizing its capabilities
in handling resource-constrained

embedded environments in the vehicle,
bidirectional data synchronization, and
offline-first local storage. The integration
of MongoDB Atlas, Atlas Device SDK,
and Atlas Device Sync is proposed as
a comprehensive solution for OEMs to
build a reliable, robust, and flexible OTA
synchronizer. MongoDB offers OEMs
the necessary tools for monitoring the
status and performance of OTA update
processes, ensuring a seamless and
efficient connection between drivers and
their vehicles.

To conclude, implementing these best
practices and leveraging technologies
like MongoDB’s Atlas Device Sync can
enable automotive OEMs to conduct
frequent, reliable OTA updates, enhancing
customer satisfaction and reducing
operational costs. The combination of
vehicle data management, cloud storage,
and client application integration forms a
comprehensive approach to addressing
the challenges associated with OTA
updates in modern vehicles.

To learn more about MongoDB’s role
in automotive industry, please visit our
manufacturing and motion webpage.

https://www.mongodb.com/industries/manufacturing

14

About the Authors

About Capgemini Invent
As the digital innovation, design and transformation brand of the Capgemini Group,
Capgemini Invent enables CxOs to envision and shape the future of their businesses.
Located in over 30 studios and more than 60 offices around the world, it comprises a
12,500+ strong team of strategists, data scientists, product and experience designers,
brand experts and technologists who develop new digital services, products,
experiences and business models for sustainable growth.

Capgemini Invent is an integral part of Capgemini, a global business and technology
transformation partner, helping organizations to accelerate their dual transition to
a digital and sustainable world, while creating tangible impact for enterprises and
society. It is a responsible and diverse group of 340,000 team members in more than
50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients
to unlock the value of technology to address the entire breadth of their business needs.
It delivers end-to-end services and solutions leveraging strengths from strategy and
design to engineering, all fueled by its market leading capabilities in AI, cloud and
data, combined with its deep industry expertise and partner ecosystem. The Group
reported 2023 global revenues of €22.5 billion.

Get the future you want | Visit us at www.capgemini.com/invent

Humza Akhtar, Ph.D. is a Principal on the Industry Solutions
Team at MongoDB focused on manufacturing and IoT use
cases. He designs use cases for Smart Manufacturing using the
MongoDB modern, multi-cloud database platform. Prior to
joining MongoDB, he worked at Ernst & Young Canada as a
Senior Manager, in digital operations consultancy practice.
Humza attained his Ph.D. at Nanyang Technological University,
Singapore, and worked with the Singapore manufacturing
industry for a number of years on Industry 4.0 research and
implementation. He has spent most of his career enabling
smart and connected factories for many manufacturing clients.
In 2020-2021, he established a multi-year strategic roadmap for
Singapore’s smart supply chain initiatives.

http://www.capgemini.com/invent

15

Sherif Hussein is a recognized expert in the automotive industry
with 20 years of international experience. Currently, as the
Director of Software Defined Vehicles (SDV) at Capgemini
Invent, he spearheads the SDV initiative. His expertise
spans the development of new operational models, and the
implementation of cutting-edge technical solutions. Moreover,
he specializes in crafting outsourcing strategies and setting
up Delivery Centers, aiming to forge innovative solutions for
the future of mobility. Prior to his tenure at Capgemini, Sherif
cultivated his expertise at IBM, where he led the global practice
for embedded systems, managed IBM’s Global Delivery Center,
and contributed as a SME within IBM’s Global Automotive Team.

Legal Notice

This document includes certain “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, or the Securities Act, and Section

21E of the Securities Exchange Act of 1934, as amended, including statements concerning our financial guidance for the first fiscal quarter and full year fiscal 2021; the

anticipated impact of the coronavirus disease (COVID-19) outbreak on our future results of operations, our future growth and the potential of MongoDB Atlas; and our ability

to transform the global database industry and to capitalize on our market opportunity. These forward-looking statements include, but are not limited to, plans, objectives,

expectations and intentions and other statements contained in this press release that are not historical facts and statements identified by words such as “anticipate,”

“believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “project,” “will,” “would” or the negative or plural of these words or similar expressions or variations.

These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently

available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested by

those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or strategies will be attained or achieved. Furthermore,

actual results may differ materially from those described in the forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that

are beyond our control including, without limitation: our limited operating history; our history of losses; failure of our database platform to satisfy customer demands; the

effects of increased competition; our investments in new products and our ability to introduce new features, services or enhancements; our ability to effectively expand our

sales and marketing organization; our ability to continue to build and maintain credibility with the developer community; our ability to add new customers or increase sales

to our existing customers; our ability to maintain, protect, enforce and enhance our intellectual property; the growth and expansion of the market for database products and

our ability to penetrate that market; our ability to integrate acquired businesses and technologies successfully or achieve the expected benefits of such acquisitions; our

ability to maintain the security of our software and adequately address privacy concerns; our ability to manage our growth effectively and successfully recruit and retain

additional highly-qualified personnel; the price volatility of our common stock; the financial impacts of the coronavirus disease (COVID-19) outbreak on our customers, our

potential customers, the global financial markets and our business and future results of operations; the impact that the precautions we have taken in our business relative

to the coronavirus disease (COVID-19) outbreak may have on our business and those risks detailed from time-to-time under the caption “Risk Factors” and elsewhere in our

Securities and Exchange Commission (“SEC”) filings and reports, including our Quarterly Report on Form 10-Q filed on December 10, 2019, as well as future filings and reports

by us. Except as required by law, we undertake no duty or obligation to update any forward-looking statements contained in this release as a result of new information, future

events, changes in expectations or otherwise.

Arnaldo is a Senior Specialist on the Industry Solutions Team
at MongoDB focused on automotive, manufacturing, and IoT
applications. Before MongoDB, he worked as a data science
and revenue operations manager at 1build, a Y-Combinator
startup based in San Francisco. As the first data science hire, he
contributed to building the core data initiatives in the company
for more than two years. He holds a Mechanical Engineering
degree and a Master of Science in Analytics. Over more than
eight years of experience, he has worked for one of the Top 100
global automotive suppliers and developed various robotics
applications, which have given him a unique background
based on the intersection of data-driven projects, software
development, and automotive innovation.

© January 2024 MongoDB, Inc. All rights reserved.

Contact MongoDB to learn more about
Over-The-Air Vehicle Updates

Resources

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Atlas database as a service for MongoDB (mongodb.com/cloud)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Realm (mongodb.com/realm)

mailto:sales%40mongodb.com?subject=
https://www.mongodb.com/who-uses-mongodb
https://www.mongodb.com/resources/presentations
https://university.mongodb.com/
https://www.mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/cloud
https://www.mongodb.com/try
https://www.mongodb.com/realm

