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1 Introduction
MongoDB is an open-source, highly-scalable, database management system (DBMS). In June
2022, MongoDB released the preview of Queryable Encryption (QE), a feature that provides
developers the ability to encrypt selected fields in their databases client-side while retaining the
ability to run expressive queries on the encrypted data. This document provides an overview of
how QE works, its design goals, the security guarantees and tradeoffs it provides and guidelines on
how to best configure and tune it. This document is not a developer guide for QE. Documentation
for QE can be found at [33]. Before describing how QE works, we recall the evolution of database
encryption. This historical context is important to understand the design decisions made in
building QE and where it sits within the set of database encryption technologies available to
developers.

Database encryption technologies. The purpose of encryption in a DBMS is to minimize
the occurrence of data breaches. According to IBM’s Cost of Data Breaches report [38], the
average cost of data breaches in 2022 was $4.35 million. Furthermore, 83% of the organizations
surveyed had suffered more than one breach. Integrating encryption into a DBMS is a notoriously
difficult problem; specifically, because the purpose of a database is to efficiently query and process
data while the purpose of encryption is to make data unintelligible. Nevertheless, the importance
of integrating encryption into database systems cannot be overstated since most data is stored
and processed by database management systems.

Database encryption technology has evolved over time. We can roughly categorize most
solutions within the three following groups:1

1. the first generation includes Db2’s Native Encryption (NE) [16], SQL Server’s Transparent
Data Encryption (TDE) [27] and MongoDB’s Encrypted Storage Engine (ESE).
These work by encrypting database files using standard symmetric encryption schemes.
Database file encryption provides encryption at rest and protects databases against breaches
of disks and backups.

2. the second generation includes Always Encrypted for SQL Server (AE) and Client-Side
Field-Level Encryption (CSFLE) for MongoDB as well as earlier research systems like
CryptDB [3], SEEED [37] and CipherBase [5]. These systems work by encrypting database
columns/fields using property-preserving encryption schemes like deterministic encryption
[7] and order-revealing encryption [4, 9]. They provide encryption in use and protect
databases against a larger but more nuanced set of data breaches.

3. the third generation includes Queryable Encryption for MongoDB and earlier research
systems like ESPADA [11, 10], Blind Seer [35, 14] and KafeDB [21, 24, 41]. These systems
work by encrypting databases with structured encryption schemes. They provide encryp-
tion in use and protect databases against an even larger and more nuanced set of data
breaches.

1We do not consider enclave-based databases like Always Encrypted with secure enclaves and earlier
research systems like TrustedDB [6], EnclaveDB [36] and StealthDB [39] since the security of such systems has
not been formalized clearly.
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These three approaches are based on different underlying cryptographic primitives and pro-
vide different security and performance guarantees. One way to think about the evolution of
database encryption is that, with each generation, we see an increase in the surface of the DBMS
that benefits from encryption and a reduction in the data lost in the case of a breach.

It is important to keep a few things in mind when considering database encryption, however. The
first is that database encryption technology is not a silver bullet and the second is that database
encryption is an evolving technology.

Database encryption is not perfect. Database encryption solutions improve database secu-
rity but they do not provide an absolute guarantee of security. Database encryption reduces the
attack surface of the DBMS, but it cannot remove it completely. Nevertheless, when properly
designed and deployed, database encryption, coupled with information security best practices
like access control and auditing, can improve an organization’s security and privacy posture.

Database encryption is evolving. While each generation of database encryption technology
represents a significant technical improvement over the previous one, this technology should be
examined and considered not only in the short term but with a long term outlook. In fact,
MongoDB’s investment and efforts in this technology are not limited to Queryable Encryption
as it exists today but already include numerous R&D projects to develop the fourth and fifth
generation of database encryption. So, while QE is the state-of-the-art for what is available in
commercial database platforms today, MongoDB is committed to keep improving and evolving
this technology.

Should we be using imperfect cryptography? If database encryption is imperfect, it is
natural to wonder if one should be using it all. Ultimately, this is a question developers and
organizations must make for themselves but the following may be helpful while contemplating
this decision. Cryptography is not and has never been foolproof and should never be viewed as
a silver bullet. Cryptography is only one of many security technologies and it should always be
used as such. It is also important to understand that symmetric encryption schemes like AES
and cryptographic hash functions like SHA-256 are believed to be secure but we do not know this
with certainty. The reason these primitives are used in practice is because they were designed
and analyzed using a rigorous and transparent process that the cryptography community has
developed over years. This is also true for public-key encryption schemes.

2 The Design Goals of Queryable Encryption
QE is an alternative to MongoDB’s CSFLE2 that is designed to provide different functionality and
guarantees. QE was designed with the following goals in mind:

1. expressive queries: CSFLE supports find operations with the equality $eq operator but
cannot be extended to support other comparison operators like $gt, $gte, $lt or $lte.

2Throughout this document, when referring to CSFLE we mean CSFLE with deterministic encryption since
CSFLE with randomized encryption is not queryable and, therefore, does not provide encryption in use.
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Note this this is a fundamental limitation of CSFLE. QE, on the other hand, was designed
to be extendable to a large set of operators including range, prefix, suffix and substring
operators.

2. performance: a CSFLE-encrypted database incurs almost no performance overhead com-
pared to a plaintext database. QE’ s performance should be within 10× of plaintext queries.

3. non-interactive: standard MongoDB operations are single-round and this should be pre-
served by both CSFLE and QE.

4. stateless: CSFLE and QE clients should be stateless so that they can be used by short-
lived and lightweight clients (e.g., running in containers); they also should not require
synchronization across clients.

5. security: CSFLE provides encryption in use with a specific security profile which we will
discuss later. QE should address the same threat models as CSFLE but with a better security
profile when possible.

Insider threats. To better understand the security goals of QE (and of CSFLE), it is important
to consider how data breaches occur in the real world. According to the 2022 Cost of Data
Breaches Report [38], 19% of breaches were primarily caused by stolen or compromised creden-
tials, 16% by phishing, ≈ 15% by cloud misconfiguration, ≈ 12% by malicious insiders, ≈ 7% by
system errors and ≈ 5% by accidental data loss or lost devices. While technologies like TDE and
ESE protect data against lost or stolen devices, these vectors only accounted for ≈ 5% of breaches.
The other attack vectors accounted for ≈ 69% of breaches. These statistics alone motivate the
need to move beyond first-generation technologies like TDE and ESE to technologies that provide
encryption in use like CSFLE, AE and QE. Taking a closer look at these attack vectors, however,
one can see that they are not based on a complete compromise of the underlying system. In
other words, 69% of the time, the attacker gained access to data without violating the security
mechanisms of the underlying system (e.g., mechanisms like access control or process isolation).

This suggests that database encryption technologies that provide strong security guarantees
even against attackers that cannot fully compromise the system are important. The fact that
stolen credentials, phishing and malicious insiders already accounted for ≈ 47% of breaches
suggests that solutions that provide strong security guarantees against insiders (malicious or
not) are also of significant value. As we will see in Section 4, this is an important consideration
in the design of QE.

3 An Overview of Queryable Encryption’s Design
MongoDB is a document database management system that stores collections of JSON doc-
uments, each of which contains a variable number of field/value pairs. The architecture of a
MongoDB cluster is illustrated in Figure 1 and consists of the following components:

1. mongod: the database server that stores the data and responds to queries. Multiple mongod
instances can be combined to form a replica set which consists of a primary mongod and
several secondary mongod instances which store copies of the data.
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Figure 1: The architecture of a MongoDB cluster.

2. mongos: MongoDB is designed to scale horizontally by running on large clusters. This is
achieved using shardingwhich splits databases among several mongod instances. In sharded
clusters, applications communicate directly with mongos instances which route queries and
write operations to shards.

3. mongosh: a shell which makes use of the Node.js driver and is used for administrative tasks.

4. drivers: a collection of language-specific libraries that applications can use to interact with
a MongoDB deployment.

MongoDB deployments are flexible: shards and replica sets can be added, removed, or refined
at any time depending on the application workload.

Queryable encryption. QE is implemented as a set of client-side libraries and server-side
code that enable applications to encrypt sensitive fields in their documents so that they remain
encrypted even while the server processes them. The QE libraries implement a novel database
encryption scheme called OST which is described and analyzed in [23]. The components of QE
include:

• the drivers: client-side language-specific libraries that applications use to interact with
the database server. To use QE, applications load a driver to create and interact with an
encrypted client.
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• the encrypted client: applications make use of QE through encrypted clients that are re-
sponsible for, among other things, retrieving encrypted data encryption keys (DEK) from
a key vault (see below), and translating plaintext insert, find, update and delete operations
to their encrypted versions.

• the KMS provider : the encrypted client uses a customer master key (CMK) that is managed
by a key management service (KMS) like AWS KMS, Azure Key Vault, Google Cloud
Platform KMS or KMIP.

• the key vault: the encrypted client also makes use of a key vault collection maintained at
the server that stores DEKs encrypted with the KMS-managed CMK.

• the encrypted client: applications make use of QE through encrypted clients that are respon-
sible for, among other things, retrieving encrypted DEKs from the key vault, translating
plaintext insert, find, update and delete operations to their encrypted versions.

• libmongocrypt: is a client-side library written in C used by encrypted clients for encryp-
tion, decryption and executing the client-side portions of encrypted insert, find, update and
delete operations based on the OST database encryption scheme. Note that libmongocrypt
does not introduce any I/O or network overhead and all the requests and interactions with
the KMS are channeled through the driver.

• the query analysis shared library: is a client-side library that allows users to write insert,
find, update and delete operations against encrypted data in plaintext and marks the
necessary portions of those plaintext queries for encryption by libmongocrypt (such as
which fields need to be encrypted and with which DEK). The query analysis functionality
is only available in MongoDB Enterprise Advanced and Atlas.

When an application creates a QE-encrypted collection, it first creates an encryption schema
that specifies which fields in the collection should be encrypted and what type of queries need
to be supported. Currently, this can be either none, in which case field values are encrypted
with standard encryption, or equality or ranges in which case OST is used. It then creates
a QE-enabled client that can be set to use either automatic encryption or explicit encryption.
QE-enabled clients with automatic encryption transparently handle encryption and decryption
using the query analysis shared library. For example, if the application inserts a new document,
the query analysis functionality uses the encryption schema to determine which fields need to
be encrypted and marks those fields accordingly. libmongocrypt then uses those markings to
encrypt and produce the appropriate cryptographic tokens needed for server-side query execution.
On the other hand, if the client supports explicit encryption, the application is responsible for
specifying each value’s query type, DEK and other QE-specific parameters. Finds, updates and
deletes work similarly.

QE’s database encryption scheme. The cryptographic core of QE is called OST. OST is a
structured encryption scheme—specifically, a document database encryption scheme—described
and analyzed in [23]. 3 QE implements an emulated version of OST which, roughly speaking,

3A new document that formally analyses the security of OST’s range queries is in progress.
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means that it implements the OST scheme but in a way that uses MongoDB’s native data
structures. Here, we only provide a high level overview of how QE works:

1. create collection: when creating a QE-encrypted collection, three collections are created: the
edc which stores the encrypted documents, the esc which stores an auxiliary encrypted
structure needed for search, and the ecoc which stores an auxiliary encrypted structure
needed to compact the esc if it gets too large. Note that the esc and the ecoc are standard
MongoDB collections but their documents contain cryptographic data that, together, make
up an “emulated” encrypted data structure. To highlight the fact that the documents in
the esc and the ecoc are not regular documents—in the sense that they do not store user
data—we sometimes refer to them as meta documents.

2. document insertions: a document with a set of fields F with a subset EF ⊆ F of QE-
encrypted fields is inserted as follows. For all fields f ∈ EF, f ’s value vf is encrypted using
AES256-CBC-SHA256. In addition, an array safeContent that stores cryptographic
search tags is added to the document. These tags are generated using a pseudo-random
function (PRF) and information stored in the esc.

3. finds: to find documents that match a given filter, a set of cryptographic tokens are sent
to the server. The server uses these tokens with the esc to generate a set of cryptographic
search tags and returns the documents whose safeContent array stores any of these
tags.

4. updates: to update a document that matches a given filter, a set of cryptographic tokens
and an updated encrypted value are sent to the server. The server uses these tokens with
the esc to generate a set of cryptographic search tags. One of the documents whose

safeContent contains one of these tags is then updated with the new encrypted value.

5. deletes: to delete a document that matches a filter, a set of cryptographic tokens and an
updated encrypted value are sent to the server. The server uses these tokens with the esc to
generate a set of cryptographic search tags. One of the documents whose safeContent
contains one of these tags is then deleted. 4

6. compacts: the esc grows in size so QE supports a compaction operation to reduce its size.
To compact the esc, a cryptographic compact token is sent to the server. The server uses
this token with information from the ecoc to delete stale items in the esc.

For more details on how OST works, we refer the reader to [23]. In the rest of this document,
we refer to a triple (edc, esc, ecoc) as an encrypted database edb.

3.1 How QE Handles Range Queries
In release 8.0, QE handles range queries over a variety of numerical data types. Here, we will
give an overview of how ranges are handled but we highlight that ranges queries in QE have a
different security/leakage profile than equality queries so they should be used with some degree
of caution. We discuss this in more detail in Section 4, but the summary is that range queries
should not be used if one is concerned with persistent adversaries.

4The specific document is chosen arbitrarily by the server.
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Numerical data types. QE supports a variety of numerical types, including, sint32, int64
(date), sint64, bin64 (IEEE 754 binary64) and dec128 (IEEE 754 decimal128). We briefly
describe below each of the supported numerical data types.

• The signed integer sint32 numerical type represents 32-bit integers that can take values
from −2, 147, 483, 648 to 2, 147, 483, 647.

• The unsigned integer int64 (date) numerical type represents 64-bit integers that can take
values from 0 to 18, 446, 744, 073, 709, 551, 615.

• The signed integer sint64 numerical type represents 64-bit integers that can take values
from −9, 223, 372, 036, 854, 775, 808 to 9, 223, 372, 036, 854, 775, 807.

• The IEEE 754 bin64 numerical type is a double-precision floating-point format that sup-
ports ≈ 15 decimal digits of significand. bin64 requires 64-bits and represents a large
number of numerical values that can go up to ≈ 10308.

• The IEEE 754 dec128 numerical type is a decimal floating-point format that supports ≈ 34
decimal digits of significand. dec128 requires 128-bits and represents a large mumber of
numerical values that can go up to ≈ 106,144 .

queries and some of the nuances and limitations of its approach.

A naive range-to-point transformation. Roughly speaking, QE handles range queries by
transforming them to a set of equality queries which we sometimes refer to as point queries. To
gain some intuition as to how this might work, consider a find query for a field f and integer
range [0, 3] and note that one could recover all the relevant documents by transforming it into
point queries for 0, 1, 2 and 3. While this works and is relatively simple to implement, it has one
major drawback: if the range is large then it will be transformed into a large number of point
queries. More formally, if we define the width of a range query [a, b] as w = b − a, then this
simple transformation results in w point queries.

A better range-to-point transformation. A better approach is to decompose the domain V
of the field into subsets V1, . . . , Vm in such a way that a range query [a, b] can be decomposed into
a subset of V1, . . . , Vm. For example, suppose the domain of an integer field is {0, . . . , 10} and the
range query is [2, 6]. If the domain was decomposed into, say, V1 = {0, 1, 2}, V2 = {3, 4, 5, 6},
V3 = {7, 8} and V4 = {9, 10} then the range query could be decomposed into point queries
for V1 and V2 which is only 2 point queries. In fact, using this decomposition, a range query
will be transformed into at most 4 point queries which is considerably better than the previous
approach which would require 10. The limitation of this transformation, however, is that it can
result in false positives. For instance, in the example above, the point queries for V1 and V2
used for range [2, 6] return all the documents with field values in the range [2, 6] in addition to
the documents with field values in range [0, 1].
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State of the art. This can be handled, however, by decomposing the domain in a more
clever way as shown in [13, 12]. In these works, the authors decompose the domain based on
the structure of a binary tree and propose efficient algorithms to decompose range queries into
point queries. These techniques result in no false positives and a query expansion that is upper
bounded by log N . This was further generalized in [25] which shows that these decompositions
can be generalized beyond binary trees to more general combinatorial objects called hypergraphs.
This work provides several different hypergraph constructions together with efficient algorithms
that can be used to achieve a variety of tradeoffs between false positives, leakage, storage and
query amplification.

Hypergraphs. To handle ranges, QE builds on the approach of [25] but uses a new hypergraph
family that was custom-designed for our purposes. The details of this hypergraph family can be
found in [25] but here we will only mention that the hypergraphs are described by the following
parameters:

• the sparsity factor sparsifies the hypergraph which in turn improves QE’s storage overhead
as well as its insert and update amplification at the cost of increasing its find amplification.

• the trimming factor trims the hypergraph which in turn increases QE’s throughput under
concurrent insert and update operations and decreases its storage amplification at the cost
of increasing its find amplification.

• if the lower bound and upper bound on the field values stored in the collection are higher
and lower, respectively, than the default bounds of the field’s numerical type, then QE can
construct a smaller hypergraph which results in better performance for all operations.

4 Reasoning about Database Encryption Security
Why is database encryption hard to design? Database encryption and, specifically, in-use
database encryption, is challenging to design. There are several reasons for this, but the main
one is a fundamental insight of cryptographic design that is often missed: it is possible (and
common) to design insecure cryptographic primitives/protocols from completely secure building
blocks. In other words, the fact that a cryptographic primitive/protocol makes use of a secure
building block does not necessarily imply that the protocol is secure. In the context of database
encryption, this leads to the common mistake of thinking that a database encryption solution is
secure simply because it makes use of a standard encryption scheme like AES. It is important to
understand that standard AES encryption (e.g., using Counter Mode or CBC mode) is designed
to do one thing and one thing only: to encrypt a message with a given key so that it can be
decrypted with the same key. Specifically, it is not designed to support queries on the ciphertext.
This means that any database encryption solution—even one that is completely based on AES—
has to be considered and analyzed as a new cryptographic object that does not automatically
inherit the security properties of the underlying encryption scheme.

Why is database encryption hard to analyze? Once a solution is designed, its security
needs to be analyzed. The security of cryptographic primitives is hard to analyze in general and is
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particularly so for database encryption for the following reasons. Consider a standard symmetric
encryption scheme like AES256-CBC. Most people’s intuitive understanding of AES256-CBC’s
security is that it “protects the plaintext” in the sense that, if a message m is encrypted with
AES256-CBC then an adversary cannot learn anything about the message m from an encryption
ct of m. While this seems correct, it is not completely true because an adversary can learn an
approximation of m’s length from the cihertext ct. This bit of information is leaked because
AES256-CBC pads messages to the nearest multiple of 128 bits and outputs a ciphertext of that
size. This detail is usually omitted from discussions about the security of encryption because it
does not seem to matter in many situations. However, consider a situation where the adversary
knows that you are encrypting either “MongoDB” or “Queryable Encryption”. An example
AES256-CBC encryption of “MongoDB” in base64 is

U2FsdGVkX18aLwGD3rvdkptOLFTVJOJ98O7xPigWCYw=

whereas an example AES256-CBC encryption of “Queryable Encryption” is

U2FsdGVkX194wyPXIu4lQnmhsWoaGrxEOEhOPjw+oAc+a3VGH1FyAv1t9h4kWpeX.

Given either of these ciphertexts, the adversary can easily guess which message was encrypted
simply by looking at its length. Database encryption solutions are much more complex than this
but this simple example gets at the heart of why analyzing database encryption is so challenging.

What is leakage in cryptography? As seen in the simple example above, every encryption
scheme leaks something about the plaintext. In the case of AES256-CBC, the leakage is an
approximation of the message’ s length. In the case of the one-time pad—which is a “perfectly
secure” encryption scheme—the leakage is the exact length of the message. There are many
possible ways of designing database encryption solutions, but the important thing to understand
is that they all leak something. Furthermore, leakage is not unique to database encryption—
it exists in regular/standard encryption and other cryptographic and privacy primitives such as
secure multi-party computation and differential privacy. The question is not whether a particular
solution leaks something; rather, the important questions are: (1) what exactly does it leak?;
(2) can this leakage be exploited or not? and (3) can it be suppressed (preferably efficiently)?
For most solutions, the answer to these questions is difficult to ascertain because it depends on
a variety of factors including what exactly the adversary has access to and what information
it already knows about the data, e.g., in our previous example the adversary knew that the
ciphertext was either an encryption of “MongoDB” or of “Queryable Encryption”.

Tradeoffs. Database encryption solutions can be designed in a variety of ways using a multitude
of different cryptographic techniques and primitives. One should not get fixated on which specific
primitive is used as a building block because what ultimately matters is how secure the final
solution is and how well it performs. When evaluating a database encryption solution it is
important to understand the tradeoffs it provides between:

1. performance: how much overhead does it add to database operations? does it increase the
size of the data? Keep in mind that the performance of an encrypted database may be very
different than the performance of a plaintext database even using the same DBMS. In other
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words, using a DBMS’ s in-use encryption solution may radically change the workloads for
which the system can be used. Because of this, standard benchmarks do not necessarily
capture realistic workloads and thus the real-world performance profile of a solution.

2. functionality: what fraction of the query language does the solution support? Most in-use
database encryption solutions only support a fraction of the system’s query language and
are only usable for certain applications.

3. leakage: what exactly does the solution leak and against what type of adversary? Under
what conditions is that leakage exploitable?

Methodologies. Due to the complexity of the cryptographic designs and the subtleties in-
volved in analyzing their security, database encryption solutions are usually analyzed using one
of two methodologies:

1. heuristic: the solution is carefully designed for a given real-world commercial DBMS and
to address a set of threats that are implicitly understood by the designer. The solution is
then vetted by stakeholders and adopted if they feel comfortable with its design.

2. theoretical: the solution is carefully designed for an abstracted and idealized DBMS to
address a set of threats that are explicitly and formally captured. The solution is then
formally analyzed with respect to the adversarial model by formalizing the leakage profile
of the solution, then providing a proof that shows that the solution leaks at most what is
captured by the leakage profile.

These two approaches each have advantages and disadvantages. The theoretical approach pro-
vides clear, explicit and strong security guarantees that can be verified, but it does this in the
context of an idealized and simple DBMS which does not capture the complexities of commercial
systems. The heuristic approach provides vague security guarantees that are harder to verify, but
it does so in the context of a real DBMS without making any assumptions about how the sys-
tem works. Unsurprisingly, all previous commercial database encryption technologies—including
CSFLE and Always Encrypted for SQL Server—are designed and analyzed using the heuristic
methodology, and most of the database encryption solutions proposed in the research literature
are designed and analyzed using the theoretical methodology. QE, on the other hand, was de-
signed and analyzed using a new, hybrid approach. Again, we stress that database encryption
is a quickly evolving field and that, while our hybrid methodology is a step forward, it is not
perfect and will continue evolving.

Evaluating leakage profiles via cryptanalysis. The theoretical methodology of proving
that a solution achieves a given leakage profile has value, but only up to a certain point. In
particular, it does not tell us whether or not a particular leakage profile is exploitable or even
whether it is better or worse than another. So, how does one evaluate a leakage profile? There
is not a really satisfactory answer to this question at this stage in the research literature. Es-
tablishing a formal and sound way to do this is one of the major problems still left open in
the field. Currently, the best approach we have is to use cryptanalysis or, in other words, to
design leakage attacks that try to exploit various leakage profiles. If a leakage profile withstands

12



scrutiny, we can have some confidence that it might be safe. Notice that this is how most (if not
all) practical real-world cryptography works. Nevertheless, there are some interesting research
ideas on how to evaluate leakage profiles mathematically and without relying purely on crypt-
analysis [40, 18, 17, 26, 22]. These ideas are still in their infancy but are promising and likely to
contribute to the evolution of database encryption technology.

Interpreting cryptanalytic results. Without wanting to downplay the importance and use-
fulness of cryptanalytic results, it is also important to learn how to interpret them correctly.
This is difficult and subtle in the case of database encryption due to several reasons:

1. emerging: leakage attacks are a relatively new form of cryptanalysis so they are still poorly
understood.

2. evaluation: there is no consensus on how leakage attacks should be evaluated empirically.
Different papers use different methodologies and, more often than not, the evaluation cri-
teria are chosen arbitrarily and without justification.

3. assumptions: leakage attacks rely on assumptions about the data and/or queries and what
the adversary already knows about them. The reasonableness of these assumptions varies
and experts may disagree on whether a particular assumption is reasonable in practice or
not. The issue, however, is that often these assumptions are not properly and clearly stated
or studied. And when assumptions are stated, they are rarely communicated as part of the
work’s high-level claims.

Again, we stress that our goal here is not to undermine the study of leakage attacks or to
claim that these attacks should be dismissed. Indeed, this is an important area of research for
MongoDB which is illustrated by the fact that MongoDB researchers contributed the following
to the study of leakage attacks:

1. the first inference attacks against PPE-encrypted databases [34];

2. the state-of-the-art known-data and injection attacks against the volume pattern [8];

3. the state-of-the-art inference attacks against the query equality pattern [19];

4. an open-source software framework called LEAKER that implements the major leakage at-
tacks and can be used to evaluate and analyze them on real-world data [20].

The takeaway is that the real-world impact of a leakage attack needs to be evaluated carefully.
The cryptanalytic results it presents need to be put in context by asking the following questions:

1. what adversarial model does the attack work in and is that model relevant to my deployment
scenario and threat model?

2. is the leakage profile exploited by the attack relevant to the database encryption technology
I am using?

3. what are the limitations of the attack and are they properly communicated and disclosed?
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4. what assumptions does the attack rely on and are they realistic?

5. how was the attack evaluated empirically and was the evaluation methodology meaningful?

6. are there any trivial countermeasures?

The answer to these questions can sometimes be hard to ascertain so it is always prudent to work
with an expert in the area to gain perspective. This is no different than the need to evaluate and
determine the practical relevance of published attacks against symmetric encryption schemes like
AES, cryptographic hash functions like SHA256 and public-key encryption schemes like RSA.

Capturing insider threats. The research literature on encrypted databases considers only
two threat/adversarial models:

1. the snapshot model which captures disclosures of the encrypted database itself (but not,
for example, any logs or data structures managed by the DBMS);

2. the persistent model which captures cases where the database server is completely and
entirely compromised.

While these models are interesting, we found that they do not precisely capture the majority of
threats that commercial database users are concerned with in practice. As discussed in Section 2,
according to the 2022 Cost of Data Breaches Report [38], insider threats account for ≈ 47% of
breaches and at least ≈ 69% of breaches did not require any compromise of the underlying
system’s security mechanisms. These statistics motivate more nuanced adversarial models and
security analyses which we propose and describe in detail in Sections 5 and 8.

4.1 How we Evaluated Queryable Encryption
As we have seen, the design and implementation of database encryption is challenging. To
evaluate QE, we adopted the following methodology:

1. design and theoretical analysis: we designed and analyzed QE’s core cryptographic scheme,
OST, using the provable/reductionist security paradigm 5 to show that OST achieves a well-
defined leakage profile with respect to a well-defined adversarial model: namely, security
against multi-snapshot adversaries which we will define more precisely below. However,
the analysis and proof of OST was done in an idealized setting where the adversary only
has access to the encrypted structures. One way to think of this idealized setting is as if
the analysis was carried out with respect to an idealized DBMS that does nothing else but
store the encrypted database and run QE’s encrypted query algorithms. The results of this
analysis are described in Section 6. The limitation of this analysis is that a real DMBS
does more than just store the (encrypted) database and execute the query algorithms. In
particular, real DMBSs log information about query executions, and this extra information
can potentially alter the leakage profile achieved in the theoretical (multi-snapshot) security
analysis.

5The provable/reductionist security paradigm is a methodology used to analyze the security of cryptographic
primitives and protocols where one shows that the security of the primitive/protocol reduces to a standard
computational assumption.
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2. independent/external design review: the theoretical design and security analysis of OST
was reviewed by an independent cryptographer with considerable research experience in
encrypted search.

3. insider analysis: as mentioned above, an important design goal of CSFLE and QE is pro-
tection against insider threats (either from stolen credentials, malicious insiders, miscon-
figurations, phishing or system errors). In these settings, QE needs to protect the database
against an adversary that accesses the database through legitimate means and, in particu-
lar, using commands that are authorized for its role. In this step, we conducted an insider
analysis in which we considered a set of important MongoDB built-in roles as follows:

(a) logging architecture and redaction: we surveyed MongoDB’s entire architecture to
identify all the components that log information about QE-encrypted collections and,
in some cases, ensured that QE-related information was redacted from the logs. Mon-
goDB’s logging architecture is extensive and complex, and some of its logs are neces-
sary (e.g, for customer support). Nevertheless, when we could not redact information
completely, we reduced it substantially, and, when we could not reduce it, we ac-
counted for it in our insider analysis described in Section 8.

(b) roles and commands: for each role we considered, we surveyed its authorized com-
mands using both MongoDB’s documentation and code.

(c) role-based leakage profile: based on our survey of the roles’ authorized commands and
of MongoDB’s logging architecture, we established which components a particular role
has access to and, therefore, the leakage profile QE has with respect to this role. The
results of this analysis are described in Section 8.

4. internal code review: after QE was implemented by the engineering team, the entire codebase
was reviewed by the cryptography team to find gaps between implementation and design.

5. independent/external code audit: after the internal code review, the entire QE codebase was
audited by an independent security firm.

Remark. While our approach to evaluating QE’s design and implementation is already exten-
sive, we are continuously working to extend and improve how we evaluate QE. We are currently
working on new tools and methodologies which we plan to outline in the near future.

5 Adversarial Models
The security of an encrypted database can be analyzed using a variety of adversarial models
which can be categorized along two dimensions: (1) the adversary’s view, e.g., the database, the
disk, certain logs, the memory or even the entire server; and (2) a schedule that determines when
and for how long it has access to this view, e.g., a snapshot in time, multiple snapshots in time
or continuously.
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Existing models. The adversarial models considered in the literature include persistent ad-
versaries and snapshot adversaries. Roughly speaking, persistent adversaries have access to the
entire database server, whereas snapshot adversaries only receive the encrypted database. These
two models have been useful in research, but, as first pointed out by [15], they do not neces-
sarily capture real-world implementations of encrypted database systems. Indeed, DBMSs are
very complex systems that satisfy many important requirements that are sometimes in conflict
with security. To address this and to better capture the security guarantees of real-world en-
crypted database systems, we extend and increase the number of adversarial models for encrypted
databases. In the following, we briefly and informally describe these new models.

Advesarial views. To analyze the security of real-world encrypted databases, we will consider
a variety of possible adversarial models, each of which captures different kinds of attacks. The
view of an adversary will be described along two dimensions as follows:

1. surface: the surface of a view is the subset of DBMS components the adversary can com-
promise. In the worst case, this could be the entire DBMS but in others it might include
a subset of components like the network interface, plaintext databases, indexes, encrypted
databases, various data structures, logs, files and disk.

2. schedule: the schedule of a view is the set of times at which the adversary can access the
elements of its surface. One can consider a variety of different schedules, for example,
after every operation, or only after a specific operation, or according to some probability
distribution.

Definition 5.1. Let dbms = {component1, . . . , componentm} be a database management sys-
tem and op = (op1, . . . , opn) be a sequence of operations. We say that an adversary A has
a (surface, schedule)-view if it can observe every component in surface ⊆ dbms at each time in
schedule. We will sometimes say that A is a (surface, schedule)-adversary.

Using this framework, we can describe various kinds of snapshot adversaries as well as persis-
tent adversaries. For example, traditional single-snapshot adversaries are (edb, t)-adversaries for
t ∈ [n], where [n] denotes the set of integers {1, . . . , n}. Traditional multi-snapshot adversaries
are (edb, [n])-adversaries and persistent adversaries are (dbms, ∞)-adversaries, where dbms refers
to the entire system (including the network interface) and ∞ is the continuous schedule which
allows the adversary to access the compromised components at any time and for as long as it
wants.

6 Theoretical Analysis
In this section, we provide an overview of the theoretical analysis we conducted on QE. Before
doing so, we also provide an overview of such an analysis for NE, TDE, ESE and CSFLE which, as
far as we know, have never been formally analyzed.

Analysis of first-generation solutions. Solutions like ibmne, TDE and ESE encrypt the
database files at the storage engine level with an externally managed key. The purpose of these
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solutions is to protect against disk theft or other forms of disk-level compromise. A detailed
treatment of the security of TDE and ESE is beyond the scope of this document, but one can
see that their security is actually more subtle when we consider different adversary models. For
example, TDE and ESE reveal at least the size of the database against (disk, t)-adversaries (this
depends on the specific design) and leak more to (disk, S)-adversaries for any set S ⊆ [n] such
that |S| ≥ 2. In other words, NE, TDE and ESE leak something to an adversary that can access at
least two snapshots of disk. This is because, whenever a change is made to the database, TDE/ESE
only re-encrypts the pages that were affected by the change. If an adversary gets disk snapshots
before and after the change, it can learn the number of pages that were affected by the update
by looking for the pages that changed. In turn, the number of changed pages could be correlated
with, for example, the number of documents/rows that match an update’s filter. In practice, this
leakage may not be an issue, but this highlights that these solutions leak information even to an
adversary that can only access disk. The takeaway is that every solution leaks something, and
even standard and well-understood database encryption technologies exhibit subtle behaviors
upon closer inspection that can depend on the adversarial model in question.

Analysis of second-generation solutions. Second generation solutions like AE, CSFLE and
earlier research systems like [3, 37, 5] support queries on encrypted data by encrypting values
with deterministic encryption. Surprisingly, the use of deterministic encryption as a database
encryption solution has never been formally analyzed until now. At a minimum, these solutions
have the following leakage profile against (edb, [n])-adversaries:

1. init operations do not reveal anything beyond public parameters;

2. insert operations reveal the shape of the inserted document, by which we mean an upper
and lower bound on the length of the values of each encrypted field. 6 They also leak
the field-level value equality, i.e., whether two encrypted values for the same field across
different documents are the same. In particular, the field-level value equality itself reveals
the frequency of the field/value pairs in a collection.

3. find operations reveal nothing;

4. deleteOne operations reveal when the deleted document was inserted or updated in the
past;

5. updateOne operations reveal the shape of the update and when the udpated document was
inserted or updated in the past. In addition, it reveals the field-level value equality of the
updated field/value pairs which, in turn, reveals their frequency.

Note that both CSFLE and AE support more than these operations but, here, we only consider
this subset because this is what QE supports.

6The length is revealed because AES-CBC encryption is used. This leakage can be avoided if every field value
is padded to be the same length before passing them to CSFLE or AE.
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Analysis of queryable encryption. Recall that the weakest kind of adversaries are (edb, t)-
adversaries, which only get a single snapshot of the encrypted database. A stronger class of
adversaries are (edb, [n])-adversaries which receive multiple snapshots of the encrypted database,
specifically after every operation. As we saw above, due to its use of deterministic encryption,
CSFLE leaks the frequency pattern to (edb, t)-adversaries. On the other hand, QE’s underlying
structured encryption scheme, OST, does not. In fact, it achieves a much better leakage profile
against both single and multi-snapshot adversaries. A theoretical analysis of OST is available in
[23], where it is shown to have the following leakage profile against (edb, [n])-adversaries:

1. init operations do not reveal anything beyond public parameters;

2. insert operations reveal the shape of the inserted document;

3. find operations reveal nothing;

4. deleteOne operations reveal when the deleted document was inserted or updated in the
past;

5. updateOne operations reveal the shape of the update and when the updated document was
inserted or updated in the past;

6. compact operations reveal the number of unique values for all fields that were inserted since
the last compaction.

Comparison to second-generation solutions. A summary of the leakage profiles of TDE,
ESE, CSFLE, AE and QE against single- and multi-snapshot adversaries over different surfaces is
provided in Table 1. The above analysis is against (edb, [n])-adversaries; that is, adversaries that
can obtain a copy of the encrypted database after every operation. Against (edb, t)-adversaries,
however, QE only reveals the shape of the documents in the collection. This is in contrast to
second-generation solutions based on deterministic encryption like CSFLE and AE which reveal
the shape of the documents and the frequency of each encrypted value in the collection/table.

Reminder. It is important to keep in mind that the analysis we summarized here (and can
be found in detail in [23]) is theoretical in the sense that the surface only includes edb which, in
the case of QE, are the user collection and all the auxiliary (encrypted) collections QE creates in
order to support search. In other words, QE has the leakage profile described above only against
adversaries that recover the encrypted database; i.e., the user’s QE-encrypted collection together
with QE’s auxiliary encrypted collections. If the surface changes, QE’s leakage profile will change
as well. We discuss and analyze this in more detail in Sections 7 and 8.

6.1 Range Queries in the Persistent Model
As discussed in Section 3.1, QE handles range queries by transforming them to point queries but
this does not necessarily mean that the security of range queries is the same as the security of

7This leakage profile is the result of a preliminary analysis. A formal and complete treatment is underway and
when finished this document will be updated with the final results.
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Surface Schedule (Informal) Leakage

TDE & ESE
disk t at least dbsize
db t at least database

dbms t database, queries, updates 7

CSFLE & AE
edb t shape, valeqf

edb [n] shape, upshape, writetime, valeqf

dbms ∞ opeq, shape, upshape, writetime, valeqf
7

QE
edb t shape
edb [n] shape, upshape, writetime, compuniq

dbms ∞ opeq, shape, upshape, writetime, comptime, valeqf
7

Table 1: Leakage profiles of first-, second- and third-generation database encryption technologies
against a variety of adversaries. The leakage pattern dbsize reveals the size of the database,
database reveals the entire database, shape reveals upper and lower bounds on the values’ lengths,
the field-level value equality valeqf reveals whether two field/value pairs are equal; the update
shape upshape reveals upper and lower bounds on the udpated values of a an updated document;
the document operations writetime reveals when a document is inserted, updated or deleted; the
operation equality opeq reveals if and when two operations are executed on the same parameters
(e.g., field/value pairs, filters etc.); the post-compaction uniqueness compuniq reveals the number
of unique values inserted since the last compaction and comptime reveals when a compaction
occurs. We stress that these descriptions are not completely formal and precise and are only
meant to convey high-level intuition. For a formal and precise description of OST’s leakage,
see [23].

equality queries. Concretely speaking—and in line with QE’s design goals—range queries provide
similar security as equality queries against multi-snapshot adversaries (which, roughly speaking,
correspond to data exfiltration attacks) but are considerably weaker than equality queries against
persistent adversaries which, roughly speaking, correspond to advanced persistent threats.

Cryptanalysis of range queries. Even though QE is not designed for persistent adversaries,
for completeness, MongoDB’s Cryptography Research team conducted an extensive cryptanalytic
study of QE’s range queries against persistent adversaries by designing and executing leakage
attacks against the leakage profile of QE range queries under various conditions (e.g., different
target and auxiliary distributions). The technical details of the attacks are complex and beyond
the scope of this document 8 but the attacks achieved very high recovery rates—in some settings
recovering up to 98% of the data—which underscores the importance of the guideline that QE
should only be used against multi-snapshot adversaries and this is especially true for range queries.
More concretely, this means that QE—and especially range queries—should only be used when one
is concerned with data exfiltration, i.e., breaches that result in data being exposed but not both
data and query transcripts/logs. In other words, if there is any chance that query transcripts/logs
could be revealed to an adversary in addition to the (encrypted) data then QE and especially range
queries should not be used. This is true even if only a small number of query transcripts/logs
might be revealed.

8The team plans on discussing these new attacks in a separate manuscript.
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Figure 2: The mongod logging architecture.

7 The MongoDB Logging Architecture
In this section, we provide an overview of MongoDB’s logging and caching architecture. This
is important for the following reason. Our theoretical analysis of QE’s underlying database
encryption scheme, OST, is against a database-level snapshot adversary; that is, against an
adversary that has access to the encrypted database. In the context of QE, this means access
to edb = (edc, esc, ecoc). DBMSs, however, log all sorts of information about queries so, as
pointed out in [15], an adversary that can access these logs sees more than edb. To account for
this, we survey MongoDB’s logging architecture and make use of it in our insider analysis in
Section 8.

The mongod architecture. mongod is composed of many components and logs information
in a variety of internal databases, collections and files. For our purposes, however, the most
important ones are illustrated in Figure 2 and summarized here:

1. service entry point (SEP): when a command arrives at a mongod instance, it is processed by
the service entry point which, among other things, verifies whether the user is authorized
to run this command. If the command is a CRUD operation and the user is authorized the
command is passed to the query optimizer.

2. query optimizer and engine: the query optimizer takes a query and finds an optimized query
plan so that the query can be executed efficiently. In the process, the query optimizer may
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cache the plan it finds it its plancache. Once a plan is found, it passes it to the query
engine to execute. The query engine executes the plan in conjunction with the storage
engine.

3. The (structured) Log: mongod instances log various events to either the operating system’s
syslog, stdout or to a log file which is set to /var/log/mongodb/mongodb.log by default
on Unix systems. mongodb.log captures a variety of messages such as those related to
access control, database operations, network activities, replica set elections, diagnostic
data, operations on indexes, storage engine journal, query planning, recovery (see [32] for
a complete list).

4. database profiler : the database profiler logs database operations, configuration and admin
commands to a capped collection called ∗.system.profile for any profiled database. The
profiler is off by default and needs to be explicitly turned for a given database. It has
several verbosity levels that dictate how much detail is logged (see [31] for more details).

5. auditing: MongoDB Enterprise includes an auditing service that logs system activity like
authentication events, collection creations, renames and drops, index creations, role cre-
ation, granting and revocations, and system shutdowns and startups. The auditing service
can also log database operations like insert, find, findAndModify etc. The auditing ser-
vice is turned off by default and must be explicitly turned on. The audit log can be output
to the console, to the syslog or to a file, e.g., data/db/auditLog.json.

6. replication: to provide redundancy and availability, every mongod instance is replicated
across other mongod instances in MongoDB Atlas (and optionally in Enterprise Advanced
and Community). The main instance is called the primary and the replicas are referred to as
secondaries. The primary and secondaries form a replica set. To support replication, every
mongod creates a database called local which stores information needed to synchronize
and coordinate the replicas. One of the collections, local.oplog.rs stores every write
operation made to the database. We refer to this collection as local.oplog and it is
the primary mechanism by which secondaries synchronize their copy of the database to
the primary’s. While local.oplog stores write operations on QE-encrypted fields, it is
a capped collection which means that it has a fixed size and gets overwritten if it grows
larger.

7. config: MongoDB also logs information in a database called config.∗ in order to sup-
port sharding and causally consistent sessions. The config database includes a variety of
collections (see [30] for more details).

8. full time diagnostic data collection (FTDC): to enable support, mongod runs a service
called FTDC that collects statistics about CPU, memory and disk utilization, network
performance and CRUD operation performance. FTDC statistics are stored in a directory
called diagnostic.data on the file system. By default, FTDC collects information every
second and the diagnostic.data directory has a 200MB limit before it is overwritten.
FTDC can be disabled on both mongos and mongod.

21



9. admin: MongoDB instances include an admin.∗ database which stores user authentication
and authorization data such as usernames and passwords. It also contains information
about the roles and privileges assigned to each user.

10. other database-specific system collections: MongoDB also maintains various internal database-
specific system collections including ∗.system.js which stores client-defined JavaScript
code for server-side computation, and the ∗.system.views which contains information
about the database’s views.

11. WiredTiger : the WiredTiger storage engine stores all the collections described above in disk
and also generates additional files including the journal, diagnostic.data, WiredTigerHS.wt,
WiredTigerLAS.wt and various other files for configuration purposes.

Commands. We summarize some of the commands that can be run to manage MongoDB
databases and clusters. This is not a comprehensive list and is focused on commands that will
be relevant to the insider analysis we carry out in Section 8.9

1. $collStats: returns statistics about a given collection;

2. $planCacheStats: returns statistics about the query plan;

3. trafficRecord: records (decrypted) network communication.

4. auditConfigure: configures auditing for mongod and mongos instances at runtime;

5. listIndexes: returns information about the indexes of a given collection including, the
keys and options used to create the index;

6. $renameCollectionSameDB: allows the user to change the name of an existing collection
on the current database;

7. serverStatus: returns statistics gathered by the FTDC service, including information
related to CPU, disk and memory usage. This includes read and write latencies, statistics
on primary node elections, locking information and the number of bits spilled to disk. Note
that this data is accumulated across a single machine and does not pertain to a specific
database or collection. serverStatus can, however, be repeatedly executed to gather finer-
grained statistics. These statistics will still be across a single machine but could be at the
granularity of a second.

8. setParameter: sets a variety of server parameters. For a full list, see [2];

9. $allCollectionStats: returns statistics over all the collections;

10. $operationMetrics: returns various internal billing metrics for Atlas serverless such as
the number of documents read, the number of index entries read or the number of cursor
seeks;

9Note that aggregation pipeline stages have a $ sign prepended to their name.

22



Role Surface Schedule Leakage
read edb [n] shape, upshape, writetime, compuniq

readWrite edb [n] shape, upshape, writetime, compuniq
dbAdmin edb [n] shape, upshape, writetime, compuniq

clusterManager edb [n] opeq, shape, upshape, writetime, compuniq, valeqf
10

clusterMonitor edb [n] opeq, shape, upshape, writetime, compuniq, valeqf
10

hostManager edb [n] opeq, shape, upshape, writetime, compuniq, valeqf
10

backup edb [n] opeq, shape, upshape, writetime, compuniq, valeqf
10

restore edb [n] shape, upshape, writetime, compuniq

Table 2: Insider analysis against eight MongoDB built-in roles.

11. $currentOp: returns information on in-progress operations;

12. top: returns usage statistics for each collection;

13. getLog: returns the most recent 1024 logged mongod events from a cached data structure.

14. $connPoolStats: returns information about the open connections to the cluster and replica
set;

15. setClusterParameter: allows a user to change the changeStreamOptions parameter of
a cluster. This parameter changes the retention policy of pre- and post-change document
images in a change stream.

8 Insider Analysis
In this section, we study the security guarantees that QE offers against eight MongoDB built-in
roles. We summarize this analysis in Table 2 and begin with some background.

Built-in roles. MongoDB uses role-based authentication to manage access to its resources. A
role consists of a set of: (1) authorized resources, like databases, collections, and clusters; and
(2) authorized commands to read, write, update and manage the databases and system. In our
analysis, a role’s surface consists of the resources it is authorized to access and the outputs of
its authorized commands. When we say that a role has access to a particular resource (e.g.,
local.oplog), we implicitly assume it is authorized to run a $find command on it, so we do
not mention these $finds explicitly in its list of authorized commands. We primarily focus on
the built-in roles of MongoDB Enterprise Advanced (EA), but our analysis also applies to the
built-in roles of Atlas, with the exception of a few instances which we highlight. For more on
MongoDB’s built-in roles, see [1].

10This leakage profile is the result of a preliminary analysis. A formal and complete treatment is underway and
when finished this document will be updated with the final results.
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Reminder. We assume throughout that the roles do not grant access to the encryption keys.
If a QE-encrypted collection includes both plaintext and QE-encrypted fields then the role may
be able to access/read/write the plaintext data but it cannot decrypt the QE-encrypted values
or the QE auxiliary collections.

8.1 Database User Roles
Database user roles include the read and readWrite role which allow a user to execute read and
read and write operations, respectively.

Read role. The read role allows a user to perform read operations on a set of authorized
databases and their associated management collections:

• surface: the surface of the read role includes its authorized databases and their associated
∗.system.js collections. Note that when creating a read role it is possible to authorize
it to access the config.∗, local.∗ and admin.∗ databases. Here we assume that read
is not authorized to access the local.∗ database. The surface also includes the output
of its authorized commands like $collStats and $planCacheStats. For the full list of
commands, see [29].

• schedule: we assume read can access its surface after every operation;

• view: the only databases/collections in read’s surface that holds QE-related data is edb =
(edc, esc, ecoc). In addition, none of read’s authorized operations return QE-related data.
Therefore, read’s view is that of an (edb, [n])-adversary.

Read and write role. The readWrite role allows a user to perform read and write operations
on a set of authorized databases and their associated management collections:

• surface: the surface of the readWrite role includes its authorized databases and their asso-
ciated ∗.system.js collections. Note that when creating a readWrite role it is possible to
additionally grant it access to the config.∗, local.∗ and admin.∗ databases. Here, we as-
sume that the readWrite is not authorized to access the local.∗ database. The surface also
includes the output of its authorized commands like $collStats and $planCacheStats.
For the full list of commands, see [29].

• schedule: we assume readWrite can access its surface after every operation;

• view: the only databases/collections in readWrite’s surface that holds QE-related data is
edb = (edc, esc, ecoc). In addition, none of readWrite’s authorized operations return
QE-related data. Therefore, readWrite’s view is that of an (edb, [n])-adversary.

8.2 Database Administration Roles
The dbAdmin role allows a user to perform administrative operations on a set of authorized
databases and their associated management collections:
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• surface: the surface of the dbAdmin role includes its authorized databases and their asso-
ciated ∗.system.profile collection if the profiler is turned on. The surface also includes
the output of its authorized commands like $collStats, $planCacheStats, listIndexes
and renameCollectionSameDB. For a full list of dbAdmin’s authorized commands, see [29].

• schedule: we assume dbAdmin can access the elements of its surface after every operation;

• view: the only databases/collections in dbAdmin’s surface that has QE-related data is edb =
(edc, esc, ecoc). In addition, the authorized operations that return QE-related data only
return information (e.g., statistics) about edb. Therefore, dbAdmin’s view is that of an
(edb, [n])-adversary.

8.3 Cluster Administration Roles
Cluster administration roles include the clusterManager, clusterMonitor and hostManager
roles. Unlike the previous roles, which are applied over specific databases, these roles are applied
at the level of MongoDB clusters and replica sets.

Cluster manager role. The clusterManager role allows a user to manage a cluster.

• surface: the surface of the clusterManager role includes all the databases on a cluster, in-
cluding user databases and their associated management collections like ∗.system.profile
and ∗.system.js. It also includes the system-wide internal databases like config.∗, admin.∗
and local.∗. The exact kind of access is varied but, for our purposes, we assume it has
full access to these databases to capture the worst case. clusterManager can run ad-
ministrative commands like addShard, listShards, removeShard, $planCacheStats and
setClusterParameter. 11 For the full list of commands, see [29].

• schedule: we assume clusterManager can access its surface after every operation;

• view: the only databases/collections in clusterManager’s surface that includes QE-related
data are edb = (edc, esc, ecoc) and local.oplog. Note that local.oplog stores transac-
tion numbers which are session-wide unique identifiers associated to every transaction and
that are generated using a counter. Transaction numbers are created and assigned even
for failed transactions so the difference between two transactions numbers is a function of
the number of failed transactions which is itself correlated with the number of concurrent
insert/updates on a field/value pair which is, in turn, correlated with that field/value pair’s
frequency. These correlations are loose and affected by many variables but, in the worst
case, could reveal frequency information. None of its authorized operations output any
QE-related data. Therefore, its view is that of an (dbms, ∞)-adversary.

11Note that clusterManager can run the $setFreeMonitoring command which allows it to observe
mongodb.log, slow queries and more. We do not include this in our analysis because it was deprecated in
April 2023 and will be decommissioned in August 2023.
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Remark. Our analysis of clusterManager assumed that it had full access to local.∗, which is
not the case in practice. More precisely, clusterManager can only update local.∗, but one could
theoretically use updates to learn partial information by issuing updates for known field/value
pairs and observing whether the update went through or not. Because of this, we modeled the
worst case and assumed full access, but, in practice, this is highly “pessimistic”. In followup
work, we will provide a more precise analysis of this role.

Cluster monitor role. The clusterMonitor role allows a user to monitor a cluster:

• surface: the surface of the clusterMonitor role includes all the databases on a cluster, in-
cluding user databases and their associated management collections like ∗.system.profile
and ∗.system.js. It also includes system-wide internal databases like config.∗, admin.∗
and local.∗. As for clusterManager, the exact access is varied but, for our purposes, we
assume it has full access to these databases to capture the worst case. clusterMonitor can
run a larger number and more powerful set of commands than clusterManager, including,
serverStatus, $collStats, $allCollectionStats, $operationMetrics, $currentOp,
top, getLog, and $connPoolStats. For a full list, see [29].

• schedule: we assume clusterMonitor can access its surface after every operation;

• view: the only databases/collections in clusterMonitor’ s surface that include QE-related
data are edb = (edc, esc, ecoc) and local.∗ which includes local.oplog. The outputs
of serverStatus, $operationMetrics and $connPoolStats contain QE-related data. Be-
cause of this we assume the worst-case and include the transcripts of all query operations
in the view. In summary, in the worst-case, the view of clusterMonitor is the view of a
(dbms, ∞)-adversary.

Host manager role. The hostManager role allows a user to monitor and manage clusters.

• surface: the surface of the hostManager role includes all the databases on a cluster, in-
cluding user databases and their associated management collections like ∗.system.profile
and ∗.system.js. It also includes system-wide internal databases like config.∗, local.∗
and admin.∗. As for the roles above, the exact access is varied but, for our purposes, we
assume it has full access to these databases to capture the worst case. hostManager has less
monitoring capabilities than clusterManager but is authorized to run a wider set of server
management commands, including, setParameter, trafficRecord and auditConfigure.
For a full list, see [29].

• schedule: we assume hostManager can access the elements of its surface after every oper-
ation;

• view: if auditing is not enabled, the only databases/collections in hostManager’s surface
that include QE-related data are edb = (edc, esc, ecoc). hostManager’s only authorized
command that can reveal QE-related data is trafficRecord, whose output could include
the transcripts of query operations. Therefore, the view of hostManager is that of a
(dbms, ∞)-adversary. On the other hand, if auditing is enabled, then hostManager has
access to auditLog as well. However, its view remains that of a (dbms, ∞)-adversary.
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8.4 Backup and Restoration Roles
We analyze two roles: backup and restore. These roles also operate at the level of a cluster as
opposed to specific databases.

Backup role. The backup role allows a user to backup the data on a cluster:

• surface: the surface of the backup role includes all the databases on a cluster, includ-
ing user databases and their associated management collections like ∗.system.profile
and ∗.system.js and system-wide internal databases like config.∗, local.∗ and admin.∗.
backup can run a variety of commands including serverStatus. For a full list, see [29].

• schedule: we assume backup can access the elements of its surface after every operation;

• view: the only databases/collections in backup’s surface that include QE-related data are
edb = (edc, esc, ecoc) and local.∗ which includes local.oplog. Its only authorized
command that can contain QE-related data is serverStatus. Therefore, the view of backup
is that of a (dbms, ∞)-adversary.

Restore role. The restore allows a user to restore backed-up data to a cluster.

• surface: the surface of the restore role includes all the databases on a cluster, including
user databases and their associated management collections like ∗.system.js and system-
wide internal databases like config.∗ and admin.∗. Note that when creating a restore
role, it is possible to authorize it to access ∗.system.profile and local.∗ databases.
Here, we assume that the restore is not authorized to do so. restore can run a variety
of commands including $createIndex and $createCollection.

• schedule: we assume restore can access the elements of its surface after every operation;

• view: the only databases/collections in restore’s surface that include QE-related data are
edb = (edc, esc, ecoc). None of its authorized commands contain any QE-related data.
Therefore, the view of restore is that of an (edb, [n])-adversary.

8.5 Custom Roles
MongoDB allows one to define custom roles. If a custom role is necessary, we suggest creating
roles as close as possible to the built-in roles analyzed in Section 8 and, if possible, with a smaller
subset of permissions. For example, hostManager has access by default to the trafficRecord and
auditConfigure commands which allow it to capture all the network traffic received by a MongoDB
instance and to set new audit configurations for mongod and mongos, respectively. Removing
access to these commands from hostManager’ set of authorized commands significantly improves
QE’s leakage profile against this role.
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9 Guidelines for Equality Queries
In this section, we describe a list of guidelines for setting various QE parameters as well as discuss
several security considerations.

9.1 Scheduling Compactions
Compaction is a QE operation that shrinks the size of an encrypted database by removing stale
data from the ecoc and esc. After compaction, the ecoc is reset to an empty collection and
the esc shrinks in size. Since compactions need to be started by clients/users, we provide some
guidelines for when to schedule them. Consider a simple QE-encrypted collection with a single
encrypted field, name, and 1, 000 documents such that 500 documents have name = Alice, 250
documents have name = Bob and 250 have name name = Eve. Prior to compaction, the ecoc and
the esc of such a collection will each hold 1, 000 meta documents (recall that meta documents
hold metadata and not client data). After compaction, the esc shrinks to 3 meta documents
and the ecoc is empty. This is a storage saving of around 99.85%. Generally speaking, we have

metadocs(esc) ≥ compactions · encfields,

where metadocs(esc) is the number of meta documents in the esc, compactions is the number
of compactions executed so far and encfields is the number of encrypted fields in the collection.
This suggests that the less often one compacts the better the storage savings. More precisely,

metadocs(esci+1) = metadocs(esci) − encfields · docinsertsi + valinsertsi,

where metadocs(esci+1) is the number of meta documents in the esc after the ith compaction,
metadocs(esci) the number of meta documents in the esc before the ith compaction, docinsertsi

is the number of documents inserted between the (i−1)th and the ith compaction and valinsertsi

is the number of unique encrypted field/value pairs inserted between the (i − 1)th and the ith
compaction.12 It follows that for a compaction operation to reduce the size of the esc by at least
t meta documents, it should be executed whenever

encfields · docinsertsi − valinsertsi ≥ t. (1)

So, a possible strategy to schedule compactions is to keep track locally of the values encfields,
docinsertsi and valinsertsi and to compact whenever Equation (1) is satisfied.

Security. As discussed in Section 6, compactions reveal valinsertsi, the number of unique QE-
encrypted field/value pairs since the last compaction.13 In the example above, #valinserts = 3
which means that the adversary learns that the number of unique field/value pairs inserted since

12For simplicity, we only discuss the case of insertions. Accounting for updates and deletions will slightly change
the equation. Note however that the same reasoning will still hold.

13This is the worst-case and occurs when QE’s contention factor is set to 1. The contention factor is a parameter
that allows one to tradeoff insert and update throughput for find performance (see Section 9.2). If the contention
factor is larger than 1, then compactions reveal the number of unique QE-encrypted field/value/partition triplets
since the last compaction.
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the last compaction was 3 but will not learn the inserted values themselves. Intuitively speaking,
in the absence of auxiliary information, the adversary will only know that the inserted documents
are one out of (

m

mi

)
· mi! ·

{
ni

mi

}

possibilities, where ni
◦= docinsertsi, mi

◦= valinsertsi, m
◦= possiblevals is the number of possible

values that a field can take, and
{

ni

mi

}
denotes the Stirling numbers of the second kind. In our

example above, with a single QE-encrypted field, name, and 1, 000 possible names, the adversary
would know that the set of inserted documents are 3 documents out of a set of 21,612 possibilities.
We stress that this is only a heuristic argument and not a formal argument because it does not
take into account auxiliary information. However, it does suggest that, when docinsertsi is larger,
the less information is revealed.

9.2 Setting the Contention Factor
Concurrent operations may result in contention which, in turn, decreases the throughput of
read and write operations. For example, contention can result from multiple clients inserting
documents with the same id value. Contention could also occur if multiple clients insert or
update documents with the same field/value pair. For every QE-encrypted field f , QE defines
a parameter cff ≥ 0 called the contention factor. Increasing the contention factor of a field
increases the insert and update throughput over that field, but decreases the performance of
find operations. All contention factors are set to 8 by default because—based on extensive
experiments—we found that it provides good performance for a variety of workloads.

Changing the contention factor. The default contention factor should be appropriate for
most settings but it can be tuned to the characteristics of one’s workload. In particular, if the
workload tends to have a very large number of concurrent insertions or updates on a field f ,
then it might be reasonable to increase the contention factor in order to increase insertion or
update throughput. Conversely, if the workload tends to have a very small number of concurrent
insertions or updates, then decreasing the contention factor might help improve read throughput.
In the following, we describe a way to tune the contention factor as a function of the expected
workload. Suppose ωf is an estimate of the total number of concurrent insertions or updates on
a given field f within a small interval of time, say, 30ms. The contention factor cff can then be
set as

cff =
⌈

ω∗
f · (ω∗

f − 1)
0.2

⌉
,

where ω∗
f = ⌈ωf/possiblevals⌉. Note that if the number of concurrent insertions/updates on a

field is not known, ωf could be set to the server’s number of virtual cores. Note that the above
formula is designed to bound the probability of contention to be at most 0.1 but it can be tuned
to achieve different bounds. As an example, if ω = 100, valinserts = 100, then setting cff = 1
would be enough to avoid contention. In this example, the contention factor is considerably
smaller than the default value of 8 and will lead to increased read throughput without impacting
the insertion and update throughput. On the other hand, if ω = 100, valinserts = 50, then setting
cff = 10 would be enough to avoid contention. In this example, the contention factor is larger
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than the default value of 8 and will result in decreased read throughput without impacting the
insertion or update throughput.

Impact on find efficiency. As mentioned above, increasing the contention factor can decrease
the efficiency of find operations. More precisely, the find efficiency is roughly

timefind = O

(
cff · log

(
metadocs(esc)

)
+ #R

)
,

where R is the set of documents returned by the find operation. Notice that if R is small, the
contention factor will impact the read efficiency more. In particular, using large values of cff

can significantly decrease read efficiency.

Impact on leakage. The contention factor should never be set as a function of secret/sensitive
information. For example, it should not be set as a function of the frequencies of field/value pairs.
Consider the case where valinserts = 1000 and ω = 100. Based on the approach outlined above,
one can set cff = 1. On the other hand, suppose one notices that for some field f , there are about
20 values that tend to appear very frequently in the collection and, therefore, sets cff > 1. This
choice of cff could reveal more information to a multi-snapshot adversary because the contention
factor is calculated as a function of the insert/update distribution. Because of this, we suggest
that the contention factor be kept at the default value and that, if it must be tuned, that it be
set according to the approach outlined above.

9.3 Handling Values with Sensitive Lengths
The values of QE-encrypted fields are encrypted using AES256-CBC-SHA256 which is an au-
thenticated encryption scheme based on encrypt-then-mac instantiated with AES256-CBC and
HMAC-SHA256. Note that AES256-CBC reveals an approximation of the plaintext. This is because
it pads the plaintext to the next multiple of 128 bits so, given a ciphertext ct, one knows that

|ct| − 128 < |m| ≤ |ct|.

For fixed-length data types, the length of the value is public and already known to the adversary
so we focus on variable-length data types like string or binData [28].

Plaintext recovery through length. One of problems that can occur with revealing the
length of values is that the length could be used to recover the plaintext values. This depends,
however, on the workload and the auxiliary information the adversary has about the workload.
For example, consider a field that has 3 possible values v1, v2 and v3 such that |v1| = 120,
|v2| = 200 and |v3| = 300 and that these possible values are known to the adversary—though
which document holds which value is unkown. Encrypting these values with AES256-CBC results
in three ciphertexts ct1, ct2 and ct3 of lengths |ct1| = 128, |ct2| = 256 and |ct3| = 384. In this
case, the ciphertext not only reveals an approximation of value lengths but these approximations
can be used to recover the plaintexts as follows. We know that ct1 must be an encryption of v1
since it is the smallest ciphertext. Similarly, we know that ct2 must be an encryption of v2 since it
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is the second smallest ciphertext and we know that ct3 must be an encryption of v3 since it is the
largest ciphertext. To handle collections with sensitive fields that have values of distinct lengths,
we propose two client-side approaches that avoid the above issue. Note that these solutions are
not provided by the MongoDB drivers and must be implemented by the application.

Padding. The simplest solution is to pad each value of the field to length of the maximum-
length value in the field’s domain before encrypting it. For example, suppose a field f can take
values in the set V = {v1, · · · , vn} and suppose vn is the value of largest length. Before encrypting
the collection with QE, one should pad every f -value v such that |v| = |vn|. The downside of this
approach is that it increases the size of the collection.

Mapping. Another solution is to map the f -values to another set of fixed-length values before
passing the collection to QE. More precisely, suppose a field f has domain V = {v1, · · · , vn}
where the values have a different lengths. With this approach, one would create a new domain
W = {1, · · · , n} of fixed-length numbers and a map T : V → W that maps values in V to values
in W. This mapping T can be represented as a table for example. Here, we assume that n is
not too large and that the numbers 1 through n are represented using a fixed number of bits,
e.g., log2(n) bits. Before encrypting the collection with QE, one would replace every f -value v in
the collection with w = T (v). Unlike the padding approach, the size of the collection does not
increase much, but the tradeoff is that the table T needs to be stored and managed client-side.

9.4 Using the Aggregation Pipeline
MongoDB’s aggregation pipeline is a framework that allows clients to build queries as a sequence
of stages, each of which processes the documents in a collection and passes the result as input to
subsequent stages. Aggregation pipelines can be evaluated over QE-encrypted collections, so we
discuss the security guarantees that QE provides when running aggregation pipelines.

Automatic encryption. When QE is used in automatic mode, the drivers have access to a
client-side query analysis module which will constrain the stages that can be used in a pipeline.
In particular, the query analysis module will disallow any stage that modifies the database. This
will guarantee that no pipeline can change the leakage profile of QE with respect to snapshot
adversaries.

Explicit encryption. When QE is used in explicit mode, the drivers do not have access to
client-side query analysis. This means any stage and pipeline can be executed which could alter
QE’s leakage profile. Therefore, when using QE with explicit encryption, we recommend avoiding
any stages that can modify the database.

9.5 Additional Guidelines
Partial encryption of documents. QE allows clients to choose which fields are encrypted.
This choice might seem straightforward at first: simply encrypt the fields that are “sensitive”.
This choice is far from simple, however, and requires a careful and nuanced understanding of
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how database encryption works. The main difficulty is that fields can be correlated in the sense
that knowledge of one can provide information about the other. In such a case, encrypting only
one of the two fields is not useful because the other field could reveal information about the first.
For example, consider a collection with the two fields city and state. Encrypting the state
field alone does not provide any meaningful security because one can likely guess a document’s
state from its city. Note, however, that these kinds of correlations can be more subtle so one
has to carefully decide which set of fields need to be encrypted. If in doubt, our suggestion is to
encrypt all fields, even if this increases storage and performance overhead.

Schema. When using QE, one specifies the fields that should be encrypted, what kind of queries
need to be supported on those fields, the contention factor and which data encryption keys should
be used with which field in a QE schema. The schema is stored server-side but it can also be stored
client-side. Currently, QE does not provide any mechanisms to verify the integrity of a schema so
if it is only stored server-side and the server is compromised, an attacker could tamper with the
schema so that a previously QE-encrypted field is labeled as unencrypted. The consequence of
this is that if the client retrieves the tampered schema, it will send plaintext values for that field
instead of encrypted values. Because of this, our suggestion is to keep the QE schema client-side
at all times.

Enabling audit logs. MongoDB Enterprise Advanced (EA) has an auditing capability that,
when enabled, tracks a variety of system and user events. We note that enabling the audit log
will allow certain roles to recover details of all the interactions between a QE client and the server
which can affect QE’s leakage profile. Out of all the roles we analyzed in Section 8, the only one
that can access the audit log—when auditing is turned on—is hostManager. This, however, does
not increase its view since the information contained in the audit log can also be obtained from
the $trafficRecord command.

10 Guidelines for Range Queries
In this Section, we describe guidelines for setting range-specific parameters for QE and discuss
their performance and security impact. Note that in QE, these parameters are already set to
default values that should provide good performance and storage tradeoffs for a variety of work-
loads.

10.1 Reducing Storage for Bounded Domains
As discussed in Section 3.1, QE supports a variety of numerical types, including, sint32, int64
(date), sint64, bin64 (IEEE 754 binary64) and dec128 (IEEE 754 decimal128). The storage as
well as the performance of all the operations grows as a function of the numerical field’s domain.
That is, the larger a field’s domain is, the more storage QE will use and the slower it will perform.
Because of this, it is important that applications use the exact numerical type they need. For
example, if a field really only stores signed 32-bit integers then sint32 should be used as opposed
to the larger int64 or bin64.
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Bounded integer domains. Because QE’s storage and performance of all its operations is
affected by the domain size of a field, applications can optionally specify more precise bounds
on a field’s domain. In the case of integer values (i.e., sint32, int64 and sint64), one can set
two parameters lb and ub that specify the lowest and highest possible values that can be queried
with respect to this field. For example, even though a field age is represented as an sint32, an
application might choose to set lb = 0 and ub = 150 instead of using the entire sint32 domain
which ranges from −2, 147, 483, 648 to 2, 147, 483, 647. Doing so would yield a saving of about
4× in storage and find, update and insert performance.

To see why, first note that the domain sizes of sint32, sint64 and int64 are N = 232,
N = 264, and N = 264, respectively. On the other hand, for any of these numerical types, if lb
and ub are set then the domain size will be

N = 2⌈log2(ub−lb+1)⌉.

Very roughly speaking, QE’s storage grows logarithmically with the size of the domain N . More
precisely, every encrypted value requires O(k · log2 N) bits instead of O(|v|2), where |v|2 is the
bit length of the numerical value and k is the security parameter. Note that k ≥ |v|2 for all
numerical data types. Going back to the previous example, we have log2 N = ⌈log2(ub−lb+1)⌉ =
⌈log2(150 − 0 + 1)⌉ = 8 which is 4× smaller than the logarithm of the (unbounded) domain size
of sint32.

Bounded floating-point domains. In the case of floating-point values (i.e., bin64 and
dec128), applications can optionally specify precise bounds on a field’s domain by setting three
parameters: lb, ub and prc which specify the lowest possible value, the highest possible value and
the query precision that should be supported. The lb and ub parameters are as above. The prc
parameter determines the precision used during a query, in other words, the number of digits
after the decimal point that will be considered when querying. For instance, for a field that
represents a blood sugar rate (in mmol/L), one can set lb = 0.0, ub = 20.0 and prc = 1 instead
of using the entire domain of the bin64 numerical type which can represent roughly 264 different
values. This would lead to about 8× savings in terms of storage requirements and find, update,
and insert operations performance. To see why, note that the domin sizes of bin64 and dec128
are N = 264 and N = 2128, respectively. On the other hand, if lb, ub and prc are set, then the
bounded domain size of a bin64 field will be

N = min
(

264, 2
⌈

log2

((
ub−lb+1

)
·10prc

)⌉)
,

and the bounded domain size of a dec128 field will be

N = min
(

2128, 2
⌈

log2

((
ub−lb+1

)
·10prc

)⌉)
.

Very roughly speaking, and similarly to the integer case, QE’s storage grows logarithmically
with the size of the domain N , i.e., every encrypted value requires O(|v|2 · log2 N) bits of stor-
age. Going back to the previous example, we have log2 N = log2(min(264, 2⌈log2((20−0+1)·101)⌉)) =
log2(2⌈log2(200)⌉)) = 8 which is 8× smaller than the logarithm of the (unbounded) domain size of
bin64.
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It is important to note that setting the query precision does not change the numerical values
stored in the collection in any way; it only affects how QE will execute range queries over the
collection. In other words, when storing bin64 or dec128 values with the lb, ub and prc paremters
set, the values stored in the (encrypted) collection remain as-is.

Effects of floating-point rounding. We note that floating-point rounding combined with a
bounded domain (i.e., setting the lb, ub and prc parameters) can affect the accuracy of a range
query. For example, when considering bin64 values, the 64-bit numbers 1.000 000 000 000 000 1
and 1.000 000 000 000 000 2 are both rounded to 1.000 000 000 000 000. So if, say, label = 0,
ub = 1000 and prc = 15, QE will view them both as 1.000 000 000 000 000 during find operations.
As a result, when querying for the range [1.000 000 000 000 000 2, 10], the documents containing
1.000 000 000 000 000 1 will be returned even though they are technically out of range.

10.2 Reducing Storage via the Sparsity Factor
As we have seen, a field’s domain size affects the storage requirements of QE as well as its find,
insert and update performance. However, QE’s storage comsumption can also be tuned using
a parameter sp called the sparsity factor. The sparsity factor can be set to integer values in
{1, . . . , 8} but the default is set to 2. The larger the sparsity factor is, the less storage QE will
consume but the slower find operations will run.

More precisely, the storage requirements of QE when encrypting a numerical field is

O

(
k · log N − tf

2sp

)
(2)

per encrypted field, where tf is another parameter called the trimming factor discussed below.
Based on this, on can see that increasing the sparsity factor from 2 to 4 will decrease the storager
overhead by a factor of 2.

Effect on inserts and updates. Increasing the sparsity factor also improves insert and update
performance because it reduces the number of tags that need to be inserted in the esc. More
precisely, inserting a document is

O

((
log N − tf

)
·

log
(
metadocs(esc)

)
2sp

)
, (3)

assuming no conflicts occur.

Find performance. As mentioned above, increasing the sparsity factor decreases QE’s storage
requirements but increases its find performance. More precisely, find operations with a range
filter are

O

((
2tf + log N

)
· cf · log N · log

(
metadocs(esc)

)
· 2sp

)
. (4)

So while increasing the sparsity factor from 2 to 4 decreases the required storage by a factor of
4, it increases find time by a factor of 4.
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Recommendations. We recommend keeping the default values for the sparsity factor, which
is 2, as our experiments show that this achieves the best tradeoff for many workloads. However,
there are cases where custom sparsity factors can lead to significant improvements. Specifically,
we recommend increasing the sparsity factor if workload has significantly more insert and update
operations than find operations. On the other hand, one should decrease the sparsity factor if
one prefers the best find performance at the cost of slower insert and update times and if storage
overhead is not a major concern.

10.3 Reducing Contention via the Trimming Factor
The trimming factor, tf, is a QE parameter that can range from 0 to log N , where N is the size
of a field’s domain, and that is set to 6 by default. While the sparsity factor is used to tune
QE’s tradeoff between storage, update, insert, and find perforance, the trimming factor tunes QE’s
throughput under concurrent inserts and updates. Specifically, increasing the trimming factor
leads to increased throughput and smaller storage overhead but higher find times.

The effect of the trimming factor on the storage overhead as well as the insert, update and
find performances can be understood from Equations (2), (3) and (4). Specifically, one can see
from Equation (2) how increasing the trimming factor reduces storage, from Equation (3) how
it reduces the insert and update times and from Equation (4) how it increases the find time.

Recommendations. As with the sparsity factor, we recommend using the default value of the
trimming factor since this achieves the best tradeoffs for most workloads. However, there are cases
where custom trimming factors lead to significant improvements. Specifically, we recommend
increasing the trimming factor to increase throughput of workloads that have significantly more
inserts and updates than finds. On the other hand, one should decrease the trimming factor if
one would rather achieve better find performance at the cost of slower inserts and updates, lower
throughput and if storage is not a major concern.

10.4 Correctness & Security Considerations
When setting QE’s parameters for numerical fields there are two important issues one needs to
take into account. The first one is related to the correctness of find operations and the second is
related to security.

Correctness. There are combinations of parameters for which find queries may fail. We stress
that this will never occur with the default parameters. More precisely, find queries may fail if
the following Equation is violated:

min
(

N, 2sp−1 ·
(
2tf + 2 log2 N − 1

))
< 300, 000,

where N is the field’s domain size, sp is the sparsity factor and tf is the trimming factor. At a
very high level, this limit is due to the size limit of BSON documents.
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Security. For security reasons, it is important that the trimming factor be independent of
the distances between the values in the collection. More precisely, if a collection has values
{v1, . . . , vn} for some field f , the trimming factor should not be set as a function of the elements
in the set {

vi − vj : for all i, j ∈ [n] s.t. i ̸= j

}
.

Practically speaking, the easiest way to achieve this is to only increase or decrease the trimming
factor to affect throughput while ignoring the specific values in the collection.
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