

i

9210 & XPERT DATALOGGERS

BASIC Manual

Part No. 8800-1151

Version 3.18

July 12, 2013

Sutron Corporation

22400 Davis Drive

Sterling, Virginia 20164

TEL: (703) 406-2800

FAX: (703) 406-2801

WEB: http://www.sutron.com/

http://www.sutron.com/

2

Table of Contents

Introduction ... 9
Overview ... 10
Installing and Configuring BASIC.SLL ... 11

Installation... 11
Configuration .. 11

Program Start and Stop ... 11
Recording Start and Stop .. 12
Recurring Schedule ... 12

Basic Blocks.. 13
Format Data for SatLink/GPRS/Iridium Transmission .. 14
Run Always Mode .. 15

Program "Basics" .. 16

Using the Language .. 19
Comments ... 19

Statements and Functions ... 19
Variables ... 19
Operators ... 21

Logical and Binary Operators ... 22
Math Functions ... 22

Conditional Statements and Loops ... 22
Aborting a Program... 25
String Functions .. 25

Subroutines and Functions .. 25
Recursion .. 26

Pass by Reference ... 27
Public Subroutines and Functions ... 27

Calling Subroutines and Functions contained in a DLL ... 27
Date and Time ... 28

Debugging ... 29
Error Handling .. 30
File I/O .. 31
Log I/O .. 31

Serial I/O ... 31
Socket I/O ... 32
Digital I/O ... 32
Analog I/O .. 32
SDI I/O .. 32

SSP Messaging.. 32
Satlink/GPRS/Iridium Formatting .. 32

Basic Tags ... 33
Basic Blocks And Basic Sensors .. 34
Readings .. 36
Run Always Mode .. 37

Running a Program at System Start or Shutdown .. 37
Multi-threading ... 38

3

Resource Contention ... 38

Yielding the CPU .. 39
Thread Synchronization .. 39

Web Page Creation and CGI-style forms handling... 39
Miscellaneous Statements and Functions ... 41

Solving Problems with Basic .. 43
Stage And Log Processing Example ... 43
SelfTimed Message Formatting Example ... 50

Creating a new sensor from a combination of two other sensors ... 51
Interacting with the user via the Graphical Display.. 52

Moving from Tiny Basic to Xpert Basic... 54
Overview ... 54
Scheduling a Program ... 54

Detecting Initial Startup .. 55

Detecting Recording Stop ... 55

Program Example.. 55

Time to Measure/Log .. 55
Custom Hourly Averaging .. 56
Custom GOES Formatting .. 56

Custom Speech Modem Handling .. 57
Obsolete Functions.. 57

Language Reference.. 58
Language Reference Syntax ... 58
Run-Time Errors ... 59

Basic Operators ... 59
- Operator .. 59

& Operator .. 59
* Operator ... 60

Operator .. 60
\ Operator .. 60

^ Operator ... 60
+ Operator ... 61

+ Operator ... 61
< Operator ... 61
<< Operator ... 61
<= Operator ... 61
<> Operator ... 62

= Operator (assignment) ... 62
= Operator (comparison) ... 62

> Operator ... 62
>= Operator ... 62
>> Operator ... 63
And Operator .. 63
Eqv Operator ... 63

Mod Operator .. 63
Not Operator ... 64
Or Operator ... 64

Xor Operator ... 64

4

Statements and Functions ... 64

Abort Function .. 65
Abs Function ... 65

Ad Function .. 65
Ad420 Function .. 66
AdAC Function ... 66
AdDC Function ... 66
AddGroup Statement .. 66

AdGain Function ... 67
AdRatio Function .. 67
AdTherm Function .. 68
Array Function .. 68
Asc Function ... 68

Atn Function ... 68

Bin Function.. 69

Bin6 Function.. 69

BitConvert Function.. 69
Call Statement ... 70
Cd Function ... 70

ChDir Statement.. 70
Chr Function ... 71

ClearAlarm Statement ... 71
ClearAlert Statement ... 71
Close Statement .. 72

ComputeCRC Function ... 72
ConfigAd Statement.. 73

Const Statement .. 73
Cos Function ... 74

Counter Function .. 74
Counter Statement ... 74

Cts Function .. 74
CurDir Function .. 75

Date Function .. 75
Date Statement .. 75
DateSerial Function .. 75
Day Function ... 75
Declare Statement ... 76

Declare Tag Statement .. 76
Digital Function .. 76

Digital Statement .. 77
Dim Statement .. 77
DisableAlert Statement ... 77
Do Statement ... 77
Dsr Function.. 78

EnableAlert Statement .. 78
Eof Function.. 78
Erl Function .. 79

Err Function .. 79

5

Error Function ... 79

ErrorMsg Statement .. 80
Exit Statement ... 80

Exp Function ... 80
FFT Function .. 80
FFTI Function ... 81
FileCopy Statement ... 81
FileLen Function ... 81

Flush Statement ... 82
FlushInput Statement .. 82
For Statement .. 82
Format Function .. 83
FreeFile Function .. 84

Frequency Function .. 84

Function Statement ... 84

GetAbortEvent Function ... 85

GetInput Function ... 85
GetInputAlarm Function ... 85
GetInputData Function.. 86

GetInputDigits Function ... 86
GetInputName Function.. 86

GetInputQuality Function ... 86
GetInputTime Function ... 87
GetInputUnits Function .. 87

GetMessage Function.. 87
GetScheduledTime Function .. 88

GetStopEvent Function ... 88
GetTag Function ... 88

GetTickCount Function .. 89
Gosub Statement ... 89

Goto Statement.. 90
Hex Function ... 90

Hour Function ... 90
If Statement ... 90
InAlarm Function .. 91
InAlert Function .. 91
Inp Function .. 91

Input Statement (file I/O) .. 92
Input Statement (log file) .. 92

InStr Function ... 93
Int Function ... 93
IsXpert Function ... 93
Kill Statement ... 93
Left Function ... 94

Len Function ... 94
Line Statement .. 94
Loc Function ... 94

Lock Statement ... 95

6

Log Statement (records) .. 95

Log Statement (sensors) .. 96
Log Statement (notes) ... 96

Log Statement (readings) .. 97
Log Function ... 97
LogReading Function.. 97
Measure Statement .. 98
Mid Statement ... 98

Mid Function ... 99
Minute Function .. 99
MkDir Statement ... 99
Month Function ... 99
MsgBox Function.. 99

Name Statement .. 100

Now Function.. 100

On Error Statement ... 101

On … GoTo, On … GoSub Statement ... 102
Open Statement ... 102
Out Statement.. 103

Peek Function.. 103
Poke Statement.. 103

Power Statement ... 103
PowerAd Statement .. 104
PowerSwGnd Statement ... 104

Print Statement .. 104
RaiseAlarm Statement .. 105

RaiseAlert Statement .. 105
ReadB Function .. 105

Reading Function .. 106
Reboot Statement .. 106

Rem Statement .. 106
RequestMessage Function .. 106

ResetEvent Statement ... 108
Resume Statement ... 108
Return Statement ... 108
Ri Function.. 108
Right Function .. 109

RmDir Statement .. 109
Rnd Function ... 109

Sdi Function .. 109
SdiCollect Function .. 110
Second Function.. 110
Seek Statement .. 110
Seek Function.. 111

Select Case Statement ... 111
SendMessage Statement.. 111
SendReport Statement ... 112

SendTag Statement ... 112

7

SetDTR Statement .. 113

SetEvent Statement ... 113
SetOutput Statement ... 114

SetOutputAlarm Statement ... 114
SetOutputData Statement .. 115
SetOutputDigits Statement.. 115
SetOutputName Statement .. 115
SetOutputQuality Statement ... 115

SetOutputTime Statement ... 116
SetOutputUnits Statement ... 116
SetPort Statement .. 116
SetRTS Statement ... 117
SetSpeed Statement ... 118

SetTimeout Statement ... 119

Sgn Function ... 119

Shell Statement ... 119

Sin Function .. 119
Sleep Statement ... 120
Space Function .. 120

Sqr Function .. 120
StartTag Statement .. 120

StartTask Statement .. 120
Static Statement .. 121
StatusMsg Statement ... 122

Stop Statement .. 122
StopTag Statement .. 122

StopTask Statement .. 122
Str Function ... 123

StrComp Function ... 123
String Function.. 123

Sub Statement ... 124
Systat Function.. 124

Tag Function ... 126
Tag Statement ... 127
Tan Function ... 127
Time Function ... 127
Time Statement ... 127

Timeout Function .. 128
Timer Function.. 128

TimeSerial Function.. 128
TriggerTask Statement .. 128
Troff Statement ... 129
Tron Statement .. 129
Turn Statement .. 129

Ubound Function .. 130
Ucase Function.. 130
UnLock Statement .. 130

Val Function.. 130

8

WaitEvent Function .. 131

WaitFor Statement .. 132
WarningMsg Statement .. 132

WebServer Statement.. 132
While Statement .. 134
WriteB Function.. 135
Year Function.. 135

APPENDIX A: Basic Error Codes ... 136

Table of Figures

Figure 1: The Basic Control Panel Entry .. 12
Figure 2: Typical Program Schedule Configuration ... 13

Figure 3: Basic Block Properties Dialog .. 14
Figure 4: Basic Properties Dialog ... 15
Figure 5: Hello World!.. 16

Figure 6: Compiler Error Message ... 17
Figure 7: Run-time Error Message ... 17
Figure 8: Basic Setup .. 18

9

INTRODUCTION

Sutron's Xpert family of DCPs (both the 9210 and the Xpert, hereafter referred to as the Xpert)

have been designed to be easily expandable by adding additional software libraries, called Sutron

Link Libraries (SLLs). One such library is basic.sll, which adds the ability to create custom

programs and processing using the Xpert Basic language. This document is the user manual for

basic.sll. The following topics are discussed:

 Overview

 Installing and Configuring the library.

 Program "Basics"

 Using the Language

 Solving Problems with Basic.

 Moving from Tiny Basic to Xpert Basic

 Language Reference

10

OVERVIEW

Xpert Basic is a language derived from Sutron's Tiny Basic and Microsoft's Visual Basic, with

various extensions to support the Xpert and Xlite Dataloggers.

Here is a list of some of the features of Xpert Basic:

 Variable support for integers, floating point numbers, strings, date and time, sensor readings,

events, and arrays, including multi-dimensional arrays.

 Global variables and functions can be shared across programs.

 Subroutine and function support.

 Pseudo-compiled code for faster execution and early syntax error detection.

 Excellent support for structured programming concepts by way of FOR, WHILE, and DO

control loops, and Select Case statement. Line numbers are supported, but are optional. Line

labels are supported.

 No limit on program size, multiple programs are supported.

 Ability to schedule programs to be run on an interval.

 Ability to create Basic "Sensor" blocks for use in EzSetup or Graphical Setup.

 Ability to create Basic "Processing" blocks for use in Graphical Setup.

 Functions to access the Analog and Digital I/O modules to make sensor measurements.

 Support for alarm and alert processing.

 Support for SSP SendTag and GetTag, as well as generic SSP messaging (RequestMessage,

SendMessage and GetMessage).

 Support for reading and writing disk files, serial ports, log files, and sockets.

 Ability to call functions in "C" DLL's.

 Support for run-time error handling.

 Support for TCP/IP communication, including the ability to creating TCP or UDP Web

Servers.

 Support for dynamic web page creation, including support for HTML forms (CGI).

 Multi-threaded support, including independent threads of execution, critical sections, and

event variables.

 Ability to run programs even while recording is turned off.

11

INSTALLING AND CONFIGURING BASIC.SLL

This section describes the installation and configuration of the basic.sll library.

Installation

Basic is part of the standard installation of the Xpert so that no additional installation steps are

normally required. However, should an updated Basic SLL be made available separately, you

can upgrade to it by downloading the SLL to the Xpert's \Flash Disk subdirectory and then

rebooting the Xpert.

The version of any Basic SLL downloaded to the Xpert must be compatible with your current

Xpert firmware version. The version of the Xpert application can be found at the top of the

About dialog, accessed from the Status tab. The version of the Basic SLL can be found from

within Windows (when the file is on you PC, and NOT on the Flash Disk), by right-clicking on

the file and selecting "Properties" and then "Version".

Configuration

Xpert Basic programs can be made to run at various times:

 Program start and stop

 On recording start and stop

 On a recurring schedule

 When an Xpert Basic block in the setup runs

 When it's time to format data for a transmission

Program Start and Stop

All subroutines named “Start_Program” are executed at “program start”, which is defined as

when the Xpert application starts up (typically, system boot) when Run Always is enabled, and is

defined as recording start when Run Always is disabled. These subroutines typically contain

code to perform short initialization tasks.

Note: When Run Always is enabled, main body code is also executed at program start, before

calls to Start_Program (main body code is any code found in a program file that does not reside

within a function or subroutine definition).

All subroutines named “Stop_Program” are executed at “program stop”, which is defined as

when the Xpert application shuts down when Run Always is enabled, and is defined as recording

stop when Run Always is disabled. These subroutines typically contain code to perform short

cleanup tasks.

Since the system start and shutdown processes do not complete until all subroutines have been

executed, it is imperative that these code sections do not enter continuous task loops.

Note: Start_Program and Stop_Program subroutines should not be marked public, since more

than one may appear in the system (up to one per program file).

12

Recording Start and Stop

All subroutines named “Start_Recording” are executed at recording start, and all subroutines

named “Stop_Recording” are executed at recording stop.

Note: when Run Always is disabled at recording start, all code found in main body program files

is executed before the calls to Start_Recording (main body code is any code found in a program

file that does not reside within a function or subroutine definition).

Typically, code run on recording start is used to perform short initialization tasks. Since the

recording start process does not complete until all this code has been executed, it is imperative

that these programs do not enter continuous task loops. Code run on recording stop should

always exit quickly.

NOTE: when more than one main body program or Start_Recording subroutine exists (i.e.,

multiple bas files, each with code outside any subroutine or with a Start_Recording routine), the

order in which the routines are executed is not defined. If you need to control the order in which

things occur at recording start, make sure only one main body program exists, and have it call

subroutines in the desired order.

Recurring Schedule

Basic programs can be scheduled for execution from the Basic entry of the Xpert Setup tab.

Figure 1: The Basic Control Panel Entry

The Basic entry on the Setup tab shown above shows two scheduled programs: "LOGCOUNT"

and "INCCOUNT". The former is scheduled to run every 15 minutes, while the latter is

scheduled to run every 2 hours.

To add a scheduled program to the setup, select the "[Add Schedule]" entry and press "Edit". In

order programs to show up in the list of possible scheduled programs, the name of the program

must start with "SCHED_", as in "SCHED_LOGCOUNT" or "SCHED_INCCOUNT".

To edit the schedule settings of an existing scheduled program, select the schedule entry and

press "Edit". The following dialog is used to set or edit the properties of a scheduled program:

13

Figure 2: Typical Program Schedule Configuration

The properties in this dialog are defined as follows:

Name The name of the Basic subroutine to be executed at the specified schedule.

Only programs with names starting with "SCHED_" will be shown in this

list.

Time The time offset of the schedule.

Interval How often the schedule should be repeated.

Basic Blocks

The Basic SLL provides two blocks for use in the setup: "Sensor" blocks and "Processing"

blocks. Both blocks execute basic programs that you write for them. However, Sensor blocks are

unique in that they do not accept inputs and may be used in EzSetup as well as the graphical

setup.

Sensor blocks are typically used to define custom sensors for use in the system. These blocks do

not have inputs but may have up to 20 outputs (versions before 3.2 could have only 5 outputs) .

The subroutine associated with the block determines which outputs are used when it assigns

values and quality to the outputs. The subroutine name must start with "SENSOR_" in order to

be assignable to a sensor block. Sensor blocks are selected from the "Input" block category

during graphical setup.

Processing blocks are typically used to perform custom processing, e.g., custom calculations, etc.

These blocks can have up to 5 inputs and up to 20 outputs (again, only 5 outputs prior to version

3.2). As with Sensor blocks, the subroutine associated with the block determines which outputs

(and inputs in this case) are used. The name of a processing block subroutine must start with

"BLOCK_" in order to be assignable to a processing block. Processing blocks are selected from

the "Processing" block category during graphical setup.

The properties dialog for a Basic Sensor block is shown below. The properties for the Processing

block are the same:

14

Figure 3: Basic Block Properties Dialog

The properties set in this dialog are defined as follows:

Subroutine: Identifies the Basic subroutine to be executed at the specified schedule.

Only programs with names starting with "SENSOR_" will be shown for

basic sensor blocks, while only programs with names starting with

"BLOCK_" will be shown for basic processing blocks.

Scheduled: When checked, the block executes at the schedule defined by Offset and

Interval. A Basic block can be connected directly to a Log Block without

an intervening Measure Block when the block is scheduled. Note: This

option should not be checked when using a Sensor block with EzSetup, as

EzSetup already manages scheduling. In addition, this option is typically

not checked whenever there is another active block (e.g., a Measure block)

in the same block chain. Note that active blocks are displayed with a

darkened border.

Offset The time offset of the schedule.

Interval How often the schedule should be repeated.

More information regarding Xpert Basic blocks can be found in the section Basic Blocks And

Basic Sensors.

Format Data for SatLink/GPRS/Iridium Transmission

The final way a program can be configured for execution is by defining a subroutine to format

data for telemetry transmission. The subroutine receives a buffer to be used for formatting. The

subroutine is called when it is time to format the data.

To assign the subroutine to use, select one of the “Custom Formatting” entries under “Basic” in

the Setup tab, and press "Edit". This brings up the dialog shown below:

15

Figure 4: Basic Properties Dialog

The following two properties are used to define subroutines for custom Satlink formatting:

Selftimed Identifies the subroutine that will be used for custom formatting of self-

timed (scheduled) messages. Only programs with names that start with

"SELFTIMED_" will be shown in this list.

Random/

Alarm

Identifies the subroutine that will be used for custom formatting of

Random/Alarm messages. Only programs with names that start with

"RANDOM_" (or “ALARM_”, for GPRS and Iridium), will be shown in

this list.

More information regarding formatting data for transmission can be found in the section

Satlink/GPRS/Iridium Formatting.

Run Always Mode

The Run Always check box may be enabled if your program needs to run even when recording is

turned off. In most systems, it’s desired to know that all processing is stopped when recording is

turned off, but in some systems this is not desired. For instance, by enabling Run Always mode

you can write a program that will reboot the unit if recording is left off for an extended period of

time. Another example would be a communications driver written in Basic, where you generally

wouldn’t want to lose communications to the unit just because recording is turned off. See the

Run Always Mode section for more information regarding this option.

16

PROGRAM "BASICS"

A Basic program is a standard ASCII text file with a .BAS file extension. The file may consist of

a main body and/or subroutines and functions. Any files with a .BAS extension in the Xpert's

\Flash Disk folder are automatically compiled as needed (e.g., when recording is turned on, or

when a dialog that needs to prompt for a subroutine is displayed). A program may be manually

compiled (without running it) by pressing the Compile button under the Basic entry of the Setup

tab. Syntax errors are automatically detected during the compilation and are displayed in a

message dialog and in the Status screen.

Here is an example of a very simple Basic Program:

A=MsgBox("Hello World")

To try out this program, enter this line in to a standard text editor (e.g., notepad), and save it as

Hello.bas (note: notepad may attach .txt to the file's name turning it in to Hello.bas.txt; you will

have to rename the file to Hello.bas if this occurs). Next, use XTerm to transfer the program to

the \Flash Disk folder of the Xpert. When you press Start on the Xpert, you should see the

following:

Figure 5: Hello World!

Note: The MsgBox function can be useful when developing a program, but in a real application

the ErrorMsg statement is recommended as it will not only report the message to the system

status and the system log, but it won't hold up processing if an operator is not present.

To see what happens when a program contains a syntax error, change the program to the

following:

A=MsgBox("Hello World")

A=MsgBox(B)

Stop recording and transfer the modified Hello.bas to the Xpert, and press start. You should see

an error message like the following:

17

Figure 6: Compiler Error Message

The compiler has detected an error in the program. It does so before the program is executed, so

the "Hello World" message is not displayed. The error occurred because Xpert Basic does not

allow variables to be used without them first being initialized or declared. Other implementations

of Basic generally permit this, but it can often lead to program bugs that will show up only hours,

days, or years later, when that section of the code is called.

Xpert Basic not only detects compiler errors, but detects run-time errors as well. To see what

happens when a divide by zero error occurs, modify Hello.bas as follows:

A=MsgBox("Hello World")

B=0

A=10/B

Stop recording and transfer the modified Hello.bas to the Xpert, and press start. After pressing

OK to the "Hello World" message, the following dialog is displayed:

Figure 7: Run-time Error Message

Basic detected the divide by zero condition and stopped the program. For more information on

handling run-time errors in your program, see the section Error Handling.

The Hello program is a main body program that is compiled and checked for errors when

recording is turned on, and then executed. Typically, a main body program only initializes

variables and does not do much other work. In fact, main body programs must not be written to

perform continuous work, otherwise the Xpert would never complete start-up.

The majority of a program's work occurs in subroutines. A subroutine is a piece of code that can

be called by the main body of the program, by another subroutine or, most importantly, by a

scheduled program or Basic block. A simple subroutine that can be scheduled might look like

this:

Public Sub SCHED_Hello

 Volts=Ad(1,1)

 A=MsgBox(Volts)

End Sub

18

A=MsgBox("Hello World")

This subroutine named SCHED_Hello measures the A/D channel 1 of module 1 and displays the

result in a message box. The Basic Setup entry on the Xpert's Setup tab is used to schedule when

and how often this program runs. The prefix "SCHED_" is what tells Xpert Basic that this

routine can be scheduled. Only programs with the "SCHED_" prefix will appear in the list of

programs when creating a schedule.

To schedule the program, download it and go to the Basic setup. Click [Add Schedule] and select

the subroutine "Hello". Enter an interval of 1 minute "00:01:00" and select OK. The Setup tab

should now look something like this:

Figure 8: Basic Setup

The Setup tab shows that the "Hello" subroutine is running on a 1 minute interval, and that the

next execution will take place at 14:56:00 (assuming the previous run has completed).

To associate a program with a Basic block, the program must have either a "SENSOR_" or

"BLOCK_" prefix.

That covers, in a nutshell, the "Basics of Basic". Here is a summary:

 Create and edit programs on your PC using a text editor such as notepad.

 Download programs to "\Flash Disk" using the XTerm file transfer dialog.

 Use the Compile button, located on the Xpert Setup tab under Basic, to check for syntax

errors. If any errors are detected, edit the program, transfer the file, and re-compile.

 Start recording to run Basic programs (main body programs run immediately, scheduled

subroutines run when scheduled, and programs associated with blocks run when the block

runs).

 Typically, the main processing of your program occurs in subroutines that are either

scheduled, or run in the context of a Basic block.

 The Xpert Setup tab is used to create schedules for Basic programs, and to add Basic blocks

to the setup.

19

USING THE LANGUAGE

This chapter describes the major components of the Xpert Basic language. For a description of a

particular function or statement, please see Basic Language Reference.

Comments

Comments in basic are preceded with either the REM statement or an apostrophe "'".

REM This is a comment

' This is also a comment

A=5 ' Comments may appear at the end of a statement

A=A+1 : REM but REM is a statement so it needs a statement separator

Statements and Functions

Statements in basic are commands that do not return a result. Functions do return a result.

Here is an example of a basic statement called Open:

Open "Report.Txt" For Output As #1

Here is an example of a basic function called Eof:

A = Eof(#1)

Note that statements may have various options (called parameters), which are usually separated

by spaces or commas, whereas parameters to a function are always separated by commas, and

are enclosed by parentheses. In the example above, Eof(#1) is a function call, but it's also an

example of the assignment statement. This is because functions are always contained inside of a

statement. More then one statement can be used on a line by separating them with colons ":"

A=1 : B=1 : C=1 : ' Initialize a bunch of variables to one

Variables

Variables in Basic must start with a letter (A-Z) and may be followed by one or more characters

including A-Z, 0-9, _, and $. They are not case sensitive. Variables must be defined before they

can be used. The initialization defines their data-type. This can be important for statements that

set variables to different results depending on the type. Data types include integers (32-bit

signed), double precision floating-point, character strings, dates, times, and arrays. Strings may

contain binary data and will automatically grow larger as needed. String constants are contained

inside double quotes. Data contained inside double quotes must be on one line, for readability,

strings may be concatenated together with &, +, etc. Floating-point numbers support exponential

notation.

This_Is_A_Long_Variable_Name = 5

ShortName$ = Str(This_Is_A_Long_Variable_Name)

A_String = "Hello World"

Max_Integer = 2147483647

Min_Integer = -2147483648

Real_Num = 3.1415932

BigNum = 10.56e+200

20

Bad_string_example = "all this data

Cannot extend beyond one line"

Good_string_example = "Unless the data " &

 "is seperated by &, +, etc."

Variables defined in the main body of the program can be accessed by all the code in the main

body that comes after the definition, including subroutines. Variables defined inside of

subroutines are "local" to that subroutine. That means they are only known to that subroutine,

and any memory they consume is released when the subroutine completes.

A local variable may be declared without supplying an initial value with the Dim statement. The

Dim statement is often used to declare local variables inside of scheduled programs and block

programs because in these special cases the value of local variables are retained across calls, and

the Dim statement will declare but not re-initialization the variable.

Dim LocalVar1

Dim LocalVar2

Basic also supports global variables. Global variables may be accessed from separate programs

(.bas files), as well as among from different subroutines and functions. They are defined and

optionally initialized with the Static statement. If a Static variable is not explicitly initialized it

will start with a value of 0. This can be handy if you wish to retain the value of a variable even

after recording has been restarted.

Static GlobalVar

Lock

If GlobalVar = 0 Then

 GlobalVar = 1

 StatusMsg "Program was just loaded"

End If

UnLock

Note the use of the Lock and UnLock statements in the above example. These statements ensure

no other program can access the variable GlobalVar while the code between the statements is

executing. If a global variable can be accessed from different thread contexts, i.e., from different

Basic Blocks, Sensor Blocks, and Scheduled Programs, then access to the variable must be

protected, as shown.

Basic supports single dimensional and multi-dimensional arrays. They are dynamically sized

much like strings. If you need a really large array, you might initialize its highest index first so

less time is wasted expanding the array.

TestArray(5)=5

TestArray(0)=0

TestArray(1)=1

TestArray(2)=2

TestArray(3)=3

TestArray(4)=4

or…

TestArray = Array(0, 1, 2, 3, 4, 5)

Array indices inherently start at 0, although you may use 1 as the base index for clarity (negative

indices are not allowed).

21

Multi-dimensional arrays are allowed and are specified by separating the dimensions with

commas.

For Row = 1 To 5

 For Column = 1 To 3

 MultiArray(Row, Column) = Row*5+Column

 Next Column

Next Row

The highest initialized index of an array (upper bound) may be retrieved with the Ubound()

function. For instance in the example above Ubound(MultiArray) would be 5 (rows), and

Ubound(MultiArray(0)) would be 3 (columns).

Finally, Basic also supports constants. Constants are similar to variables except their value must

be computable at compile time, and once assigned they may not be assigned another value. A

constant can contain an integer, floating-point, string value, or an array of the same. Here are a

few examples of constants:

Const Pi=3.141592654

Const DegToRad=Pi/180.0

Const AsciiA=Chr(65)

Const MyList=Array(0, 1, 2, 3, 4)

Constants can be used in mathematical expressions, but the expressions must contain other

constant variables, literals, or the Chr() function.

Operators

The following is the operator precedence tree for Basic. This determines which operators are

evaluated first when an equation is computed. The operators at the top of the list are evaluated

before those at the bottom:

Arithmetic

^

- (unary negation)

* / \ Mod >> <<

+ - & (string concat)

Comparison

=,<>,<,>,>=,<=

Logical

Not

And

Or, Xor, Eqv

For example:

If A>5 Or B>6 Then C=5

The expression above is evaluated exactly the same as if it was written:

If (A>5) Or (B>6) Then C=5

The evaluation occurs in this manner because the comparison operator ">" is evaluated before

the logical operator "Or". When in doubt, parentheses can be used to force the order of an

evaluation.

22

Arithmetic operators may be applied to dates and times so that dates and times can be added and

subtracted from other.

In most cases, data types are automatically promoted when combined. For example, a floating

point number will automatically be converted to a string if it's added (or concatenated) to a

string. Similarly, an integer is converted to a float when added to another floating point number.

The "<<" and ">>" operators are bitwise shift left and shift right operators borrowed from C.

Either "+" or "&" may be used to concatenate strings.

Logical and Binary Operators

Xpert Basic uses -1 to represent true and 0 to represent false. This allows the same logical

operators to also be used as binary operators (in contrast to other languages, e.g. C/C++). Hence,

the expression "5 And 3" evaluates to the logical value of true, as well as the binary value of 1

(just as you would expect from the binary operation "1012 & 0112" which evaluates to 0012).

Math Functions

The following is a list of the standard math functions supported by Basic (trig functions use

radians):

Abs, Atn, Cos, Exp, Int, Log, Sgn, Sin, Sqr, Tan

The following example computes the x and y vector component of an angle (in degrees):

Const Pi=3.141592654

Const DegToRad=Pi/180.0

Angle=Ad(1,1)*360/5

X = cos(Angle * DegToRad)

Y = sin(Angle * DegToRad)

Conditional Statements and Loops

Basic supports the usual If-Then-Else type blocks as well as For-loop, Do-loop, While-loop,

Select-case, Goto, and Gosub statements. All of these loops may be nested, which means you can

code a For-loop inside of a For-loop, etc.

Basic supports the pre-structured programming constructs such as:

10 A=0

20 A=A+1 : X(A)=A : If A<10 Then Goto 20 Else Goto 30

30 StatusMsg A

But this would be more clearly written as follows:

A=0

Do

 A=A+1

 X(A) = A

Loop While A<10

StatusMsg A

Or even more succinctly as:

For A = 1 To 10

 X(A) = A

Next A

23

StatusMsg A

Note, however, that although the contents of the array are the same at the end of the above

examples, the value of A is 11 following the For-loop (and not 10, as in the top two examples).

This is because a For loop checks the index at the beginning of the loop, while the other

examples have the check at the end.

The For-loop also supports the "Step" option with either positive or negative step values.

For I = 10 To 1 By –2

 StatusMsg "Countdown by 2 = " & I

Next

The Next part of a For-loop may optionally specify the loop index variable, and a For-loop may

be forced to exit early with the use of the "Exit For" statement. "Exit For" is especially useful

because a program may not branch from inside a For-loop to outside the loop with a Goto.

Of course, Goto statements should be used very rarely, if at all. The functionality of a Goto

statement is more clearly implemented using Do-loop or Select-case statements. If a Goto must

be used, its destination can be either a line number or line label. Similarly, the archaic GoSub

statement is supported but should rarely be used in lieu of a subroutine or function.

Here's the old way you might create a subroutine to double a variable:

10 A=5

20 Gosub 100

30 Stop

100 A = A * 2

110 Return

Here's how it can be done without line numbers:

A=5

Gosub Times2

Stop

Times2:

A = A * 2

Return

Here's the preferred way to do it, using a function:

Function Times2(X)

 Times2 = X*2

End Function

A=Times2(5)

For more information on defining subroutines and functions, please see Subroutines and

Functions.

The Do-loop can be structured in several ways. It allows the use of either Until or While, and can

be written to test the conditional either at the end of the clause or the beginning. Here are

examples of all the variations:

Do While A<10

 A=A+1

End Loop

Do Until A>10

 A=A+1

End Loop

Do

 A=A+1

24

Loop While A<10

Do

 A=A+1

Loop Until A>10

A Do-loop may be forced to exit with the "Exit Do" statement.

The While-loop construct is typically simpler and more concise then the Do-loop, but doesn't

allow exiting from inside the loop (except by using a Goto). Here's an example:

While A<10

 A=A+1

Wend

The Select-case statement is a powerful construct, which simplifies if-then-else testing. For

example, the following code:

If I=1 Then

 A=1

ElseIf I=3 Or I=4 Then

 A=2

ElseIf I=10 Or I=11 Or (20<=I And I<=30) Then

 A=3

Else

 A=4

End If

…is clearer when coded as follows:

Select Case I

Case 1

 A=1

Case 3, 4

 A=2

Case 10, 11, 20 To 30

 A=3

Case Else

 A=4

End Select

In the above example, note how the If-Then, Else, and End-If all appear on separate lines. This is

the "structured" method of using these statements. In older programs, you will often find several

statements on one line separated with a colon (":"). This method is still supported, but is not

recommended, since it does not lead to code that is as easy to read and maintain. Compare either

of the previous examples to this:

If I=1 Then A=1 Else If I=3 Or I=4 Then A=2 Else If I=10 Or I=11 Or (20<=I And

I<=30) Then A=3 Else A=4

Xpert Basic compiles its code, unlike the 8200/8210's interpreted Tiny Basic. This means there is

no performance penalty at run-time for using more descriptive loops, longer variable names, and

comments, etc.

Finally, there's one last type of control-loop that is sometimes very convenient, but is mostly

supplanted by the Select-case statement. It's called the On-Goto or On-Gosub statement. This

allows selective branching to different line numbers based on the value of a variable. It will be

described in the reference.

25

Aborting a Program

A running program can be aborted in two ways: it can abort itself by executing a Stop statement,

or a program will be aborted when recording is stopped. Multiple instances of a program may be

scheduled, but just because one instance executes a Stop statement and terminates, the others do

not. On the other hand, when recording is turned off, all scheduled subroutines must finish their

work within about 5 seconds or they will be forcibly terminated. The Abort function exists to

detect this situation so a program can tell when it needs to stop.

String Functions

Xpert Basic has a full complement of string functions: Asc, Chr, Hex, InStr, Left, Len, Mid,

Right, Space, Str, StrComp, String, Ucase, and Val.

For example, if you needed to extract the number from the string "SENSOR READING=24.54

VOLTS" you could use the following code:

Test="SENSOR READING=24.54 VOLTS"

SubStr=Mid(Test,16,5)

Answer=Val(SubStr)

Basic also supports a Format function which allows C-style sprintf formatting for those familiar

with the C language. For example,

REM This will display: "A= 5, B=12.3000, C= Hello".

A=5

B=12.3

C="Hello"

D = Format("A=%3d, B=%3.4f, C=%10s", A, B, C)

StatusMsg D

Subroutines and Functions

A subroutine or function is code that can be reused by other pieces of code. The difference

between a function and a subroutine is that a function returns a value while a subroutine does

not. The "Exit Function" statement may be used to return from a function early, and "Exit Sub"

plays the same role for a subroutine. The name of the function is a variable that represents the

return value of the function.

For example, here's a function that checks two voltages and returns the difference:

Function Subtract(Volt1, Volt2)

 If Volt1>5.0 Or Volt1<0.0 Or Volt2>5.0 Or Volt2<0.0 Then

 Subtract = -1.0

 Exit Function

 End If

 Subtract = Volt1-Volt2

End Function

The following subroutine measures two analog channels and logs the difference using the

Subtract function to detect bad or negative voltages.

Sub Measure_Subtract_Log(Chan1, Chan2)

 Volt1 = Ad(1, Chan1)

 Volt2 = Ad(1, Chan2)

 Delta = Subtract(Volt1, Volt2)

 Open "ssp.log" for Log as #1

 If Delta >= 0.0 Then

26

 Log #1, Now, "MeasSubLog", Delta, "G", "Volts"

 Else

 Log #1, Now, "MeasSubLog", Delta, "B", "Volts"

 End If

 Close #1

End Sub

While user defined functions are invoked just like Basic functions, user defined subroutines are

called with the Call statement.

REM Log the difference between chan 1 and chan 2

Call Measure_Subtract_Log(1, 2)

Subroutines and functions can be declared before they are defined in order to allow them to be

used in other subroutines and functions that are defined earlier in the code. For example, the

declaration of function AAA allows it to be called by function BBB, even though the definition

of AAA comes after the definition of BBB:

Declare Function AAA(X)

Function BBB(X)

 BBB=AAA(X) + AAA(X+1)

End Function

Function AAA(X)

 AAA=X*X

End Function

Recursion

Subroutines and functions may recurse, i.e., they may call themselves. Here is an example of a

recursive subroutine that counts down:

Sub CountDown(X)

 A=MsgBox(X)

 If X>0 Then Call CountDown(X-1)

End Sub

Call CountDown(10)

Implementing a recursive function is more complex since the name of the function represents the

current value of the function (preventing you from calling the function by name from within the

function body). To get around this, use a helper function that calls the function to be recursed.

The following example demonstrates the concept of using a helper function to implement

function recursion:

Declare Function Factorial(X)

Function Helper(X)

 Helper=Factorial(X)

End Function

Function Factorial(X)

 If X=1 Then

 Factorial = 1

 Else

 Factorial = X*Helper(X-1)

 End If

End Function

StatusMsg Factorial(56.0)

27

Pass by Reference

All variables passed to a subroutine or function are passed by "reference". This means that any

changes made to the variable while inside the subroutine or function persist upon return. This can

be used to return additional values. Here's an example of a function that computes an average of

two numbers, as well as the min and the max.

Function AvgMinMax(Num1, Num2, Min, Max)

 AvgMinMax = (Num1 + Num2) / 2

 If Num1 >= Num2 Then

 Max = Num1

 Min = Num2

 Else

 Max = Num2

 Min = Num1

 End If

End Function

Min=0

Max=0

Ans = AvgMinMax(5.0, 10.0, Min, Max)

StatusMsg Format("Avg=%3.2f Min=%3.2f Max=%3.2f", Ans, Min, Max)

Output:

05/19/2004 21:50:20 (Status) - Avg=7.50 Min=5.00 Max=10.00

Public Subroutines and Functions

Subroutines and functions that are declared as Public are global in scope, meaning they can be

called from other programs. In the following example, test1.bas defines a public function to

apply a polynomial. The function is used in test2.bas. Note the declaration of the Poly function in

test2.bas before it is first used:

TEST1.BAS

Public Function Poly(X, A, B, C)

 Poly = A*X^2 + B*X + C

End Function

TEST2.BAS

Public Declare Function Poly(X, A, B, C)

Test = Poly(5.0, 1.0, 2.0, 3.0)

Calling Subroutines and Functions contained in a DLL

An advanced feature of Xpert Basic is the ability to call C subroutines or functions contained in

DLLs (Dynamic Link Libraries). Since C DLLs do not have a data-type that corresponds to a

Basic variable, any variable passed is automatically converted to either LPCTSTR (unicode

character string pointer), a 32-bit integer, or a double. No other types of data may be passed.

Similarly, return values can be Integer, Double, or a character string pointer. Returning a

character string pointer is non-trivial as the memory must persist until the call returns and Basic

can copy the string to it's own memory. Hence, invoking a DLL function that is known to return

a constant string is acceptable, but one that returns a shared global string variable may return a

corrupted string, if the DLL function happens to be called from multiple threads at the same

time.

The following example retrieves the constant string representing the version of LZO.DLL:

28

Declare Function GetLZOVersion Lib "Lzo.dll" As String

StatusMsg "LZO Version: "&GetLZOVersion

Sometimes the name of a function you wish to call may conflict with a name Xpert Basic has

reserved. The Win32 API GetTickCount function is just such an example. The Alias option

allows you to specify a different name to use in the program for the function:

Declare Function GetTick Lib "Kernel32.dll" Alias "GetTickCount" As Integer

StatusMsg GetTick()

The following example shows how to define a C subroutine that can be called from Xpert Basic,

where the subroutine accepts an integer, a double and a string:

TestDLL.c

extern "C" _declspec(dllexport) void TestCode(int A, double B, LPCTSTR C)

{

 // Insert "C" code here

};

Here's how to call it from Xpert Basic:

Declare Sub TestCode Lib "TestDLL.dll" (A, B, C)

Call TestCode(5, 12.34, "Hello there")

Date and Time

Xpert Basic supports date and time variables. A date variable represents an absolute date and

time down to the millisecond1. When converted to a string, the string will have the format

"mm/dd/yyyy hh:mm:ss:mss". A time variable represents a span of time with millisecond

resolution2. When converted to a string, the string will have the format "hh:mm:ss:mss" format.

Times may be added to, and subtracted from, other times or dates.

Custom string formats can be created by extracting the components of the date and converting

them to strings. For extracting date and time components, see the functions Day, Month, Year,

Hour, Minute, and Second in the Language Reference.

There are no Time or Date constants. To create a fixed date or time, use the DateSerial function

or TimeSerial function, respectively.

There are also various functions related to getting the current time and date. Timer returns an

integer representing the number of seconds elapsed since midnight, while Time returns the same

thing but as a Time variable. The Now function retrieves the current date and time as a date

variable, whereas Date returns the current day (time is 00:00:00) as a date variable. Finally

GetTickCount returns the number of milliseconds elapsed since the system booted as an integer

(when using GetTickCount, take care to consider rollover, since the internal representation of an

integer in Xpert Basic is a 32-bit signed integer that rolls over after about 24 days).

Basic also provides the Date and Time statements for setting the current date or time.

1 Date and Time have resolution in seconds in version of Xpert Basic prior to ver 3.x. In 3.x and greater, fixed point

values express seconds and fracions thereof (e.g., 3.2 is used to express 3.2 seconds).
2 ibid.

29

Debugging

Xpert Basic does not support a debugger. The primary means to debug a program is by inserting

either MsgBox or StatusMsg statements, downloading the program and running it. The Tron

statement may be used to turn on program line or global variable tracing, and Troff may be used

to turn it off. Global variable tracing is helpful when you know a variable should not be changing

to a certain value, but can’t tell where or why it’s happening.

One convenient method for debugging is to run an XTerm session on one com port for

downloading programs, and a hyperterminal session on another for viewing debug and status

messages. At Remote's \Flash Disk command prompt you may use the "Report Debug"

command to see debug and other messages or "Report High" to see errors, warnings, and status

messages. Here's an example excerpt from a tron line trace:

05/05/2004 20:01:53 (Status) - TRACE hello.bas [11]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [12]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [13]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [14]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [15]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [16]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [15]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [16]

05/05/2004 20:01:53 (Status) - TRACE hello.bas [15]

Note the program name "hello.bas" is displayed as well as the line number in the program.

To aid in debugging the status tab and the info command prompt command have been enhanced

to display the Run Always status, the overall state (running or stopped) and for each currently

running subroutine or function: which program the subroutine or function is contained in, the

state (running, sleeping, waiting, or performing I/O), and the line number currently being

executed. In addition the state of each scheduled subroutine (created in the setup), and each task

(created by programs with StartTask) is displayed. If your program isn’t working as you expect,

check the status and see if the program is executing the code you expect it should be.

Sample Basic Status:

\Flash Disk> info

(other system status messages)

Basic Status: [Run Always Enabled, Running]

 Program Gprs.bas:

 GPRS_Task is performing I/O at line 320

 Program Sampler.bas:

 TakeSample is sleeping at line 9

 Scheduled Subroutine Status:

 MonitorWater runs every 00:00:10, runs next at 17:45:35, Waiting

 Task Status:

 TakeSample runs every 00:00:10, runs next at 17:45:40, Running

 GPRS_Task runs every 00:00:05, runs next at 17:45:15, Running

(other system status messages)

In the sample above, the line labeled “Basic Status:” summarizes the overall status and will

display “Run Always Enabled” or “Run When Recording On”, as well as whether Basic is

30

currently “Running”, “Stopping”, or “Stopped”. Following that is a list of each subroutine or

function that is currently running, grouped by program name. The status can be “running”,

“sleeping”, “waiting” or “performing I/O”, and the line number being executed is also displayed.

The next category is a list of scheduled subroutines (scheduled by the user in the setup) and their

status (see the Recurring Schedule topic). The run interval is displayed, as well as the next time

the subroutine is scheduled to run, and its current status which may contain either “Running”,

“Waiting”, or “Stopped”. The last category is a list of tasks (created with the StartTask function)

and their status. The “Task Status” is almost the same as the “Scheduled Subroutine” status

except the status “Triggered” will be displayed if the task is running due to the use of the

TriggerTask statement, and if a Task is stopped it simply will not appear in the list.

Error Handling

Normally when a run-time error occurs in a Basic program, the program stops execution and an

error message is reported. The error message is displayed in a dialog box on the Xpert screen and

is also logged to the system.log. The dialog box is displayed for only about a minute in case no

user is available to respond.

Often, a run-time error is expected and must be handled explicitly by the program. Xpert Basic

provides two ways to handle errors explicitly. The simplest method is to tell Basic to just ignore

errors with the "On Error Resume Next" statement. If an error does occur in this scenario, the

program can choose to detect it by calling the Err function. The Err function returns a non-zero

code when a run-time error occurs (see APPENDIX A: Basic Error Codes for the definition of all

possible codes).

The other way to handle an error explicitly involves commanding Basic to branch to an

exception-handler when an error occurs with the "On Error Goto label" command. This

statement will cause Basic to branch when a run-time error occurs to the specified label or line-

number. The code can try to handle the error and can either resume the code just after the error

with "Resume Next" or continue the program at another location with the "Resume Label"

command.

When handling errors explicitly, be sure to check the Err function immediately after the line that

may have produced the error, or as the first thing inside the error handler, or store the value of

Err into a variable. The reason for this is that all statements that can cause run-time errors will set

the value of Err, overwriting the previous result.

Here are two examples, both handling the same divide by zero problem using different methods:

DIVBYZERO1.BAS

REM Divide two numbers, return 99887766 on error

const BE_DIVIDE_BY_ZERO =25

Function DivXY(X, Y)

 On Error Resume Next

 DivXY = X/Y

 If Err=BE_DIVIDE_BY_ZERO Then

 DivXY = 99887766

 End If

End Function

DIVBYZERO2.BAS

REM Divide two numbers, return 99887766 on error

const BE_DIVIDE_BY_ZERO =25

31

Function DivXY(X, Y)

 On Error Goto Problem

 DivXY = X/Y

 Exit Function

Problem:

 DivXY = 99887766

End Function

Important: if a subroutine or function fails to handle an error, then the error will be reported and

the current task will exit. This means higher-level functions or subroutines will not have an

opportunity to handle the error. The presumption is that if an unhandled error occurs you will

want to be notified of it to correct the issue and further execution of the program can not be

trusted at that point. A scheduled subroutine will continue to execute at the next interval, but a

function that’s been executed due to StartTask will only run again if it has not set its return value

to non-zero before the error.

File I/O

Xpert Basic has a rich set of file handling functions including Open, Close, Input #, Line Input,

Print #, Seek, Eof, FileLen, FreeFile, Loc, ReadB, WriteB, and Flush #. For the most part, these

functions follow normal Basic conventions including the use of file numbers. Programs share the

same set of file numbers. So file #1 in Stage.Bas would specify the same file as file #1 in

Wind.Bas. To avoid conflicting use of file numbers, it's recommended to use the FreeFile

function to retrieve an unused file number. File numbers can range from #1 to #512.

ReadB and WriteB are unique to Xpert Basic. These functions are used to perform raw binary

I/O. The traditional statements for record oriented I/O, Put # and Get #, are not supported.

Files typically reside on the Xpert2's main "disk", which is mapped as "\Flash Disk". However,

users can use external storage as well. When plugged into the Xpert2, a USB storage card

("thumb drive") is mapped as "\USB Card", an SD storage card is mapped as "\SD Card", and a

CF (compact flash) storage card is mapped as "\CF Card".

File system management functions include Kill, ChDir, FileCopy, Name, MkDir, RmDir,

CurDir.

Log I/O

Log I/O shares some functions with File I/O including the Open, Close, and Input # statements.

While a log file can be read with the Input statement, the parameters are fixed (Type,

TimeStamp, Sensor, Data, Quality, Units). Log files can only be written (appended to) with the

Log # statement. In addition to sensor data values, notes and records of data can also be logged.

Serial I/O

Functions and statements which can be used to perform serial I/O include: Open, Close, Print,

Cd, Dsr, Cts, Ri, Timeout, Flush #, FlushInput #, SetPort, SetDTR, SetRTS, SetTimeout, and

WaitFor. NOTE: When using RS485 port (COM4 on 9210 and 9210B), RTS must be set to

"on" after opening the port, or no data will get sent. On 9210B, COM4 can be used in

either RS232 or RS485 mode (default is R232). The mode is selected with the SetPort

command.

32

Socket I/O

TCP/IP sockets can be opened like a file and manipulated using the Open, Close, Input #, Line

Input, Print #, Flush #, FlushInput #, WaitFor, Loc, Seek, ReadB, WriteB, and WebServer

commands.

Digital I/O

Digital I/O modules can be manipulated using the Counter, Digital and Frequency functions, as

well as the Counter and Digital Statements.

Analog I/O

Analog I/O modules can be manipulated using the Ad, Ad420, AdDC, AdAC, AdTherm,

AdRatio, AdGain, ConfigAd, Power, PowerAd, and PowerSwGnd functions.

SDI I/O

Low-level SDI I/O is supported with the Sdi function. Higher-level data collection is supported

with the SDICollect function. The following example shows how to collect two parameters from

SDI address 0, and 3 concurrent parameters from address 1.

On Error Resume Next

Data1 = SdiCollect("0M!")

If Err<>0 And Ubound(Data1)=2 Then

 StatusMsg "SDI Data1 = "&Data1[1]&", "&Data1[2]

Else

 ErrorMsg "Failed to collect SDI Data1"

End If

Data2 = SdiCollect("1C!")

If Err<>0 And Ubound(Data2)=3 Then

 StatusMsg "SDI Data2 = "&Data2[1]&", "&Data2[2]&", "&Data2[3]

Else

 ErrorMsg "Failed to collect SDI Data2"

End If

SSP Messaging

Communication between different RTU's is made possible with the GetTag, GetMessage,

RequestMessage , SendTag, and SendMessage functions. Alarms and Alerts can be manipulated

with the InAlarm, InAlert, ClearAlarm, ClearAlert, DisableAlert, EnableAlert, RaiseAlarm, and

RaiseAlert functions.

Satlink/GPRS/Iridium Formatting

A Basic program can format custom Satlink/GPRS/Iridium messages. Any of the Basic string

functions can be used to format the buffer as required, but the Bin and Bin6 functions exist

specifically to help forming 8-bit and 6-bit binary encoded data.

To create a selftimed formatting routine, create a function with a "SELFTIMED_" prefix. The

return value of the function becomes the buffer. For example:

Public Function SELFTIMED_STFormatter

 Selftimed_STFormatter = "Test Selftimed Message"

End Function

33

To create a random (or alarm) formatting routine, create a function with a "RANDOM_" (or

“ALARM_”) prefix and a single parameter in which the random group number will be passed.

The return value of the function becomes the buffer. For example:

Public Function RANDOM_RRFormatter(Group)

 RANDOM_RRFormatter = "Test Random Reporting Message: " + Str(Group)

End Function

It's possible to append to the buffer, as opposed to simply overwriting it, by taking advantage of

string concatenation. The following example appends its message to the current buffer:

Public Function SELFTIMED_STFormatter

 SELFTIMED_STFormatter = SELFTIMED_STFormatter + "Test Selftimed Message"

End Function

More than one formatting function can exist in your program, but only one selftimed and one

random function may be active at one time. The active routine is selected in the Basic entry of

the Setup tab.

Basic Tags

Basic tags wrap what are known in the Xpert as "communications tags", or "coms tags" for short.

Coms tags are primarily used to share real time data over SSP-based communications links.

Basic tags are created using the Declare Tag statement, and are accessed and manipulated with

the Tag, Measure, StartTag, StopTag, statements and functions.

A tag consists of one or more data values and a set of subroutines and functions that operate on

the tag's data. The tag's subroutines and functions implement the standard set of operations that

can be performed with any tag: "get", "set", "start", "eval", and "stop". The Get_ function and

Set_ subroutine are executed when values of the tag are retrieved and stored, respectively. The

Start_ subroutine is executed when recording is turned on, and the Stop_ subroutine is executed

when recording is turned off. The Eval_ subroutine is executed when a tag is measured.

Basic determines which functions and subroutines belong to which tags by looking at the names

of each. For example, the Get_ function for the AirTemp tag must be named Get_AirTemp.

The example that follows shows how to implement a tag named WaterLevel. The statement…

Declare Tag WaterLevel(3)

…declares that WaterLevel is a tag in the system with 3 different values (1 to 3) on which the

standard functions of get, set, eval, start, and stop may be performed. While tags can have any

number of values, tags in the Xpert typically follow the 8200/8210 convention where value 1 is

the last measured value of a tag, value 2 is the alarm status, and value 3 is a live measurement.

Declare Tag WaterLevel(3)

Last_WaterLevel = Counter(1,1)

Last_WaterLevel_Alarm = 0

Public Function Get_WaterLevel(Value)

 If Value=1 Then Get_WaterLevel = Last_WaterLevel

 If Value=2 Then Get_WaterLevel = Last_WaterLevel_Alarm

 If Value=3 Then

 Call Eval_WaterLevel

 Get_WaterLevel = Last_WaterLevel

 End If

End Function

34

Public Sub Set_WaterLevel(Value, Data)

 If Value=1 Then

 Last_WaterLevel = Data

 Counter 1, 1, Data

 End If

 If Value=2 Then

 Last_WaterLevel_Alarm = Data

 End If

End Sub

Public Sub Eval_WaterLevel

 Last_WaterLevel = Counter(1, 1)

End Sub

Public Sub Start_WaterLevel

 REM called when recording is started

 Call Eval_WaterLevel

End

Public Sub Stop_WaterLevel

 REM called when recording is stopped

End

Note: for Xpert alarm processing to function correctly, a Basic Tag must preserve the alarm

status (as the example does). In addition, in order to appear on the Xpert's Data tab, a tag must

have at least 1 value, and must define a Get_ function.

The compiler automatically uppercases all tag names to reduce the possibility of problems

caused by case mismatches.

Basic Blocks And Basic Sensors

Basic Processing blocks and Basic Sensor blocks are blocks that allow Basic code to be used in

the Graphical Setup and EzSetup (only Sensor blocks can be used in EzSetup). Several functions

have been defined to support the use of these blocks: GetInputData, GetInputDigits,

GetInputAlarm, GetInputName, GetInputQuality, GetInputTime, GetInputUnits, SetOutputData,

SetOutputDigits SetOutputAlarm, SetOutputQuality, SetOutputTime, and SetOutputUnits. Or

alternatively all the sub-fields may be manipulated at once by using the GetInput function and

the SetOutput statements, which accept Sensor Readings.

A Basic Sensor only has outputs, while a Basic Block may have inputs and outputs. The number

of inputs is limited to 5 (numbered 1 to 5), and the number of outputs is limited to 20 (only 5

ouputs were available prior to version 3.2). NOTE: the default input and output point number is 3

(the middle point on the GUI, easily observed when you activate the GUI's Zoom feature).

All Basic Processing block subroutines must begin with "BLOCK_", and all Basic Sensor

subroutines must begin with "SENSOR_". The GetScheduledTime function is often used to

retrieve the time the subroutine was scheduled to execute. This function is especially useful for

time stamping logged data in order to keep time stamps consistent and on even intervals.

The local variables defined inside these subroutines will persist (retain their value) across calls,

as long as they are declared using the Dim statement. If an assignment statement is used in the

Dim declaration, the persistent value is overwritten with each execution of the Dim statement.

35

The following example defines a very simple block that implements F(X,Y)=X*Y:

MULTXY.BAS

Public Sub BLOCK_MultXY

 SetOutputData 3, GetInputData(2) * GetInputData(4)

 SetOutputDigits 3, 2 ' Use 2 right digits

End Sub

Here's a slightly more complex example demonstrating data quality:

DIVXY.BAS

Public Sub BLOCK_DivXY

 REM Detect divide by zero

 If GetInputData(4) = 0 Then

 SetOutputData 3, 99887766

 SetOutputQuality 3, "B"

 Else

 SetOutputData 3, GetInputData(2) / GetInputData(4)

 SetOutputQuality 3, "G"

 End If

End Sub

Here's an example of a Basic Sensor that always returns 42 feet.

FOURTYTWO.BAS

Public Sub SENSOR_FOURTYTWO

 SetOutputData 3, 42

 SetOutputUnits 3, "feet"

 SetOutputQuality 3, "G"

End Sub

Here's a complete example of a Basic Sensor that measures an analog channel.

1AIO SENSOR.BAS

' Measure analog voltage on channel 1 of module 1

' Provide excitation on channel 2 of 3 volts

' Set ouput 3 of block with the data

Public Sub SENSOR_AdcCh1

 '*** error codes

 Const BE_NO_ERROR=0

 Const BE_INVALID_IO_HANDLE=27

 Const BE_IO_FAILED=28

 '********* initialize

 QFlag = "B"

 Result = -99.999

 On Error Resume Next

 SData = Ad(1, 1, 2, 3)

 E = Err

 If E = BE_NO_ERROR Then

 QFlag = "G"

 Result = SData

 ' Could also add equations here to process data

 '*** add error message to system log if failed

 Else

 Select Case E

 Case BE_INVALID_IO_HANDLE

 ErrorMsg "Failed to find specified AIO module"

 Case BE_IO_FAILED

 ErrorMsg "Failed to get data from AIO module"

 End Select

36

 End If

 ' Use output 3 for data

 SetOutput 3, Reading(Now, "VOLT-1", SData, QFlag, "Volts”)

End Sub

Readings

A reading is a means to encapsulate all the fields needed to describe a sensor value, log record,

or log note in one variable.

The Reading function is used to create a reading. The Log statement can be used to log one or

more readings. The LogReading function can be used to read one or more readings from the log.

The GetInput and SetOutput functions allow readings to be used when implementing Basic

Sensors and Basic Blocks.

The individual fields of a reading are: Type, Time, Name, ID, Note, Data, Record, Quality,

Units, Alarm, and Digits. Internally, Basic just treats a reading as an array of values, and the

fields translate into specific indexes into the array.

There are three types of readings: sensor data, log record, and log note. The Type field indicates

which type of data the reading contains: "D" for Sensor Data, "R" for a Log Record, "N" for a

Log Note, or "B” for bad data. Some of the fields overlap. For example, Name, ID, and Note all

refer to the same storage location, but have different meanings, depending on the type. The Data

and Record fields overlap, as well.

Here’s an example of how sensor readings can be used to log data:

N = Now

' Make 3 Air Temperature readings

R1 = Reading(N, "Air Temperature 1", Ad(1,1)*40.0-50.0, "G", "deg C")

R2 = Reading(N, "Air Temperature 2", Ad(1,2)*40.0-50.0, "G", "deg C")

R3 = Reading(N, "Air Temperature 3", Ad(1,3)*40.0-50.0, "G", "deg C")

' Now log the 3 readings to the ssp.log

Log "ssp", R1, R2, R3

37

Here’s an example of using sensor readings to create a Basic block that multiplies its input by

100, but then passes on everything else as-is. Normally this would require numerous

GetInputxxx and SetOutputxxx calls:

Public Sub BLOCK_Mult100

 R = GetInput(3)

 R.Data = R.Data * 100.0

 SetOutput 3, R

End Sub

The following example demonstrates how the LogReading function can extract multiple readings

at a time from the log (it returns an array of readings):

' Form a time stamp corresponding to 12 noon of the current day

Today = Now

TimeStamp = DateSerial(Year(Today), Month(Today), Day(Today))

Time Stamp = TimeStamp + TimeSerial(12, 00, 00)

' Pull 10 Wind Speed readings from 12 noon and display them

N = LogReading("ssp", TimeStamp, "Wind Speed", 10)

StatusMsg "Items Read = " & (UBound(N) + 1)

For i = 0 To UBound(N)

 StatusMsg "Wind Speed Reading " & i & " = " & N(i).Data

Next i

Run Always Mode

Run Always Mode is a feature which permits Basic programs to run even when recording is

turned off. This mode is enabled or disabled using the Basic Properties dialog, which is opened

from the Setup tab by pressing the “Edit” button with the Basic entry selected.

When you enable Run Always mode, Basic immediately starts running and will only stop if the

option is unchecked. When a new program is loaded into the setup and recording is toggled or

the compile button is pressed, all running Basic programs are stopped, the new program is

compiled, and then programs are restarted.

A program can discover whether Run Always Mode is enabled with Systat(31) and report an

error message if in the wrong mode, or adapt to the mode. Basic Scheduled Subroutines, Basic

Processing Blocks, and Basic Sensors behave the same regardless of the Run Always mode, and

do not execute when recording is off. Subroutines can be scheduled to run when recording is

turned off, but only with the StartTask statement.

Basic programs continue to run in Run Always mode when the setup is cleared (selecting “New”

setup from the setup tab). However, loading a new setup with Run Always mode disabled will

cause Basic to stop all programs.

The Abort function still indicates when a program is being shutdown, but in Run Always mode it

will remain false even if recording is turned off. To detect when recording turns off, you can use

the GetStopEvent function. Here’s an example that simply tests for the current recording state:

' This function returns true when recording is turned OFF

Function IsRecordingOff

 ' Wait on the stop event with no timeout and then check the status

 IsRecordingOff = WaitEvent(0, GetStopEvent) = 1

End Function

Running a Program at System Start or Shutdown

To run a program at system start, create a subroutine named Start_Program. All subroutines

having this name are run at system init. This subroutine should NOT enter a task loop, but should

38

perform its processing and return quickly. To run a program that loops until some event (e.g.,

recording start/stop or system shutdown), use StartTask to kick-off a program that monitors for

the desired event, sleeping when there’s nothing to do.

To run a program at system shutdown, create a subroutine named Stop_Program. All subroutines

having this name are run at system shutdown. This subroutine should perform cleanup quickly

and return.

Note: when defining Start_Program and Stop_Program, don’t declare them as Public, since there

could be other subroutines having these names in other .bas files.

The following example shows how to start a program at system start, and then signal that

program to stop at system shutdown:

TimeToStop = 0

Public Function ProcessingLoop(Parm)

 Sum = 0.0

 ' Return 0 to schedule the function for the next minute

 ProcessingLoop = 0

 ' Average A/D channel 1 once per second for the next 10 seconds

 For i = 1 To 10

 Sum = Sum + Ad(1, 1)

 ' Exit and stop processing if the TimeToStop event is raised

 ' otherwise delay a second between samples

 If WaitEvent(1, TimeToStop) = 1 Then

 ProcessingLoop = -1

 Exit Function

 End If

 Next i

End Function

Sub START_PROGRAM

 StatusMsg "Start Program"

 ResetEvent TimeToStop

 REM Run the main processing loop every minute on the minute

 StartTask "ProcessingLoop", 0, TimeSerial(0, 0, 0), TimeSerial(0, 1, 0)

End Sub

Sub STOP_PROGRAM

 StatusMsg "Stop Program"

 SetEvent TimeToStop

 StopTask "ProcessingLoop"

End Sub

Multi-threading

Xpert Basic programs often run in independent program threads (e.g., programs started with

StartTask, scheduled subroutines, and setup blocks). There are several concerns related to multi-

threaded operation to address:

Resource Contention

The first concern is that subroutines executing in different threads may require access to the

same variable, allowing the possibility of data corruption. When a subroutine uses only local

variables, there is no concern of data corruption. However, when a subroutine uses global

resources (e.g., a global variable or com port), it is important to synchronize thread access to the

resource so that only a single thread will use it at any given time.

39

Thread synchronization is accomplished through critical sections, which are sections of code that

can be executed by only one thread at a time. The Lock and UnLock statements are used to

implement critical sections. The Lock statement is called to enter a critical section, while the

UnLock statement is called to leave the critical section. While one thread is executing in the

critical section, no other thread can execute that code. Since a critical section may be in use when

you try to enter it, the Lock statement accepts a timeout parameter that determines how long to

wait for the critical section to become available. In situations where having a single critical

section is inconvenient, users may create and supply the critical section variable.

Yielding the CPU

The second concern in a multi-threaded system is that of yielding the CPU to other threads, and

the related concern of power management. A Basic program should avoid sleepless loops

whenever possible (a sleepless loop is a loop where the code performs some task over and over,

e.g., checking the state of a variable, without sleeping in between). When a program fails to

sleep, it "hogs" the CPU, making it difficult for other threads to have sufficient time to run. Also

while in this state, the system is never allowed to enter any kind of power savings mode, which

will drain a battery very quickly.

A program sleeps by calling the Sleep statement. During a sleep, the program thread does

nothing for the amount of time specified as a parameter to the statement. During this time, any

other thread that needs to run can and, if no other threads need to run, the system will sleep.

Thread Synchronization

Events may be used to synchronize different Basic threads, the WaitEvent function, and the

SetEvent, and ResetEvent statements allow threads to signal to each other when there is work to

be done.

Web Page Creation and CGI-style forms handling

Web pages can be created from Basic in a few different ways. One approach is to create HTML

files or images in the "\Flash Disk\Web\" folder and the built-in HTTP server will automatically

retrieve them. This method will even work with older versions of Basic. The disadvantage to

this, however, is that it doesn't allow the page contents to vary based on the request (forms

handling) or to be generated as needed.

A dynamic web page handler may be created using Basic by defining a function called

Web_Manager. This must be declared as a public function with the following parameters:

StreamHandle A file handle to the current socket session. Socket I/O functions may be used

to send or receive data from the stream, but in most situations this is not

necessary.

IpAddress The IP Address of the client which is requesting a web page. This is in the

form of a string (ex. "192.168.5.6")

Cmd The type of command that was issued (ex: "POST" or "GET")

Url The file or resource being requested (ex: "web/index.html")

40

Headers The various strings and information that describe what sort of web browser is

making the request and any other information meant to be passed on to the

web server.

The return value of the function may be an empty string (ex. "") to indicate to the HTTP Server

that it should continue to process the page as it normally would, or it may contain a string of

HTML code to be sent back to the client.

For instance here's an example that will return the current stage value (contained in a tag named

"STAGE") but only if the request comes from a very specific IP address (hard coded as

192.168.1.2):

Public Function Web_Manager(StreamHandle, IpAddress, Cmd, Url, Headers)

 Web_Manager = "" ' By default let the Web Server handle the request

 If Cmd = "GET" And IpAddress = "192.168.1.2" Then

 StageVal = Tag("STAGE")

 Web_Manager = "<HTML><BODY>Current Stage Value is: "

 & StageVal & "</BODY></HTML>"

 End If

End Function

The Web_Manager function provides an easy method to supply dynamic HTML pages, but to

handle forms (data supplied by the user) you would have to either parse the URL (in the case of a

GET command) or parse the headers (in the case of a POST). Fortunately, Basic can do this

automatically by providing CGI support.

CGI is a mechanism that web servers use to pass form data in to custom scripts. These scripts are

commonly contained in a "cgi-bin" folder on the web server and the Xpert follows this

convention, although the folder does not actually exist. Rather than running a program, the Xpert

will instead call a function that begins with the prefix "CGI_" passing the user entered form data

as parameters. A CGI function returns a dynamic web page.

So for instance you could create a simple web page to prompt for a name with the following

HTML code:

<FORM METHOD="get"

 ACTION="/cgi-bin/getsample">

 <INPUT TYPE="text" NAME="sName"

 SIZE=20 VALUE="(Enter a name and press ENTER)">

 </FORM>

Paste or enter this code sample in to notepad, save it out as Sample1.html and then transfer it to

the Xpert and place it in the folder "\Flash Disk\Web". Then with your web browser access the

page by entering the URL " http://ipaddressofmyxpert/sample1.html" where if you're not sure

what the IP address of your Xpert is, you can determine it with the Setup\LAN Settings\View

Config menu option. Be sure to turn the LAN ON if it's not already on.

A simple text box should be displayed in your browser where you may enter a name and press

enter, but for now it won't do anything. We need to connect it to Basic code. We do this by

creating a CGI function like the following exmaple:

Public Function CGI_GetSample(IpAddress, sName)

 CGI_GetSample = "<HTML><BODY>Your name is " & sName & "</BODY></HTML>"

End Function

http://ipaddressofmyxpert/sample1.html

41

Notice that the name of the function "CGI_GetSample" must match the name of the CGI script in

the HTML code prefixed with the string "CGI_". The parameters to a CGI function consist of the

IpAddress of the client requesting the page and one or more field values from the HTML form in

the order they are defined in the form. The actual name of the parameters does not matter, just

the order. In this example we're returning a dynamic web page containing the name that was

entered, but this value (or values) passed can be set points, passwords, sensor IDs, whatever you

can design in HTML code.

The IPAddress may be used for security purposes such as to permit only authorized clients to

perform an operation, or it can also be used to remember state information. Typically an HTTP

session is stateless. Each request is unique and independent, but if the script remembers who

requested the pages by either IP address or by a session ID field then it can vary the response

based on what's been asked before. You could use global variables to remember the state.

A CGI post differs from a CGI get command in that the form data is passed as part of the header

fields and not in the URL. This is a more secure method since the data (which may include

passwords and hidden fields) are not clearly visible in the URL, but as far as Basic is concerned

it looks exactly the same. Here's a sample of HTML code to create a form which will prompt for

someone's name and gender and pass the information on to the Xpert using a CGI post

command:

<FORM METHOD="post"

 ACTION="/cgi-bin/postsample">

 <INPUT TYPE="text" NAME="First Name"

 SIZE=20 VALUE="">

 <INPUT TYPE="text" NAME="Last Name"

 SIZE=20 VALUE="">

 <INPUT TYPE="radio" NAME="gender" VALUE="M" CHECKED>Male

 <INPUT TYPE="radio" NAME="gender" VALUE="W">Female

 <INPUT TYPE="submit" NAME="button" VALUE="OK">

 </FORM>

Just like with the previous sample, you'll need to enter or paste this code in to notepad and save it

out to a file named Sample2.html and then transfer it over to the "\Flash Disk\Web" folder on the

Xpert. When you request this web page using your web browser, it will prompt for a first name,

last name, and gender. We can capture these fields by writing a CGI function as follows:

Public Function CGI_PostSample(IpAddress, FirstName, LastName, Gender)

 CGI_PostSample = "<HTML><BODY>You entered " & FirstName

 & ", " & LastName & ", " & Gender

 & "</BODY></HTML>"

End Function

Again, the field values in the function must be defined in the same order they were defined in the

form. Please be aware, that while the data passed in a post is not visible to plan viewing, it is not

considered secure as it is passed as plain text in the headers. If your web server can be accessed

by un-trusted users, then your CGI functions must protect your system by checking to make sure

the request appears valid, the fields are legitimate, and that it's been issued by an authorized user.

Miscellaneous Statements and Functions

There are a variety of other statements and functions available in Xpert Basic that can be used to

perform useful tasks, but that do not fit well into the general categories in this chapter. Some of

these are Systat, Reboot, Shell, StatusMsg, WarningMsg, ErrorMsg, and ComputeCRC. A

42

review of the Language Reference section will help to reveal other useful statements and

functions.

43

SOLVING PROBLEMS WITH BASIC

The goal of this chapter is to show by example how Xpert Basic can be used to solve typical

problems.

Stage And Log Processing Example

This example demonstrates a processing block which compares a Stage measurement against the

previous measurement recorded in the log. It automatically ignores "outliers" by throwing away

the current reading if it has changed too much from the previous logged reading. The stage data

is then used in an inflow calculation.

The first subroutine needed is one to lookup the previous value of a sensor in the log. This

function will be public so it can be re-used in other programs.

Note: The following examples make use of a function called ReadLog which demonstrates how

log entries can be retrieved step by step, but in most cases it would be more efficient to take

advantage of the LogReading function.

ReadLog.Bas

'''

' Function to read a specific sensor from log.

'

Public Function ReadLog(LogName, Sensor, TimeStamp, RLData, RLQuality, RLUnits)

 ' LogName, Sensor, and TimeStamp are inputs. RLData, RLQuality, and

 ' RLUnits are variables that receive this function's outputs.

 ' If Sensor at Timestamp is found, 1 is returned. Otherwise, 0.

 RLData = 0.0

 RLQuality = "U"

 RLUnits = ""

 ReadLog = 0

 Type = 0

 TimeFound = 0

 SensorFound = ""

 FileNum = FreeFile

 Open LogName for Log as FileNum

 Seek FileNum, TimeStamp

 If Not Eof(FileNum) Then

 Input FileNum, Type, TimeFound, SensorFound, RLData, RLQuality, RLUnits

 Do While TimeFound = TimeStamp And Not EOF(FileNum)

 If SensorFound = Sensor Then

 If RLQuality = "G" Then

 ReadLog = 1

 End If

 Exit Do

 Else

 ' Log may contain multiple entries for this time-slot so keep looking.

 ' Seek statements using firmware prior to 2.5.0.16 find the last entry

 ' for the specified time, so move to previous to keep looking.

 ' Seek FileNum, Prev

 ' Seek statements as of firmware version 2.5.0.16 find the earliest

 ' entry for the specified time, so move to next to keep looking.

 Seek FileNum, Next

 Input FileNum, Type, TimeFound, SensorFound, RLData, RLQuality, RLUnits

 End If

 End Loop

 End If

44

 Close FileNum

End Function

Next, a block program is needed that will process it's input stage data and compare it to the

previous logged stage value, passing on the reading only if it appears to be legitimate.

MeasStage.Bas

Public Declare Function ReadLog(LogName, Sensor, TimeStamp, RLData, RLQuality,

RLUnits)

''

' Measure Stage and Eliminate Outliers

'

Public Sub BLOCK_MeasStage

 ' This program runs at the interval scheduled for the block to which it has

 ' been assigned. This program retrieves its input, which it assumes is a

 ' block used to measure stage, and determines whether the input is valid.

 ' If the input is deemed valid, the value is passed on to the output so

 ' it can be logged or processed by any blocks connected to the output.

 ' If the input is not deemed valid, the last known valid value is passed.

 ' Variables used in reading logged data.

 StageName = "Stage" ' Should be same as Sensor Name of stage log block.

 StageLog = "ssp.log" ' Should be same as Log Name of stage log block.

 S2 = 0.0

 Q2 = "B"

 Stage = 0.0

 QStage = "B"

 tStart = GetScheduledTime

 ' Variables used to store results of ReadLog function.

 RLData = 0.0

 RLQuality = "U"

 RLUnits = ""

 ' Retrieve the input.

 S1 = GetInputData(3)

 Q1 = GetInputQuality(3)

 StatusMsg "S1 = " + Str(S1) + " " + Q1

 ' Get most recent 15 minute stage from log.

 t = tStart - (tStart mod 900)

 If tStart mod 900 = 0 Then t = tStart - 900

 If (ReadLog(StageLog, StageName, t, RLData, RLQuality, RLUnits) = 1) Then

 StatusMsg "S2 = " + Str(RLData) + " " + RLQuality

 S2 = RLData

 Q2 = RLQuality

 Else

 StatusMsg "ReadLog failed."

 End If

 ' Determine which stage value to output as current.

 If Q1 = "B" And Q2 = "G" Then

 StatusMsg "Selecting S2 cuz S1 bad"

 Stage = S2

 QStage = "G"

 ElseIf Q1 = "G" And Q2 = "B" Then

 StatusMsg "Selecting S1 cuz S2 bad"

 Stage = S1

 QStage = "G"

 ElseIf Q1 = "B" And Q2 = "B" Then

 WarningMsg "S1 & S2 Both bad"

 Stage = 0.0

45

 QStage = "B"

 Else

 ' Both good. Evaluate S1 against S2.

 If Abs(S1 - S2) >= 2 Then

 StatusMsg "Selecting S2"

 Stage = S2

 QStage = "G"

 Else

 StatusMsg "Selecting S1"

 Stage = S1

 QStage = "G"

 End If

 End If

 SetOutputData 3, Stage

 SetOutputQuality 3, QStage

End Sub

Finally, Inflow is calculated by processing multiple samples from the log. The processing

includes converting samples using a lookup table.

Inflow.Bas

' Declarations of functions and subroutines

Public Declare Function ReadLog(LogName, Sensor, TimeStamp, RLData, RLQuality,

RLUnits)

Declare Function LookupVolume(d)

Declare Function LookupOutflow(d)

Declare Sub SetOutputs (V1, Q1, V2, Q2, I, Q3, F1, Q4, F2, Q5)

Declare Sub InitTables

' Stage and tail water lookup tables

Static StageTbl

Static TailTbl

''

' Inflow Calculation

'

Public Sub SENSOR_InflowCalc

 ' This program runs at the interval scheduled for the block to which it has

 ' been assigned. This program assumes pool and tail water stages are measured

 ' separately at 15 minute intervals and are logged. The variables StageName,

 ' StageLog, TailName, and TailLog must be set to the actual names used in the

 ' setup of the blocks that log pool and tail stage.

 Call InitTables

 ' Sleep for a second to make sure that any stage reading scheduled for

 ' the same time-slot as this block is complete and logged. This allows

 ' this block's schedule to overlap a stage measurement.

 Sleep 1

 ' Variables used in reading logged data.

 StageName = "Stage" ' Should be same as Sensor Name of stage log block.

 StageLog = "ssp.log" ' Should be same as Log Name of stage log block.

 TailName = "Tail" ' Should be same as Sensor Name of tail water log block.

 TailLog = "ssp.log" ' Should be same as Log Name of tail water log block.

 TimeStamp = 0

 Sensor = 0

 V1 = -1.0

 V2 = -1.0

 I = 0.0

 F1 = 0.0

 F2 = 0.0

 V1Qual = "B"

 V2Qual = "B"

46

 IQual = "B"

 F1Qual = "B"

 F2Qual = "B"

 tNow = Now

 tStart = DateSerial(Year(tNow), Month(tNow), Day(tNow))

 tStart = tStart + TimeSerial(Hour(tNow), Minute(tNow), Second(tNow))

 ' Variables used to store results of ReadLog function.

 RLData = 0.0

 RLQuality = "U"

 RLUnits = ""

 ' Get most recent 15 minute stage from log.

 t = tStart - (tStart mod 900)

 If (ReadLog(StageLog, StageName, t, RLData, RLQuality, RLUnits) = 1) Then

 StatusMsg "S1 = " + Str(RLData)

 V1 = LookupVolume(RLData)

 If V1 <> -1 Then V1Qual = "G"

 StatusMsg "V1 = " + Str(V1)

 ' Get 15 minute stage from 3 hours ago.

 t = t - 10800

 If (ReadLog(StageLog, StageName, t, RLData, RLQuality, RLUnits) = 1) Then

 StatusMsg "S2 = " + Str(RLData)

 V2 = LookupVolume(RLData)

 If V2 <> -1 Then V2Qual = "G"

 StatusMsg "V2 = " + Str(V2)

 End If

 End If

 ' If we were able to compute volumes from stage data...

 If V1 <> -1 And V2 <> -1 Then

 ' Calculate flow based on pool stage measurements

 F1 = (V1 - V2) * 4.0333

 F1Qual = "G"

 StatusMsg "F1 = " + Str(F1)

 ' Determine the average outflow over the last 3 hours by averaging the

 ' last 3 hours of 15-minute tail stage converted to flow.

 t = tStart - (tStart mod 900) ' Begin with most recent 15-minute data

 TailAccum = 0.0

 N = 0

 F2 = 0.0

 For Count = 1 to 12

 If (ReadLog(TailLog, TailName, t, RLData, RLQuality, RLUnits) = 1) Then

 StatusMsg "Tail" + Str(N) + " = " + Str(RLData)

 TailAccum = TailAccum + RLData

 N = N + 1

 End If

 ' Backtrack 15 minutes in log for next reading.

 t = t - 900

 Next Count

 StatusMsg "TailAccum = " + Str(TailAccum)

 If N >= 6 Then

 F2 = LookupOutflow(TailAccum / N)

 StatusMsg "F2 = " + Str(F2)

 If F2 <> -9999 Then

 I = F1 + F2

 F2Qual = "G"

 IQual = "G"

 End If

 StatusMsg "I = " + Str(I)

 End If

 End If

 ' Set data and quality for each output of this block.

 Call SetOutputs (V1, V1Qual, V2, V2Qual, I, IQual, F1, F1Qual, F2, F2Qual)

47

End Sub

''

' Sub to initialize output data and quality.

'

Sub SetOutputs (V1, Q1, V2, Q2, I, Q3, F1, Q4, F2, Q5)

 SetOutputData 1, V1

 SetOutputQuality 1, Q1

 SetOutputData 2, V2

 SetOutputQuality 2, Q2

 SetOutputData 3, I

 SetOutputQuality 3, Q3

 SetOutputData 4, F1

 SetOutputQuality 4, Q4

 SetOutputData 5, F2

 SetOutputQuality 5, Q5

End Sub

''

' Function to convert pool stage into volume

'

Function LookupVolume(d)

 If d <= StageTbl(0, 0) Or d > StageTbl(UBound(StageTbl), 0) Then

 LookupVolume = -1

 Else

 For i = 1 to UBound(StageTbl)

 If d <= StageTbl(i, 0) Then

 Exit For

 Else

 End If

 Next i

 ' Linear interpolation of storage of measured pool stage

 A = StageTbl(i-1, 1)

 B = (d - StageTbl(i-1, 0))

 C = StageTbl(i, 0)

 D = StageTbl(i-1, 0)

 E = StageTbl(i, 1)

 F = StageTbl(i-1, 1)

 LookupVolume = A + (B / (C - D)) * (E - F)

 End If

End Function

''

' Function to convert tail stage into outflow

'

Function LookupOutflow(d)

 If d <= TailTbl(0, 0) Then

 LookupOutflow = TailTbl(0, 1)

 ElseIf d > TailTbl(UBound(TailTbl), 0) Then

 LookupOutflow = -1

 Else

 For i = 1 to UBound(TailTbl)

 If d <= TailTbl(i, 0) Then

 Exit For

 End If

 Next i

 ' Linear interpolation of outflow for measured tail stage

 A = TailTbl(i-1, 1)

 B = (d - TailTbl(i-1, 0))

 C = TailTbl(i, 0)

 D = TailTbl(i-1, 0)

 E = TailTbl(i, 1)

48

 F = TailTbl(i-1, 1)

 LookupOutflow = A + (B / (C - D)) * (E - F)

 End If

End Function

''

' Initialize conversion tables

'

Sub InitTables

 ' Stage Storage Curve, 32 points.

 StageTbl(31,0) = 73

 StageTbl(31,1) = 41287

 StageTbl(0,0) = 0

 StageTbl(0,1) = 0

 StageTbl(1,0) = 1

 StageTbl(1,1) = 5

 StageTbl(2,0) = 3

 StageTbl(2,1) = 22

 StageTbl(3,0) = 5

 StageTbl(3,1) = 42

 StageTbl(4,0) = 7

 StageTbl(4,1) = 92

 StageTbl(5,0) = 9

 StageTbl(5,1) = 243

 StageTbl(6,0) = 11

 StageTbl(6,1) = 500

 StageTbl(7,0) = 13

 StageTbl(7,1) = 900

 StageTbl(8,0) = 15

 StageTbl(8,1) = 1317

 StageTbl(9,0) = 17

 StageTbl(9,1) = 1876

 StageTbl(10,0) = 19

 StageTbl(10,1) = 2504

 StageTbl(11,0) = 21

 StageTbl(11,1) = 3202

 StageTbl(12,0) = 23

 StageTbl(12,1) = 3958

 StageTbl(13,0) = 25

 StageTbl(13,1) = 4773

 StageTbl(14,0) = 27

 StageTbl(14,1) = 5650

 StageTbl(15,0) = 29

 StageTbl(15,1) = 6587

 StageTbl(16,0) = 31

 StageTbl(16,1) = 7583

 StageTbl(17,0) = 33

 StageTbl(17,1) = 8635

 StageTbl(18,0) = 35

 StageTbl(18,1) = 9743

 StageTbl(19,0) = 37

 StageTbl(19,1) = 10903

 StageTbl(20,0) = 39

 StageTbl(20,1) = 12119

 StageTbl(21,0) = 41

 StageTbl(21,1) = 13389

 StageTbl(22,0) = 43

 StageTbl(22,1) = 14717

 StageTbl(23,0) = 45

 StageTbl(23,1) = 16103

 StageTbl(24,0) = 47

 StageTbl(24,1) = 17547

 StageTbl(25,0) = 51

49

 StageTbl(25,1) = 20607

 StageTbl(26,0) = 55

 StageTbl(26,1) = 23895

 StageTbl(27,0) = 59

 StageTbl(27,1) = 27393

 StageTbl(28,0) = 61

 StageTbl(28,1) = 29219

 StageTbl(29,0) = 65

 StageTbl(29,1) = 33011

 StageTbl(30,0) = 69

 StageTbl(30,1) = 37019

 ' Tail water rating table, 36 points.

 TailTbl(35,0) = 11.4

 TailTbl(35,1) = 2255

 TailTbl(0,0) = 4.4

 TailTbl(0,1) = 4

 TailTbl(1,0) = 4.6

 TailTbl(1,1) = 10

 TailTbl(2,0) = 4.8

 TailTbl(2,1) = 19

 TailTbl(3,0) = 5.0

 TailTbl(3,1) = 34

 TailTbl(4,0) = 5.2

 TailTbl(4,1) = 54

 TailTbl(5,0) = 5.4

 TailTbl(5,1) = 79

 TailTbl(6,0) = 5.6

 TailTbl(6,1) = 110

 TailTbl(7,0) = 5.8

 TailTbl(7,1) = 151

 TailTbl(8,0) = 6.0

 TailTbl(8,1) = 200

 TailTbl(9,0) = 6.2

 TailTbl(9,1) = 249

 TailTbl(10,0) = 6.4

 TailTbl(10,1) = 303

 TailTbl(11,0) = 6.6

 TailTbl(11,1) = 363

 TailTbl(12,0) = 6.8

 TailTbl(12,1) = 429

 TailTbl(13,0) = 7.0

 TailTbl(13,1) = 500

 TailTbl(14,0) = 7.2

 TailTbl(14,1) = 573

 TailTbl(15,0) = 7.4

 TailTbl(15,1) = 645

 TailTbl(16,0) = 7.6

 TailTbl(16,1) = 715

 TailTbl(17,0) = 7.8

 TailTbl(17,1) = 785

 TailTbl(18,0) = 8.0

 TailTbl(18,1) = 855

 TailTbl(19,0) = 8.2

 TailTbl(19,1) = 925

 TailTbl(20,0) = 8.4

 TailTbl(20,1) = 1000

 TailTbl(21,0) = 8.6

 TailTbl(21,1) = 1078

 TailTbl(22,0) = 8.8

 TailTbl(22,1) = 1154

 TailTbl(23,0) = 9.0

 TailTbl(23,1) = 1230

 TailTbl(24,0) = 9.2

50

 TailTbl(24,1) = 1310

 TailTbl(25,0) = 9.4

 TailTbl(25,1) = 1390

 TailTbl(26,0) = 9.6

 TailTbl(26,1) = 1472

 TailTbl(27,0) = 9.8

 TailTbl(27,1) = 1557

 TailTbl(28,0) = 10.0

 TailTbl(28,1) = 1642

 TailTbl(29,0) = 10.2

 TailTbl(29,1) = 1728

 TailTbl(30,0) = 10.4

 TailTbl(30,1) = 1815

 TailTbl(31,0) = 10.6

 TailTbl(31,1) = 1902

 TailTbl(32,0) = 10.8

 TailTbl(32,1) = 1990

 TailTbl(33,0) = 11.0

 TailTbl(33,1) = 2078

 TailTbl(34,0) = 11.2

 TailTbl(34,1) = 2166

End Sub

SelfTimed Message Formatting Example

This example formats a selftimed message by collecting the samples from the log with the

ReadLog function from the previous example.

Selftimed.bas

' Declarations of functions and subroutines

Public Declare Function ReadLog(LogName, Sensor, TimeStamp, RLData, RLQuality,

RLUnits)

'***** NOTES *****

' ASCII Selftime formater routine. Don K. 12 May 04

' Makes all logged data transmitted with two decimal precision and log name to

' match tx label.

' 15 Minute and hourly data each have a number of values to tx.

' It would be possible to build up the data array to hold a "log name" and a

' "label name" to tx a different label

' It would also be possible to add a "numVal" to the table to send different

' number of each data sensor.

'

' Sensors to tx:

' 15minute interval- RAIN, QSE

' 1hour interval- ATMIN, ATMAX, AAT

' make tx look like this

' :QSE 39 #0 0.00 0.00 0.00 0.00 :AAT 40 #0 22.2 22.2 :atmin 39 #0 22.2 22.2

' :atmax 39 #0 22.2 22.2 :Rain 9 #15 16.10 16.10 16.10 16.10

'

Public Function SELFTIMED_STFormatter

 ' Variables used to store results of ReadLog function.

 RLData = 0.0

 RLQuality = "U"

 RLUnits = ""

 ' INITIALIZE local variables

 LogName = "SSP.LOG" ' where to get the data from

 HourTx = 2 ' Hourly values to tx

 MinTx = 4 ' 15min values to tx

 tNow = Now ' What time are we starting

 TimeNow = DateSerial(Year(tNow), Month(tNow), Day(tNow))

 TimeNow = TimeNow + TimeSerial(Hour(tNow), Minute(tNow), Second(tNow))

51

 TxDataBuffer = "" ' temp tx buffer

 '

 ' set up sensors array

 ' array at 2 holds sensor interval in seconds

 ' array at 1 holds sensor name

 ' array at 0 holds data

 DataToTx (4, 1) = "QSE" : DataToTx (4, 2) = 900 :

 DataToTx (3, 1) = "AAT" : DataToTx (3, 2) = 900

 DataToTx (2, 1) = "RAIN" : DataToTx (2, 2) = 900

 DataToTx (1, 1) = "ATMAX" : DataToTx (1, 2) = 3600

 DataToTx (0, 1) = "ATMIN" : DataToTx (0, 2) = 3600

 '

 'Initialize array at 0 to hold data for transmission,start with :sensor

 NumSensors = Ubound(DataToTx)

 For I = 0 to NumSensors

 DataToTx(I, 0) = ":" + DataToTx(I, 1) + " "

 Next I

 '

 '

 ' Loop to get data from log

 ' Get all defined sensors and build their string

 For I = 0 To NumSensors

 '

 'Get recent timestamp based on sensor interval and add time offset

 'and interval to sensor message

 TSens = TimeNow - (TimeNow Mod (DataToTx(I, 2)))

 DataToTx(I, 0) = DataToTx(I, 0) + Str(Minute(TimeNow - TSens)) + " #" +

 Int((DataToTx(I, 2)/60))

 '

 'How many values. Since we only have two, if it's not 900 (sec) it is

 '3600 (sec)

 If (DataToTx(I, 2)) = 900 Then

 SensLoop = MinTx

 Else

 SensLoop = HourTx

 End If

 'Get the number of values specified (recent data first),

 ' Add good data to sensor tx string, place an M in bad or missing data

 For T = 1 to SensLoop

 If ReadLog(LogName, DataToTx(I, 1), Tsens, RLData, RLQuality, RLUnits) = 1

 Then

 DataToTx(I, 0) = DataToTx(I, 0) + " " + Format("%.2f", RLData)

 Else

 DataToTx(I, 0) = DataToTx(I, 0) + " M"

 End If

 TSens = TSens - DataToTx(I, 2)

 Next T

 Next I

 '

 ' loop to build entire tx buffer from each sensor message

 ' minus last value because we don't want a space at the end of the tx

 For I = 0 To (NumSensors-1)

 TxDataBuffer = TxDataBuffer + DataToTx(I, 0) + " "

 Next I

 TxDataBuffer = TxDataBuffer + DataToTx(I, 0)

 Selftimed_STFormatter = TxDataBuffer

End Function

Creating a new sensor from a combination of two other sensors

This example shows how a Basic block can be created which will compute dew point from an

Air Temperature and a Humidy input.

DewPoint.bas

52

Public Sub BLOCK_DewPoint

 ' Retrieve inputs.

 Temp = GetInputData(2)

 TempQ = GetInputQuality(2)

 Humid = GetInputData(4)

 HumidQ = GetInputQuality(4)

 ' Initialize attributes of result, assuming calculation will fail.

 SetOutputUnits 3, "deg C"

 SetOutputQuality 3, "B"

 SetOutputData 3, 0.0

 ' Verify quality of inputs check out.

 If TempQ = "G" And HumidQ = "G" Then

 If Humid >= 0.0 And Humid <= 100.0 Then

 ' Test temperature range.

 If Temp >= -60.0 And Temp <= 80.0 Then

 DewPt = (0.057906 * log(Humid / 100.0) / 1.1805) + (Temp / Temp +

 238.3)

 DewPt = DewPt * 238.3 / (1.0 - DewPt)

 SetOutputData 3, DewPt

 SetOutputQuality 3, "G"

 Else

 WarningMsg "Incoming temperature out-of-range."

 End If

 Else

 WarningMsg "Incoming humidity out-of-range."

 End If

 Else

 WarningMsg "Can't compute due to bad quality inputs."

 End If

End Sub

Interacting with the user via the Graphical Display

Basic supports limited interaction with the user via the MsgBox function. Here's an example:

'***************************

' Simple msgbox program to show how to get feedback from

' a user. This would normaly happen on recording start, since that would be the

' only time a user could be expected to be able to answer the question

' This uses a YES/NO response, you could also use any of the other buttons

'***************************

Const MB_OK=0 ' Display OK button only

Const MB_OKCANCEL=1 ' Display OK and Cancel buttons

Const MB_ABORTRETRYIGNORE=2 ' Display Abort, Retry, and Ignore buttons

Const MB_YESNOCANCEL=3 ' Display Yes, No, and Cancel buttons

Const MB_YESNO=4 ' Display Yes and No buttons

Const MB_RETRYCANCEL=5 ' Display Retry and Cancel buttons

Const IDOK = 1

Const IDCANCEL = 2

Const IDABORT = 3

Const IDRETRY = 4

Const IDIGNORE = 5

Const IDYES = 6

Const IDNO = 7

NoCount = -1 ' initialize count

A = IDNO ' initialize to NO

Do While A <> IDYES

 A = MsgBox("Press yes test", MB_YESNO, "'YES' test!")

 NoCount = NoCount + 1

End Loop

53

If NoCount > 0 Then

 Bad = MsgBox("You pressed NO " & NoCount & " times!", MB_OK, "Bad, Bad, Bad")

Else

 Good = MsgBox("You pressed YES!", MB_OK, "Great!")

End If

54

MOVING FROM TINY BASIC TO XPERT BASIC

This chapter discusses the differences between Sutron Tiny Basic and Sutron Xpert Basic.

Overview

The following table contrasts the features of Tiny Basic to those of Xpert Basic:

8200/8210 Tiny Basic Feature Xpert Basic Feature

Single letter variable names: A-Z Long variable names with $, _, and numbers

allowed.

No String Support Full String Support

Interpreter with immediate mode Integrated compiler and pseudo code

interpreter. Immediate mode is no longer

supported. Programs are edited on a PC, but

compiled by the Xpert. Because a compiler is

more efficient and the processor in the Xpert is

so much faster, Xpert Basic programs run many

times faster than Tiny Basic programs. The

performance considerations required when

writing in Tiny Basic do not exist for Xpert

Basic, largely due to the code being compiled.

Line numbers required Line numbers are optional. Line labels are

supported.

Full IEEE 64-bit floating point support Same plus support for 32-bit integers.

Full expressions and logarithmic functions Same plus much, much more.

Single nested FOR...NEXT loops, and

GOSUB...RETURN

Full nesting is supported. In addition, user

subroutines and functions may be created that

support parameter passing and a return value.

Sensor values may be accessed directly

and/or used as variables

Any point in an Xpert setup that's connected to

a ComsTag may be read,written, or measured

by Xpert Basic.

Program size may be increased up to 64K

bytes

Program size is limited by the room available

on the flash disk for the source, and by

available RAM space for the compiled code.

Unused program memory can be used as

data storage

Supports multi-dimensional arrays. Variable

space is limited only by available RAM space.

Scheduling a Program

In Tiny Basic only a single program can be created, and it can only have a single schedule. When

the schedule runs, the program starts from the beginning. In Xpert Basic, the program runs

whenever recording is turned on (or all the time when Run Always mode is enabled), and instead

55

of the whole program being scheduled, individual subroutines are scheduled. Each subroutine

may execute concurrently according to their respective schedules (see Recurring Schedule).

Detecting Initial Startup

A Tiny Basic program can detect when it was run the first time by either detecting that variables

were reset to 0, or by placing a branch at line number 65100. In Xpert Basic, the main body is

run when recording is turned on, so any necessary initialization can be done there. In addition,

the very first run of a program may be detected by using a Static variable without an

initialization (see Variables). The Start_Program and Start_Recording subroutines may also be

defined to provide further initialization after the main body of all programs has been run.

Detecting Recording Stop

A Tiny Basic program can detect that recording was turned off by placing a branch at line

number 65101. An Xpert Basic program detects that recording has been turned off by checking

the status of the Abort function, or creating a Stop_Recording (or Stop_Program) subroutine.

Program Example

In Tiny Basic, a simple program to measure an analog input, process it, and log it would look

something like this:

10 A=Measure (Analog1)

20 Analog1 = 1.2*A^2 - 0.5*A + 2

30 Log Time, Analog1, A

In Xpert Basic, the same program might be wrapped up in a schedulable subroutine as follows:

Sub SCHED_Sample1

 A=Ad(1,1)

 Result = 1.2*A^2 - 0.5*A + 2

 Open "SSP.Log" For Log As #1

 Log #1, Now, "Analog1", Result, "G", "Volts"

 Close #1

End Sub

Or a more general approach would be to create a Basic Sensor subroutine and using EzSetup to

handle the schedule and logging:

Sub SENSOR_Sample1

 A = Ad(1,1)

 Result = 1.2*A^2 - 0.5*A + 2

 SetOutputData 3, Result

 SetOutputQuality 3, "G"

End Sub

Time to Measure/Log

Determining the current hour or minute in Tiny Basic, often used to determine when it's time to

measure or log, requires some fairly complex math involving modulo arithmetic. In Xpert Basic,

determining the current hour and minute is done with the time functions. In Tiny Basic, the

current hour is computed as follows:

H = Int(Time Mod 86400 / 3600)

56

In Xpert Basic, the current hour is simply retrieved using the Hour function:

H = Hour(Now)

Custom Hourly Averaging

Custom hourly averaging is fairly complex in Tiny Basic. In Xpert Basic, Basic blocks can be

used to simplify this task and expose the processed data to the setup. Here's an example that

computes hourly average, min, and max temperature:

TempMin = 9999

TempMax = -9999

TempSum = 0

TempCount = 0

LastMin = -9999.0

LastMax = -9999.0

LastAvg = 0.0

Sub BLOCK_HourlyAverage

 Temp = GetInputData(2)

 If Temp < TempMin Then TempMin = Temp

 If Temp > TempMax Then TempMax = Temp

 TempSum = TempSum + Temp

 TempCount = TempCount + 1

 If Minute(Now) = 0 Then ' Detect the hour

 LastMin = TempMin

 LastMax = TempMax

 LastAvg = TempSum/TempCount

 TempMin = 9999

 TempMax = -9999

 TempSum = 0

 TempCount = 0

 T=GetScheduledTime

 REM Log the results:

 Open "SSP.Log" For Log As #1

 Log #1, T, "TempAvg", LastAvg, "G", "deg C"

 Log #1, T, "TempMin", LastMin, "G", "deg C"

 Log #1, T, "TempMax", LastMax, "G", "deg C"

 Close #1

 End If

 SetOutputData 2, LastMin

 SetOutputQuality 2, "G"

 SetOutputUnits 2, "deg C"

 SetOutputData 3, LastAvg

 SetOutputQuality 3, "G"

 SetOutputUnits 3, "deg C"

 SetOutputData 4, LastMax

 SetOutputQuality 4, "G"

 SetOutputUnits 4, "deg C"

End Sub

Custom GOES Formatting

Custom GOES formatting in Tiny Basic involves placing a branch at line numbers 65010 to

format a self-timed buffer, and a branch at 650011 to format a random buffer. Both of these

cases are supported with Xpert Basic by creating Satlink formatting functions. Whereas Tiny

Basic would have to open a special device called "BUFFER:" to create the message, the Xpert

Basic formatting function needs only return a string (see Satlink Formatting for more

information).

57

Custom Speech Modem Handling

Tiny Basic has the ability to create custom speech phrases. This ability is not currently supported

in Xpert Basic, as the standard speech phrase editor allows fairly complex speech scripts to be

created. It is possible to open any serial port and perform direct I/O, however, the operating

system must not already be using the modem port or the open will fail.

Obsolete Functions

Here is a list of functions that exist in 8200 Tiny Basic that are either no longer supported, or are

no longer needed in Xpert Basic:

Tiny Basic Function Reason for Removal

FREEMEM Much more RAM is available in the Xpert.

MEM(Index) Replaced by multi-dimensional arrays.

MEM(Index) = number (same)

RAMPEEK(Addr[, Len]) Replaced by file I/O to storage cards.

RAMINFO(Option) (same)

RAMERASE (same)

RAMPOKE Addr, Num[, Len] (same)

DQAP sensorname The Xpert supports flexible connections

between processing blocks and sensor blocks.

This command exists in Tiny Basic to allow

connecting a sensor other then WaterLevel to

the DQAP averaging of the 8210.

LIST line1-line2 Interactive editing is not supported.

NEW (same)

RUN (same)

POWER OnOff Replaced by the Power and PowerAd

statement.

POWER AUX OnOff Replaced by the Power and PowerAd

statement.

RUNLINE SensorName, LineNo Use Basic Sensors to create custom sensors.

58

LANGUAGE REFERENCE

This section provides a reference of all operations, statements, and functions that can be used in

an Xpert Basic program.

Language Reference Syntax

The syntax examples in this section use some special symbols to help clarify how a statement or

function should be used.

Square brackets are used to denote optional parameters. For example, the For statement's syntax

definition is:

For counter = start To end [Step step]

The brackets around "Step step" indicate the step portion is optional. Hence, a For statement can

look like this:

For I = 1 To 10

or like this:

For I = 1 To 10 Step 5

When more than one keyword is possible in the syntax of a statement, each keyword is listed

with a vertical bar between them. For example, the syntax of the Do statement is:

Do [While|Until condition]

The vertical bar means that either "While" or "Until" is acceptable syntax following "Do". Both

ways are shown below.

Do While A>5

Do Until A>5

While Basic is not case-sensitive (variables, functions, and statements can be typed in any

combination of upper or lower case and yet still mean the same thing), the Basic Language

Reference does use case to convey certain concepts.

 Mixed case is used to denote Basic keywords (e.g. For means typing the word "For").

 All uppercase is used to denote Basic constants.

 Lower case is used to denote variables or expressions (see table below).

The following table describes the meaning of the most common variable placeholders used

throughout the Language Reference:

Variable Description

result The result of a function or expression evaluation.

number An integer or floating point variable, a literal number (i.e., a number typed

directly into the program), or an equation that results in a number.

integer An integer variable, or an integer constant from –2147483648 to -

2147483647

59

string A string variable, a literal string (i.e., a string typed directly into the program

like "Hello World"), or an equation that results in a string.

variable A variable of some type, or perhaps multiple types

mod An analog or digital I/O module number ranging from 1 up to the number of

I/O modules in the system.

chan An analog or digital I/O channel number, ranges from 1 to 6 for the Xpert

analog I/O, or 1-8 for the Xpert digital I/O.

excitation_chan A channel of the Xpert analog I/O to be used for outputting an excitation

voltage.

excitation_volt The number of volts to output on an excitation channel, ranging from 1, 2, 3,

4, or 5.

tag A string containing the name of a tag in the system.

filenumber A constant or integer representing a basic file.

time A time variable or an equation that returns a time.

date A date variable or an equation that returns a date

parms A comma-separated list of variables or equations.

Run-Time Errors

Some operators, statements, and functions can result in a run-time error if the operation fails for

some reason. If a run-time error is possible, the operation's Language Reference section provides

an "Errors" listing that defines the numeric value of the error returned by the Err function and a

description of the error. For more information on handling run-time errors in basic, see Error

Handling.

Basic Operators

The following is a list of Basic Operators:

- Operator

Syntax:

result = number1 - number2

Subtracts number2 from number1.

Example:

A=A-2

& Operator

Syntax:

result = string1 & string2

60

Concatenates string1 and string2.

Example:

A="Sutron" & " Corp"

* Operator

Syntax:

result = number1 * number2

Multiplies number1 by number2.

Example:

A=A*3.1415

/ Operator

Syntax:

result = number1 / number2

Divides number1 by number2, resulting in a floating point.

Example:

A=A/12.34

Errors:

25: BE_DIVIDE_BY_ZERO

\ Operator

Syntax:

result = number1 \ number2

Divides number1 by number2, resulting in an integer.

Example:

If (A/2) = (A\2) Then StatusMsg "A is Even"

Errors:

25: BE_DIVIDE_BY_ZERO

^ Operator

Syntax:

result = number1 ^ number2

Raises number1 to power of number2.

Example:

A=C1*X^3+C2*C^2+C3

61

+ Operator

Syntax:

result = string1 + string2

Concatenates string1 and string2.

Example:

A="Sutron" + " Corp"

+ Operator

Syntax:

result = number1 + number2

Adds number1 to number2.

Example:

A=A+2

< Operator

Syntax:

result = variable1 < variable2

Result is True when variable1 is less than variable2. For strings, all comparison operators

perform a textual comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

If A<Min Then Min=A

<< Operator

Syntax:

result = integer1 << number2

Bit-wise shift integer1 left integer2 places. Both values must be integers.

Example:

If Ch And (1<<7) Then StatusMsg "High Bit Set"

<= Operator

Syntax:

result = variable1 <= variable2

The result is True when variable1 is less than or equal to variable2. For strings, all comparison

operators perform a textual comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

If X <= 0 Then Exit Sub

62

<> Operator

Syntax:

result = variable1 <> variable2

True when variable1 does not equal variable2. For strings, all comparison operators perform a

textual comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

Match = InpStr <> "TEST"

= Operator (assignment)

Syntax:

result = variable1

Assigns variable1 to result.

Example:

Temperature = Ad(1,1)

= Operator (comparison)

Syntax:

result = variable1 = variable2

True when variable1 equals variable2. For strings, all comparison operators perform a textual

comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

If X=0 Then Goto Done

> Operator

Syntax:

result = variable1 > variable2

True when variable1 is greater than variable2. For strings, all comparison operators perform a

textual comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

If A>Max Then Max=A

>= Operator

Syntax:

result = variable1 >= variable2

True when variable1 is greater than or equal to variable2. For strings, all comparison operators

perform a textual comparison (e.g., "abcd" is less than "efgh") where case is relevant.

Example:

63

Do While Num >= 0

Num = Num - 1

End Loop

>> Operator

Syntax:

result = integer1 >> number2

Bit-wise shift integer1 right integer2 places. Both values must be integers.

Example:

BitMask = BitMask >> 1

And Operator

Syntax:

result = number1 And number2

Performs a conjunction between number1 and number2. Logically, the result is true only when

both operands are true. The conjunction is performed at the bit level so a bit in the result is set

only when the corresponding bits in the operands are set.

Example:

Ch = Chr(Asc(Ch) And &h7f) ' Strip off high-bit

If Ch<>"Y" And Ch<>"N" Then StatusMsg "Expected Y or N" ' boolean-and

Eqv Operator

Syntax:

result = number1 Eqv number2

Performs an equivalency comparison between number1 and number2. Logically, the result is true

when either both operands are both true or both false. The comparison is performed at the bit

level so a bit in the result is set only when the corresponding bits in the operands are either both

set or both cleared.

Example:

EqualMask = A Eqv B

Mod Operator

Syntax:

result = number1 Mod number2

Divides number1 by number2 (rounding floating-point numbers to integers) and returns only the

remainder as result. For example, in the following expression, the result is 5:

 A = 19 Mod 6.7.

Example:

X = (X+1) Mod 100 ' Inc X, but when it exceeds 100 wrap to 0

64

Errors:

25: BE_DIVIDE_BY_ZERO

Not Operator

Syntax:

result = Not number

The Not operator negates number. Logically, if number is true, the result is false. If number is

false, the result is true. The operation is performed at the bit level so each bit set in number is

cleared in the result and each bit cleared in number is set in the result.

Example:

If Not IsXpert Then StatusMsg "Running on XLite"

Or Operator

Syntax:

result = number1 Or number2

Performs a disjunction between number1 and number2. Logically, the result is true only when at

least one operand is true. The disjunction is performed at the bit level so a bit in the result is set

only when at least one of the corresponding bits in the operands are set.

Example:

Num = Num Or 1 ' Make Num odd

If Num=5 Or Num=7 Then Num=1

Xor Operator

Syntax:

result = number1 Xor number2

Performs exclusion between number1 and number2. Logically, the result is true only when either

operand is true, but not both. The exclusion is performed at the bit level so a bit in the result is

set only when one of the corresponding bits in the operands are set, but not both.

Example:

BitMask = BitMask Xor &hff ' Invert the low 8-bits

Statements and Functions

Statements are commands that perform an operation without returning a result. For example, the

Digital statement sets a digital output and does not return a result:

Digital 1, 2, 1

Functions are commands that return a result. For example, the Ad function measures an analog

voltage and returns the result to A:

A = Ad(1, 1)

65

The result of a function must be used, either in assignment to a variable, or as part of an

equation.

Occasionally, a statement and a function may have the same name. The compiler differentiates

between the two based on how they are used.

The definition of each statement and function available in Xpert Basic follows, in alphabetical

order.

Abort Function

Syntax:

result = Abort

When Run Always mode is not active, this function returns true when recording has stopped.

This is typically used by programs to detect when to shut down (note: programs that continue to

run beyond recording stop are eventually terminated forcefully; hence, programs should use

Abort to trigger a clean shut down).

Example:

If Abort Then Exit Function

Abs Function

Syntax:

result = Abs(number)

Returns the absolute value of number.

Example:

Y=Sqr(Abs(X))

Ad Function

Syntax:

result = Ad(mod, chan [, excitation_chan, excitation_volt])

Takes a 0-5v measurement on the specified channel. An excitation voltage and channel may be

specified, if required. Use the ConfigAd statement to configure filter notch, warm-up delay, and

mode (Single or Differential) if the defaults of 60Hz, 50ms, and Single aren't acceptable.

Example:

ConfigAd 1, 1, 60, 5, 0 ' Use quick 5ms warmup

Level = Ad(1, 1) ' Measure level

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

66

Ad420 Function

Syntax:

result = Ad420(mod, chan)

Takes a 4-20ma A/D measurement. If sensor is connected to SW-12, then use PowerAd to turn

SW-12 on prior to measurement and then again to turn it off after the measurement. Use

ConfigAd statement to configure filter notch, warm-up delay, and mode (single or differential).

Example:

A = Ad420(1, 4)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

AdAC Function

Syntax:

result = AdAC(mod, chan, excitation_chan, excitation_volt)

Takes an AC resistance measurement. Use ConfigAd statement to configure filter notch, warm-

up delay, and mode (single or differential).

Example:

A = AdAC(2, 1, 2, 5) ' 5v excitation on chan 2

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

AdDC Function

Syntax:

result = AdDC(mod, chan, excitation_chan, excitation_volt)

Takes a DC resistance measurement. Use ConfigAd statement to configure filter notch, warm-up

delay, and mode (single or differential).

Example:

V = AdDC(1, 4, 5, 3)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

AddGroup Statement

Syntax:

AddGroup group, "name", enableparser

67

Adds a custom login group to the system. The group number may be in the range 1 to 10, and

should not conflict with any other custom groups. The name is a string containing the name of

the group (it should contain only characters that a basic variable can contain). The enableparser

flag will allow a custom command parser to be created for the group.

When a user interactively logs in to an account associated with a custom group, the custom login

function is called. The custom login function can enable custom commands that, if so enabled,

will be processed by a custom command function.

The login function must be a public function defined with the name LOGIN_name. The

command function is a public function as well, defined with the name COMMAND_name.

Creating a custom login function and command parser is fairly complicated as it involves using

socket communications to the Remote program.

Example:

AddGroup 2, "CoOp", 1

Errors:

29: BE_INVALID_ARGUMENT (group number outside allowable range)

AdGain Function

Syntax:

result = AdGain(mod, chan [, excitation_chan] [, excitation_volt] [, gain])

Takes a 0-5v hi-gain (default is 16X) measurement on the specified channel. Use ConfigAd

statement to configure filter notch, warm-up delay, and mode (single or differential). An

excitation voltage and channel may be specified, if required. The gain amount may be passed

explicitly. Gain values of 1, 16, or 128 are permitted. An 128X absolute measurement can be

performed by passing the excitation channel and voltage as 0 (see example below).

Example:

REM Take a 16X gain absolute A/D measurement of module 1 channel 1

V = AdGain(1,1)

REM Take a 128X gain absolute A/D measurement of module 1 channel 1

V128 = AdGain(1,1,0,0,128)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

AdRatio Function

Syntax:

result = AdRatio(mod, chan, excitation_chan, excitation_volt)

Measures the channel and the excitation voltage and returns the channel voltage divided by the

excitation voltage.

Example:

V = AdRatio(1,1,2,3)

68

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

AdTherm Function

Syntax:

result = AdTherm(mod, chan, excitation_chan, excitation_volt)

Takes a thermistor measurement (i.e., measures the resistance of the thermistor; the return value

is in ohms). Use ConfigAd statement to configure filter notch, warm-up delay, and mode (single

or differential).

Example:

V=AdTherm(1,1,2,2)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Array Function

Syntax:

result = Array(parms)

Constructs an array from a comma-separated list of constant integers, floating-point numbers, or

strings. The first position is always index 0 of the array. Multi-dimensional arrays can be created

by nesting the Arrays:

TwoDimArray=Array(Array(0.0,0.1), Array(1.0,1.1), Array(2.0,2.1))

Example:

Names = Array("Tom", "Steve", "Dan")

Asc Function

Syntax:

result = Asc(string)

Return the ordinal value of first char contained string.

Example:

AsciiA = Asc("A")

Atn Function

Syntax:

result = Atn(number)

Return arctan of number in radians.

69

Example:

Pi = Atn(1.0)*4

Bin Function

Syntax:

result = Bin(num, count)

Converts a number in to a (count) byte long binary string. For example, Bin(65, 1) would

generate the same thing as Chr(65) or "A". Bin(&h414243, 3) would generate "ABC".

If the number is a floating point number, then count must be either 4 or 8, to have the number

stored in IEEE 32 bit or 64 bit single or double precision, respectively. If count is not 4 or 8 (or -

4 or -8, see note below), then the number is treated as an integer.

The sign of count determines the byte order. When count is positive, the most significant byte is

stored first (compatible with ARGOS 8-bit binary formats). When count is negative, the least

significant byte is stored first.

Example:

BV = 12.32

Data = Bin(Int(BV*100), 2) ' Convert BV in to a 2-byte binary value

Bin6 Function

Syntax:

result = Bin6(num, count)

Converts a number in to a (count) byte long 6-bit packed binary string, used for goes formatting.

The maximum number of bytes is 3, which allows a representation range of [–131072 .. 131071].

For example, Bin6(12345, 3) would generate the string "C@Y". The byte order was corrected in

version 2.3 to be most significant byte first in order to be compatible with GOES 6-bit binary

formats.

Example:

BV = 12.32

Data = Bin(Int(BV*100), 3) ' Convert BV in to a 3-byte 18-bit value

BitConvert Function

Syntax:

result = BitConvert(string, type)

Converts a binary string of specific format type into a number (this function does essentially the

inverse of what the Bin statement does). This function is useful for converting binary strings

received from other devices into the appropriate numerical type. The following types are

supported:

70

Type String contents

1 4 byte integer, least significant byte (LSB) first

2 4 byte integer, most significant byte (MSB) first

3 IEEE 754 32 bit float, least significant byte (LSB) first

4 IEEE 754 32 bit float, most significant byte (MSB) first

5 IEEE 754 64 bit double, least significant byte (LSB) first

6 IEEE 754 64 bit double, most significant byte (MSB) first

Example:

' Read binary value from device

If (ReadB(Port, BinString, 4)) Then

 MyFloat = BitConvert(BinString, 4)

End If

Errors:

29: BE_INVALID_ARGUMENT (string is not a string or wrong size)

Call Statement

Syntax:

Call sub(parms)

Calls a named subroutine (see the Sub statement).

Example:

Call LogData(Stage, 2)

Errors:

10: BE_SUBROUTINE_NOT_FOUND

Cd Function

Syntax:

result = Cd(#filenumber)

Returns the state of carrier detect for the specified com port.

Example:

If Cd(#1) Then SetDTR #1, -1

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION (the file type does not support Cd)

ChDir Statement

Syntax:

71

ChDir path

Changes the current directory

Example:

ChDir "\SD Card" 'Xpert2 or 9210B with SD card inserted.

ChDir "\Storage Card" '9210 and Xpert with PCMCIA.

Errors:

5: BE_CHDIR_FAILED

Chr Function

Syntax:

result = Chr(charcode)

Return string containing the character associated with charcode.

Example:

LetterA = Chr(65)

'Useful characters when dealing with serial or file I/O

Const CharNUL = Chr(0) 'NUL

Const CharSOH = Chr(1) 'Start of Header

Const CharSTX = Chr(2) 'Start of Transmission

Const CharEOT = Chr(4) 'End of Transmission

Const CharAck = Chr(6) 'ACK

Const CharLF = Chr(10) 'Line Feed

Const CharCR = Chr(13) 'Carriage Return

Const CharDLE = Chr(16) 'DLE

Const CharNAK = Chr(21) 'NAK

Const CharESC = Chr(27) 'Escape

Const CharQuote = Chr(34) 'Quote (to send quote character inside of a string)

ClearAlarm Statement

Syntax:

ClearAlarm [tag [, HIGH | LOW | ROC]]

When no parameters are specified, this statement clears all tags out of the alarm state. When a

tag parameter is specified, the tag's alarm state is cleared. When a tag parameter and alarm type

is specified, the tag is cleared of the specified alarm state. For example:

ClearAlarm "MyTag", HIGH ' Clears high alarm state from tag named "MyTag"

Errors:

23: BE_TAG_NOT_FOUND

ClearAlert Statement

Syntax:

ClearAlert [[tag [, HIGH | LOW | ROC]] | [port_num]]

72

When no parameters are specified, this statement clears the system alert state. When a tag

parameter is specified, the tag's alert state is cleared. When a tag parameter and alert type is

specified, the tag is cleared of the specified alert state. When a com port number is specified (1 –

9), the alert state of the specified com port is cleared. For example:

ClearAlert ' Clears system alert state

ClearAlert "MyTag" ' Clears alert state of tag named "MyTag"

ClearAlert "MyTag", HIGH ' Clears high alert state from tag named "MyTag"

ClearAlert 2 ' Clears alert state of com port 2

Errors:

23: BE_TAG_NOT_FOUND

29: BE_INVALID_ARGUMENT

Close Statement

Syntax:

Close filenum

Closes a file.

Example:

Close #1

Errors:

10: BE_INVALID_FILENUM

ComputeCRC Function

Syntax:

result = ComputeCRC(initialvalue, polynomial, string)

Computes a 16-bit cyclic redundancy check (CRC) or a 32-bit checksum for the block of data

contained in string using the specified initialvalue and polynomial. A polynomial

of 0 can be specified to compute a simple 32-bit checksum. CRC's are typically computed to

check blocks of data for errors and can be implemented in hardware on the actual serial bit

stream. By default, this function views the byte as being transmitted most significant bit first.

For example, the Xmodem/Ymodem protocols use a 16-bit CRC-CCITT with an initial value of

0. The CCITT CRC generating polynomial is: x16 + x12 + x5 + 1 which can be represented by the

hexadecimal number &h1021. Note: Being a 16 bit CRC, the x16 term is implied and not present

in the hexadecimal representation. The Sutron Standard Protocol (SSP) uses the ANSI CRC-16

polynomial with an initial value of 0. The ANSI CRC-16 generating polynomial is x16 + x15 + x2

+ 1 which can be represented by the hexadecimal number &h38005. The initial "3" preceding

the CRC-16 Polynomial informs the algorithm to reverse the data bits and reverse the result. This

is necessary for an implementation that expects the least significant bit of a byte first as is the

case in many CRC-16 implementations.

Example:

CRC = ComputeCRC(0, &h1021, DataBuffer)

73

Protocol initialvalue polynomial
Ymodem 0 &h1021

SSP 0 &h38005

Modbus &hffff &h38005

When attempting to match an existing CRC, there is sometimes example code. If the example

code has a loop which shifts the incoming byte to the left (multiple by 2) then the number used in

the exclusive or statement (XOR or ^) is usually the polynomial. If instead the example code

shifts the incoming byte to the right (divide by 2) then the number used in the XOR statement

will need to be bit reversed and proceeded by a 3. For example, if the code divides by two and

XORs with A001 which is (1010 0000 0000 0001), then reverse the bits (1000 0000 0000 0101)

which is 8005 and proceed it with a 3 to get a polynomial of &h38005.

ConfigAd Statement

Syntax:

ConfigAd mod, chan[, freq, warmup, mode]

The ConfigAd statement sets the filter notch frequency in Hz, warmup time in ms, and mode (0

for single, 1 for differential) for Analog measurements. Default filter notch is 60Hz, default

warmup time is 50ms, and default mode is single=0. Mode=1 specifies differential.

NOTE: while rare, it’s sometimes the case that you’ll want to make two different measurements

(M1 and M2), of the same channel at roughly the same time, but with different configurations

(e.g., one single ended, the other differential). Since ConfigAd and Ad are separate statements,

this allows for the possibility that the channel will be configured for M1, but then measured for

M2. When M1 and M2 are both Basic programs, you can avoid this situation by using the Lock

and UnLock statements around ConfigAd and Ad, as shown in the example.

Example:

Lock

ConfigAd 1, 1, 60, 10, 1 ' Use 10ms warmup on channel 1, do differential 1 to 2

Level = Ad(1, 1) ' Measure level

UnLock

Const Statement

Syntax:

Const variable=const-expr

Declares a constant. Expressions are allowed (they are automatically reduced to the simplest

form). Strings, floats, and integer constants may be created. Allowed operators include: unary -

,unary +, (), ^, *, /, \, Mod, &, +, -, >=, >, <, <>, =, Not, And, Or, Xor, Eqv. In addition the Chr()

function is supported.

Example:

Const GateWarning = 10.0

Const GateAlarm = GateWarning * 1.2

74

Cos Function

Syntax:

result = Cos(number)

Returns a double specifying the cosine of number (an angle in radians).

Example:

YVector = Cos(Angle)*FullScale

Counter Function

Syntax:

result = Counter(mod, chan)

Measures the number of counts in a digital counter.

Example:

Counts = Counter(1, 1)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Counter Statement

Syntax:

Counter mod, chan, num

Programs a digital I/O point to be a counter, and sets the initial value.

Example:

Counter 1, 1, 0

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Cts Function

Syntax:

result = Cts(#filenumber)

Return the state of the CTS line of a com port.

Example:

If Cts(#1) Then SetRTS #1, 1

Errors:

10: BE_INVALID_FILENUM (the filenumber has not been successfully opened)

18: BE_UNSUPPORTED_OPERATION (the file type does not support Cts)

75

CurDir Function

Syntax:

result = CurDir

Returns the current directory.

Example:

ChDir CurDir & "Speech"

Date Function

Syntax:

result = Date

Returns the current date.

Example:

If Month(Date) = 12 Then StatusMsg "It's december"

Date Statement

Syntax:

Date=variable

Sets the current Date

Example:

Date = DateSerial(Y, M, D)

DateSerial Function

Syntax:

result = DateSerial(Y,M,D)

Returns a Date (the earliest supported date is Jan 1 1970, and the latest supported date is Jan 18

2038).

Example:

NextYear = DateSerial(Year(Date)+1, 1, 1)

Day Function

Syntax:

result = Day(date)

Returns the day of the month contained in date.

Example:

If Day(Date)=31 Then StatusMsg "It's the end of the month"

76

Declare Statement

Syntax:

[Public] Declare Sub|Function sub [Lib library] [Alias alias](parms) [As

Integer|Double|String]

Declares a subroutine or function, which may optionally be located in the DLL specified by the

Lib statement. A DLL based subroutine or function will be passed integers, doubles, or char*

strings depending on the type of variables passed.

If public is specified then the subroutine or function is assumed to be defined as public in another

basic program. If neither the Lib nor the Public keyword is specified, then the subroutine or

function is treated as private. Declare may be used as a forward declaration for the definition of a

subroutine or function, which must occur later in the same source file.

The As keyword may be used to specify the return parameter of a DLL function (the default, if

not specified, is Integer). The Alias keyword may be used to specify a name of the exported DLL

function, otherwise the sub name is used.

Example:

Public Declare Sub LogData(Meas1, Meas2, Meas3)

Public Declare Function ComputeFlow(Stage)

Declare Tag Statement

Syntax:

Declare Tag name[(numvalues)]

Creates a communication tag, which may be connected up to various functions and subroutines.

If numvalues isn't specified, then the tag is assumed to have no values.

Example:

Declare Tag PumpOn(5)

Digital Function

Syntax:

result = Digital(mod, chan)

Returns the state of a digital I/O point. If the point is an output, the last value written is read-

back. If the point is programmed as an input then,–1 will be returned if the input is active (driven

to ground) and 0 if inactive (floating or driven to 5v). This function uses negative logic because

it's assumed an open-collector type input such as an Opto-22 module is connected. This is in

contrast to the BinIn block, which uses positive logic.

Example:

DoorOpen = Digital(1, 1)

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

77

Digital Statement

Syntax:

Digital mod, chan[, num]

Sets a digital output to num or, if a number isn't specified, the channel is turned in to a digital

input. Digital I/O points are negative logic in Basic. So, to turn an output on, you would specify

–1 for the value of num, which would drive the physical output to ground. To turn it off, specify

a value of 0 for num. This function uses negative logic, because it's assumed an open-collector

type output such as an Opto-22 module is connected. This is similar to the BinOut block, which

also uses negative logic.

Example:

Digital 1, 1, -1 ' Open gate

Sleep 5.0 ' for 5 seconds

Digital 1, 1, 0 ' Now stop it

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Dim Statement

Syntax:

Dim variable

Declares a local variable but does not initialize it. This can be useful when used with Basic

Blocks, Basic Sensors, and Basic Schedule subroutines as the local variables persist across calls.

In the following example, the output increments after each execution:

Public Sub Sched_IncTest

 Dim Counter

 StatusMsg "IncTest = "&Counter

 Counter = Counter + 1

End Sub

The value of Counter begins at 0, but increments and persists after each scheduled execution of

the IncTest subroutine.

DisableAlert Statement

Syntax:

DisableAlert

Disable sending alarm messages.

Example:

DisableAlert

Do Statement

Syntax:

Do [While|Until condition]

78

 statements

End Loop

Do while, until, or infinite loop

Example:

Do While Not Abort

 A = Ad(1,1)

 StatusMsg A

End Loop

Syntax:

Do

 statements

Loop While|Until condition

Do while or until loop with check at the end

Example:

Do

 A = A^2 + X

 X = X + 1

Loop Until X > 50

Dsr Function

Syntax:

result = Dsr(#filenumber)

Returns the state of the DSR line of a com port.

Example:

If Dsr(#1) Then Call AnswerPhone(#1)

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION (the file type does not support Dsr)

EnableAlert Statement

Syntax:

EnableAlert

Enable sending alarm messages.

Example:

EnableAlert

Eof Function

Syntax:

result = Eof(filenumber)

79

For files, returns true when the end of the file has been reached. For logs, returns true when the

end of the log has been reached after moving forward in the log, and when the beginning of the

log has been reached after moving backward in log.

Example:

Do While Not Eof(#1)

 Line Input #1, A

 StatusMsg A

End Loop

Errors:

10: BE_INVALID_FILENUM

Erl Function

Syntax:

result = Erl

Returns the line number of the line that triggered an error handler. The value 0 is returned to

indicate no error.

Example:

On Error Goto Problem

Y = A/B

On Error Goto 0

Stop

Problem:

StatusMsg Error(Err) & " occurred at line " & Erl

Resume Next

Err Function

Syntax:

result = Err

Returns the current error value, which is a value set by functions which can fail at run-time. The

value 0 is returned to indicate no error.

Example:

On Error Resume Next

Y = A/B

If Err<>0 Then Y=0.0 ' check for divide by 0

On Error Goto 0

Error Function

Syntax:

result = Error[(x)]

If passed a parameter than the name of the error associated with that value is returned, otherwise

the name of the current error condition is returned (same as Error(Err)). The value "OK" is

80

returned to indicate no error, and "UNKNOWN ERROR" is returned if an illegal error value is

passed in.

Example:

On Error Resume Next

Y = A/B

If Err <> 0 Then StatusMsg Error & " occurred at line " & Erl

On Error Goto 0

ErrorMsg Statement

Syntax:

ErrorMsg str

Outputs an error message to the Remote prompt and/or system log.

Example:

ErrorMsg Format("WaterLevel exceeded 10ft, currently %1.2f ft", WL)

Exit Statement

Syntax:

Exit Do|For|Function|Sub

Exits one of the specified types of loops or sections of code.

Example:

If Abort Then Exit Function

Exp Function

Syntax:

result = Exp(number)

Returns e raised to number.

Example:

Y = C1*Exp(X)

FFT Function

Syntax:

result = FFT(data)

Performs the Fast Fourier Transform function on an array of time sampled data and returns a 2

dimensional array containing the complex frequency data. The transform works best on data sets

which are a power of 2 in size (8, 16, 32, 64, etc). The maximum number of samples that may be

processed is roughly 16,384 but may be less depending on the amount of memory free.

Result[n,0] contains the real part, and result[n,1] contains the imaginary part of the complex

answer. The Result array is not “scaled”, and you may wish to divide the results by the number

81

of samples (UBound(data)+1). The FFT routine can process ~ 3400 samples in a second with

double precision floating point. This function is only available on the Xpert2/9210B.

Example:

TimeAr = Array(2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3)

FreqAr = FFT(TimeAr)

For i = 0 To UBound(FreqAr)

 StatusMsg "FreqAr(" & i & ") = [" & FreqAr(i,0) & "," & FreqAr(i,1) & "]"

Next i

FFTI Function

Syntax:

result = FFTI(data)

Performs the inverse Fast Fourier Transform function on a 2-dimensional array of complex

frequency elements and returns a 1 dimensional array of time series samples. The frequency

array half the size of the time series array plus one. The maximum number of elements that may

be processed is roughly 8,193 but may be less depending on the amount of memory free.

Data[n,0] contains the real part, and Data[n,1] contains the imaginary part of the frequency data.

The Result array is “scaled”, and it is not necessary to divide the results by the number of

samples. The FFTI routine can process ~ 1400 elements in a second with double precision

floating point. This function is only available on the Xpert2/9210B.

Example:

TimeAr = Array(2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3)

REM Process the samples with an FFT

FreqAr = FFT(TimeAr)

REM Invert the FFT to see if we get the original data back

NewAr = FFTI(FreqAr)

For i = 0 To UBound(NewAr)

 StatusMsg "NewAr(" & i & ") = [" & NewAr(i) & "]"

Next i

FileCopy Statement

Syntax:

FileCopy source, destination

Copies the source file to destination.

Example:

FileCopy "default.ssf", "\SD Card\default.ssf" ' Backup the setup file

Errors:

7: BE_COPY_FAILED

FileLen Function

Syntax:

result = FileLen(pathname)

Returns the length of the file specified in pathname.

82

Example:

N = ReadB(#1, Data, FileLen(#1)) ' Read entire file

Errors:

9: BE_FILELEN_FAILED

Flush Statement

Syntax:

Flush #filenumber

For disk files, Flush writes buffered sectors out to disk. For com ports, Flush returns when the

transmit buffer is empty. For log files, Flush writes any pending updates to disk.

Example:

Flush DataFile

Errors:

10: BE_INVALID_FILENUM

FlushInput Statement

Syntax:

FlushInput #filenumber

On a com port or socket file, FlushInput flushes the input buffer.

Example:

FlushInput SerialPort

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION (file type is not supported)

For Statement

Syntax:

For counter = start To end [Step step]

 statements

Next [counter]

Implements a for loop with an optional step. Negative steps are allowed. Note: Goto may not be

used to branch outside a For Next block.

Example:

For i = 2 To 100 Step 2

 StatusMsg "Even Number " & i

Next i

83

Format Function

Syntax:

result = Format(formatstr, varlist)

C style sprintf function. For each field in the format string a variable (or constant) from the

varlist is formatted and inserted.

The syntax of a field is as follows:

%[flags] [width] [.precision] type

The width typically determines the minimum number of characters to output. Padding is

performed with spaces on the left, or on the right, or with leading zeroes depending on the flags.

Here's a list of the most common types that are supported:

type Description

%c Inserts an integer formatted as an ASCII character

%s Insert a string. The precision determines the maximum number of

characters to be printed.

%d Insert a decimal integer. The precision will determine the minimum

number of digits that will be formatted.

%x Insert an unsigned hexadecimal integer (using lower case)

%e Insert a floating-point number in scientific notation. The precision

determines the number of digits to format after the decimal point.

%f Insert a floating-point number. The precision determines the number of

digits to format after the decimal point.

%g Insert a floating-point number in fixed or scientific notation depending on

which format is more compact.

flags Description

- Left align the result within the given field width.

+ Prefix the output value with a sign (+ or –) if the output value is of a

signed type.

0 If width is prefixed with 0, zeros are added until the minimum width is

reached.

blank Prefix the output value with a blank if the output value is signed and

positive; the blank is ignored if both the blank and + flags appear.

Forces the output of a decimal point (for floating point formats) and

prevents the truncation of trailing zeroes.

Example:

With the following variables:

A = 5

84

B = 3.4

C = "5.67"

D = Format("A=%3d, B=%5.4f, C=%10s", A, B, C)

D contains "A= 5, B=3.4000, C= 5.67"

With the following number:

NumberTest = 123.123456

D = Format("%.0f",NumberTest) & " 0 digit"

D contains "123 0 digit"

D = Format("%.1f",NumberTest) & " 1 digit"

D contains "123.1 1 digit"

D = Format("%#.0f",NumberTest) & " 0 digit float force dec"

D contains "123. 0 digit float force dec"

FreeFile Function

Syntax:

result = FreeFile

Returns the next available file number. File numbers begin at 1. If 0 is returned, there are no

more file numbers available.

Example:

DataFile = FreeFile

Open "Data.dat" For Input As DataFile

 Line Input DataFile, Str

Close DataFile

Frequency Function

Syntax:

result = Frequency(mod, chan, period)

Measures the frequency of a digital counter channel. Period is in milliseconds.

Example:

F = Frequency(1, 1, 1000) ' Measure frequency for 1sec

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Function Statement

Syntax:

[Public] Function name(parms)

 statements

End Function

Declares a function. The Public keyword makes the function accessible to other Basic programs.

Example:

85

Function Mult(X, Y)

 Mult = X*Y

End Function

Errors:

16: BE_FUNCTION_NOT_FOUND

GetAbortEvent Function

Syntax:

event = GetAbortEvent

Returns the abort event, a special flag which is set when a Basic program needs to shutdown.

Unlike the Abort function which returns a simple boolean variable, this returns an event flag that

can be tested or waited for by the WaitEvent function. See GetStopEvent for a similar function,

one that returns an event flag that can be tested for recording stop.

GetInput Function

Syntax:

sensorreading = GetInput(point)

For Basic blocks, returns the input point (1-5) as a sensor reading, including the values for the

sub-fields .Time, .Name, .Data, .Quality, .Units, .Alarm and .Digits. A sensor reading can be

passed to the SetOutput and Log statements.

Example:

R = GetInput(3)

R.Data = R.Date * Slope + Offset

SetOutput 3, R

Log "ssp”, R

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputAlarm Function

Syntax:

result = GetInputAlarm(point)

For Basic blocks, returns the alarm status for the specified input point (1-5). The alarm status is a

bit mask which includes bits to indicate hi limit, low limit, and rate of change alarms.

Example:

Const HiLimitA = 1<<0

Const LowLimitA = 1<<1

Const RocA = 1<<8

If GetInputAlarm(3) And HiLimitA Then StatusMsg "Hi limit alarm detected!"

If GetInputAlarm(3) = 0 Then StatusMsg "No alarms detected"

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

86

GetInputData Function

Syntax:

result = GetInputData(point)

For Basic blocks, returns the last data value for the specified input point (1-5).

Example:

Ratio = GetInputData(2)/GetInputData(4)

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputDigits Function

Syntax:

result = GetInputDigits(point)

For Basic blocks, returns the number of right digits for the specified input point (1-5). When the

value is less than 0, a more compact format is used that may use either scientific or fixed

notation depending which is shorter. In this case, the absolute value of result specifies the field

width.

Example:

SetOutputDigits 3, GetInputDigits(3)

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputName Function

Syntax:

result = GetInputName(point)

For Basic blocks, returns the name of the specified input point (1-5).

Example:

SetOutputName 3, GetInputName(3)

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputQuality Function

Syntax:

result = GetInputQuality(point)

87

For Basic blocks, returns the quality flag for the specified input point (1-5). The flag is one of the

following: "G"=GOOD, "B"=BAD, "U"=UNDEFINED.

Example:

If GetInputQuality(3) = "G" Then TempF = 9*TempC/5+32

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputTime Function

Syntax:

result = GetInputTime(point)

For Basic blocks, this returns the actual time the specified input point (1-5) was measured (as

opposed to the time it was scheduled to be measured).

Example:

SetOutputTime 3, GetInputTime(3)

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetInputUnits Function

Syntax:

result = GetInputUnits(point)

For Basic blocks, this returns the engineering units for the specified input point (1-5).

Example:

SetOutputUnits 3, GetInputUnits(3)

Errors:

29: BE_INVALID_ARGUMENT

32: BE_NOT_BASICBLOCK

GetMessage Function

Syntax:

result = GetMessage(port, station, opcode, timeout-seconds)

Waits for an SSP message containing the specified opcode and returns the data portion. The arg

"port" is assumed to be one-based index of com port (e.g., 1 means COM1). This function

assumes the indicated port has been configured for SSP communications using the Coms

Manager in the Setup control panel.

Example:

Msg = GetMessage(2, "MASTER", 41, 10) ' Wait 10sec for a mail message on COM2

Errors:

88

18: BE_UNSUPPORTED_OPERATION

30: BE_REMOTE_COMM_ERROR

31: BE_REMOTE_WAIT_TIMEOUT

GetScheduledTime Function

Syntax:

Result = GetScheduledTime

Returns the date/time the program began running, or the date/time a basic block, a basic sensor,

or a scheduled block was scheduled to run. This is often used to time stamp logged data.

Example:

Log #1, GetScheduledTime, "Stage", Stage, "G", "ft"

GetStopEvent Function

Syntax:

event = GetStopEvent

Returns the stop event, a special flag that is set when recording is turned off. This flag can be

tested or waited for using the WaitEvent function. Its primary use is in a Run Always program

that needs to do something special when recording is turned off. See Abort, GetAbortEvent, and

WaitEvent.

Example:

' Wait up to an hour for MyEvent to be raised or recording off.

R = WaitEvent(3600, MyEvent, GetStopEvent)

If R <> 1 Then

 Exit Sub

End If

GetTag Function

Syntax:

result = GetTag(port_or_url, station, tagname, valnum, timeout-seconds)

Returns a tag value from another station. The argument "port_or_url" is expected to be the one-

based index of a com port (e.g., 1 means COM1) that has been set up in the Coms entry on the

Setup tab, or to be a string specifying an URL. When specifying an URL, the format of the

argument is "URL[:port][,username,password]". Brackets indicate optional items, hence, ":port"

is optional, as is ",username,password".

The "valnum" parameter is one-based (i.e., 1 means the first value in a tag).

Value numbers used by Xpert ComsTags and 8200/8210 Data Recorders:

1: Current Value

2: Alarm Status

3: Live Reading

Tags created in Basic or with the 9000 RTU SDL can have arbitrary values (e.g., the meaning is

determined by the program).

89

The "tagname" argument is a string containing the tag name. Beginning with firmware version

3.2, tagname can use the following format to specify multiple tags, and tags with multiple values:

"TAG1[:valnum1[-valnum2]],TAG2[:valnum1[-valnum2]],…"

Multi-values are returned in an array. Note: in the case of a multi-value GetTag request,

"valnum" is used as the default value number, if an explicit value number isn't specified in

"tagname". Hence, in the multi-value example below, Stage:1 would be retrieved.

Example:

Stage = GetTag(2, "UPSTRM", "STAGE", 1, 10.0) ' Get upstream stage value

URL = "192.168.1.100:23" ' port 23 at ip address 192.168.1.100

R = GetTag(URL, "*", "WaterLevel:31-34,AirTemp:5-7,Stage", 1, 10.0)

Errors:

24: BE_BAD_QUALITY

30: BE_REMOTE_COMM_ERROR

36: BE_TELNET_LOGIN_DENIED

37: BE_TELNET_TIMEOUT

38: BE_TELNET_LOGIN_FAILED

39: BE_TELNET_CONNECT_FAILED

40: BE_TELNET_WRITE_FAILED

41: BE_TELNET_READ_TIMEOUT

42: BE_TELNET_BAD_REPLY

GetTickCount Function

Syntax:

result = GetTickCount

Returns the system tick counter (milliseconds since system start) synced to the minute. This

value can range from 0 to 2,147,483,647.

Example:

S1 = GetTickCount

Sleep 1.5

S2 = GetTickCount

StatusMsg "Actual sleep time was " & (S2-S1)/1000

Gosub Statement

Syntax:

Gosub Line|Label

Runs a subroutine. Program control branches to the specified line or label, until the subroutine

executes a Return statement, at which point control is returned to the statement after the Gosub.

The Gosub statement has been superceded by named subroutines with parameters. Please see the

Sub and Call statements.

Example:

Gosub 100

Gosub Test

Stop

100 StatusMsg "100" : Return

Test: StatusMsg "Test" : Return

90

Goto Statement

Syntax:

Goto Line|Label

Jumps to a line or label.

Example:

10 X=X+1

 If X > 5 Then Goto 10 Else Goto Done

Done: Stop

Hex Function

Syntax:

result = Hex(number)

Returns a string containing the ascii-hex representation of number.

Example:

StatusMsg "255 in base 16 = " & Hex(255)

Hour Function

Syntax:

result = Hour(time)

Returns an integer representing the hour in time.

Example:

If Hour(Now) = 0 Then Call ComputeDailyAverages

If Statement

Syntax:

' Single line syntax

If condition Then statements [Else statements]

' Mult-line syntax

If condition Then

 statements

[ElseIf condition Then

 statements]

[Else

 statements]

End If

Conditional branch statement.

Example:

If Level > 5 Then

 StatusMsg "Warning"

ElseIf Level > 10 Then

91

 StatusMsg "Alert"

Else

 StatusMsg "Good"

End If

InAlarm Function

Syntax:

result = InAlarm

result = InAlarm(tag, HIGH|LOW|ROC)

When no parameters are specified, InAlarm returns true if the system is in alarm. When tag and

an alarm type are specified, returns true if the tag is in the specified alarm state.

Example:

If InAlarm Then StatusMsg "Station is in alarm"

If InAlarm("STAGE", HIGH) Then StatusMsg "Stage High"

Errors:

23: BE_TAG_NOT_FOUND (if tag parameter specified)

InAlert Function

Syntax:

result = InAlert

result = InAlert(num)

result = InAlert(tag, HIGH|LOW|ROC)

When no parameter is specified, returns true if the system in in alert. When num is specified,

returns true if the specified com port (1-9) is in alert. When tag and an alert type are specified,

returns true if the tag is in the specified alert state.

Example:

If InAlert Then StatusMsg "Station is in alert"

If InAlert("STAGE", HIGH) Then StatusMsg "Stage High"

If InAlert(2) Then StatusMsg "Com2 is in Alert"

Errors:

23: BE_TAG_NOT_FOUND (if tag specified)

Inp Function

Syntax:

result = Inp(port)

Performs direct port I/O to the hardware. Many of the I/O ports in the Xpert are "PC

compatible", but the use of these ports is not recommended. This function is included in Basic in

case a problem occurs where the only work around possible is by doing direct I/O.

Example:

Com1Data = Inp(&h3f8)

92

Input Statement (file I/O)

Syntax:

Input #filenumber, inputlist

Read variables from the selected file at the current position. The data type will automatically be

set according to the format of the data in the file.

Example:

Input DataFile, SensorName, Slope, Gain

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS (file was not opened for binary, input, or log)

Input Statement (log file)

Syntax:

Input #logfile, type, time, sensor, data, quality, units

Log files must be read with the parameters specified. The type field is a string describing what

the other fields contain on return.

Type String Description of field contents

"B" Bad data in the log. Part of the log has become corrupted.

"E" End of the log (or beginning when seeking backwards) has been reached.

"N" Log note. Sensor contains the note, and Data is blank.

"R" Log record. Sensor contains the block ID, and Data contains a comma separated

block of data.

"D" Normal sensor data. Sensor contains the sensor value, Data usually contains a

number, but may be a string, Quality contains "G", "B", "U", and Units contains

the units of the measurement.

On return, Time always contains the time of the log entry. In the case of a bad log block, time

represents the start time of the block that was corrupted (assuming it was not corrupted as well).

Since a log block may contain multiple log lines, multiple bad lines with the same time may be

encountered.

The log position does not change after an input statement. A Seek command should be issued to

move forward or backward in the log.

Example:

L = FreeFile

Open "ssp.log" For Log As L

Seek L, Top

Input L, Type, TimeStamp, Sensor, Data, Quality, Units

Close L

Errors:

10: BE_INVALID_FILENUM

93

15: BE_INVALID_FILE_ACCESS (file was not opened for binary, input, or log)

InStr Function

Syntax:

result = InStr(start, string1, string2)

Returns the position of the first occurrence of string2 within string1. If it cannot be found then 0

is returned.

Example:

Pos = Instr(1, InputData, "Flow: ")

Int Function

Syntax:

result = Int(number)

Returns the largest integer less than or equal to number. For instance, Int(8.4) would return 8,

while Int(-8.4) would return -9.

When applied to variables containing a date or a time, the Int() function returns the date or time

to the nearest second, lopping off any fractional seconds. This can be useful when preparing a

timestamp to search the log, where fractional seconds are often 0, since most data is logged on

the second.

Example:

tNow = Now

tNow = Int(tNow) ' Remove milliseconds from time

IsXpert Function

Syntax:

result = IsXpert

True if the current hardware platform is an Xpert, false if it is an Xlite (9210).

Example:

If IsXpert Then StatusMsg "Xpert detected"

Kill Statement

Syntax:

Kill pathname

Deletes the file specified in pathname.

Example:

Kill "Temp.dat"

Errors:

8: BE_KILL_FAILED

94

Left Function

Syntax:

result = Left(string, length)

Returns a string containing length number of characters from the left side of string.

Example:

A = Left(InpStr, 5)

Len Function

Syntax:

result = Len(string)

Returns the number of characters in string.

Example:

A = Len(InpStr)

Line Statement

Syntax:

Line Input #filenumber, variable

Reads an entire cr/lf delimited line from a file at the current position. Disk files are assumed to

be LF delimited and CR's are ignored, while serial port and socket files are CR delimited and

LF's are ignored. This is to support CR LF line termination in disk files, while allowing for just

CR termination over sockets or serial ports. The maximum length of an input line is 1MB. If

more than 1MB data is input before a CR is encountered, the statement terminates and the error

BE_OVERFLOW is thrown.

Example:

DataFile = FreeFile

Open "Test.Txt" For Input As DataFile

Line Input DataFile, TextStr

Close DataFile

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

35: BE_OVERFLOW

Loc Function

Syntax:

result = Loc(filenumber)

95

Returns the last record position in a file read or written (same as Seek-1 since records are not

supported). Note that byte counts start at 1. For com ports, Loc returns the number of bytes in the

input buffer.

Example:

Seek #1, Loc(#1)-10 ' move back 10 bytes

Errors:

10: BE_INVALID_FILENUM

Lock Statement

Syntax:

Lock [timeout-seconds]

Lock [sempaphore [, timeout-seconds [, name]]]

The Lock statement attempts to lock a semaphore. If another program has locked the semaphore,

then the program will sleep for up to the specified timeout. Be sure to call UnLock when done, to

unlock the semaphore. An Err code is set if the semaphore could not be obtained within the

timeout (which may have been 0).

When no value is supplied for “semaphore”, the global un-named semaphore is used. Otherwise,

you can specify your own global semaphore in this argument (see example).

When you provide a name for your semaphore, you create an “event” object that can be seen by

programs written in C++. This provides a way to synchronize programs your basic code with

your C++ program.

Example:

Static GlobalData

Lock

GlobalData = GlobalData + 1

UnLock

Static MySemaphore

Lock MySemaphore, 60, "Com2Lock”

Call TalkToCom2

UnLock MySemaphore

Errors:

33: BE_LOCK_TIMEOUT

Log Statement (records)

Syntax:

Log log, timestamp logid, recorddata

Logs a record of data for the specified LogID to the specified log file. The log parameter may

contain either the name of a log file, or the file number of a previously opened log file. The

timestamp parameter is a date value, typically obtained from the Now function. The recorddata

96

parameter is a comma separated string of data values, such as "12,54,3.6,-9.8", and must not

contain more than 1000 bytes.

The logid parameter must not contain more than 128 bytes. The recorddata parameter must not

contain more than 1000 bytes.

Logging records provides a way to log multiple sensors per time stamp using less log space, and

is compatible with how EzSetup will log an entire measurement when the Log ID option is

checked.

Example:

Log LogFile, GetSheduledTime, "B", Format("%f,%f,%f", A, B, C)

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

Log Statement (sensors)

Syntax:

Log log, timestamp, name, value, quality, units

Logs data to the specified log file. The log parameter may contain either the name of a log file,

or the file number of a previously opened log file. The timestamp parameter is a date value,

typically obtained from the Now function. The value parameter is typically a floating-point

number, but may also contain a string. The name and units parameters must not contain more

than 128 bytes. When the value parameter is a string, it must not contain more than 1000 bytes.

Quality: "G"=GOOD, "B"=BAD, "U"=UNDEFINED

Example:

Level = Counter(1, 1)/100

Log LogFile, Now, "Stage", Format("%1.2f", Level), "G", "ft"

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

Log Statement (notes)

Syntax:

Log log, timestamp, note

Logs a note to the specified log file. The log parameter may contain either the name of a log file

or the file number of a previously opened log file. The timestamp parameter is a date value,

typically obtained from the Now function. A note is an arbitrary string of up to 1000 bytes.

Example:

LogFile=FreeFile

Open "System.Log" For Log As LogFile

Log LogFile, Now, "Starting Processing"

Close LogFile

97

Example:

Log "System", Now, "Starting Processing"

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

Log Statement (readings)

Syntax:

Log log, reading1 [, reading2, reading3, etc]

Logs one or more readings to the specified log file name or number. The log parameter may

contain either the name of a log file, or the file number of a previously opened log file. Each

reading may contain a sensor, note, or record. Readings are created with the Reading function.

See the Readings topic, the Reading function, and the LogReading statement for more

information about readings.

Example:

R1 = Reading(Now, "Stage1", Counter(1, 1)/100, "G", "ft")

R1 = Reading(Now, "Stage2", Counter(1, 2)/100, "G", "ft")

Log "ssp", R1, R2

Errors:

10: BE_INVALID_FILENUM

11: BE_FILENUM_IN_USE

13: BE_FILE_OPEN_FAILED

15: BE_INVALID_FILE_ACCESS

Log Function

Syntax:

result = Log(number)

Returns the natural log of number.

Example:

Y = Log(X)

LogReading Function

Syntax:

result = LogReading(log, position, match, count)

Returns an array of one or more Readings from the log. The log variable may contain a file

number to an already open log file, or it can contain the name of the log to open. The name can

be fully or minimally qualified, for instance "ssp" would be exactly the same as specifying

"\flash disk\ssp.log". While it’s very convenient to just specify the log file name, one advantage

of opening the log file separately and passing in the file number would be that the position in the

log will be updated as items are read. Passing in 0 for the position on subsequent calls will allow

98

that call to pickup where the previous left off. The position may also contain "T" to cause the log

to seek to the top, "B” for bottom, or a date to search for.

Any error which can occur when the Open, Seek, Input, and Close statements are used can occur

when the LogReading function is used. The match variable contains a string which, if non-

empty, will cause only matching entries to be returned. The count variable specifies how many

readings to return. If the end of the log is reached, then the function just returns with what it

could find. The actual number of readings found can be computed using Ubound(result). In most

cases the log position moves forward in time, but in the case where the position is set to "B", the

function will start from the bottom of the log (most recent) and move backwards.

See the Readings topic, the Reading function, and the Log statement for more information about

readings.

Errors:

10: BE_INVALID_FILENUM

11: BE_FILENUM_IN_USE

12: BE_INVALID_PATH

13: BE_FILE_OPEN_FAILED

14: BE_INVALID_SEEK

15: BE_INVALID_FILE_ACCESS (type of access not allowed by file type)

Example:

' Extract the most recent 100 stage readings from the log (newest to oldest)

N = LogReading("ssp", "B", "Stage", 100)

If UBound(N) < 0 Then

 ErrorMsg "No Stage Data in the log"

End If

Statusmsg “Current data = “ & N(0).data

Statusmsg “Previous data = “ & N(1).data

Measure Statement

Syntax:

Measure tag

Measures the tag whose name is specified in the tag parameter.

Example:

Measure "Stage"

Errors:

23: BE_TAG_NOT_FOUND

Mid Statement

Syntax:

Mid(str, start [,length])=string

Sets a section of a string to another string. Start is 1-based position at which to insert string. If

length is specified then only that many characters are inserted regardless of how long the string

is.

Example:

99

Mid(Data, 1) = "Prefix the String"

Mid Function

Syntax:

result = Mid(string, start[, length])

Returns the substring of string that starts at position start (1-based), and continues for length

number of characters.

Example:

Ch = Mid(InputStr, 5, 1)

Minute Function

Syntax:

result = Minute(time)

Returns the current minute from time.

Example:

If Minute(Now) = 15 Then Call Min15Avg

MkDir Statement

Syntax:

MkDir path

Creates the folder specified in path.

Example:

MkDir "\Flash Disk\Output Folder"

Errors:

3: BE_MKDIR_FAILED

Month Function

Syntax:

result = Month(date)

Returns the current month from date.

Example:

If Month(Date)=12 Then Call DoDecProcessing

MsgBox Function

Syntax:

result = MsgBox(prompt[, buttons, title])

100

Displays a message box on the graphical display. The prompt parameter is the message to be

displayed and may contain multiple lines separated with CR LF. The title parameter is used as

the dialog box caption. The possible codes for the buttons parameter are:

Const MB_OK=0 ' Display OK button only

Const MB_OKCANCEL=1 ' Display OK and Cancel buttons

Const MB_ABORTRETRYIGNORE=2 ' Display Abort, Retry, and Ignore buttons

Const MB_YESNOCANCEL=3 ' Display Yes, No, and Cancel buttons

Const MB_YESNO=4 ' Display Yes and No buttons

Const MB_RETRYCANCEL=5 ' Display Retry and Cancel buttons

' These codes may be added to the code to specify the icon to be

' displayed when using MB_ABORTRETRYIGNORE, or MB_RETRYCANCEL

' (the other codes have default icons):

Const MB_ICONHAND=16 ' Display Critical Message icon

Const MB_ICONQUESTION=32 ' Display Warning Query icon

Const MB_ICONEXCLAMATION=48 ' Display Warning Message icon

Const MB_ICONASTERISK=64 ' Display Information Message icon

The possible codes that can be returned as the result are:

Const IDOK = 1

Const IDCANCEL = 2

Const IDABORT = 3

Const IDRETRY = 4

Const IDIGNORE = 5

Const IDYES = 6

Const IDNO = 7

Example:

A = MsgBox("Startup Complete")

Name Statement

Syntax:

Name oldpath As newpath

Rename the file or folder in oldpath to newpath.

Example:

Name "Report.Txt" As "My Data.Txt"

Errors:

6 : BE_RENAME_FAILED

Now Function

Syntax:

result = Now

Returns the current date and time.

Note: as of version 3.0 firmware, all date-times and times have millisecond resolution. Hence,

Now does not return the current time to the second, as it once did. This can be a problem for any

101

calculations that assumed dates and times had second resolution. For example, you used to be

able to compute the time of the last 15-minute interval by doing the following mod calculation:

tStart = Now

tLast15 = tStart - (tStart mod 900)

The calculation above will indeed lop off enough time to reach the last 15-minute interval, but it

leaves the milliseconds from tStart in the result, which does not achieve the typical desired

result. To correct the calculation, you simply remove milliseconds from tStart before the

calculation using the Int function, as follows:

tStart = Int(Now)

tLast15 = tStart - (tStart mod 900)

Example:

CurHr = Hour(Now)

On Error Statement

Syntax 1:

On Error Goto Line|Label

Causes the program to branch to the specified line or label when a run-time error occurs. Errors

that occur inside of an error handler are ignored (the error handler is expected to check the ERR

variable and handle it). The error handler should either Exit, Stop, or perform a Resume Next

when done.

Syntax 2:

On Error Goto 0

Returns error handling to the default behavior of aborting the program and reporting the

problem.

An error handler cannot reside in a different subroutine or function. If a subroutine returns with

an outstanding error (one that it ignored), it will trigger an error condition in the caller.

The error handler state is maintained separately for the main program and each subroutine so,

unless a subroutine begins with an On Error statement, it will always abort and report when an

error occurs.

Syntax 3:

On Error Resume Next

Specifies that run-time errors should be ignored so that program flow is not interrupted, the

program is not stopped, and only the ERR variable is set.

Example:

On Error Goto 100

Y1 = A1/B1

Y2 = A2/B2

Ans = Y1/Y2

Stop

100 Ans = 0 : Stop

102

On … GoTo, On … GoSub Statement

Syntax:

On number Goto|Gosub destinationlist

Causes a branch to a line number depending on the value of number.

Example:

On I Goto 10, 20, 30

Open Statement

Syntax:

Open string [for Input|for Output|for Append|for Binary|for Log] As #filenumber

[NoWait]

Opens a file in the mode specified (default is binary). Specifying [NoWait] will cause an error to

occur if the port is inuse and cannot be opened immediately.

Example:

F1 = FreeFile

Open "Input.Dat" For Input As F1

F2 = FreeFile

Open "Output.Dat" For Output As F2

F3 = FreeFile

Open "SSP.Log" For Log As F3

Line Input F1, Text

Print F2, Text

Log F3, Now, Text

Close F1

Close F2

Close F3

A special extension to the open command allows TCP or UDP sockets to be opened. To open a

socket you specify a URL or an IP address as the filename followed by a ":" and the port to

access which can be optionally followed by ",TCP" or ",UDP" to specify the protocol (tcp is the

default). UDP support was added to the Xpert2/9210B in version 3.1.0.

Most of the normal file I/O functions will operate in some manner on a socket file. For instance

you can use Print #, WriteB, Input #, Line Input, or ReadB on either TCP or UDP socket files.

Eof and Timeout will return true if the socket has been closed or timed out. The Loc function

returns the number of bytes available to be read in the stream. The WaitFor statement and

SetTimeout functions are supported.

Various standard and custom web protocols can be supported using socket I/O, see the

WebServer command for information on creating a custom server.

Example:

F = FreeFile

Open "server.mycompany.com:610,UDP" As F

Print F, "The current A/D value is: "; Ad(1,1)

Close F

Errors:

10: BE_INVALID_FILENUM

103

11: BE_FILENUM_IN_USE

12: BE_INVALID_PATH

13: BE_FILE_OPEN_FAILED

15: BE_INVALID_FILE_ACCESS (type of access not allowed by file type)

Out Statement

Syntax:

Out port, number

Performs direct port I/O to the hardware. Many of the I/O ports in the Xpert are "PC

compatible", but the use of these ports is not recommended. This function is included in Basic in

case a problem occurs where the only work around possible is by doing direct I/O. Warning!

Incorrect use of this statement may result in corrupted data or system crashes.

Example:

Out &h3f8, Asc("A") ' Force an A to COM1

Peek Function

Syntax:

result = Peek(addr)

Performs direct memory access to the hardware. This function is included in Basic in case a

problem occurs where the only work around possible is by doing direct memory access.

Errors:

20: BE_ILLEGAL_ACCESS

Poke Statement

Syntax:

Poke addr, number

Performs direct port memory access to the hardware. This function is included in Basic in case a

problem occurs where the only work around possible is by using direct access. Warning!

Incorrect use of this statement may result in corrupted data or system crashes.

Errors:

20: BE_ILLEGAL_ACCESS

Power Statement

Syntax:

Power mod, val

Requests SW_BATT line (12v) on the digital module specified by mod to be on (val=1) or off

(val=0). Note that on/off requests are counted, meaning every On must be matched by an Off, in

order for the output to actually turn off. This allows multiple processes to share the output.

Example:

104

Power 1, 1

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

PowerAd Statement

Syntax:

PowerAd mod, val

Requests SW_BATT line (12v) on the analog module specified in mod to be on (val=1) or off

(val=0). Note that on/off requests are counted, meaning every On must be matched by an Off, in

order for the output to actually turn off. This allows multiple processes to share the output.

Note: the Xpert AIO module's SW-BATT line does not actually turn on until a measurement

begins, subject to the specified warmup time, and turns off when the measurement ends.

Example:

PowerAd 1,0

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

PowerSwGnd Statement

Syntax:

PowerSwGnd mod, val

Sets SW_GND line (Aux1) on the Xpert analog module (8080-0003) specified in mod to on

(val=1) or off (val=0). This output is not counted (i.e., not shared across processes).

Example:

PowerSwGnd 1,0

Errors:

27: BE_INVALID_IO_HANDLE (specified module does not exist)

28: BE_IO_FAILED (error occurred communicating with module)

Print Statement

Syntax:

Print #filenumber, outputlist

Prints the outputlist string parameter to a file. The output list can contain commas or semi-colons

as separators. Semi-colons cause the data to be concatenated, while commas cause the data to be

tabbed out with spaces to the next even 8th column. Two special functions exist to help format

data: SPC(n) adds "n" spaces to the output, and TAB(n) adds spaces until the "n"th column is

reached.

To write data to a log file see the Log statement.

105

Example:

Print #5, Stage, Temp, Rain; Tab(50); "<= HI LIMIT"

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS (access

18: BE_UNSUPPORTED_OPERATION (file type not supported, e.g. log)

43: BE_WRITE_FAILED

RaiseAlarm Statement

Syntax:

RaiseAlarm tag, HIGH | LOW | ROC

Puts tag into an alarm state. The system will start transmitting based on the current Alarm

interval.

Example:

RaiseAlarm "STAGE", LOW

RaiseAlert Statement

Syntax:

RaiseAlert

RaiseAlert num

RaiseAlert tag, HIGH | LOW | ROC

When no parameters are specified, RaiseAlert puts the system into the alert state. When num is

specified, RaiseAlert puts the system into alert on the specified com port (1-9). When a tag and

alert type are specified, puts a tag into the alert state (used to track which tag caused an alert; to

force an actual alert transmission, use one of the other forms of RaiseAlert as well).

Example:

RaiseAlert

RaiseAlert 2

RaiseAlert "STAGE", ROC

Errors:

23: BE_TAG_NOT_FOUND

ReadB Function

Syntax:

result = ReadB(#filenumber, data, numbytes)

Reads up to numbytes raw binary data and puts the result in data. Returns the number of bytes

read. Not permitted on log files.

Example:

N = ReadB(#1, Text, 6)

Errors:

106

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

18: BE_UNSUPPORTED_OPERATION

Reading Function

Syntax:

SensorReading = Reading(time, name, data, quality, units)

NoteReading = Reading(time, note)

RecordReading = Reading(time, id, record)

Returns a reading variable containing a representation of a sensor measurement, a log note, or a

log record, depending on how many parameters are passed. The resulting variable may be used

by statements and functions that accept readings.

The individual fields of the Reading may be accessed by using the dotted field name. The

individual fields are Type, Time, Name, ID, Note, Data, Record, Quality, Units, Alarm, and

Digits, and correspond to the parameters passed in to the Reading function. The Type field

indicates which type of data the reading contains: "D" for Sensor Data, "R" for a Log Record,

"N" for a Log Note, or "B” for bad data.

See the Readings topic, the Log statement, the LogReading function, and the Log statement for

more information about readings.

Example:

' Create a sensor reading - always has 5 paramaters

SR = Reading(Now, "Sensor", 12.345, "G", "ft")

' Use 3 right digits when formatting the number

SR.Digits = 3

' Create a log note – always has 2 paramaters

NR = Reading(SR.Time, "This is a log note.")

' Create a log record – always has 3 paramaters

RR = Reading(SR.Time, "0", "1,2,3,4,5,6,7")

' Log the 3 different type of readings

Log "ssp", SR, RR

Log "system", NR

Reboot Statement

Syntax:

Reboot

Reboots the system.

Rem Statement

Syntax:

Rem comment

' comment

Denotes a comment in the program.

RequestMessage Function

Syntax:

107

result = RequestMessage(port_or_url, station, txopcode, message, rxopcode, timeout-

seconds)

 Combines the functionality of SendMessage and GetMessage by sending an SSP message

then waiting for a reply.

 This is performed seamlessly without the risk of a message being missed because it arrived

between one statement and the other.

 Retries are also performed as needed based on the default SSP settings.

 Replies that may contain either an OpAck or OpNak can be handled.

The argument "port_or_url" is expected to be the one-based index of a com port (e.g., 1 means

COM1) that has been set up in the Coms entry on the Setup tab, or to be a string specifying an

URL. When specifying an URL, the format of the argument is

"URL[:port][,username,password]". Brackets indicate optional items, hence, ":port" is optional,

as is ",username,password". The timeout value should account for all possible retries (typically

30 seconds, based on 3 retries with a 10 sec ack delay). When rxopcode is set to 0 (OpAck) this

is a special case for handling txopcodes that respond with an OpAck or an OpNak. If the

message is acknowledged the data will simply contain the opcode that was acknowledged (the

one that was sent). If instead the message is nak'd, then the error BE_ILLEGAL_OPCODE is

raised.

Example:

' Send an SSP mail message to any unit or base station connected to COM2:

Const OpMail = 41

Const OpAck = 0

Msg="This is a test message"+Chr(0) ' Mail messages need to be null terminated

REM Send a mail message, and then wait up to 30 seconds for an Ack (or Nak)

Reply = RequestMessage(#2, "*", OpMail, Msg, OpAck, 30.0)

If Asc(Reply) = OpMail Then StatusMsg "Mail Sent"

Example:

' Send an SSP mail message to unit or base station via TCP/IP:

Const OpMail = 41

Const OpAck = 0

Msg="This is a test message"+Chr(0) ' Mail messages need to be null terminated

REM Send a mail message, and then wait up to 30 seconds for an Ack (or Nak)

Reply = RequestMessage("192.168.1.1,user,pass", "*", OpMail, Msg, OpAck, 30.0)

If Asc(Reply) = OpMail Then StatusMsg "Mail Sent"

Errors:

20: BE_ILLEGAL_OPCODE

28: BE_IO_FAILED

29: BE_INVALID_ARGUMENT

30: BE_REMOTE_COMM_ERROR

31: BE_REMOTE_WAIT_TIMEOUT

36: BE_TELNET_LOGIN_DENIED

37: BE_TELNET_TIMEOUT

38: BE_TELNET_LOGIN_FAILED

39: BE_TELNET_CONNECT_FAILED

40: BE_TELNET_WRITE_FAILED

41: BE_TELNET_READ_TIMEOUT

42: BE_TELNET_BAD_REPLY

108

ResetEvent Statement

Syntax:

ResetEvent event, [name]

An event is a variable that can be used to synchronize code running in two different contexts

(e.g., a scheduled subroutine and a sensor block routine or program started with StartTask).

ResetEvent is used to “reset” the event. In the reset state, any other call to WaitEvent will wait

until the event is “set” before continuing. The wait is very efficient, meaning no CPU time is

consumed while waiting. When you then decide to call SetEvent, the event is “set”, meaning

calls to WaitEvent will succeed (not-wait) immediately.

When you specify a name for the event, the event may be shared across processes (i.e., between

your basic program and a C++ program).

The event variable must be declared or initialized before ResetEvent is used, and ResetEvent or

SetEvent must be called before the variable can be used by WaitEvent.

Example:

REM Create an event and make it initially cleared

Dim MyEvent

ResetEvent MyEvent

Resume Statement

Syntax:

Resume label

Resume Next

When a label is specified and used inside an error handler, returns program control to the

specified label. When Next is specified and used inside an error handler, returns program control

to the statement after the error as if the error never occurred.

Example:

Resume 100

Resume Next

Return Statement

Syntax:

Return

Returns to the statement after a Gosub.

Errors:

34: BE_RETURN_FAILED (return without a gosub, non-trappable error)

Ri Function

Syntax:

result = Ri(#filenumber)

Returns the state of the RING line of a serial port.

109

Example:

If Ri(#1) Then Call AnswerPhone(#1)

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

Right Function

Syntax:

result = Right(string, length)

Returns a string containing length number of characters from the right side of string.

Example:

Last3 = Right(TextStr, 3)

RmDir Statement

Syntax:

RmDir path

Removes the folder specified in path.

Example:

RmDir "\Flash Disk\Test Folder"

Errors:

4: BE_RMDIR_FAILED

Rnd Function

Syntax:

result = Rnd[([LowLimit], HighLimit)]

Returns a random number between LowLimit and HighLimit. If LowLimit is not specified then

it is assumed to be 0.0. If HighLimit is not specified then it is assumed to be 1.0.

Example:

Function SimulateAirTemp

 SimulateAirTemp = Rnd(-40, 70)

End Function

Sdi Function

Syntax:

result = Sdi(string)

Returns a string containing the result of the SDI-12 command.

Example:

110

Id = Sdi("0I!")

Errors:

28: BE_IO_FAILED

SdiCollect Function

Syntax:

result = SdiCollect(string)

Returns an array of floating point numbers collected by the SDI-12 measurement command

specified in string*. Invoking Ubound(result) will return how many parameters were returned,

and the data will start at index 1. Concurrency is automatically supported when a concurrent

measurement command is specified.

*NOTE: The only supported commands are V, M, MC, M1 - M9, C, CC, C1

- C9. To get other types of measurements, the SDI function must be

used and data must be parsed by the program.

Example:

Data = SdiCollect("0M!")

For i = 1 To Ubound(Data)

 StatusMsg Data(i)

Next i

Errors:

28: BE_IO_FAILED

Second Function

Syntax:

result = Second(time)

Returns the current second from time.

Example:

If Second(Now)=0 Then Call DoMinuteAvg

Seek Statement

Syntax:

Seek #filenumber, position | TOP | BOTTOM | NEXT | PREV

Moves the current position of a file. The TOP, BOTTOM. NEXT, and PREV options are Sutron

extensions and apply to files or logs. Position may be a date or an absolute line number (0 based)

in the case of seeking within a log.

When position is a date, the seek will find the earliest occurrence of the date in the log (except

for Xpert firmware versions prior to 2.5.0.16, where it will find the latest). You can then use the

NEXT option (or PREV prior to 2.5.0.16) to search for other data having the same date.

111

The following example seeks to the absolute position 5 (or line 5, in the case of a log), past the

current position.

Seek Loc(#1)+5

Example:

Seek #1, TOP ' Go to the oldest data in a log file

Errors:

10: BE_INVALID_FILENUM

14: BE_INVALID_SEEK

Seek Function

Syntax:

result = Seek(filenumber)

Current byte position in a file (0 being the beginning of a file).

Example:

If Seek(#1) = 0 Then StatusMsg "At the top"

Errors:

10: BE_INVALID_FILENUM

Select Case Statement

Syntax:

Select Case testexpression

[Case expr

 statement]

Case Else

 statement]

End Select

Conditional case statement. Individual case expressions can include multiple values to check as

well as 'to' ranges. For example,

Select Case I

Case 1,5,10 to 12

 StatusMsg "Found what we want"

Case 20, 30

 StatusMsg "This should never happen"

Case Else

 StatusMsg "Bad data"

End Select

Note: Goto may not be used to branch outside a Select block.

SendMessage Statement

Syntax:

SendMessage port_or_url, station, opcode, message, timeout-seconds

112

Sends an SSP Message to a station. The argument "port_or_url" is expected to be the one-based

index of a com port (e.g., 1 means COM1) that has been set up in the Coms entry on the Setup

tab, or to be a string specifying an URL. When specifying an URL, the format of the argument is

"URL[:port][,username,password]". Brackets indicate optional items, hence, ":port" is optional,

as is ",username,password".The argument "port" is assumed to be the one-based index of the

com port (e.g., 1 means COM1). This function assumes the indicated port has been configured

for SSP communications using the Coms Manager in the Setup control panel.

Example:

' Use SSP to tequest WATERLEVEL from a station connected to COM2:

Const OpValueReq = Chr(27)

Msg="WATERLEVEL"+Chr(0)+Chr(1)+Chr(0)

SendMessage #2, "*", OpValueReq, Msg, 1.0

Example:

' Send the current stage in a user defined message via TCP/IP

Const OpCustom = Chr(255)

SendMessage "192.168.1.1:23,user,pass", , "*", OpCustom, Tag("STAGE"), 1.0

Errors:

29: BE_INVALID_ARGUMENT

30: BE_REMOTE_COMM_ERROR

36: BE_TELNET_LOGIN_DENIED

37: BE_TELNET_TIMEOUT

38: BE_TELNET_LOGIN_FAILED

39: BE_TELNET_CONNECT_FAILED

40: BE_TELNET_WRITE_FAILED

41: BE_TELNET_READ_TIMEOUT

42: BE_TELNET_BAD_REPLY

SendReport Statement

Syntax:

SendReport url, message

Sends a text message to a telnet or raw socket server. The "url" may optionally append a port.

Example:

Msg="Hello from Sutron!"

SendReport "192.168.1.1", Msg

Errors:

29: BE_INVALID_ARGUMENT

39: BE_TELNET_CONNECT_FAILED

40: BE_TELNET_WRITE_FAILED

41: BE_TELNET_READ_TIMEOUT

42: BE_TELNET_BAD_REPLY

SendTag Statement

Syntax:

SendTag port_or_url, station, tagname, valnum, data, timeout-seconds

Sets a tag value in another station. The argument "port_or_url" is expected to be the one-based

index of a com port (e.g., 1 means COM1) that has been set up in the Coms entry on the Setup

113

tab, or to be a string specifying an URL. When specifying an URL, the format of the argument is

"URL[:port][,username,password]". Brackets indicate optional items, hence, ":port" is optional,

as is ",username,password".

The "valnum" parameter is one-based (i.,e., 1 means the first value in a tag).

Value numbers used by Xpert ComsTags and 8200/8210 Data Recorders are:

1: Current Value

2: Alarm Status

3: Live Reading

Tags created in Basic or with the 9000 RTU SDL can have arbitrary values (e.g., the meaning is

determined by the program).

The "tagname" argument is a string containing the tag name. Beginning with firmware version

3.2, tagname can use the following format to specify multiple tags, and tags with multiple values:

"TAG1[:valnum1[-valnum2]],TAG2[:valnum1[-valnum2]],…". Multi-values are passed in an

array.

Example:

SendTag ComPort, "*", "LEVEL", 1, 12.345, 10.0

SendTag "192.168.1.1:23,user,pass", "*", "AirTemp:5-7", 1, Array(1, 2, 3), 10.0

Errors:

29: BE_INVALID_ARGUMENT

30: BE_REMOTE_COMM_ERROR

36: BE_TELNET_LOGIN_DENIED

37: BE_TELNET_TIMEOUT

38: BE_TELNET_LOGIN_FAILED

39: BE_TELNET_CONNECT_FAILED

40: BE_TELNET_WRITE_FAILED

41: BE_TELNET_READ_TIMEOUT

42: BE_TELNET_BAD_REPLY

SetDTR Statement

Syntax:

SetDTR #filenumber, integer

Sets DTR on a serial port high or low. 0 turns it off, any non-zero integer turns it on.

Example:

SetDtr #1, 1

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

SetEvent Statement

Syntax:

SetEvent event, [name]

An event is a variable that can be used to synchronize code running in two different contexts

(e.g., a scheduled subroutine and a sensor block routine or program started with StartTask).

114

SetEvent is used to “set” the event. In the set state, any other call to WaitEvent will succeed (i.e.,

code execution will continue without waitiing). When you then decide to call ResetEvent, the

event is “reset”, meaning calls to WaitEvent wait for the timeout specified, before being able to

continue. The wait is very efficient, meaning no CPU time is consumed while waiting.

When you specify a name for the event, the event may be shared across processes (i.e., between

your basic program and a C++ program).

The event variable must be declared or initialized before SetEvent is used, and SetEvent or

ResetEvent must be called before the variable can be used by WaitEvent.

Example:

REM Trigger an event

SetEvent MyEvent

SetOutput Statement

Syntax:

SetOutput point, sensorreading

For Basic blocks, sets the specified output point (1-20) to reading, where sensorreading is a

sensor reading that should include settings for the .Time, .Name, .Data, .Quality, and Units sub-

fields and optionally the buried .Alarm and .Digits sub-fields as well. A sensor reading can

constructed using the GetInput function, Reading function, or the LogReading function.

Example:

R = GetInput(3)

R.Data = R.Date * Slope + Offset

SetOutput 3, R

Errors:

32: BE_NOT_BASICBLOCK

SetOutputAlarm Statement

Syntax:

SetOutputAlarm point, num

For Basic blocks, sets the specified output point (1-20 post v3.2, 1-5 pre v3.2) alarm status to

num.). The alarm status is a bit mask which includes bits to indicate hi limit, low limit, and rate

of change alarms.

Example:

Const HiLimitA = 1<<0

Const LowLimitA = 1<<1

Const RocA = 1<<8

SetOutputAlarm 3, HiLimitA Or RoCA ' Flag 2 alarms

SetOutputAlarm 2, 0 ' Not in alarm

Errors:

32: BE_NOT_BASICBLOCK

115

SetOutputData Statement

Syntax:

SetOutputData point, num

For Basic blocks, sets the specified output point (1-20 post v3.2, 1-5 pre v3.2) value to num.

Example:

SetOutputData 3, Ad(1,1)

Errors:

32: BE_NOT_BASICBLOCK

SetOutputDigits Statement

Syntax:

SetOutputDigits point, num

For Basic blocks, sets the number digits to the right of the decimal point to be displayed when

the output point (1-20 post v3.2, 1-5 pre v3.2) value is displayed. This will affect the format of

raw readings of the sensor, such as user measurement made in the Sensor tab. When num is less

than 0, a more compact format is used that may use either scientific or fixed notation depending

which is shorter. In this case, the absolute value of num specifies the field width.The number of

digits sets a default value, which is often overridden by further processing in the setup.

Example:

SetOutputDigits 3, 2

Errors:

32: BE_NOT_BASICBLOCK

SetOutputName Statement

Syntax:

SetOutputName point, string

For Basic Sensor blocks, sets the name of the specified output point (1-20 post v3.2, 1-5 pre

v3.2) to string. This name will appear in the Sensor tab and permits a more meaningful label for

the output values than the default. Outputs with undefined quality are not displayed.

Example:

SetOutputName 3, "Level"

Errors:

32: BE_NOT_BASICBLOCK

SetOutputQuality Statement

Syntax:

SetOutputQuality point, string

116

For Basic blocks, sets the specified output point (1-20 post v3.2, 1-5 pre v3.2) quality to string.

Possible values are "G" for GOOD, "B" for BAD, and "U" for UNDEFINED.

Example:

SetOutputQuality 3, "G"

Errors:

32: BE_NOT_BASICBLOCK

SetOutputTime Statement

Syntax:

SetOutputTime point, num

For Basic blocks, sets the specified output point (1-20) time to num. This corresponds to the

actual time the sensor was measured and not the scheduled time.

Example:

SetOutputTime 3, Now

Errors:

32: BE_NOT_BASICBLOCK

SetOutputUnits Statement

Syntax:

SetOutputUnits point, string

For Basic blocks, sets the specified output point (1-20 post v3.2, 1-5 pre v3.2) units to string. (ie

"feet", "meters", etc).

Example:

SetOutputUnits 3, "Meters"

Errors:

32: BE_NOT_BASICBLOCK

SetPort Statement

Syntax:

SetPort #filenumber, baud, parity, bits, stopbits, mode

Sets the configuration parameters for a serial port. Baud rates of up to 115200 baud are

supported. 7 or 8 bit data is supported. Hardware rts/cts flow control may be enabled by setting

the mode parameter to 1, or disabled by setting it to 0.

When using COM4 on the 9210B, RS-485 operation may be selected by selecting mode setting 2

or 3. If you do not wish to see transmitted characters echoed back over RS-485, select mode 3.

Mode 4 may be used to enable RS232 operations with AUTO RTS. This means RTS is raised

whenever data is transmitted and lowered whenever the last byte has been sent. You may wish to

117

concatenate your message into one big string before printing it to the COM port. If instead you

use multiple print statements, RTS may toggle in between lines.

The allowable parameters for parity are:

const NOPARITY = 0

const ODDPARITY = 1

const EVENPARITY = 2

const MARKPARITY = 3

const SPACEPARITY = 4

The allowable parameters for stopbits are:

const ONESTOPBIT = 0

const ONE5STOPBITS = 1

const TWOSTOPBITS = 2

The allowable parameters for mode are:

const NOHANDSHAKE = 0

const HANDSHAKE = 1

const RS485 = 2 '9210B only

const RS485_NOECHO = 3 '9210B only

const RS232_AUTORTS = 4 '9210B and Xpert2 only

Example:

Open "Com2:" As #1 NoWait

SetPort #1, 115200, NOPARITY, 8, ONESTOPBIT, NOHANDSHAKE

SetDTR #1, 1

SetRTS #1, 1

Print #1, "This is a RS232 test"

Close #1

F = FreeFile

Open "Com4:" As F NoWait

SetPort F, 9600, NOPARITY, 8, ONESTOPBIT, RS485_NOECHO

SetRTS F, 1

Print F, "This is a RS485 test"

Close F

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

SetRTS Statement

Syntax:

SetRTS #filenumber, integer

Set RTS on a serial port high or low. 0 turns it off, any non-zero integer turns it on.

Example:

SetRTS #1, 1

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

118

SetSpeed Statement

Syntax:

SetSpeed speed

The allowable parameters for speed are:

Const spd_Minute=1 ' (suspend for up to 1min at a time when idling)

Const spd_Second=2 ' (suspend for up to 1sec at a time when idling)

Const spd_Standby=3 ' (normal, enter standby mode when idling)

Const spd_Fast=4 ' (run full out)

SetSpeed sets the power management speed for the current basic thread. The Xpert's power

manager examines the requested speed of all threads in the system and selects the highest speed

requested.

SetSpeed is an advanced command that is not necessary in most Basic programs. Generally

speaking, power management and speed selection is handled automatically in the Xpert, even

when it is necessary to avoid deep sleep modes due to special types of activity (for example,

activity on COM1 forces the Xpert into the fastest mode for a few seconds in order to not drop

data).

A Basic program (thread) normally runs at "Standby" speed. This means the processor is allowed

to enter standby mode, but will not enter a deeper sleep. This is acceptable in most situations, but

can waste power when a deeper sleep is desired while waiting several seconds, or even minutes,

for an interrupt or event. The Sleep statement handles this situation by selecting the optimal

speed based on the amount of time requested for the sleep.

One scenario where SetSpeed can be used, is when a program needs to wait indefinitely on an

I/O operation. If the processor were left in Standby mode, the power consumption would be

fairly high. So, if the I/O operation is the sort which would automatically wake up the processor

anyway, the speed can be switched to the Minute or Second mode. The Sleep statement is

designed to facilitate this, in that automatic speed selection is bypassed when the Minute or

Second mode is selected.

For example:

Const spd_Minute=1 ' (suspend for up to 1min at a time when idling)

Const spd_Standby=3 ' (normal, enter standby mode when idling)

SetSpeed spd_Minute

Sleep 0.1

SetSpeed spd_Standby

The sleep is only for 100ms, but because the thread speed is set to the minute mode, the actual

duration of the sleep can be anywhere between 100ms to 1 minute depending on activity and

other threads. When an event occurs or the system is active, the delay will only be 100ms. When

other threads are idle and events have stopped, then delay will be to a minute and power will be

saved. This is a great way to extend battery life if your basic program needs to wait on events.

Errors:

29: BE_INVALID_ARGUMENT

119

SetTimeout Statement

Syntax:

SetTimeout #filenumber, timeout-seconds

Sets a timeout for a com port or socket operation to be the specified number of seconds (0 means

do not timeout).

Example:

SetTimeout #1, 10

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

Sgn Function

Syntax:

result = Sgn(number)

Returns an integer indicating the sign of number. Returns 1 when above 0, returns 0 when 0, and

returns –1 when negative.

Example:

Y = Y * Sgn(X)

Shell Statement

Syntax:

Shell progname, parameters

Runs a program (which is assumed to be in the current path if another isn't specified). Parameters

specify any desired command line options to the program.

Example:

Shell "\Windows\Rtcadj.exe", "" ' Correct the RTC according to oscillator drift

Errors:

22: BE_SHELL_FAILED

Sin Function

Syntax:

result = Sin(number)

Return sin of number (angle in radians).

Example:

Y = Sin(X)

120

Sleep Statement

Syntax:

Sleep num

Sleeps the amount of time specified in num (seconds) with milli-second resolution (e.g., Sleep

2.125 would sleep for 2 and 1/8 seconds).

Example:

Sleep 10.5

Space Function

Syntax:

result = Space(number)

Returns a string containing the specified number of spaces.

Example:

S = Space(10)

Sqr Function

Syntax:

result = Sqr(number)

Returns the square root of number.

Example:

Y = Sqr(X)

StartTag Statement

Syntax:

StartTag string

Runs the start code for a tag (Coms Tags don't have any, but Basic Tags may).

Example:

StartTag "GATECONTROL"

Errors:

23: BE_TAG_NOT_FOUND

StartTask Statement

Syntax:

StartTask taskname, parameter, [offset, interval, [startinterval]]

121

StartTask schedules a function to run in a separate thread of execution, typically to perform

background processing.

The taskname argument is actually a string which contains the name of a public function to run,

while parameter is a value that may be passed in to the function. If no other arguments are

specified, then the task is started immediately and run just once. If an offset and an interval are

specified, then the task will be run on a scheduled basis. A startinterval may also be specified,

and this will be used instead of interval for just the first execution.

Offset, interval, and startinterval, are time variables, and can be formed using the TimeSerial()

function.

Scheduled tasks local variables will persist across calls if the Dim statement is used to declare

them.

Note: If the function returns a value of 0 it will keep running as scheduled, whereas a non-zero

return value will cause the scheduled task to stop.

A task may only be started once. If you try to start a task that’s already running or scheduled to

run, the error BE_TASK_ALREADY_RUNNING will occur.

See StopTask and TriggerTask.

Example:

Public Function AveragingTask(Channel)

 AveragingTask = 0

 Dim Count

 Dim Sum

 Sum = Sum + Ad(1, Channel)

 Count = Count + 1

 If Count >= 10 Then

 StatusMsg "Average for channel " & Channel & " is " & Sum/Count

 Count = 0

 Sum = 0

 End If

End Sub

REM Starting on the hour, constantly average A/D channel 1 every minute

StartTask "AveragingTask", 1, TimeSerial(0,0,0),

 TimeSerial(0,1,0), TimeSerial(1,0,0)

Errors:

44: BE_TASK_ALREADY_RUNNING

Static Statement

Syntax:

Static variable [= expr]

Declares a global variable that can be shared across programs. A static variable can be declared

inside of a function or sub, but it will still have global scope.

A static variable is not initialized until the code where it's assigned a value is executed. One

option is to just declare a static variable but not initialize it. This will create a variable that will

retain its value across starts and stops. When the program is loaded (or reloaded) the variable

will default to a value of 0.

122

Typically the variable is defined and initialized in one program and simply declared in any others

that need to access it:

Program1.bas

REM Define and initialize global variables

Static GlobalVar=4.5

Program2.bas

REM Declare global variables

Static GlobalVar

Be sure to synchronize access to the global variable using Lock and UnLock. See Resource

Contention for more information.

StatusMsg Statement

Syntax:

StatusMsg str

Outputs a status message to the Remote prompt and/or the system log.

Example:

StatusMsg "Opening gate"

Stop Statement

Syntax:

Stop

Stops the program.

StopTag Statement

Syntax:

StopTag string

Runs the stop code for a tag (Coms Tags don't have any, but Basic Tags can).

Example:

StopTag "GATECONTROL"

Errors:

23: BE_TAG_NOT_FOUND

StopTask Statement

Syntax:

StopTask taskname

StopTask will stop a task that has been scheduled with the StartTask statement, but cannot stop a

task that is currently running. StopTask only requests a task to stop and hence returns

123

immediately. The best way to signal a running task to stop would be to use an event and add

code to the task to check the event on a regular basis.

If the task has already stopped then the error BE_TASK_NOT_RUNNING will occur. This can

be used to tell when a task has actually stopped.

See StartTask and TriggerTask.

Example:

 REM Try for up to a minute to stop the averaging tasks

 On Error Goto Done

 For i = 1 To 600

 StopTask "AveragingTask"

 Sleep 0.1

 Next i

Done:

 On Error Goto 0

Errors:

45: BE_TASK_NOT_RUNNING

Str Function

Syntax:

result = Str(number)

Returns a string representation of number.

Example:

TextStr = Str(42.34)

StrComp Function

Syntax:

result = StrComp(string1, string2)

Returns an integer indicating the result of a string comparison. Return –1 when string1 is less

than string2, 0 when string1 equals string2, and 1 when string1 is greater than string2.

Example:

N = StrComp(TextStr, MidStr)

String Function

Syntax:

result = String(number, character)

Returns a string containing character repeated number times.

Example:

Dashes = String(15, "-")

124

Sub Statement

Syntax:

[Public] Sub name(parms)

 statements

End Sub

Declares a subroutine. The Public keyword will make the function accessible to other Basic

programs.

Example:

Sub ProcessDaily(X, Y)

 StatusMsg "X="&X&" Y ="&Y

End Sub

Systat Function

Syntax:

result = Systat(number)

Returns system information depending on the value of the number:

0: Station Name

1: Recording Status -1=Recording on.

2: Basic Version String

3: Running under CE 1=WINCE, 0=WIN32 (PC)

4: Alert Status 1=Alerts Enabled

5: Internal Battery Voltage (volts)

6: Internal Temperature (degrees C) – Xpert only, with firmware before v3.0

7: Reset Count (goes up by one whenever the system reboots)

8: Serial Number

9: System Status Info (a string containing the contents of the status page)

10: Master ID (used to direct SSP alarm messages)

11: Array of COM1 status and mail information

(0) Rx Good Count
(1) Rx Total Count
(2) Rx Bad Count
(3) Tx Count
(4) Tx Total Count
(5) Tx Fail Count
(6) Array of Received Mail Messages. Use Ubound() to determine how many.

(6,0) Most recent mail message

(6,1) Slightly older mail message

(6,2) Even older mail message

(6,3) Oldest mail message

12: Array of COM2 status and mail information (same format as COM1)

13: Array of COM3 status and mail information (same format as COM1)

14: Array of COM4 status and mail information (same format as COM1)

15: Array of COM5 status and mail information (same format as COM1)

16: Array of COM6 status and mail information (same format as COM1)

17: Array of COM7 status and mail information (same format as COM1)

18: Array of COM8 status and mail information (same format as COM1)

19: Array of COM9 status and mail information (same format as COM1)

20: Array of Memory Information

(0) Memory Load %
(1) Total Physical Memory (bytes)
(2) Available Physical Memory (bytes)
(3) Total Virtual Memory (bytes)
(4) Available Virtual Memory (bytes)

21: Array of disk space values on \Flash Disk

(0) Free space

125

(1) Total space
22: Array of disk space values on \CF Card (if Xpert2/9210B, \Storage Card

otherwise)

(0) Free space
(1) Total space

23: Array of disk space values on \USB Card (if installed on Xpert2)

(0) Free space
(1) Total space

24: Array of disk space values on \SD Card (if installed on Xpert2)

(0) Free space
(1) Total space

25: Array of disk space values on Ram Disk ("\", Xpert1 only)

(0) Free space
(1) Total space

26: Array of I2C Statistics

(0) Rx Good Count
(1) Rx Error Count
(2) Rx Fail Count
(3) Tx Count
(4) Tx Errors
(5) Tx Failures
(6) Array of I2C Error Counts

(6,1) Number of NAK errors

(6,2) Number of TIMEOUT errors

(6,3) Number of COLLISION errors

(6,4) Number of OVERFLOW errors

(6,5) Number of BUS ERROR errors

(6,6) Number of RX ERROR errors

(6,7) Number of SLAVE TX errors

(6,8) Number of CHECK SUM errors

(6,9) Number of STOP errors

(6,10) Number of BUS BUSY errors

(6,11) Number of RESTART errors

(6,12) Number of :BAD CHANNEL errors

27: Platform Version (1=Xpert Ver 1, 2=Xpert Ver 2)

28: Kernel Version String (9210B and Xpert2 only)

29: Loader Version String (9210B and Xpert2 only)

30: Monitor Version String (9210B and Xpert2 only)

31: Run Always Status: 0=Disabled, -1=Enabled

32: CPLD Vesion String (not supported on Xpert1/9210A).

 Ex: "Xpert, ver A"

33: Array of information about currently logged in users

 (n, 0) User name

 (n, 1) Port they used to login on

 (n, 2) How long they’ve been logged in

111-119: Retrieves com port statistics just like 11-19 but also clears the

statistics after retrieving (111=COM1, 112=COM2, etc). These options are only

supported in version 2.9.0 or later for the Xpert1/9210, and 3.1.0 or later for the

Xpert2/9210B.

Syntax:

result = Systat(string)

Returns advanced system information depending on the value of the string. These commands are

a subset of the same commands supported by Remote's command line, and hence may do more

then just retrieve a status message depending on which options are used. Most of the parameters

supported by Remote are also supported by Basic:

"About": Version numbers of applications, DLLs and SLLs

"Get": Retrieve log information. Be sure to restrict how much data you

request to what can be retrieved in under a minute, or else a

timeout will occur.

126

Format: GET [sensors] [/CSV]

 [/F logfile] Start and end date are mm-dd-yyyy hh:mm:ss

 [/S startdate] /startat may be /NEWEST, /OLDEST, /HOUR

 [/E enddate] [/BAD] /TODAY, /YESTERDAY, /WEEK, /MONTH, /YEAR.

 [/REVERSE] [/INVERT]

 [/startat]

"Info": System Status Information

"Measure": A string containing measurements of one or more sensors or tags

Format: MEASURE [tags] [/TAG] [/SENSOR] /[/CSV]

"Set": Set a tag value

Format: SET tag[:value] data

"Show": A string containing latest values of one or more sensors or tags

Format: SHOW [sensors] [/TAG] [/SENSOR] [/CSV]

"Shutdown": Shutdown the Xpert application.

"Station": Retrieves and/or sets the station's name.

Format: STATION [name]

Example:

If Systat(3)=0 Then StatusMsg "Emulation!!!"

X = Systat("Get /Hour")

StatusMsg "Log Data from the last hour: " & X

X = Systat(11) : ' Retrieve COM1 info

REM Access the mail message from the sub-array at X(6)

For i = 0 To Ubound(X(6))

 StatusMsg "COM1 Mail Message #" & i & ": " & X(6,i)

Next I

X = Systat(20) : ' Retrieve memory info

StatusMsg "Available Memory " & X(2)

Example:

REM Report the list of logged in users:

REM The 3 felds are User, Port[:IpAddress], Time logged in

l = Systat(33)

For i = 0 To UBound(l)

 StatusMsg i & ", " & l(i,0) & ", " & l(i,1) & ", " & l(i,2)

Next i

Errors:

18: BE_UNSUPPORTED_OPERATION

28: BE_IO_FAILED

 Couldn't measure internal battery or temperature

30: BE_REMOTE_COMM_ERROR

 Couldn't retrieve SSP stats, or failed an advanced command

Tag Function

Syntax:

result = Tag(string[, value])

Returns the specified value of the tag named string. When value is not specified, value = 1 is

assumed.

Value numbers used by Xpert ComsTags and 8200/8210 Data Recorders:

1: Current Value

2: Alarm Status

3: Live Reading

127

Example:

N = Tag("WATERLEVEL", 3) ' Take a live reading

Errors:

23: BE_TAG_NOT_FOUND

24: BE_BAD_QUALITY

Tag Statement

Syntax:

Tag(string[, value])=expr

Sets the value of the tag named string. When value is not specified, value = 1 is assumed.

Value numbers used by Xpert ComsTags and 8200/8210 Data Recorders:

1: Current Value

2: Alarm Status

3: Live Reading

Example:

Tag("WATERLEVEL") = Ad(1,1)

Errors:

23: BE_TAG_NOT_FOUND

Tan Function

Syntax:

result = Tan(number)

Returns the tangent of number. Number is an angle in radians.

Example:

X = Tan(Y)

Time Function

Syntax:

result = Time

Returns the current time of day.

Example:

Hr = Hour(Time)

Time Statement

Syntax:

Time=variable

128

Sets the current time.

Example:

Time=TimeSerial(Hr, Min, Sec)

Timeout Function

Syntax:

result = Timeout(#filenumber)

Returns true if a com or socket port has timed out.

Example:

If Timeout(SerPort) Then Goto Done

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

Timer Function

Syntax:

result = Timer

Returns the number of seconds elapsed since midnight.

Example:

If Timer>=43200 Then Call AfternoonProcess

TimeSerial Function

Syntax:

result = TimeSerial(H,M,S)

Returns a date containing the specific hours, minutes, and seconds.

Example:

T = TimeSerial(23, 0, 0) ' 11 pm

TriggerTask Statement

Syntax:

TriggerTask taskname

TriggerTask will cause a scheduled task to start running immediately ignoring its execution

interval.

See StartTask and StopTask

If the task has already stopped then the error BE_TASK_NOT_RUNNING will occur.

129

Example:

TriggerTask "AveragingTask"

Errors:

45: BE_TASK_NOT_RUNNING

Troff Statement

Syntax:

Troff [global-variable]

Turns line or global-variable tracing off that was previously turned on with the Tron statement.

Tron Statement

Syntax:

Tron [global-variable]

Turns line tracing on. Each line as executed is output as a status message. This is a useful

debugging tool for seeing what order a program is executed. Line tracing will remain on as local

subroutine and function calls are made. Tracing can also be performed on a global variable.

Everytime the specified global variable changes value a status message will be output to the

system.log and/or to the command prompt if the “report status” command has been issued. Only

one variable may be traced at a time.

Turn Statement

Syntax:

Turn device, mode

The Turn statement can control power to various devices in the system. Device and Mode are

both strings. One common use is to turn the ethernet ("LAN") port on or off. Here is a list of the

possible devices that can be controlled: "LCD", "USB", "LAN", "USRLEDS", "SDCARD",

"ETH", "COM1" through "COM9". The possible modes include "AUTO", "OFF", "LOW",

"IDLE", "WAKE", and "ON".

"LAN" is a special version of the ethernet device in that it's designed to share and manage the

port and only supports the modes "ON" and "OFF". All requests to turn the LAN on are counted.

An equal number of "OFF" must be issued for each "ON" before the interface will power down.

The "ETH" device is a way to bypass sharing and change the mode of the ethernet interface

directly.

Example:

REM Turn the Xpert LCD display off – it will turn back on when touched

Turn "LCD", "OFF"

REM Turn the ethernet interface on

Turn "LAN", "ON"

REM Turn the USB interface off to save power while a thumb drive is inserted

TURN "USB", "OFF"

130

REM Allow the USB port to automatically wake up when a drive is inserted

TURN "USB", "WAKE"

REM Put ethernet port in to a mode where it will only power on when there's a link

TURN "ETH", "LOW"

Errors:

28: BE_IO_FAILED

29: BE_INVALID_ARGUMENT

Ubound Function

Syntax:

result = Ubound(arrayname)

Returns the upper bound (index of highest entry containing a value) of an array.

Example:

For I = 1 To Ubound(Data)

 Sum = Sum + Data(I)

Next I

Ucase Function

Syntax:

result = Ucase(string)

Returns string converted to uppercase.

Example:

S = Ucase(S)

UnLock Statement

Syntax:

UnLock [semaphore [,name]]

The UnLock statement unlocks a semaphore, allowing any pending calls to Lock of the same

semaphore, to succeed. When no value is supplied for “semaphore”, the global un-named

semaphore is used. Otherwise, you can specify your own global semaphore in this argument.

When you provide a name for your semaphore, you create an “event” object that can be seen by

programs written in C++. This provides a way to synchronize programs your basic code with

your C++ program.

Val Function

Syntax:

result = Val(string)

131

Returns the numbers contained in string as a numeric value of appropriate type. To convert a

Hexadecimal precede the number with &H, to convert an Octal use &O.

Things to keep in mind when using this function:

1. Preceding and intermediate white spaces are ignored.

2. Scientific notation, Hex and Octal values are supported.

3. Leading non-numeric characters will return zero, trailing non-numeric characters will

return the number up to the non-numeric character.

4. The function will return the max value of its type (integer, floating point, etc.) if it

exceeds the maximum value that can be stored.

Examples:

StatusMsg "Test1 val '1.2345' = " & val("1.2345")

StatusMsg "Test2 val 'abcd' = " & val("abcd")

StatusMsg "Test3 val '5.69E-05' = " & val("5.69E-05")

StatusMsg "Test4 val '6.789E+05' = " & val("6.789E+05")

StatusMsg "Test5 val

'111111111111111111111122222222222222222222222222333333333333333333333' = " &

val("111111111111111111111122222222222222222222222222333333333333333333333")

StatusMsg "Test6 val '123z' = " & val("123z")

StatusMsg "Test6a val 'z123' = " & val("z123")

StatusMsg "Test7 val '&HFFFF' = " & val("&HFFFF")

StatusMsg "Test8 val '&O177777' = " & val("&O177777")

StatusMsg "Test9 val ' 1615 198th Street N.E.' = " & val(" 1615 198th Street

N.E.")

Produces:

07/08/2015,11:20:30,(Stat) - Test1 val '1.2345' = 1.2345,,,

07/08/2015,11:20:30,(Stat) - Test2 val 'abcd' = 0,,,

07/08/2015,11:20:30,(Stat) - Test3 val '5.69E-05' = 5.69000e-005,,,

07/08/2015,11:20:30,(Stat) - Test4 val '6.789E+05' = 678900.,,,

07/08/2015,11:20:30,(Stat) - Test5 val

'111111111111111111111122222222222222222222222222333333333333333333333' =

2147483647,,,

07/08/2015,11:20:30,(Stat) - Test6 val '123z' = 123,,,

07/08/2015,11:20:30,(Stat) - Test6a val 'z123' = 0,,,

07/08/2015,11:20:30,(Stat) - Test7 val '&HFFFF' = 65535,,,

07/08/2015,11:20:30,(Stat) - Test8 val '&O177777' = 65535,,,

07/08/2015,11:20:30,(Stat) - Test9 val ' 1615 198th Street N.E.' = 1615198,,,

WaitEvent Function

Syntax:

Result = WaitEvent(timeout-sec, Event1, [Event2, …])

Waits up to timeout-sec seconds for an event to be set (see SetEvent). One or more events can be

waited upon, but only one of the events needs to be set for the wait to stop. The function returns

the value -1 if a timeout occurs, 0 if Basic is being shutdown, or 1 if Event1 was signaled, 2 if

Event2 was signaled, etc.

Events must be initialized with either SetEvent or ResetEvent before they can be passed to

WaitEvent or else a BE_INVALID_ARGUMENT error will occur. Events are a powerful means

to synchronize and signal tasks to perform work or a special function. If more than one event is

signaled at the same time, then the lowered numbered event will be returned.

Example:

132

Dim DoSomeWork

ResetEvent DoSomeWork

REM CallDoSomeWork until the StopLoop event has been raised

Do While WaitEvent(0, StopLoop) = -1

 Call DoSomeWork

End Loop

Errors:

29: BE_INVALID_ARGUMENT

WaitFor Statement

Syntax:

WaitFor #filenumber, string

Waits for the pattern in string to be received on a com port or a socket. A timeout occurs if the

pattern is not received. A "?" in the pattern will match any single character. A "*" will match

anything (ie "A*G" would match "ABCDEFG"). Control characters may be embedded with "^"

(ie "^C" would match a ctrl-c). Any of the special codes may be matches by prefixing with a "\"

(ie to "\?*" would match the pattern "?*".

Example:

WaitFor #1, "STAGE="

Errors:

10: BE_INVALID_FILENUM

18: BE_UNSUPPORTED_OPERATION

19: BE_WAITFOR_FAILED

WarningMsg Statement

Syntax:

WarningMsg str

Outputs a warning message to the Remote prompt and/or the system log.

Example:

WarningMsg "Measurement failed"

WebServer Statement

This statement was introduced in Xpert Basic v3.1.0.

Syntax:

WebServer subroutine[, port[, protocol]]

Associates a subroutine with a TCP/IP port and protocol. The subroutine is called when a

connection is made to the specified port. The subroutine may then read or write data back to the

client that initiated the connection. The port number may be any valid TCP/IP port that's not

already in use. It may also be assigned dynamically by passing in a variable initialized to 0. The

protocol by default is TCP (value of 0)., but UDP may be specified by passing 1. Passing just a

subroutine name to the WebServer statement will stop a server.

133

The subroutine itself must be declared as Public with one or more of the following parameters:

Public Sub MyServer(Socket, UdpBuffer, ClientIp, ServerPort,

ClientPort)

Socket: A file number that can be used to read or write data to the

client.

UdpBuffer: A string containing the UDP message received (UDP only)

ClientIP: The IP address in string form of the client

ServerPort: The TCP/IP port number the server is listening on

ClientPort: The TCP/IP port number the client is listening on

UDP protocols are connectionless, hence the message is passed in to the subroutine, and the

subroutine would normally parse the buffer, perhaps send a reply, and finish up quickly. In the

case of TCP a separate thread is created for each connection and the server may freely interact

with with the client. In either case if the protocol loops, be sure to call the Abort function to see

if recording was turned off, and the Timeout function to see if the client has dropped the

connection. The Loc function is useful to detect if data has been received, and the normal set of

file I/O functions are available including SetTimeout, Input, Line Input, ReadB, WriteB, Print,

etc. However, do not close the file number, this is handled automatically when the subroutine

returns.

BE_REMOTE_COM_ERROR will be signaled if a web server could not be started on the

specified port. BE_FILE_OPEN_FAILED will be signaled if Basic runs out of file numbers to

assign to the session.

Example:

REM This subroutine implements the functionality of the web server

REM it will output the value of the tag "5MINRAIN" every second until either

REM the connection is terminated, or the command QUIT<cr> is entered

REM The command TAG<cr> may be used to display a different tag. These tags must

REM predefined in the setup or this example program will not work.

REM The program may be tested using TELNET: "telnet <ipaddr> 610"

REM (the default port used by this program is tcp 610)

Public Sub FiveMin(Socket, UdpBuffer, Ip, OurPort, TheirPort)

 On Error Goto Problem

 REM Log the connection

 StatusMsg "TCP/IP connection from " & Ip & ":" & TheirPort & " to port " &

OurPort

 TagName = "5MINRAIN"

 REM Constantly output the current reading until the connection is closed

 Do

 REM Retrieve the station name

 StationName = Systat(0)

 REM Retrieve the Data

 Data = Tag(TagName)

 N = Now

 HHMMSS = Format("%02d:%02d:%02d", Hour(N), Minute(N), Second(N))

 Print Socket, StationName; ","; HHMMSS; ","; TagName; ","; Data

 REM Look for commands QUIT and TAG - TAG allows the tag name to be switched

 If Loc(Socket) Then

 SetTimeout Socket, 30

 Cmd = ""

 Line Input Socket, Cmd

134

 Cmd = UCase(Cmd)

 If UCase(Cmd) = "QUIT" Then

 Exit Do

 End If

 If UCase(Cmd) = "TAG" Then

 Print Socket, "Enter Tag Name to Retrieve: ";

 Line Input Socket, TagName

 Else

 Print Socket, "Commands supported: TAG, QUIT"

 End If

 REM Remove any straggling line feeds characters

 If Loc(Socket) = 1 Then

 FlushInput Socket

 End If

 Else

 REM Detect if the connection was closed on the other side

 If Not Timeout(Socket) Then

 Sleep 1

 End If

 End If

 Loop Until Timeout(Socket) Or Abort

 StatusMsg "TCP/IP connection closed " & Ip

 Exit Sub

Problem:

 Print Socket, Systat(0);": Could not retrieve data for "; TagName

 ErrorMsg TagName & " tag is not defined"

End Sub

REM We need the LAN ON in order for this demo program to work

Turn "LAN", "ON"

Const TCP = 0

Const UDP = 1

REM Startup a Webserver to display 5min Rain Data using TCP port 610

WebServer FiveMin, 610, TCP

Errors:

13: BE_FILE_OPEN_FAILED

17: BE_SUBROUTINE_NOT_FOUND

29: BE_INVALID_ARGUMENT

30: BE_REMOTE_COMM_ERROR

While Statement

Syntax:

While condition

 statements

Wend

The statements inside a while loop are executing as long as the initial condition is met.

Example:

While I < 10

 I = I + 1

Wend

135

WriteB Function

Syntax:

result = WriteB(#filenumber, data, numbytes)

Writes up to numbytes raw binary data from data to file. Returns the number of bytes written.

Not permitted on log files.

Example:

N = WriteB(#1, OutStr, Len(OutStr))

Errors:

10: BE_INVALID_FILENUM

15: BE_INVALID_FILE_ACCESS

18: BE_UNSUPPORTED_OPERATION

43: BE_WRITE_FAILED

Year Function

Syntax:

result = Year(date)

Returns the current year from date.

Example:

If Year(Date) <> LastYear Then Call HappyNewYear

136

APPENDIX A: BASIC ERROR CODES

The following table defines all possible run-time errors that can occur during program execution.

The numeric value of the error (as would be returned by the Err function) is given, as is the

message generated when the error is not explicitly handled by the program. A description of the

error is also given.

Err # Error Message Description

1 STOP Program has exited (typically not an error a

program has to be concerned about).

2 ABORT Program has aborted (typically not an error a

program has to be concerned about).

3 MKDIR FAIL A call to the MkDir statement failed.

4 RMDIR FAIL A call to the RmDir statement failed.

5 CHDIR FAIL A call to the ChDir statement failed.

6 RENAME FAIL A call to the Name statement failed.

7 COPY FAIL A call to the Copy statement failed.

8 KILL FAIL A call to the Kill statement failed.

9 FILELEN FAIL The FileLen function failed.

10 INVALID FILENUM The file number provided was invalid (i.e., a

successful Open using the file number has not

occurred before the file number was used).

11 FILENUM IN USE The file number provided to the Open statement

is already in use.

12 INVALID PATH The file path provided to the Open statement

does not exist.

13 FILE OPEN FAIL A call to the Open statement failed.

14 INVALID SEEK A call to the Seek statement failed.

15 INVALID FILE ACCESS An attempt was made to access a file in a mode

not compatible with the mode specified in the

open statement (e.g., attempting to write to a file

opened for input only).

16 FUNCTION NOT FOUND An attempt was made to a call a function that

could not be found (e.g., calling a DLL function

that does not exist).

17 SUBROUTINE NOT FOUND An attempt was made to a call a function that

could not be found (e.g., calling a DLL

subroutine that does not exist).

18 UNSUPPORTED OPERATION An attempt was made to perform an unsupported

137

operation on a file (e.g., trying to call SetRts on a

disk file, or trying to read binary from a log file).

19 WAITFOR FAILED A call to the WaitFor statement failed.

20 ILLEGAL OPCODE An attempt was made to execute an illegal

opcode (typically not an error a program has to

be concerned about).

21 ILLEGAL ACCESS An attempt was made to Peek or Poke an invalid

memory address.

22 SHELL FAILED A call to the Shell statement failed.

23 TAG NOT FOUND An attempt was made to access a Basic Tag that

does not exist.

24 BAD QUALITY The quality of a Basic Tag following a GetTag

operation was not good.

25 DIVIDE BY ZERO An operation was attempted that would have

resulted in divide by zero.

26 EXCEPTION Unused.

27 INVALID I/O HANDLE An attempt was made to reference an I/O module

that does not exist.

28 I/O FAILED A failure occurred while trying to perform an I/O

operation (e.g., Ad, Digital, etc).

29 INVALID ARGUMENT A parameter provided to a statement or function

was invalid (e.g., out of range).

30 REMOTE COMM ERROR A communications error during a GetTag, Tag,

GetMessage, RequestMessage operation

occurred.

31 REMOTE WAIT TIMEOUT The timeout expired during a GetMessage or

RequestMessage operation.

32 NOT BASICBLOCK The program attempted to invoke a statement or

function that is specific to a Basic Block or Basic

Sensor outside of one of these contexts.

33 BE_LOCK_TIMEOUT The program timed-out wating for access to the

global lock, in a Lock statement.

34 BE_RETURN_FAILED An error occurred returning from a gosub.

35 BE_OVERFLOW An overflow of data occurred while perfoming a

Line Input.

36 BE_TELNET_LOGIN_DENIED The login information provided in an URL (e.g.,

SendTag, GetTag, etc.) failed to gain access to

the remote system.

138

37 BE_TELNET_TIMEOUT

38 BE_TELNET_LOGIN_FAILED A remote system requires login information

before it will allow an operation (SendTag,

GetTag, SendMessage, RequestMessage) to

succeed.

39 BE_TELNET_CONNECT_FAILED An attempt to connect to an URL failed.

40 BE_TELNET_WRITE_FAILED An attempt to write to an URL failed.

41 BE_TELNET_READ_TIMEOUT An attempt to read from an URL failed.

42 BE_TELNET_BAD_REPLY The response received from the server was bad.

43 BE_WRITE_FAILED A disk file write operation failed. The drive is

probably out of space.

44 BE_TASK_ALREADY_RUNNING An attempt was made to start a task that was

already running.

45 BE_TASK_NOT_RUNNING An attempt was made to stop a task that was not

running.

If desired, the following list can be copied into your basic program to provide a set of constants

for referring to errors by name.

const BE_NO_ERROR=0

const BE_STOP=1

const BE_ABORT=2

const BE_MKDIR_FAILED=3

const BE_RMDIR_FAILED=4

const BE_CHDIR_FAILED=5

const BE_RENAME_FAILED=6

const BE_COPY_FAILED=7

const BE_KILL_FAILED=8

const BE_FILELEN_FAILED=9

const BE_INVALID_FILENUM=10

const BE_FILENUM_IN_USE=11

const BE_INVALID_PATH=12

const BE_FILE_OPEN_FAILED=13

const BE_INVALID_SEEK=14

const BE_INVALID_FILE_ACCESS=15

const BE_FUNCTION_NOT_FOUND=16

const BE_SUBROUTINE_NOT_FOUND=17

const BE_UNSUPPORTED_OPERATION=18

const BE_WAITFOR_FAILED=19

const BE_ILLEGAL_OPCODE=20

const BE_ILLEGAL_ACCESS=21

const BE_SHELL_FAILED=22

const BE_TAG_NOT_FOUND=23

const BE_BAD_QUALITY=24

const BE_DIVIDE_BY_ZERO=25

const BE_EXCEPTION=26

const BE_INVALID_IO_HANDLE=27

const BE_IO_FAILED=28

const BE_INVALID_ARGUMENT=29

const BE_REMOTE_COMM_ERROR=30

const BE_REMOTE_WAIT_TIMEOUT=31

const BE_NOT_BASICBLOCK=32

139

const BE_LOCK_TIMEOUT=33

const BE_RETURN_FAILED=34

const BE_OVERFLOW=35

const BE_TELNET_LOGIN_DENIED=36

const BE_TELNET_TIMEOUT=37

const BE_TELNET_LOGIN_FAILED=38

const BE_TELNET_CONNECT_FAILED=39

const BE_TELNET_WRITE_FAILED=40

const BE_TELNET_READ_TIMEOUT=41

const BE_TELNET_BAD_REPLY=42

const BE_WRITE_FAILED=43

const BE_TASK_ALREADY_RUNNING=44

const BE_TASK_NOT_RUNNING=45

